General procedure in this course

1. Nonlinear dynamic model. dx/dt = f(x,u,d)

2. Steady state model. dx*/dt=0 -> f(x*,u*,d*)=0
— Use to find missing data

3. Introduce deviation variables and linearize
—  dAx/dt = Af = A Ax(t) + B Au(t) + By Ad(t)

4. Laplace of both sides of linear model* (t — s)
— sx(s) = Ax(s) + B u(s) + B, d(s)

5. Algebra — Transfer function, G(s)

6. Block diagram

7. Controller design

*Note: We will only use Laplace for linear systems!



Transfer function

Can\w‘st multiply G and u!

u(s) - y(s) = G(s) u(s)

G(s) = transfer function of linear dynamic system

u and y: deviation variables

s: Laplace variable (replaces t as independt variable).
Note (may be confusing): s has units s* = second-!

Some typical transfer functions:

1. First-order with delay process, G(s)=k e®/(ts+ 1)
— Many examples! Heated tank, y=T, u=Q

2. Integrating process, G(s)=k’/s
—  Example: level (y) with u=qgin

3. PID-controller, C(s) =K (1 + 1/(t;s) + T 5)

T T, S% + 1,5 +1
c

TS



General* Transfer Matrix

General system with n differential eguations in
n state variables z{(¢) (where x,u,y are vectors
and A, 3, C, D are matrices):

dx(t) _ ,
o =Ax(t) + Bu(t)

y(t) =Cz(t) + Du(t)

Laplace transform with zero intitial condition,
xz(0) = 0,u(0) = 0 (deviation variables):

sl ©(s) =Ax(s) + Bu(s)
(sI — A)x(s) =B u(s)
2(s) = (sI — A)~ 1 Bu(s)
Get y(s) = G(s)u(s) where transfer matrix is:

G(s)=C (sI — A ' B+ D

Here

—-1 __ Gdj (S‘I — A)
(sl =A) == det(sl — A)

where del(ST — A) =
d(s) =ans" +a,_15" 1+ -4+ a1s+ag
is a n'th order polynomial in n,

The n roots (generally complex) of the polynomial d(s)
are the same as the eigenvalues of the state matrix A,
and are known as the «poles» of the system

*Warning: Not completely general. Does not include time delay, which
cannot be written as a polynomial in s.



Initial and final values for step
response

* Transfer function g(s)
e Consider response y(t) to step of magnitude M in input. u(s)=M/s

* Deviation variables for y(t) and u(t)

Steady-state gain: % = ¢(0)

Initial gain: %ﬂ = g(00)

Initial slope: y’(TW = lim;_, o Sg(5)

Proof: Note that y(s) = g(s)
Final value theorem: lim; o y(t) = lims_,0 sy(s) = lims_, sg(s)£ = g(0) M
Initial value theorem: lim; o y(t) = lims_ o sy(s) = g(oco) M

Initial value theorem: lim; o4’ (t) = limg oo S(sy(s)) = limg oo sg(s) M

(

Initial value theorem: lim; o y(™ (t) = limy_so0 s™(sy(s)) = limy_,o0 s"g(s) M



First-order system responses
Example g1 (k=2, 7=10)

25

1.5

Amplitude

0.5

Step Response

s=tf('s')

gl =2/(10*s+1)

step(g1,50)

axis([0 40 -0.2 3])

nitia

Time (seconds)

I u | gi(s)= 1| Vv |
— 2 >
10s+ 1
-
/
/ i
slope =2/10=0.2 / y(t) y(t) = KM(1 — e )
L , i
/’ 63%
/
u(t) -
/
/
/
K g(s) = %4.1
- Steady-state gain: y(% =g(0) =k N
+
/ Initial gain: y(%) = g(o0) =0

Initial slope: y,(TQJr) = limg_, o0 59(s) = % ]

0 5‘ 10 1‘5 2‘0 2‘5 3‘0 3‘5 40

kM




s=tf('s')

Change time constant from 10 (g1, blue) to 12 (g2, green) gl = 2/(10*s+1), step(g1,50)
...gives smaller initial slope & slower dynamics axis([0 40 -0.2 3]); hold on,
g2 =2/(12*s+1), step(g2,50)

