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MODEL

Need a model for tuning

Model: Dynamic effect of change in input u (MV) on
output y (CV)

First-order + delay model for Pl-control

—0s

_ k
G(s) = T15+1 €
Second-order model for PID-control

G(S) —0s

(T15+1)(1m2s+1)

o Recommend: Use second-order model (PI1D control) only if 7,>6



1. Step response experiment

= Make step change in one u (MV) at a time
= Record the output (s) y (CV)
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Step response integrating process
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2. Model reduction of more complicated model

= Start with complicated stable model on the form

L (Tyos+1)(Tops+1) —g
Go(8) = ko (g ) (rapst 1) ©

= Want to get a simplified model on the form

fs

— k —
G(8) = D) (st D) ©

= Most important parameter is the “effective” delay 0
= Use second-order model only if 7,>6



OBTAINING THE EFFECTIVE DELAY ¢

Basis (Taylor approximation):

1 1
e ¥ ~1—0s and e 7%=

Effective delay =
“true” delay

+ inverse reponse time constant(s)

+{ half |of the largest neglected time constant (the “half rule”)
(this is to avoid being too conservative)

+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to 7
(or to 1 if use second-order model).



IMODEL, Approach 2.
Example

The second-order process

1
1s+1)(0.6s+1)

gO(S) — (

with

k=1, mn=1406/2=1.3; 6=0.6/2=0.3;




Example 2

(—0.35s +1)(0.08s + 1) |
25 + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3

half rule
Is approximated as~a first-order delay process with
T =2%1/27=25
#=1/24+0440.24+3-0.05+0.3—0.08=1.47
or as a second-order delay process with
T — 2
n=14+04/2=12
#=04/24+024+3-0.05+0.3—0.08=0.77

go(s) =k




Step Response
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PID controller

Time domain (“ideal” PID)
u(t) = ug + K. ( & fy e(t)dt* + 7 jl(f))
Laplace domain (“|deal”/”parallel” form)
o(s) = KL(1+ 75 + s)
For our purposes. Simpler with cascade form
C( ) K, (TIS‘|‘1)(TDS‘|‘1) KK (14 ): e (142): e
Usually t5,=0. Then the two forms are identical.
Only two parameters left (K. and t,)

How difficult can it be to tune???
a Surprisingly difficult without systematic approach!




Let’s start with the CONCLUSION

Tuning of PID controllers

SIMC tuning rules (“Skogestad IMC”)(")

Main message: Can usually do much better by taking a
systematic approach

Key: Look at initial part of step response
Initial slope: k’ = ki,
One tuning rule!

For cascade-form PID controller:

1 1
KC kN (04T1e)

77 = min(7y, 4(7. + 6))
™D = T9
* 1. > -0: desired closed-loop response time (tuning parameter)
* For robustness select: t, > 6

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
(Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”



SIMC-tunings

Derivation of SIMC-PID tuning rules

Pl-controller (based on first-order model)

c(s) = K. (1 + =) = K, 7514

7S C 1718

For second-order model add D-action.
For our purposes, simplest with the “series” (cascade) PID-form:

C(S) _ KC (7‘[8—1—1)(’7'D8—|—1) (1)

TIS



SIMC-tunings
Basis: Direct synthesis (IMC)
ld

Gd
+ T
T - - U -_'_l ::,I"

Closed-loop response to setpoint change

Yy = T Ys, T(S) — licgc

ldea: Specify desired response: (y/ys)desired =7

and from this get the controller. ....... Algebra: | ¢ = % S

1
11




SIMC-tunings

Desired step response

¥
JeR=] J = -
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NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!



