Ch. 14

Frequency analysis

Mathematics. Complex numbers, $\mathrm{j}^{2}=-1$

$$
\begin{aligned}
& s=j \omega \quad G(j \omega)=R+I j \\
& |G|=A R=\sqrt{R^{2}+I^{2}} \\
& \phi=\angle G=\arctan \frac{I}{R}
\end{aligned} \quad{ }^{2} \quad \text { Polar form }
$$

Polar form:

$$
\begin{aligned}
& G=R+j I=|G|(\cos \angle G+j \sin \angle G)=|G| e^{j \angle G} \\
& \text { Note: } e^{j \pi}=-1
\end{aligned}
$$

Polar form

Multiply complex numbers:
Multiply magnitudes and add phases

$$
\begin{aligned}
& G=G_{1} \cdot G_{2} \cdot G_{3} \\
& |G|=\left|G_{1}\right| \cdot\left|G_{2}\right| \cdot\left|G_{3}\right| \\
& \angle G=\angle G_{1}+\angle G_{2}+\angle G_{3}
\end{aligned}
$$

Similar-for-ratio :

$$
\begin{aligned}
& G=\frac{G_{1}}{G_{2}} \\
& |G|=\left|G_{1}\right| /\left|G_{2}\right| \\
& \angle G=\angle G_{1}-\angle G_{2}
\end{aligned}
$$

Force linear system with sinusoidal input:
Output has same frequency:

$$
\begin{aligned}
& u(t)=u_{0} \sin \omega t \\
& y(t)=y_{0} \sin (\omega t+\varphi)
\end{aligned}
$$

Figure 1 14.1
Time, t
Attenuation and time shift between input and output sine waves ($K=1$). The phase angle ϕ of the output signal is given by $\phi=-\Delta t / P \times 360$, where Δt is the time (period) shift and P is the period of oscillation.

Frequency:	$\omega[\mathrm{rad} / \mathrm{s}]$
Period:	$\mathrm{P}[\mathrm{s}]=2 \pi / \omega$
Phase shift:	$\varphi[\mathrm{rad}]$
Time shift	$\Delta \mathrm{t}[\mathrm{s}]=-\varphi / \omega$

Amplitude ratio (gain): $A R=y_{0} / u_{0}$

Example: Ground temperature phase shift

 Month

Surface temperature:

$$
\mathrm{u}(\mathrm{t})=\mathrm{u}_{\mathrm{avg}}+\mathrm{u}_{0} \sin \left(\omega\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)
$$

Ground temperature at $X=5 \mathrm{ft}$:

$$
\mathrm{y}(\mathrm{t})=\mathrm{y}_{\mathrm{avg}}+\mathrm{y}_{0} \sin \left(\omega\left(\mathrm{t}-\mathrm{t}_{0}\right)+\varphi\right)
$$

Note:

- Average: $\mathrm{u}_{\mathrm{avg}}=\mathrm{y}_{\text {avg }}=62 \mathrm{~F}$
(Usually deviation variables, so average=0)
- $t_{0}=120 d$ (where u crosses zero from below). Usually, $\mathrm{t}_{0}=0$.

Problem:

- Find $u_{0}, y_{0}, P, \omega, \varphi$ and gain

Solution for $X=5 \mathrm{ft}$.

- $\mathrm{u}_{0}=62-40=22 \mathrm{~F}, \mathrm{y}_{0}=62-50=12 \mathrm{~F}, \mathrm{Gain}=\mathrm{AR}=12 / 22=0.55$
- $P=365 d, \omega=2 \pi / P=2 \pi / 365=0.017 \mathrm{rad} / \mathrm{d}$,

Phase shift:

- Summer: $\Delta t=35$ days from Aug. 6 (hottest day) to Sep. 10 (hottest in ground)
- Winter: $\Delta t=35$ days from Feb. 4 (coldest day) to Mar. 11 (coldest in ground),
- $\varphi=-\Delta \mathrm{t} \omega=-35 \mathrm{~d} * 0.017 \mathrm{rad} / \mathrm{d}=-0.602 \mathrm{rad}=-34.5^{\circ}$

$$
\begin{aligned}
& u(t)=A \sin (\omega t) \\
& \text { As } t \rightarrow \infty \text { : } \\
& y(t)=A R * A * \sin (\omega t+\varphi)
\end{aligned}
$$

