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Input-output Controllability Analysis
Idea: Find out how well the process can be controlled - without having to design a specific controllerNote: Some processes are impossible to control

Reference: S. Skogestad, ``A procedure for SISO controllability analysis - with application to design of pH neutralization processes'',Comp.Chem.Engng., 20, 373-386, 1996. 

WANT TO QUANTIFY!
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Rules
• Rules 1-3: speed of response

– Rule 1: Fast response  required to reject large disturbance
– BUT (rule 2): Response time is limited by effective time delay
– Rule 3: Fast response needed for stabilization

• Rule 4: Input constraints
– Large disturbances may give input saturation 

Rules for speed of response (assuming control with integral action)
• Define ωc=1/τc = closed-loop bandwidth = where |L| is approx. 1
• Define ωd as frequency where |gd|=1 (scaled model, frequency where |y|=1 for |d|=1)
• Rule 1: Fast response  required to reject large disturbance

– Need ωc >ωd (τc < 1/ωd)
• Rule 1 is for typical case where |gd| is highest at low frequencies
• The more exact rule is: We need |Sgd|<1, or approximately: |L|>|gd| at frequencies where |gd|>1.• Rule 2: Response time is limited by effective time delay

– Need ωc < 1/θ (τc > θ . SIMC-rule!) 
• Where  θ is effective time delay• Rule 3: Fast response needed for stabilization

– Need ωc > p      (τc < 1/p)
• Where p is unstable pole, g(s) =k/(s-p)…• Rule 4: Input constraints: Large disturbances may give input saturation 

– With scaled model: Need |G| > |Gd| at frequencies where |Gd|>1

This situation is OK according to rules 1-3:
1/ θ

ω
ωdp

ωc must be in this range
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Comment: Ideal controller inverts the plant
• y  = g(s)u + d• Ideal controller inverts the plant g(s):
– Think feedforward,     u = cff(s) (ys-d)
– Perfect control: want y=ys → cff = 1/g(s) = g-1

Limitations on perfect control: Inverse cannot always be realized:1. Input saturation , |u| > |umax|2. Time delay, g=e-θs . 
• g-1= eθs = prediction (not possible)
• Solution: Omit3. Inverse response, g = -Ts+1. 
• g-1 = 1/(-Ts+1) = unstable (not possible as u will be unbounded)
• Solution: Omit4. More poles than zeros, g = 1/(τs+1), 
• g-1 = τs + 1 = pure differentiation (not possible as u will be unbounded).
• Solution: Replace by:  (τs + 1)/(τc+1) where τc< τ is a tuning parameter 

– Example. g(s) = 5 (-0.5s+1) e-2s / (3s+1).
• Realizable inverse (feedforward): 0.2 (3s+1)/(τc+1). E.g. choose τc=0.5• So we know what limits us from having perfect control

– Same limitations apply to feedback control
• Controllability analysis: Want to find out what these limitations imply in terms of “acceptable control”, |y-ys| < ymax

We use scaled model Rules 1 and 4
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Closed-loop frequency response (S)
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w = logspace(-2,1,1000);[mag1,phase]=bode(1/(1+L1),w);[mag2,phase]=bode(1/(1+L2),w);figure(1), loglog(w,mag1(:),'red',w,mag2(:),'blue',w,1,'-.') axis([0.01,10,0.001,10])
!

SIMC: Ms=1.70ZN:     Ms = 2.93

Control:    GOOD BAD NO EFFECT

e

|S|

Recall: Rule 1

Disturbances and Loop gain L
• S = 1/(1+L) where L = gc
• No control («open-loop»): y = g u + gd d
• With control:  y = S gd d
• Scaled variables: Want |Sgd|<1 at all ω
• Approximation at low frequencies where |L| is large: S = 1/L
• So want (in scaled variables): |L|> |gd|

– Up to about frequency ωc where |L|=1

SCALED MODEL MAIN REASON FOR CONTROL: DISTURBANCES! Rule 1
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Time domain
• Consider response to step disturbance, gd = kd/(τd s+1)

– Output reaches Δy = (kd θ /τd) Δd at time θ (approximately)
– If this is larger than acceptable then we are in trouble  
– If Δd=1 and requirement is |Δy|< 1 then we must require kd /τd < 1/θ(combined rule 1+2)

• Easier to generalize in frequency domain
– Consider disturbance d(t)=sinωt

}
ωd

Rule 1

Note: Have 
ωc=1/τc

SCALED MODEL

ωd

MAIN REASON FOR CONTROL: DISTURBANCES!