SIMC-tunings

IMC Tuning = Direct Synthesis

Algebra:
1 1

e Controller:  c¢(s) = - 1
(5) (¥/¥s)desired

-1

: : e~ b
e Consider second-order with delay plant:  ¢g(s) = k(mﬂ)(mﬂ)

® Desired first-order setpoint response: (1) =1t
Ys/ desired Tes+1

C(S) _ (T15+1)(ms+1) 1

e Gives a “Smith Predictor” controller: 2 ATl

e To get a PID-controller use e %% ~ 1 — s and derive

(s) = (s + 1)(mes+1) 1

k (1. +0)s
which is a cascade form PID-controller with
1 T
K. = E?}_;:l— 9; TT=1T1, Tp =12

e 7. is the sole tuning parameter

Surprisingly, this PID-controller is generally better, or at least more robust, than the Smith Predictor controller from which it was derived.
Reference: Chriss Grimholt and Sigurd Skogestad. "Should we forget the Smith Predictor?" (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .



http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

SIMC-tunings

Integral time

Found: Integral time = dominant time constant (t, = t,)
Works well for setpoint changes
Needs to be modified (reduced) for integrating disturbances

d

o |

VV'\<

4
@)

" 8

Example. “Almost-integrating process” with disturbance at input:
G(s) = es/(30s+1)
Original integral time t, = 30 gives poor disturbance response
Try reducing it!



SIMC-tunings
Integral time

Want to reduce the integral time for “integrating”
processes, but to avoid “slow oscillations” we must require:

71 > 4(1c + 0)
Derivation:

Gls) = kg ~ & where I = £ C(s) = Ko (1+ 75

s+l s IS
Closed-loop poles:
14+ GC=0=1+ 5K, (144 ) =0= 7% + K Kerrs + KK, =0
To avoid oscillations we must not have complex poles:
B> —4AC > 0= K°KJ1} —4kK'K.m1 2 0= K Kemr 2 4= 71 2 575
Inserted SIMC-rule for K, = %T(—lw then gives
11 > A7, + 0)

Avoid slow oscillations: k'K-t; = 4



SIMC-tunings
Integral Time

y(t)

Reduce r, to this value:
7,=4 (1, +6) =86

_ 0 10 2'0\ _3'0 10 50 60
Setpoint change at t=0 Input diSfurbance at t=20

Figure 2: Effect of changing the integral time 7; for Pl-control of “slow” process gi{s) = ¢ * /(305 + 1} with K, = 15.
Load disturbance of magnitude 10 occurs at ¢ = 20.

Too large integral time: Poor disturbance rejection
Too small integral time: Slow oscillations



SIMC-tunings

Conclusion: SIMC-PID Tuning Rules

For cascade form PID controller:
1 7 11

Ke=>b . 1
© kte+0 K T1.+6 (1)
4
71 = min{ry, R } = min{r,4(r. +0)} (2)
C
D = T9 (3)

Derivation:

1. First-order setpoint response with response time 7. (IMC-tuning =
“Direct synthesis” )

2. Reduce integral time to get better disturbance rejection for slow or
integrating process (but avoid slow cycling = 77 > 4}{ )
[

One tuning parameter: t,



Example 2. SIMC Pl and PID tunings

Nk (—0.3s + 1)(0.08s + 1) -
go(s) = (25 + 1)(Ls + 1)(04s + 1)(0.25 + 1)(0.055 + 1)3
s=tf('s")
g=(-0.3*s+1)*(0.08*s+1)/((2*s+1)*(s+1)*(0.4*s+1)*(0.2*s+1)*(0.05*s+1)"3)
k=1;
taul=2.5, tau2=0, theta=1.47, tauc=theta % 1st order
%taul=2, tau2=1.2, theta=0.77, tauc=theta % 2nd order Note: Tau2>theta , so 2nd order and PID is recommended

Kc=(1/k)*taul/(tauc+theta) % Kc. PI:0.85 PID: 1.30
taui=min(taul,4*(tauc+theta)) % taui. Pl: 2.50 PID: 2

taud=tau2; % taud. PI: 0 PID: 1.2

cpi=Kc*(1+1/(taui*s)); d
cd=(taud*s+1)/(0.1*taud*s+1); I
cpid=cpi*cd, Y

L = cpid*g

S=inv(1+L)

%setpoint response Ys 4+ u ) &
Ty=g*cpi*S, Ty=minreal(Ty); % without D-action on setpoint - ¢ 1.7 + -

Tuy=cpi*S, Tuy=minreal(Tuy); % without D-action on setpoint
%Input disturbance

gd=g;

Td=gd*S; Td=minreal(Td);

Tud=-gd*cpid*S; Tud=minreal(Tud);

Typi=Ty; Tdpi=Td; Tuypi=Tuy; Tudpi=Tud;

%Typid=Ty; Tdpid=Td; Tuypid=Tuy; Tudpid=Tud;

figure(1),step(Typi, blue', Typid, blue--', Tuypi,'red’, Tuypid,'red--',15)
figure(2),step(Tdpi,'blue’, Tdpid, blue--', Tudpi,'red’, Tudpid,'red--',15)

21



Example 2.