Note: A is the same as u_{0}

General (VERY SIMPLE).
Set $s=j \omega$ in $G(s)$. Then $A R=|G(j \omega)|$
$\varphi=\angle \mathrm{G}(\mathrm{j} \omega)$

4.2.3 Sinusoidal Response

As a final example of the response of first-order processes, consider a sinusoidal input $u_{\sin }(t)=A \sin \omega t$, with transform given by Eq. (4-15):

$$
\begin{align*}
y(s) & =\frac{K A \omega}{\left(\tau_{s}+1\right)\left(s^{2}+\omega^{2}\right)} \tag{4-23}\\
& =\frac{K A}{\omega^{2} \tau^{2}+1}\left(\frac{\omega \tau^{2}}{\tau s+1}-\frac{s \omega \tau}{s^{2}+\omega^{2}}+\frac{\omega}{s^{2}+\omega^{2}}\right) \tag{4-24}
\end{align*}
$$

Inversion gives

$$
\begin{equation*}
y(t)=\frac{K A}{\omega^{2} \tau^{2}+1}\left(\omega \tau e^{-t / \tau}-\omega \tau \cos \omega t+\sin \omega t\right) \tag{4-25}
\end{equation*}
$$

or, by using trigonometric identities,

$$
\begin{align*}
& y(t)=\frac{K A \omega \tau}{\omega^{2} \tau^{2}+1} e^{-t / \tau}+\frac{K A}{\sqrt{\omega^{2} \tau^{2}+1}} \sin (\omega t+\phi) \tag{4-26}\\
& \text { where } \\
& \phi=-\tan ^{-1}(\omega \tau)
\end{align*}
$$

Notice that in both (4-25) and (4-26) the exponential term goes to zero as $t \rightarrow \infty$, leaving a pure sinusoidal response. This property is exploited in Chapter 13 for frequency response analysis.

General: Simple method to find sinusoidal response of system $\mathbf{G}(s)$

1. Input signal to linear system: $u=u_{0} \sin (\omega t)$
2. Steady-state ("persistent", $t \rightarrow \infty)$ output signal: $y=y_{0} \sin (\omega t+\varphi)$
3. What is $A R=y_{0} / u_{0}$ and φ ?

Solution (extremely simple!)

1. Find system transfer function, $\mathrm{G}(\mathrm{s})$
2. Let $\mathrm{s}=\mathrm{j} \omega$ (imaginary number, $\mathrm{j}^{2}=-1$) and evaluate $\mathrm{G}(\mathrm{j} \omega)=\mathrm{R}+\mathrm{j} I$ (complex number)
3. Then ("believe it or not!")

$\mathrm{AR}=\|\mathrm{G}(\mathrm{j} \omega)\|$ $\varphi=\angle \mathrm{G}(\mathrm{j} \omega)$	(magnitude of the complex number) (phase of the complex number)

Proof: $y(s) \stackrel{\perp}{=} G(s) u(s)$ where $u(s)=\frac{u_{0} \omega}{s^{2}+\omega^{2}}=\frac{u_{0} \omega}{(s-j \omega)(s+j \omega)}$, etc...
(poles of $G(s)$ "die out" as $t \rightarrow \infty$)
Term $\frac{1}{s-j \omega}$ gives $G(j \omega)$ with partial fraction expansion

Example 14.1:

1. $G(s)=\frac{1}{\tau s+1}$
2. $G(j \omega)=\frac{1}{1+\tau j \omega} \cdot \frac{1-\tau j \omega}{1-\tau j \omega}$
$\left(j^{2}=-1\right)$

$$
G(j \omega)=\underbrace{\frac{1}{1+\omega^{2} \tau^{2}}}_{\mathbf{R}^{\downarrow}}-\frac{\omega \tau}{1+\omega^{2} \tau^{2}} j
$$

3. $|G|=A R=\sqrt{R^{2}+I^{2}}=\frac{1}{\sqrt{1+\omega^{2} \tau^{2}}}$

$$
\phi=\angle G=\arctan \frac{I}{R}=-\arctan (\omega \tau)
$$

Gain and phase shift of sinusoidal response!