Step Response

251

Amplitude

20 25 30 35 40

Time (seconds)



s=tf('s")

g3: Larger steady-state gain (k=2.2) (red). o1 = 2/(10%s+1), step(gL,50)

Gives larger initial slope (but dynamics are not

axis([0 40 -0.2 3]); hold on,
g2 =2/(12*s+1), step(g2,50)

faster than g1, because also steady-state is larger) 23 = 2.2/(10%s+1), step(g3,50)

Amplitude

2.5

Step Response

L L L L L L

[ [ [ [ [ [

10 15 20 25 30 35 40

Time (seconds)



Integrating system, g(s)=k’/s

* Special case of first-order system with =00
and k=00 but slope k’=k/7is finite

e Large = g(s)=k/(7s+1) = k/(7s) =k'/s
* Step response (u=M): y(t)/M = k't (ramp)



s=tf('s')
gl =2/(10*s+1), step(g1,50)

g4: Integrating system =0.2/s axis([0 40 -0.2 3]); hold on,

gl & g4: Same initial response (slope = 0.2=k/7) 22 = 2/(12*s+1), step(g2.50)
Step Response g3 = 2'2/(10*S+1)1 Step(g3;50)
’ 4 w g4 -=2/(10*s+0), step(g4,50)

Amplitude

0 5 10 15 20 25 30 35 40

Time (seconds)




g6: Unstable system (e.g., exothermic reactor):
Note: Sign change in denominator d(s)

Step Response

Amplitude

3

2.5

15

0.5

g6
unstable

J
S

7 gh
yd Integrating system:

s

s
e

on the limit to unstable

gl
stable

.. Negative sign in d(s)...

Pole p=0.1 U

10

15

20

Time (seconds)

25

30

35

40



More on transfer functions &
responses

1. A bit about poles and zeros

2. Second-order systems (lecture 14)

— Can have oscillations (complex poles)
3. Closed-loop transfer function (with control) (lecture 15)
4. More on poles and zeros (lecture 16)

— Including inverse response (RHP-zeros)

5. Approximating transfer functions (lecture 17)
— Time delay
— Half rule

6. Derivation of SIMC PID rules (lecture 18)



Understanding transfer functions
g(s) = n(s)/d(s).

125 + 6
Example. g(s) = i

3052 + 335 + 3

Standard forms:

H N L (T1.3+1)
1. Time constant form  g(s) = st D(ns 1 1)
(s) = 25 +1
R =" M0s + (s + 1)
(s —21) -
2. Pole-zero form 9(s) = e m)(;_ o)
o) = 2 +0.5

30 (s + J1)(5+ 1)
] — —1/T1 = —1/2— —0.5

pr=—1/1=-1/10 = —0.1;

pr=—1/m=—-1/1=-1



Poles and zeros

Transfer function, g(s) = n(s)/d(s)

Poles (eigenvalues): Found from d(s)=det(sI-A)=0.

— Determine speed of response

— Poles in right half plane, e.g., p=0.1 (negative sign in d(s)): Unstable
Zeros: Found from n(s)=0

— Determine shape of response
— Zeros in right half plane, e.g., z=0.5 (negative sign in n(s)): Inverse response

g(s) =c : (S _ ZI) - Step Response
=G =) —
12 s+0.5 1/
9) = B HE TG
= 1T = —1/2= 05
pp=—1/m=-1/10 = —0.1;
pr=—1/mp=—-1/1=-1

Amplitude

30 40 50
Time (seconds)



2. 2nd order system.
Special case: Two first-order in series

K
(z,5+1)(7,5+1)

G(s)=

Example: Temperature in two tanks in series, t,=V,/q, t, = V,/q

Step response (M = change in input):

—tir, the
T T = e T

y(t) = F:M(i -

) (5-47)

T T T2



Step response for two first-order in series: S-shaped response

Amplitude

0.

0.

[=)
wm

0.

