Reference group process control: Need 3 students (volunteers)

Laplace Transforms

1. Standard notation in dynamics and control for linear systems (shorthand notation)

- Independent variable: Change from t (time) to s (complex variable; inverse time)
- Just a mathematical change in variables: Like going from x to $y=\log (x)$

2. Converts differential equations to algebraic operations
3. Advantageous for block diagram analysis.

Transfer function, G(s):

General procedure in this course

1. Nonlinear model
2. Introduce deviation variables and linearize*
3. Laplace of linear model $(\mathrm{t} \rightarrow \mathrm{s})$
4. Algebra \rightarrow Transfer function, $\mathrm{G}(\mathrm{s})$
5. Block diagram
6. Controller design
*Note: We will only use Laplace for linear systems!

$$
\begin{aligned}
& f(t) \underset{ }{\underset{\text { Inverse, } \mathfrak{R}^{-1}}{\gtrless}} f(s) \\
& \text { 2. Split into sum of simple terms where } \\
& f(t) \text { is known (partial (action erparsion) }
\end{aligned}
$$

Most important property of Laplace for us:
$\mathcal{L}\left(\frac{d f(t)}{d t}\right)=s f(s)-f(t=0)$
USUally $=0_{\text {(egg, der titi variables.) }}$
DIFFRENTLATION IN TIME REPLACED BY MULTIPLICATION BY A \rightarrow ALGEBRA!

Laplace Transform

Definition*: $F(s)=L(f(t))=\int_{0}^{\infty} f(t) e^{-s t} d t$
Usually $f(t)$ is in deviation variables so $f(t=0)=0$

Examples

1. $\mathrm{f}(\mathrm{t})=\mathrm{a}$ (step change) ads: Laplace of step a

$$
\mathrm{f}(\mathrm{~s})=\int_{0}^{\infty} \mathrm{ae}^{-\mathrm{st}} \mathrm{dt}=-\frac{\mathrm{a}}{\mathrm{~s}}\left[\mathrm{e}^{-\mathrm{st}}\right]_{0}^{\infty}=0-\left[-\frac{\mathrm{a}}{\mathrm{~s}}\right]=\frac{\mathrm{a}}{\mathrm{~s}}
$$

2. $f(\mathrm{t})=\mathrm{e}^{-\mathrm{bt}}$
$\mathrm{f}(\mathrm{s})=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{bt}} \mathrm{e}^{-\mathrm{st}} \mathrm{dt}=\int_{0}^{\infty} \mathrm{e}^{-(b+s) t} \mathrm{dt}=\left.\frac{1}{\mathrm{~b}+\mathrm{s}}\left[-\mathrm{e}^{-(b+s) t}\right]\right|_{0} ^{\infty}=\frac{1}{\mathrm{~s}+\mathrm{b}}$
*Will often misuse notation and write $f(s)$ instead of $F(s)$

Very important property for us:

$$
\mathrm{L}\left(\frac{\mathrm{df}}{\mathrm{dt}}\right)=\int_{0}^{\infty} \frac{\mathrm{df}}{\mathrm{dt}} \mathrm{e}^{-\mathrm{st}} \mathrm{dt}=\mathrm{sL}(\mathrm{f})-\mathrm{f}(0)=\mathrm{sF}(\mathrm{~s})-\mathrm{f}(0)
$$

Differentiation: replaced by multiplication with s Integration: replaced by multiplication with 1/s

Proof: $\quad \int_{0}^{\infty} \frac{d f}{d t} \mathrm{e}^{-s t} \mathrm{dt}=\int_{0}^{\infty} \mathrm{e}^{- \text {st }} \mathrm{df}$
Set $\mathrm{v}=\mathrm{e}^{-\mathrm{st}}$ and du=df and use integration by parts

Table A. 1 Laplace Transforms for Various Time-Domain Functions ${ }^{\text {a }}$

$f(t)$	$F(s)$
	1
10. $\frac{1}{\tau_{1}-\tau_{2}}\left(e^{-t / \tau_{1}}-e^{-l / \tau_{2}}\right)$	$\overline{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
11. $b_{3}-b_{1} e^{-b_{1} t}+\frac{b_{3}-b_{2}}{b_{1}-e^{-b_{2} t}}$	$s+b_{3}$
11. $\frac{b_{3}-b_{1}}{b_{2}-b_{1}} e^{-b_{1} t}+\frac{b_{3}-b_{2}}{b_{1}-b_{2}} e^{-b_{2} t}$	$\begin{gathered} \overline{\left(s+b_{1}\right)\left(s+b_{2}\right)} \\ \tau_{3} s+1 \end{gathered}$
12. $\frac{1}{\tau_{1}} \frac{\tau_{1}-\tau_{3}}{\tau_{1}-\tau_{2}} e^{-t / \tau_{1}}+\frac{1}{\tau_{2}} \frac{\tau_{2}-\tau_{3}}{\tau_{2}-\tau_{1}} e^{-t / \tau_{2}}$	$\frac{\tau_{3} s+1}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
	1
13. $1-e^{-t / \tau}$	$\overline{s(\tau s+1)}$
	ω
14. $\sin \omega t$	$s^{2}+\omega^{2}$
	s
15. $\cos \omega t$	$s^{2}+\omega^{2}$
	$\omega \cos \phi+s \sin \phi$
16. $\sin (\omega t+\phi)$	$s^{2}+\omega^{2}$
	ω
17. $e^{-b t} \sin \omega t$	$\overline{(s+b)^{2}+\omega^{2}}$
b, ω real	$s+b$
18. $e^{-b t} \cos \omega t$	$\overline{(s+b)^{2}+\omega^{2}}$
19. 1	1
19. $\frac{1}{\tau \sqrt{1-\zeta^{2}}} e^{-\zeta t / \tau} \sin \left(\sqrt{1-\zeta^{2} t / \tau}\right)$	$\tau^{2} s^{2}+2 \zeta \tau s+1$
$(0 \leq\|\zeta\|<1)$	