SIMPLER: Use polar form of complex numbers! G=G1/G2, where G1=1, G2=tau*s+1. set $s=j w$. Get $|G|=1 /|G 2|=1 / \operatorname{sqrt}\left(\left(w^{*} \operatorname{tau}\right)^{\wedge} 2+1\right)$, angle(G)=0-angle(G2) $=-\operatorname{arctg}\left(w^{*} \operatorname{tau}\right)$

SINUSOIDAL RESPONSE OF FIRST-ORDER SYSTEM
$u(t)=\underset{\sim}{\sin (\omega t)} \xrightarrow{\frac{1}{s+1}} \xrightarrow{y(t)}=A R \sin (\omega t+\varphi)$
6 Plots: Increase ω from 0.1 to $30 \mathrm{rad} / \mathrm{s}$

Figure 14.2 Bode diagram for a first-order process

$$
\begin{aligned}
& \mathrm{AR}=|G(j \omega)|=\frac{1}{\sqrt{(\omega \tau)^{2}+1}} \\
& \text { Normalized } \\
& \text { amplitude } \\
& \text { ratio, } \mathrm{AR}_{N}
\end{aligned}
$$

Figure 14.2 Bode diagram for a first-order process $G(s)=\frac{1}{\tau s+1}$

Figure 13.12 The Nyquist diagram for $G(s)=1 /(2 s+1)$ plotting $\operatorname{Re}(G(j \omega))$ and $\operatorname{Im}(G(j \omega))$.

Note: Nyquist plot is not included in last edition

Example: Ground temperature phase shift.

 What is τ if assume a first-order response from u to y ? $g(s)=k /(\tau s+1)$$$
\begin{gathered}
\mathrm{AR}=\frac{y_{0}}{u_{0}}=\frac{k}{\sqrt{(\omega \tau)^{2}+1}} \\
\phi=\arctan (-\omega \tau)
\end{gathered}
$$

Data: $u_{0}=A=22, y_{0}=12, \omega=0.017 \mathrm{rad} / \mathrm{d}, \varphi=-35^{\circ}$
Solution:

- We know from physics that the gain $\mathrm{k}=1$. So $\mathrm{g}(\mathrm{s})=1 /(\mathrm{\tau s}+1)$

1. From amplitude data: $A R=y_{0} / u_{0}=0.545$.

Get:

$$
\tau=\frac{1}{\omega} \sqrt{\frac{1}{\mathrm{AR}^{2}}-1}=\frac{1}{0.017} \sqrt{\frac{1}{0.545^{2}}-1}=90.5 d
$$

2. From phase shift data. $\varphi=-35^{\circ}$

$$
\text { Get: } \quad \tau=-\frac{1}{\omega} \tan \phi=-\frac{1}{0.017} \tan (-0.568)=37.4 d
$$

Conclusion: This system is more complex than first order (no big surprise!)
It's described by partial differential equations and can be approximated by a high-order system with many poles and zeros.
For example, $g(s)=\left(\tau_{2} s+1\right) /\left(\tau_{1} s+1\right)\left(\tau_{3} s+1\right)$ where $\tau_{1}>\tau_{2}>\tau_{3}$

Frequenc response of time delay

$g=e^{-\theta s}$
Gain $=|\mathrm{g}(\mathrm{j} \omega)|=1$
Phase shift $=\varphi=$ angle $(\mathrm{g}(\mathrm{j} \omega))=-\omega \theta$ [rad]

Alternative proof: Time domain
$\mathrm{u}(\mathrm{t})$
$y(t)$

General:

$$
\begin{aligned}
& g(s)=k \frac{g_{1} g_{2}}{g_{3} g_{4}} e^{-\theta s} \\
& |g|=k \frac{\left|g_{1}\right|\left|g_{2}\right|}{\left|g_{3}\right|\left|g_{4}\right|} \\
& \angle g \mid=\angle g_{1}+\angle g_{2}-\angle g_{3}-\angle g_{4}-\omega \theta
\end{aligned}
$$

Consider term:

$$
g_{a}=T s+1
$$

Set $s=j \omega$ and evaluate complex number $g_{a}(j \omega)$ with magnitude $\left|g_{a}\right|$ and phase $\angle g_{a}$. Get:

$$
\begin{aligned}
& \quad\left|g_{a}(j \omega)\right|=\sqrt{\omega^{2} T^{2}+1} \\
& \angle g_{a}=\arctan \omega T
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& g(s)=\frac{k(T s+1)}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}=\frac{g_{1} g_{2}}{g_{3} g_{4}} \\
& g_{1}=k \\
& g_{2}=T s+1 \\
& g_{3}=\tau_{1} s+1 \\
& g_{4}=\tau_{2} s+1
\end{aligned}
$$