0.2

0.1

Step Response

! |

7 —

6 —

K
(z,;5+1)(7,5+1)

G(s)=

4

Two second-order systems

with taul+tau2=1:
g2a=1/((0.5*%s+1)*(0.5*s+1))
g2b =1/((0.9*s+1)*(0.1*s+1))

Compare with first-order system with tau=1
gl =1/(s+1) (Black line)

\ S-shaped: Initial slope=0 for g2a and g2b

Amplitude

Note: Second-order system with
taul much larger than tau2 can
be approximated as first-order
plus delay with delay = tau2:

g2b = 1/((0.9%s+1)*(0.1*s+1))

glb = exp(-0.1*s)/(0.9*s+1)
| |
0 0.5 1




n identical first-order systems in series

25+

gl=2/(2
3 Step Re‘sponse gz = 2/ ( 2
g3=2/(2
g4=2/(2
g5=2/(2
g6 =2/(2

Amplitude

0 5 10 15 20 25

Time (seconds)

35

Note: More poles (relative to zeros) gives flatter initial step response. Proof:
Initial value theorem: lim;_oy™ (¢) = lims_yo0 s (sy(s)) = lims_yoe s"g(s) M

For system with poles excess= m = n_-n, we get that g(s) ~ 1/s™ when s goes to infinity.

Then the m’th derivative, y(M(t), is finite (non-zero) for step-response. The other m-1 derivatives of y(t) are zero!

Example G1(s) = 2/(2s+1). m=n_=1. So first derivative y’(t) (initial slope) is non-zero
p

g7 =2/(2

*s+1), step(g1,50)

*s+1)A2, step(g2,50)
*s+1)73, step(g3,50)
*s+1)74, step(g4,50)
*s+1)A5, step(g5,50)
*s+1)76, step(gb,50)
*s+1)A7, step(g7,50)

40

Example G7(s) = 2/(2s+1)"7. m=n,=7. So six first derivatives of y(t) are zero -> Very flat initial response. Almkost like time delay.



General 2nd order system

K ) K
r°s° +26rs+1 rP(s—A4)(s—4,)

G(s)=

2
Roots (poles, eigenvalues): Ay= —6ty6 1

T

¢>1 Overdamped (two real poles)
(=1 Critically damped (two real identical poles)

I{] <1 Underdamped (complex poles; oscillations)
(<0 Unstable

Special case: Two real poles, ( > 1: Two first-order in series

K K ;= T, +7,

= >1
(r,5+1)(7,5+1) 712'282 +(7, +7,)5+1 2\/1,7,

G(s)=

Two —real — poles: .
. = T& 2
A =-1l7,4,=-1lr, o) = R"M(’l T ,; ) (5-47)




Step response complex poles, |(]|<1

s NG
K B K o 4
125 +2¢7s+1 12 (s—A)(s—4,) =0 LW

G(s)=

v(s) = G(s) u(s) with u(s)=1/s (step).

Inverse Laplace (get terms eM) and use Euler’s formula for

complex parts: it .
PIEXP e™! = coswt + i sin wt
Get for y(t):
2. 1 — ———— el sin[J1 — C it + ]
v1—10°

§ = tan™! ﬂg < 0=lg<1)



Amplitude

1.4

1.2

0.8

0.6

0.4

0.2

Step Response

s=tf('s')

zeta=0.5, tau=1

g = 1/[(tau*s)"2 + 2*tau*zeta*s + 1]
step(g)

sh2+s+1

>> pole(g)
ans =

-0.5000 + 0.8660i
-0.5000 - 0.8660i

Time (seconds)

12



1

G(s)=

r°8* + 2075 +1

1.6

I ' | ! 1 v

e U sin[V1 — 2 thr + ]

2. A~ 5
0.4 |- — 2 —
- 2
0.2 = tan™" _1_2?5_, 0= <1) _
0 ! l | ! | I | I :
0 4 8 12 16 20

Figure 5.8.

Step response of underdamped second-order processes.