(—0.35 + 1)(0.08s + 1)
(25 +1)(Ls + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)?

Comparison of

gols) =k

Pl and PID --
I
Ys + 'r—l " 'TI + Yy
- | I L= 1 +
Conclusion;

PID is quite a lot better.
(expected since tau2=1.2
> theta=0.77)
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SIMC-tunings

Some special cases

Process q(s) K. T TE”
First-order k% O min{7,4(m. +0)} | -
Second-order, eq.(4) | kg .5'+E1_}|[:-3.!+l] %ﬂ;‘re min{7ry, 4(7. +0)} | 7

Pure time delay'") ke % 0 0 ) -
Integrating!?) k’% L. |::r¢1+~!i']| A(1. + 0) -
Integrating with lag ;Sii;:” s (:r¢1+ﬂ]| d(1. + 0) Ty
Double integrating'® ke o 4{%19]2 4 (1. +0) 4 (1 + 0)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7. as a tuning parameter).
(1) The pure time delay process is a special case of a first-order process with 1, = 0.

(2) The integrating process is a special case of a first-order process with 7 — oc.

(3) For the double integrating process, integral action has been added according to eq.(27).

(4) The derivative time is for the series form PID controller in eq.(1).

(*)

. o f
*) Pure integral controller ¢(s) = &% with K = f—; = Yoare)-

One tuning parameter: <,



SIMC-tunings

DERIVATIVE ACTION ?

First order with delay plant (79 = 0) with 7. = 6

1.4

A\
1.2F N

K, =(0.5/k) (t,/8)

T|=T1

15 20 25 30 35 40
e

Figure 5: Setpoint change at t = 0. Load disturbance of magnitude 0.5 occurs at ¢ = 20.

e Observe: Derivative action (solid line) has only a minor effect.

Conclusion D-action:
1. Use PID for dominant 2" order processes with t, >0 (otherwise, add 1,/2 to effective delay 6 and

use PI)

+  Common rule: Select 15 equal to T, = time constant of temperature sensor

2. Use derivative action for unstable processes, for example, a double integrating process (not so
common in process control).
3. Derivative action can help a little to speed up response for a process with time delay, but probably
not worth it (see above with 1, =06/2).



SIMC-tunings

6.3 Ideal PID controller

The settings given in this paper (K., 17, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

1 K! ‘
Ideal PID : ¢(s) = K’ (l +—+ T;_;S) = 2= (rps* + 115 +1) (35)
Trs I
we use the following translation formulas
- - ™D D D
ﬁ’.zfic(l —)- - (1 —)- - 36
‘ +’T1’ I +Tf » D l—|—%’- (36)

e see that the rules are much more complicated when we use the ideal form.
Example. Consider the second-order process g/s) = e */(s+1)? (E9) with the k=1, = 1,7, =1
and 7 = 1. The series-form SIMC settings are K, = 0.5, 77 = 1 and 7p = 1. The corresponding

settings for the ideal PID controller in (35) are K! =1, 77 = 2 and 7}, = 0.5. The robustness margins
with these settings are given by the first column in Table 2.



SIMC-tunings

Selection of tuning parameter T_

Two main cases

Want “fastest possible

control” subject to having good robustness
Want tight control of active constraints (“squeeze and shift™)

SMOOTH CONTROL (. large): \Want ““slowest possible

control” subject to acceptable disturbance rejection

Want smooth control if fast setpoint tracking is not required, for
example, levels and unconstrained (“self-optimizing”) variables




TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC' : 7. =0 (4)

Gives:

K, 05m 05 1
k6 K6
77 = min{7y, 80}

—_— o~~~
~ O O
—_—

D= T2
Gain margin about 3

Process g(s) - :'+| g j%r:""‘
Controller gain, K, ['T’—;.'- 11—';.—
Integral time, 75 1 a6
Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4° 46.9°
Allowed time delay error, Af/# 2.14 1.59
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, 1, (| 1.00 1.30
Phase crossover frequency, wig, - ¢ 157 1.49
(Gain crossover frequency, w, - # 0.50 0.51

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) (7. = #). The same margins apply to
second-order processes if we choose 7p = 7.