1. DERIVATIVE

$$
g_{1}(s)=s
$$

Frequency response: $g(j \omega)=j \omega=0+j \omega$

$$
\begin{aligned}
& \left|g_{1}(j \omega)\right|=\omega \\
& \angle g_{1}(j \omega)=90^{\circ}=\pi / 2 \mathrm{rad}(\text { purely complex at all } \omega)
\end{aligned}
$$

Check:

$$
\begin{aligned}
& u(t)=u_{0} \sin (\omega t) \\
& y(t)=u^{\prime}(t)=u_{0} \omega \cos (\omega t)=\omega u_{0} \sin (\omega t+\pi / 2) \quad \text { OK! }
\end{aligned}
$$

2. INTEGRATOR

$$
\begin{aligned}
& g_{2}(s)=\frac{1}{s}=\frac{1}{g_{1}} \\
& \left|g_{2}(j \omega)\right|=\frac{1}{\left|g_{1}\right|}=\frac{1}{\omega} \\
& \angle g_{2}(j \omega)=0^{\circ}-\angle g_{1}=-90^{\circ}=-\pi / 2 \mathrm{rad}
\end{aligned}
$$

Table 13.2 Frequency Response Characteristics of Important Process Transfer Functions

Transfer Function	$G(s) \quad \mathrm{AR}=\|G(j \omega)\|$	Plot of $\log \mathrm{AR}_{\mathrm{N}}$ vs. $\log \omega \quad \phi=\angle G(j \omega)$	Plot of ϕ vs. $\log \omega$
1. First-order	$\frac{K}{\tau s+1} \quad \frac{K}{\sqrt{(\omega \tau)^{2}+1}}$		
2. Integrator	$\frac{K}{s} \quad \frac{K}{\omega}$		0° -90°
3. Derivative	$K s \quad K \omega$		90° 0°
4. Overdamped second-order	$\frac{K}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \frac{K}{\sqrt{\left(\omega \tau_{1}\right)^{2}+1} \sqrt{\left(\omega \tau_{2}\right)^{2}+1}}$	$\underbrace{\omega_{b 1}=\frac{1}{\tau_{1}}}_{2}=\frac{1}{\tau_{2}}-\tan ^{-1}\left(\omega \tau_{1}\right)-\tan ^{-1}\left(\omega \tau_{2}\right)$	$-90^{\circ} \quad \omega_{b}=\frac{1}{\sqrt{\tau_{1} \tau_{2}}}$
5. Critically damped second-order	$\frac{K}{(\tau s+1)^{2}} \quad \frac{K}{(\omega \tau)^{2}+1}$		

6. Underdamped second-order	$\frac{K}{\tau^{2} s^{2}+2 \zeta \tau s+1} \frac{K}{\sqrt{\left(1-\left(\omega \tau_{1}\right)^{2}\right)^{2}+(2 \zeta \omega \tau)^{2}}}$		$\left\lvert\, \begin{gathered} 0^{\circ} \\ -90^{\circ} \\ -180^{\circ} \end{gathered} \quad \omega_{b}=\frac{1}{\tau}\right.$
7. Left-half plane (positive) zero	$K\left(\tau_{c} s+1\right) \quad K \sqrt{\left(\omega \tau_{a}\right)^{2}+1}$		Phase increases for LHP zero
8. Right-half plane (negative) zero	$-\tau_{a} s+1 \quad K \sqrt{\left.(\omega) \tau_{a}\right)^{2}+1}$		$\begin{aligned} & -45^{\circ} \\ & -90^{\circ} \\ & \text { Ops! Phase drops for RHP zero } \end{aligned}$
9. Lead-lag unit ($\tau_{a}<\tau_{1}$)	$K \frac{\tau_{a} s+1}{\tau_{1} s+1} \quad K \frac{\sqrt{\left(\omega \tau_{a}\right)^{2}+1}}{\sqrt{\left(\omega \tau_{1}\right)^{2}+1}}$	$\omega_{b a}=\frac{1}{\tau_{a}}+\tan ^{-1}\left(\omega \tau_{a}\right)-\tan ^{-1}\left(\omega \tau_{1}\right)$	
$\begin{aligned} & \text { 10. Lead-lag } \\ & \text { unit }\left(\tau_{a}>\tau_{1}\right) \end{aligned}$	$K \frac{\tau_{a} s+1}{\tau_{1} s+1} \quad K \frac{\sqrt{\left(\omega \tau_{a}\right)^{2}+1}}{\sqrt{\left(\omega \tau_{1}\right)^{2}+1}}$		
11. Time delay	$K e^{-a s} \quad K$	$1-\omega_{0}$	