Table A. 1 Laplace Transforms for Various Time-Domain Functions ${ }^{\text {a }}$ (continued)

Example:

$$
\begin{aligned}
& \frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+6 y=4 \\
& y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0
\end{aligned}
$$

y is deviation variable, system initially at rest (s.s.)
To find transient response for $y(t)$

1. Take Laplace Transform (L.T.)
2. Factor, use partial fraction decomposition
3. Take inverse L.T. Use table

Step 1 Take L.T. (note zero initial conditions)

$$
s^{3} Y(s)+6 s^{2} Y(s)+11 s Y(s)+6 Y(s)=\frac{4}{s}
$$

Rearranging,

$$
Y(s)=\frac{4}{\left(s^{3}+6 s^{2}+11 s+6\right) s}
$$

Step 2a. Factor denominator of $\mathrm{Y}(\mathrm{s})$

$$
s\left(s^{3}+6 s^{2}+11 s+6\right)=s(s+1)(s+2)(s+3)
$$

Step 2b. Use partial fraction decomposition

$$
\frac{4}{s(s+1)(s+2)(s+3)}=\frac{\alpha_{1}}{s}+\frac{\alpha_{2}}{s+1}+\frac{\alpha_{3}}{s+2}+\frac{\alpha_{4}}{s+3}
$$

Multiply by s, set s=0

$$
\begin{aligned}
& \left.\frac{4}{(s+1)(s+2)(s+3)}\right|_{s=0}=\alpha_{1}+\left.s\left[\frac{\alpha_{2}}{s+1}+\frac{\alpha_{3}}{s+2}+\frac{\alpha_{4}}{s+3}\right]\right|_{s=0} \\
& \frac{4}{1 \cdot 2 \cdot 3}=\alpha_{1}=\frac{2}{3}
\end{aligned}
$$

For α_{2}, multiply by ($\mathrm{s}+1$), set $\mathrm{s}=-1$ (same procedure for α_{3}, α_{4})

$$
\alpha_{2}=-2, \alpha_{3}=2, \quad \alpha_{4}=-\frac{2}{3}
$$

Step 3. Take inverse of L.T. $\quad\left(Y(s)=\frac{2}{3 s}-\frac{2}{s+1}+\frac{2}{s+2}-\frac{2 / 3}{s+3}\right)$ Use table:
$y(t)=\frac{2}{3}-2 e^{-t}+2 e^{-2 t}-\frac{2}{3} e^{-3 t}$
$t \rightarrow \infty: \quad y(t) \rightarrow \frac{2}{3} \quad t=0: y(0)=0$. (check original ODE)
You can use this method on any order of ODE, limited only by factoring of denominator polynomial (characteristic equation)

Must use modified procedure for repeated roots, imaginary roots

Other properties of Laplace transform:

A. Final value theorem

$$
y(t=\infty)=\lim _{s \rightarrow 0} s Y(s) \quad \text { "steady-state value" }
$$

$$
\text { Example: } \quad Y(s)=\frac{1}{\tau s+1} \frac{a}{s}
$$

$$
y(\infty)=\lim _{s \rightarrow 0} \frac{a}{\tau s+1}=a
$$

B. Time-shift theorem

$$
y(t)=0 \quad t \leq \theta
$$

$$
\begin{aligned}
L(y(t-\theta)) & =e_{\uparrow}^{-\theta s} Y(s) \\
& \mathrm{e}^{-\theta s}: \text { transfer function for time delay } \theta
\end{aligned}
$$

C. Initial value theorem

$$
\lim _{t \rightarrow 0} y(t)=\lim _{s \rightarrow \infty} s Y(s)
$$

Example For $Y(s)=\frac{4 s+2}{s(s+1)}$

$$
\begin{array}{ll}
y(0)=4 & \begin{array}{l}
\text { by initial value theorem } \\
\text { (multiply } Y(\mathrm{~s}) \text { by s and set } \mathrm{s}=\infty)
\end{array} \\
y(\infty)=2 & \begin{array}{l}
\text { by final value theorem } \\
\text { (multiply } Y(\mathrm{~s}) \text { by s and set } \mathrm{s}=0)
\end{array}
\end{array}
$$

D. Initial slope property

$$
\lim _{t \rightarrow 0} y^{\prime}(t)=\lim _{s \rightarrow \infty} s^{2} Y(s)
$$

