

Series to ideal form

$$c(s) = K_c \frac{(\tau_I s + 1)(\tau_D s + 1)}{\tau_I s} = \frac{K_c}{\tau_I s} (\tau_I \tau_D s^2 + (\tau_I + \tau_D)s + 1)$$

The settings given in this paper (K_c, τ_I, τ_D) are for the series (cascade, "interacting") form PID controller in (1). To derive the corresponding settings for the ideal (parallel, "non-interacting") form PID controller

Ideal PID:
$$c'(s) = K'_c \left(1 + \frac{1}{\tau'_I s} + \tau'_D s \right) = \frac{K'_c}{\tau'_I s} \left(\tau'_I \tau'_D s^2 + \tau'_I s + 1 \right)$$
 (35)

we use the following translation formulas

$$K'_{c} = K_{c} \left(1 + \frac{\tau_{D}}{\tau_{I}} \right); \quad \tau'_{I} = \tau_{I} \left(1 + \frac{\tau_{D}}{\tau_{I}} \right); \quad \tau'_{D} = \frac{\tau_{D}}{1 + \frac{\tau_{D}}{\tau_{I}}}$$
(36)

Derivation: See exercise

Note: The reverse transformation (from ideal to series) is not always possible because the ideal controller may have complex zeros.

Controller Type	Other Names Used	Controller Equation	Transfer Function
Parallel	Ideal, additive, ISA form	$p(t) = \overline{p} + K_c \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t^\circ) dt^\circ + \tau_D \frac{de(t)}{dt} \right)$	$\frac{P'(s)}{E(s)} = K_c \left(1 + \frac{1}{\tau_J s} + \tau_D s \right)$
Parallel with derivative filter	Ideal, realizable, ISA standard	See Exercise 7.10(a)	$\frac{P'(s)}{E(s)} = K_c \left(1 + \frac{1}{\tau_l s} + \frac{\tau_D s}{\alpha \tau_D s + 1} \right)$
Series	Multiplicative, interacting	See Exercise 7.11	$\frac{P'(s)}{E(s)} = K_c \left(\frac{\tau_I s + 1}{\tau_I s}\right) (\tau_D s + 1)$
Series with derivative filter	Physically realizable	See Exercise 7.10(b)	$\frac{P'(s)}{E(s)} = K_c \left(\frac{\tau_l s + 1}{\tau_l s}\right) \left(\frac{\tau_D s + 1}{\alpha \tau_D s + 1}\right)$
Expanded	Noninteracting	$p(t) = \vec{p} + K_c e(t) + K_I \int_0^t e(t^o) dt^o + K_D \frac{de(t)}{dt}$	$\frac{P'(s)}{E(s)} = K_c + \frac{K_I}{s} + K_D s$
Parallel, with proportional and derivative weighting	Ideal β, γ controller	$p(t) = \tilde{p} + K_c \left(e_P(t) + \frac{1}{\tau_I} \int_0^t e(t^*) dt^* + \tau_D \frac{de_D(t)}{dt} \right)$ where $e_P(t) = \beta y_{sp}(t) - y_m(t)$ $e(t) = y_{sp}(t) - y_m(t)$ $e_D(t) = \gamma y_m(t) - y_m(t)$	$\begin{aligned} P'(s) &= K_c \bigg(E_P(s) + \frac{1}{\tau_{IS}} E(s) + \tau_D s E_D(s) \bigg) \\ \text{where } E_P(s) &= \beta Y_{SP}(s) - Y_{Im}(s) \\ E(s) &= Y_{SP}(s) - Y_{Im}(s) \\ E_D(s) &= \gamma Y_{ID}(s) - Y_{Im}(s) \end{aligned}$

+ many more (see manual for your control system...)