$$
\begin{aligned}
& \mathrm{G}=\exp (-\theta \mathrm{s}) \\
& |\mathrm{G}(\mathrm{j} \omega)|=1 \\
& \angle G(j \omega)=-\omega \theta
\end{aligned}
$$

Figure 14.4 Bode diagram for a time delay, $\mathrm{e}^{-\theta s}$.

EXAMPLE

$$
L(s)=\frac{20 s+1}{s(100 s+1)(2 s+1)}
$$

$\mathrm{L}(\mathrm{s})=\mathrm{G}(\mathrm{s}) \mathrm{C}(\mathrm{S})$:
Loop transfer function for SIMC PI-control with $\mathrm{T}_{\mathrm{c}}=4$ for $\mathrm{G}(\mathrm{s})=1 /(100 \mathrm{~s}+1)(2 \mathrm{~s}+1)$

ASYMPTOTES

Frequency response of term ($\mathrm{T} s+1$): set $\mathrm{s}=\mathrm{j} \omega$.
Asymptotes:

$$
\begin{aligned}
& (j \omega T+1) \sim 1 \quad \text { for } \omega T \ll 1(\text { slope } n=0, \text { phase }=0) \\
& (j \omega T+1) \sim j \omega T \text { for } \omega T \gg 1\left(\text { slope } n=1, \text { phase }=90^{\circ}\right)
\end{aligned}
$$

Gain slope $\mathrm{n}:|\mathrm{G}|^{\sim} \omega^{\mathrm{n}}$

Rule for asymptotic Bode-plot, L = k(Ts+1)/(ts+1)..... :

1. Start with low-frequency asymptote ($s \rightarrow 0$)
(a) If constant ($\mathrm{L}(\mathrm{O})=\mathrm{k})$:
Gain=k (slope=0)

Phase $=0^{\circ}$
(b) If integrator ($\mathrm{L}=\mathrm{k}^{\prime} / \mathrm{s}$):

Gain slope $=-1$ (on log-log plot). Need one fixed point, for example, gain=1 at $\omega=k^{\prime}$ Phase: - 90°.
2. Break frequencies (order from large T to small T):

Change in gain slope Change in phase

$\omega=1 / T$ (zero $)$	+1	$+90^{\circ}\left(-90^{\circ}\right.$ if T negative $)$
$\omega=1 / \tau$ (pole)	-1	$-90^{\circ}\left(+90^{\circ}\right.$ if T negative $)$

3. Time delay, $\mathrm{e}^{-\theta \mathrm{s}}$. Gain: no effect, Phase contribution: $-\omega \theta[\mathrm{rad}]\left(-1 \mathrm{rad}=-57^{\circ}\right.$ at $\left.\omega=1 / \theta\right)$

SOLUTION

$L(s)=\frac{20 s+1}{s+100 s+1)(2 s+1)}$

$\mathrm{L}(\mathrm{s}):$ SIMC PI-control with $\tau_{\mathrm{c}}=4$ for $\mathrm{g}(\mathrm{s})=1 /(100 \mathrm{~s}+1)(2 \mathrm{~s}+1)$
Low-frequency asymptote $(s=j \omega \rightarrow 0)$ is integrator: $L=\frac{1}{j \omega}=-\frac{1}{\omega} j$
Gain $=\frac{1}{\omega}($ slope -1 on $\log -\log)$,
Phase $=-90^{\circ}$

> Asymptotes: Start at low frequency, $\omega \rightarrow 0$: $|\mathrm{L}(\mathrm{j} \omega)|=1 / \omega$. So: $|\mathrm{L}|=10^{3}$ at $\omega=10^{-3}$