Gd ωc

Need control up to frequency wdwhere |Gd|=1 -> Need wc > wd(wc is frequency where |L|=1)

L=gc

Rule 4
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SCALED MODEL

Rule 4:

Rule 4

Rules for speed of response (assuming control with integral action)
• Define ωc=1/τc = closed-loop bandwidth = where |L| is approx. 1
• Define ωd as frequency where |gd|=1 (scaled model, frequency where |y|=1 for |d|=1)
• Rule 1: Fast response  required to reject large disturbance

– Need ωc >ωd (τc < 1/ωd)
• Rule 1 is for typical case where |gd| is highest at low frequencies
• The more exact rule is: We need |Sgd|<1, or approximately: |L|>|gd| at frequencies where |gd|>1.• Rule 2: Response time is limited by effective time delay

– Need ωc < 1/θ (τc > θ . SIMC-rule!) 
• Where  θ is effective time delay• Rule 3: Fast response needed for stabilization

– Need ωc > p      (τc < 1/p)
• Where p is unstable pole, g(s) =k/(s-p)…• Rule 4: Input constraints: Large disturbances may give input saturation 

– With scaled model: Need |G| > |Gd| at frequencies where |Gd|>1

This situation is OK according to rules 1-3:
1/ θ

ω
ωdp

ωc must be in this range
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s=tf('s')g = 500/((50*s+1)*(10*s+1))gd = 9/(10*s+1)w = logspace(-3,1,1000);[mag,phase]=bode(g,w);[magd,phased]=bode(gd,w);loglog(w,mag(:),'blue',w,magd(:),'red',w,1,'black'), grid on

SCALED MODEL EXAMPLE, g = 500/((50*s+1)*(10*s+1))

ωd=0.9

|G|

|Gd|

Effective delay θ limits ωcPI-control: ωc <1/θ = 1/5 = 0.2PID-control: ωc <1/θ = 1/0 = ∞

gd = 9/(10*s+1)

CHECK CONTROLLABILITY ANALYSIS WITH SIMULATIONS
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PI control not acceptable*
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s=tf('s')g = 500/((50*s+1)*(10*s+1))gd = 9/(10*s+1)% SIMC-PI with tauc=theta=5Kc=(1/500)*(55/(5+5)); taui=55; taud=0;

SCALED MODEL

*As expected since need ωc > ωd= 0.9, but can only achieve ωc<1/θ = 1/5 = 0.2 

PID control acceptable: y and u are within ±1
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g = 500/((50*s+1)*(10*s+1))gd = 9/(10*s+1)%SIMC-PID (cascade form) with tauc=1/wd=1:Kc=(1/500)*(50/(1+0)); taui=50; taud=10;

SCALED MODEL
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If process is not controllable: Need to change the design
• For example, dampen disturbance by adding buffer tank: Level control unimportant,but need good mixing

Level control is NOT tight-> level varies
Integral action is not recommended for averaging level control

Problem 1
SCALED MODEL
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Problem 2
SCALED MODEL

Problem 3
-

SCALED MODEL
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Problem 4
SCALED MODEL

g = 200/((20*s+1)*(10*s+1)*(s+1))gd = 4/((3*s+1)*(s+1)^3)Kc=(1/200)*20/1,taui=20,taud=10.5

Problem 5
-

SCALED MODEL
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Problem 6
pH-Neutralization.y = cH+ - cOH- (want=0 +- 10-6 mol/l,pH=7+-1)u = qbase (cOH-=10mol/l, pH=15)d = qacid (cH+ =10mol/l, pH=-1)
Using tanks in series, Acid and base in tank 1.
Scaled model: kd = 2.5e6Each tank: τ = 1000sControl: θ = 10s (meas. delay for pH)
Problem: How many tanks?

ω [rad/s]

SCALED MODEL

n=2n=3

n=1

|Gd|

Reference for more applications of controllability analysis: Chapter 5 in book by Skogestad and Postlethwaite (2005)

Control system
• 3 tanks: Neutralization (base addition) only in tank 1 gives large effective delay (>> 10s) because of tank dynamics in g(s)
• Suggested solution is to add (a little) base also in the other tanks:

pH 5
pH 2
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Conclusion
• Use controllability analysis 

– To avoid spending time on impossible control problem
– To help design the process (e.g., size buffer tanks)

• Also useful for tuning. 
– τc = SIMC tuning parameter = 1/ωc– Must for acceptable controllability have: 

• Agrees with SIMC-rules
– Tight control: τc = θ
– “Smooth” control: τc = 1/ωd

Exam
• Wednesday 06 December 2017 from 09:00 to 13:00
• The test (questions) is in English but you may answer in Norwegian or English.
• Permitted examination support material: 

– One (1) A4 double-sided piece of paper with your handwritten notes (it does not need to be approved or stamped prior to the exam). 
– No other written material.
– Standard calculator. 

• Note: Remember to state clearly all assumptions you make. 

Q&A session
Alternative: Monday 04 Dec. 12-14