Typical closed-loop SIMC responses with the choice t.=0
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Figure 4: Responses using SIMC settings for the five time delay processes in Table 3 (7, =

Unit setpoint change at ¢ = (0; Unit load disturbance at ¢ = 200,
Simulations are without derivative action on the setpoint.
Parameter values: § = Lk=1&F = 1.&" = 1.

g).



SIMC: Tuning parameter (7,) correlates nicely with
robustness measures

DM=
A6 /0




SMOOTH CONTROL

Tuning for smooth control

Tuning parameter: t, = desired closed-loop response time
Selecting t.=0 if we need “tight control” of y.

Other cases: “Smooth control” of y is sufficient, so select T, > 6 for
o slower control
o smoother input usage
less disturbing effect on rest of the plant
o less sensitivity to measurement noise
o better robustness

Question: Given that we require some disturbance rejection.
o What is the largest possible value for <, ?
o Orequivalently: What is the smallest possible value for K_?

o ANSWER: _
Kc,min - ud/ymaX'

uy = input change to reject disturbance (steady-state)
+ May obtain uy from historical data!
Ymax = Maximum desired output deviation

From K, we can get 1, and then corresponding t, using SIMC tuning rule

«Proof»: Imagine using P-control only. Then we get at steady-state u = K y,, where y is the steady-state offset. With I-action we have no offset but the peak value of y will be close to y
More detailed proof: S. Skogestad, " Tuning for smooth PID control with acceptable disturbance rejection”, Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).



Conclusion PID tuning

SIMC tuning rules
_ 1 1
Ke =% @m0
77 = min(7y,4(7. + 60))

1._ Select t,=0 corresponding to

051
Kc,max — Lk’ 6

2. Smooth control. Select K B . — ‘u0| uO= input change required to reject disturbance
c> ¢,min |ymax ‘ ymax = largest allowed output change

Note: Having selected K, (or t.), the integral time 1, should be
selected as given above

3. Derivative time: Only for dominant second-order processes



LEVEL CONTROL

Level control

L_evel control often causes problems
Typical story:
o Level loop starts oscillating

o Operator detunes by decreasing controller gain
o Level loop oscillates even more

297

Explanation: Level is by itself unstable and
requires control.



Level control;: Can have both
fast and slow oscillations

= Slow oscillations (K. too low): P > 37,
= Fast oscillations (K, too high): P < 37,

Here: Consider the very common slow oscillations

Avoid slow oscillations: k'K t; = 4



LEVEL CONTROL

How avoid slowly oscillating levels?

« Simplest: Use P-control only (no integral action)

« |If you insist on integral action, then make sure
the controller gain is sufficiently large

* |If you have a level loop that is oscillating then
use Sigurds rule (can be derived):

To avoid oscillations, increase K. - 1, by factor
f=0.1- (Py/1)?

where
P, = period of oscillations [s]

Tio = original integral time [s]
0.1~ 1/7?

Avoid slow oscillations: k'K t; = 4



LEVEL CONTROL

Case study oscillating level

We were called upon to solve a problem with
oscillations in a distillation column

Closer analysis: Problem was oscillating reboiler
level in upstream column

Use of Sigurd’s rule solved the problem



APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid “slow” oscillations the product of the controller gain and
integral time should be increased by factor f = 0.1(Fy/779)°.

Real Plant data:

Period of oscillations Py = 0.85h = 5lmin = f =0.1-(51/1)* = 260

BERORE?  (Ke=- 0.5, taui s Tmia)

oy
iy
- (wlve pts)
l H o T T A
O T TS (" ST Y
AFTE&: {;Kcr-'w?js) Lowis 'l"iﬂﬁn')' T T
e Ty
Y Covel) ~
" . mi'm'..u.."
- Ceahie pes.)

o O 1 L

o Mk h ok itk don odh 2Bk