Break frequencies:
$\omega=1 / 100=0.01$ (pole), $1 / 20=0.05$ (zero), $1 / 2=0.5$ (pole)

First break frequency (at 0.01) is a pole:
Slope changes by -1 to -2 (log-log)
\Rightarrow gain drops by factor 100 when ω increases by factor 10
Phase drops by -90° to -180°
Asymptote $=\frac{1}{100(j \omega)^{2}}=-\frac{1}{100 \omega^{2}}$
Next break frequency (at 0.05) is a zero:
Slope changes by +1 to -1 ($\log -\log$)
Phase increases by $+90^{\circ}$ to -90°
Asymptote $=\frac{20}{100 j \omega}=-\frac{1}{5 \omega} j$
Final break frequency (at 0.5) is a pole:
Slope changes by -1 to -2 (log-log)
Phase drops by -90° to -180°
Asymptote $=\frac{1}{10(j \omega)^{2}}=-\frac{1}{10 \omega^{2}}$

Example with phase lead

$$
g(s)=10 \frac{100 s+1}{(10 s+1)(s+1)}
$$

Low-frequency asymptote:
$G_{c 0}=\frac{2}{10 s}=\frac{0.2}{s}$.
"Fixed point":
$\omega=0.001 \Rightarrow\left|G_{c 0}\right|=\frac{0.2}{0.001}=200$

Pl-controller:

$$
G_{c}(s)=2 \frac{10 s+1}{10 s}
$$

Figure 13.9. Bode plot for PI controller, $G_{c}(s)=2\left(1+\frac{1}{10 s}\right)$

Figure 14.6 Bode plots of ideal parallel PID controller and series PID controller with derivative filter ($\alpha=0.1$).
Ideal parallel:
$G_{c}(s)=2\left(1+\frac{1}{10 s}+4 s\right)$
Series with
Derivative Filter:

$$
G_{c}(s)=2\left(\frac{10 s+1}{10 s}\right)\left(\frac{4 s+1}{0.4 s+1}\right)
$$

Electrical engineers (and Matlab) use decibel for gain

- |G| [dB] = $20 \log _{10}|G|$

$\|\mathrm{G}\|$	$\|\mathrm{G}\|[\mathrm{dB}]$
0.1	-20 dB
1	0 dB
2	6 dB
10	20 dB
100	40 dB
1000	60 dB

*To change magnitude from dB to abs: Right click + properties + units (absolute, log scale)

Other way: $|\mathrm{G}|=10^{|\mathrm{G}|(\mathrm{dB}) / 20}$
$\mathrm{GM}=2$ is same as $\mathrm{GM}=6 \mathrm{~dB}$

CLOSED-LOOP STABILITY

- $\mathrm{L}=\mathrm{gcg}_{\mathrm{m}}=$ loop transfer function with negative feedback
- Bode's stability condition: $\left|\mathrm{L}\left(\omega_{180}\right)\right|<1 \mid$
- Limitations
- Open-loop stable (L(s) stable)
- Phase of L crosses -180° only once

Figure 2.12: Typical Bode plot of $L(j \omega)$ with PM and GM indicated

- The same but more general: Nyquist stability condition:

Locus of $\mathrm{L}(\mathrm{j} \omega)$ should encircle the (-1)-point P times in the anti-clockwise direction (where $\mathrm{P}=$ no. of unstable poles in L).

Proof of Bode stability condition

- Starting point: Stability is a system property for linear systems, so if the system is stable for one signal it's stable for all signals.
- Consider a particular signal: Sinusoid with frequency ω_{180}.
- With negative feedback, the total phase shift around the loop is -360°, so this sinusoid comes «back in phase»
- If the gain around the loop is less than 1, the sinusoid will die out.
- Conclusion: The closed-loop system is stable if and only if $|\mathrm{L}(\mathrm{jw})|<1$ at frequency ω_{180}
- Example 1. P-control of delay process, $g(s)=k e^{-\theta s}$. For what K_{c} is system stable?
- Example 2. I-control of delay process. For what K_{1} is system stable? compare with SIMC. Is SIMC robust?

