## Process control TKP4140 – Midterm Exam

October 2016

Student number:

- Write your student number on every page.
- Write your answers in the designated spaces.
- Do **not** separate the sheets.
- If you need extra space, use the extra pages in the end.

### Problem 1

1. (7 points) The transfer function g(s) is a first order transfer function with time delay and the output is y(s) = g(s)u(s). The step response y(t) is plotted in Figure 1, and:

$$u(t) = \begin{cases} 0 & \text{for } t < 5\\ 2 & \text{for } t \ge 5 \end{cases}$$

- (a) Sketch u(t) in Figure 1.
- (b) Indicate the time delay  $(\theta)$ , time constant  $(\tau)$ , and steady state value  $(y_{\infty})$  in Figure 1.
- (c) Write down  $\theta$ ,  $\tau$ , k, and g(s).

$$heta = au = au = au$$

g(s) =

Student number: \_\_\_\_



Figure 1: First order transfer function.

Student number: \_\_\_\_

#### Problem 2

2. (18 points) Consider a heated tank with perfectly controlled level as the one in Figure 2. Assume: constant density  $(\rho)$ , constant heat capacity  $(C_p)$ , constant volume (V), perfect mixing.



Figure 2: Heated tank

| Table 1:        | Parameter     | s for the | heated tank. |
|-----------------|---------------|-----------|--------------|
| V               | =             | 10  000   | $\ell$       |
| q               | =             | 1.5       | $m^3/s$      |
| $\rho$          | =             | 1000      | $kg/m^3$     |
| $C_v$ $\approx$ | $pprox C_p =$ | 4200      | J/kgK        |

(a) Formulate the dynamic energy balance of the system and write it in the form  $\frac{dT}{dt} = \dots$ 

(b) Linearize the model and introduce deviation variables.

Student number: \_\_\_\_\_

(c) Take the Laplace transform and derive the transfer functions  $g_1(s)$  and  $g_2(s)$ :

$$T(s) = g_1 T_1(s) + g_2(s)Q(s)$$

$$g_1(s) = \qquad \qquad g_2(s) =$$

- (d) Considering the parameters in Table 1, what is the value of the steady state gain  $k_1$  and the time constant  $\tau_1$  of  $g_1(s)$ ? (write the units)
- (e) Considering the parameters in Table 1, what is the value of the steady-state gain  $k_2$  of  $g_2(s)$ ? (write the units)
  - $k_{2} =$

(f) Draw the block diagram for the (open loop) process.

Student number: \_\_\_\_

## Problem 3

3. (30 points) Consider the following block diagram:



Figure 3: Closed loop block diagram

$$\mathbf{y} = \mathbf{T}(\mathbf{s}) \ \mathbf{r} + \mathbf{M}(\mathbf{s}) \ \mathbf{d} + \mathbf{N}(\mathbf{s}) \ \mathbf{n}$$

- (a) Write the transfer functions T(s), M(s) and N(s). Use symbols only (c(s), g(s)).
  - T(s) =

M(s) =

- N(s) =
- (b1) Find T(s) and M(s) when:  $g(s) = \frac{3}{4s+1}$  and c(s) = 2Write the denominator in the form:  $\tau s + 1$

T(s) =

M(s) =

Student number: \_\_\_\_\_

(b2) Find the analytical expression for y(t) when r(t) is a unit step, d(t) = 0, and n(t) = 0y(t) =

- (c1) Find T(s) when:  $g(s) = \frac{3}{4s+1}$  and  $c(s) = 0.5(1 + \frac{1}{s})$   $\rightarrow$  Please note that this is not a well-tuned controller.
  - T(s) =

(c2) Calculate the damping factor and the time constant of T(s). Hint: the denominator in the second order transfer function is  $\tau^2 s^2 + 2\tau \zeta s + 1$ 

 Student number: \_

(c3) Compute y(0), y'(0), and  $y(\infty)$  for T(s).

$$y(0) = \qquad \qquad y'(0) = \qquad \qquad y(\infty) =$$

- (c4) Sketch the response y(t), when r(t) is a unit step, d = 0 and n = 0. Hints:
  - Consider the answers you gave in (c2) and (c3).
  - Note that the period of oscillations is approximately  $2\pi\tau$
  - The first peak is at  $t \approx 4.7s$



Figure 4: Step response

Student number: \_\_\_\_\_

#### Problem 4

4. (15 points) Given the transfer function:

$$g(s) = \frac{(-5s+1)e^{-3s}}{(2s+1)^3(7s+1)} \tag{1}$$

(a) Write the first order plus time delay approximation  $g_1(s)$  using the half-rule.

 $g_1(s) =$ 

(b) Give the SIMC PI settings, using  $\tau_c = \theta$ , where  $\theta$  is the effective delay.

(c) Write the second order plus time delay approximation  $g_2(s)$  using the half-rule.

 $g_2(s) =$ 

(d) Give the SIMC PID settings (cascade PID), using  $\tau_c = \theta$ , where  $\theta$  is the effective delay.

(e) Would you recommend a PI or a PID controller? Explain briefly.

Student number: \_\_\_\_\_

### Problem 5

5. (5 points) Given the transfer function:

$$g(s) = \frac{20e^{-3s}}{s(2s+1)(s+1)} \tag{2}$$

(a) Write the first order plus time delay approximation  $g_1(s)$  using the half-rule.

 $g_1(s) =$ 

- (b) Give the SIMC PI settings. Use  $\tau_c = \theta$ , where  $\theta$  is the effective delay.

## Problem 6

6. (5 points) Indicate whether the following statements are true of false.

|                                                                                             | True | False |
|---------------------------------------------------------------------------------------------|------|-------|
| The PID SIMC rule gives tunings for PID in ideal form.                                      |      |       |
|                                                                                             |      |       |
| Increasing the integral term $\tau_I$ in a PID controller increases the effect of integral  |      |       |
| action.                                                                                     |      |       |
| After tuning a PI controller using the SIMC rules with $\tau_c = \theta$ ,                  |      |       |
| you realized that the closed loop response is faster than what you would like               |      |       |
| it to be. In order to slow down the response, you should decrease $\tau_c$ .                |      |       |
| A closed loop with P-control always has a steady-state offset of $\frac{1}{1+K_cK}$ , where |      |       |
| $K_c$ is the controller gain and K is the steady state process gain.                        |      |       |
| Windup is caused by the integral part of the PI controller.                                 |      |       |
|                                                                                             |      |       |

Student number: \_

## Problem 7

7. (20 points) Figure 5 depicts the responses of the following transfer functions to a step input:

$$g_1 = \frac{1}{7s+1} - \frac{1.1}{3s+1} \tag{3}$$

$$g_2 = \frac{1}{3s+1} - \frac{1.1}{7s+1} \tag{4}$$

$$g_3 = \frac{(10s+1)}{(7s+1)(1.5s+1)^2} \tag{5}$$

$$g_4 = \frac{1}{s^2 + 0.4s + 1} \tag{6}$$



Figure 5: Step response of  $g_i(s)$ 

Fill in the missing values in Table 2:

- Poles and zeros of  $g_i(s)$
- Steady state gain (SS gain), initial gain and initial slope when a unit step input u(s) = 1/s is applied at t = 0.
- As conclusion, identify the step responses in Figure 5 (A,B,C, or D).

Student number: \_\_\_\_\_

Hints:

Initial slope of response to unit step input:  $\lim_{t\to 0} y'(t) = \lim_{s\to\infty} sg(s)$  $j = \sqrt{-1}$ 

| Table 2: Problem 7; SS: steady state; TF: transfer function |       |                        |         |              |               |            |  |  |
|-------------------------------------------------------------|-------|------------------------|---------|--------------|---------------|------------|--|--|
| TF                                                          | Poles | $\operatorname{Zeros}$ | SS gain | Initial gain | Initial slope | Conclusion |  |  |
| $g_1$                                                       |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
| $q_2$                                                       |       |                        |         |              |               |            |  |  |
| 5-                                                          |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
| <i>n</i> 2                                                  |       |                        |         |              |               |            |  |  |
| 93                                                          |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
| <u>a</u> .                                                  |       |                        |         |              |               |            |  |  |
| $g_4$                                                       |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |
|                                                             |       |                        |         |              |               |            |  |  |

#### Table 2: Problem 7; SS: steady state; TF: transfer function

Student number: \_\_\_\_\_

# Extra space if needed

Please clearly indicate which problem the solution belongs to.

Student number: \_\_\_\_\_

# Extra space if needed

Please indicate clearly which problem the solution belongs to.

Student number: \_\_\_\_\_

# Extra space if needed

Please indicate clearly which problem the solution belongs to.