Solution. Stable if and only if

1. P-control: $\mathrm{kK}_{\mathrm{c}}<1$
2. I-control: $\mathrm{kK}_{\mathrm{I}}<\frac{\pi}{2} \frac{1}{\theta}$

Note: SIMC with $\tau_{c}=\theta$ gives I-control with $\mathrm{kK}_{\mathrm{l}}=\frac{1}{2 \theta^{\prime}}$,

1. So Gain Margin (GM) $=\pi=3.14$ (worst is $1=0 \mathrm{~dB}$),
2. Unstable if we increase delay from θ to $\pi \theta$, so Time Delay Margin (DM) $=(\pi-1) \theta$ (worst is 0)
Sigurd's preferred notation in red $)$

$$
\begin{aligned}
\mathrm{PM} & =\angle \mathrm{L}\left(j \omega_{\mathrm{c}}\right)+180^{\circ} \\
& =\angle \mathrm{L}\left(\mathrm{j} \omega_{\mathrm{c}}\right)+\pi[\mathrm{rad}]
\end{aligned}
$$

$\omega_{C}=$ frequency where loop gain is 1 .
$\left|L\left(j \omega_{c}\right)\right|=1$

Figure 14.12 Gain and phase margins on a Bode plot

TASK 1: Bode-plot of $L(s)=(20 s+1) /[s(100 s+1)(2 s+1)]$. Write on the asymptotes
TASK 2: What is GM and PM?
TASK 2: How does the plot change if we add a delay of 2 time units ($e^{-2^{*} s}$)
TASK 3: What is now GM and PM? How much extra time delay can we allow?

EXAMPLE 3
Gain L
$L(s)=\frac{20 s+1}{s(100 s+1)(2 s+1)}$
$\mathrm{L}(\mathrm{s})$: SIMC PI-control with $\tau_{\mathrm{c}}=4$ for $g(s)=1 /(100 s+1)(2 s+1)$

Phase L
[degrees]

$L=\left(20^{*} s+1\right) /\left[s^{*}\left(100^{*} s+1\right)^{*}\left(2^{*} s+1\right)\right]$
figure(3), bode($(\mathrm{L}) \%$ gives AR in dB
$w=$ logspace $(-3,1,1000)$
[mag,.phase]=bode(L,w)
figure(1), $\log \log (w$, mag $(:))$, grid on, axis([0.001 100.001 1000]])
figure:(2), semilogx(w.phase(:)1, srid on

SOLUTION

$L(s)=\frac{20 s+1}{s(100 s+1)(2 s+1)}$
$\mathrm{L}(\mathrm{s})$: SIMC PI-control with $\tau_{\mathrm{c}}=4$ for $g(s)=1 /(100 s+1)(2 s+1)$

> Time delay margin
> $\Delta \theta=\frac{P M[\mathrm{rad}]}{\omega_{c}[\mathrm{rad} / \mathrm{s}\rceil}=\frac{1}{0.19}=5.2 \mathrm{~s}$

EXAMPLE3': ADD 2 UNITS OF DELAY

$$
L=\frac{20 s+1}{s(100 s+1)(2 s+1)} e^{-2 s}
$$

Now phase crosses -180° so GM is no longer infinity

Example 4. PI-control of integrating process with delay. Compare ZN and SIMC*

- $g(s)=k^{\prime} e^{-\theta s} / s$
- ZN: Use P-control and increase K_{c} until instability. Find:
- $P_{u}=4 \theta$ and $K_{u}=(\pi / 2) /\left(k^{\prime} \theta\right)$
- PI-controller, $\mathrm{c}(\mathrm{s})=\mathrm{K}_{\mathrm{c}}\left(1+1 /\left(\mathrm{T}_{\mathrm{I}} \mathrm{s}\right)\right)$

	K_{c}	T_{l}
Ziegler-Nichols	$0.45 \mathrm{~K}_{\mathrm{u}}=0.707 /\left(\mathrm{k}^{\prime} \theta\right)$	$\mathrm{P}_{\mathrm{u}} / 1.2=3.33 \theta$
SIMC $\left(\tau_{\mathrm{c}}=\theta\right)$	$0.5 /\left(\mathrm{k}^{\prime} \theta\right)$	8θ

*Task: Compare Bode-plot ($\mathrm{L}=\mathrm{gc}$), robustness and simulations (use $\mathrm{k}^{\prime}=1, \theta=1$).

$$
\begin{aligned}
& g(s)=\frac{e^{-s}}{s}, \quad c(s)=K_{c} \frac{\tau_{I} s+1}{\tau_{I} s} \\
& \text { SIMC-PI }
\end{aligned}
$$

Ziegler-Nichols PI

SIMC is a lot more robust:

	GM	PM
Ziegler-Nichols	1.87	24.9°
SIMC $\left(T_{C}=\theta\right)$	2.97	46.9°

Frequency (rad/s)

Delay $=1$

Closed-loop response: PI-control of $g(s)=\frac{e^{-s}}{s}$

Simulink file: tunepid4
$s=t f($'s')
$g=\exp (-s) / s$
Kc=0.707, taui $=3.33$, taud=0 \% ZN sim('tunepid4')
plot(Tid,y,'red',Tid,u,'red') Kc=0.5, taui $=8$, taud $=0 \%$ SIMC sim('tunepid4')
hold
plot(Tid, y, 'blue', Tid, u, 'blue') hold off

Conclusion: Ziegler-Nichols (ZN) responds faster to the input disturbance, but is much less robust.

- ZN goes unstable if we increase delay from 1s to 1.57 s .
- SIMC goes unstable if we increase delay from 1 s to 2.88 s .

INCREASE DELAY: $g(s)=\frac{e^{-1.5 s}}{s}$

ZN is almost unstable when the delay is increased from 1 s to 1.5 s . SIMC does not change very much

> Back to Example 2. I-control of delay process

- Find GM, PM and DM for SIMC-controller (analytical)
- Example 2. I-control of delay process. \& what is $\omega_{c}, \omega_{180}, \mathrm{GM}, \mathrm{PM}$ and DM \& give for SIMC (analytical)

Solution
$w c=k^{\prime} K I, w 180=(p i / 2)(1 /$ theta).
$\mathrm{GM}=\mathrm{w} 180 / \mathrm{k}^{\prime} \mathrm{KI}=(\mathrm{pi} / 2) /\left(\mathrm{k}^{\prime} \mathrm{KI}\right.$ theta $)$,
PM $=(\mathrm{pi} / 2)-\mathrm{k}^{\prime} \mathrm{KI}{ }^{*}$ theta,
$D M=P M / w c=(p i / 2) / k^{\prime} K I-$ theta
SIMC:
SIMC with $\tau_{c}=\theta$ gives $k K_{1}=\frac{1}{2 \theta}$, so
$\mathrm{GM}=\pi=3.14$.
$\mathrm{PM}=(\mathrm{pi}-1) / 2=1.07 \mathrm{rad}=61.5^{\circ}$
DM $=(\mathrm{pi}-1)^{*}$ theta $=2.14$ theta

Bode stability condition.

Why may D -action help in some cases?

- Some unstable processes, for example a double integrating process, may need D-action for stabilization. The reason is to add positive phase and therefore stabilize the system. Why does this help?
- Recall the Bode stability condition. It says that the loop gain should be less than 1 at the frequency where the phase shift around the loop - 180 degrees.
- Another statement is that phase shift should be less than -180° at the frequency where the loop gain is 1 .
- So for stability and robustness we want as little phase shift as possible (to improve the phase margin). The things that add negative phase shift are time delay (the worst), poles and RHP-zeros.
- LHP-zeros (D-action, (Td*s +1)) have the opposite (positive) effect on the phase, and this is why they may be added for stabilization in difficult cases, for example, an unstable process. Of course, zeros will also affect the loop gain, but at frequencies up to the break frequency, $1 / \mathrm{Td}$, the positive effect on the phase is most important.
- So why don't we always add D-action? One reason is that it increases the controller gain and therefore the input usage. However, the main reason is probably that it does not help very much in most cases and it makes the controller design more complicated (and easier to do mistakes).

Closed-loop frequency response

No control $(c=0): e_{O L}=y_{s}-y=y_{s}-g_{d} d$
With control: $e=y_{s}-y=S y_{s}-S g_{d} d=S e_{O L}$
$S=\frac{1}{1+L}$ - sensitivity function $=$ effect of control
$L=g c$ - loop transfer function
Low ω where $|S|<1$: Control reduces error Intermediate ω where $|S|>1$: Control increases error High ω where $S=1(L \rightarrow 0)$: Control has no effect

Example Ziegler Nichols

Task: Find ZN-settings for integrating+ delay process analytically

- First need to find Pu and Ku