Table 3.1 Laplace Transforms for Various Time-Domain
Functions? (continued)

f(t) F(s)
1 —ilT —tl7 = —-——1 |
20, 1 + = me =0 ) s(rs + 1)(7s + 1)
(1 ¢ 1‘2)
_ 1
1 —thr o —r2 % -
21. 1 — e {,Ee Ul gin [V1 — G tit + ] s(?s* + 2Lxs + 1)
\/’1_—'—2 Alternative forms of step
y = tan~! Z g—, 0=lg<1) ™ response for 2nd order system
. |
22. 1 — e~¥qcos (V1 — ¢ 1) s(2s + 2xs + 1)
+ -_lé—:——? sin (‘/1_:—2? ti7)]
O=l<1 _
) s 37 T2 ~ti7, T35 + 1
231+T"‘Tze [+72—716 s(tis + 1)(72s + 1)
(m1 # ™)
d
24. d_{ sF(s) — f(0)
d"
5. 21 S"F(s) — s (0) — 572 W(0) — -
~ sfe=2(0) - fr-1(0)
26. f(t — 10)S(t — 1) e "F(s)

Note that f(t) and F(s) are defined for ¢ = 0 only.



B P K
| 660 =
1°s°+ 20w +1
l |C]|<1
1.05b
y
| Y |
tr tp ts
Small C
t
Time to first peak: t, = at/y/1 -2 (5-50) t_=mt

p

Overshoot: 0S5 = exp (-;r:i';h,fl - t_F) (5-51) OS=exp(-my)

Decay ratio: DR = (0S)* = exp (—EEEI 11— ﬁz)
(5-52)

Period: p= 2 (5-53) PR




COMPLEX POLES IN PRACTISE

Underdamped (Oscillating) second-order systems (| (]|<1)

K
t°s* + 2015 +1

G(s) =

Corresponds to complex poles, )\, = o &4 iw

Process systems:
Oscillations are usually caused by (too) aggressive control

Example: P-control of second-order process, k/(7; s+1)(7, s+1)
* Oscillates ((<1) if Kk is large

But there also cases where we need control to avoid oscillatioons:
Example 2: Pl-control of integrating process, k'/s

* Need control to stabilize
* Oscillates ((<1) if KKk’ is small



3. Closed-loop transfer function

(1) Process:y = g(s) u + g4(s) d
(2) Controller: u = c(s) (y.-y,,)
(3) Measurement:y, =g (s)y+n

Closed-loop response: Want to find effect of y,, d an n on outputy.
Task: Eliminate u and y_to find
y=T(s) y, + Ty(s) d + T (s)n



Closed-loop transfer functions

* Here: Perfect measurement (n=0, g, =1):

* Closed-loop output response:y=Ty . +T,d
T= gc/(1+gc)
T, = 84/(1+gc)

* General rule for negative feedback:

— Transfer function = «direct(s)» / (1 + «loop(s)»)
— Here: Loop (L) =gc



Example 1. Setpoint response for
P-control of 2nd order process

d

Ys 4

. y t [}
AT— c .0 g —O— —-—J

s /N ] offset
g(s) = 1/[(4s+1)(s+1)] . A s
P-controller: c(s) = K.=4.5
Derive T(s) B

Time (seconds)

Note: Larger value of K_ gives less offset but more oscillations




Amplitude

Step Response

Offset

Time (seconds)

10

12




Sensitivity function S

d

Gd

y 8 + ' r + y

AT—. -
- C 9—-—0—+ ot

* Consider control error: e =y-y,

* No control (c=0): e=g,d-ys

* With control (closed-loop): e =S (g, d —v,)
— S gives the effect of feedback. S = 1/(1+loop)

* No control: S=I
* Perfect control (infinite c): S=0




Steady-state offset with P-control

(k=process gain, K_= controller gain)

d

Define sensitivity fuction: S(s) = 1/(1+L) where L(s)=loop=gc g,
S is transfer function from y, to control error e: e = S(s) y;
Steady-state offset to step change in setpoint: e = S(0) y, where S(0)= 1/(1+K_k )

Example. k=1, K_ = 4.5. Relative Steady-state offset e/y, is S(0)=1/(1+K_k ) = 1/5.5= 0.18 (18%)



Example 2. Pl-control of 1st order
process

d

Ys 4

. y t [}
AT— c .0 g —O— —-—J

Setpoint response with K_=3:

Example. g(s) = g4(s) = 2/(3s+1)
Pl-controller: c(s) = K.*(2s+1)/2s

Amplitude

Note: There are no oscillations.
The overshoot is caused by a zero in T(s)

Time (seconds)

Note: Larger value of K_ gives faster response offset but less robustness to delay



Setpoint response. y.=1, d=0
y=T(s) y,

c>>s = tf('s')
>>g=2/(3*s+1)

g:

3s+1
>>c=3%(1+1/(2*s))

c=
6s+3

2s
>>T=g*c/(1+g*c)

T=
72s"3+60s"2+12s

36sM +96s"3+64sM2+12s
>>T1 = minreal(T)

T1=
2s+1

s"2+2.333s+1

>> step(T1)

T(s) = n(s)/d(s)

n(s)=2s+1
d(s) =s"2 +2.333s+1

el

T(s) = (2s+1)/(s"2 + 2.333s+1)

2nd order system with a zero
(the overshoot is because of the zero polynomial n(s))

Amplitude

Initial slope = Sll_>r£10 sT(s) =2

Time (seconds)

with t=1, (= 1.167 (no oscillations since { > 1))

=12+ 21(s + 1,
= (118 + 1)(7,s + 1) with t;=1.178, 1,=0.566



Input Disturbance response (g,=g)

Td =
0.6667 s

sh2+2.333s+1

4. Figure 1

Dode |k

Amplitude

2

File Edit View Insert Tools Desktop Window Help

LA E s @ | 0E O

Step Response

.......................................................................... ——————)

4 B
Time (seconds)

8 10 12

=



v

Comment: Adding delay gives oscillations,
0=0.5s

A — c 2. g —O———
Setpoint response. y=1, d=0 ‘

>> delay = exp(-0.5*s)

delay =
exp(-0.5*s) * (1) DT ME3 VIS
>> L =g*c*delay

L=

12s+6 i
exp(-0.5%s) * -----mm-m-- 1.4
6sh"2+2s
1.2
>>T2 =L/(1+L) o
Internal delays (seconds): 0.5 0.5 E
2
>> step(T2) E L
Complicated T(s) with delays...
Need to use simulations
Unstable withO=1s 5

Time (seconds)



Example 3. Pl-control of level

Yy = Aha U = _AQ()-u.t; d = AQ?:T'L
154 ,
Jis) = " (uls) +d(s). K =1/4
* g(s)=K/s
* ¢(s) =K. (1+1/1s)

e Derive condition to avoid «slow» ocillations
that may occur when K_ is too small*

*Yes, this may seem a bit strange, but for Pl-control of integrating process you may get oscillatons when Kc is too small!
In addition, you may of course get the more common «fast» oscillations if Kc is too large because of «overreaction» with time delay.



Model for Pl-control of integrating process (level)

FLOWSHEET. BLOCK DIAGRAM:
Qin - E hs d
" b ._*_‘@ (o] y= Ah
V [m?] . RSN ey N oy NG 3 f'AAqqout
i } MV=0,, \ "
DI
Qout
k'
Mass balance with constant density (V=Ah): g(s) — =
dV/dt = Qin ~ Aout S
Deviation variables + linearize (well, it’s already linear!) . 1
A dAh/dt = Ag. (t) — Aq(t) c(s) = K.(1+ ;)

Laplace

Ah(S) - Aqin(s);SAqout (S) — (k’/s) (U+d) k' = 1/A

Task: Derive condition to avoid «slow» ocillations that may occur when K_ is too small



Integrating process with Pl-control: .
k, Ys , + iy

G(S)=? AT— Tt

C(s) = Ke(1+ )

General rule to avoid slow oscillations (( = 1) :
!
k KCTI = 4
Need large controller gain and/or large integral time (!)

Alternative Proof:

G(s) = k‘% RS %, where k' = %; C(s) =K, (1 + %)
Closed-loop poles:

1+GC=0=1+%K, (1+%) =0=7s*+KK.ris+ KK, =0
To avoid oscillations we must not have complex poles:

B? —4AC > 0= k?K212 —4K' K. 11 > 0= K K. 11 > 4



Closed-loop responses

Closed-loop response to disturbance d at input and setpoint change

1+ge 1+ge
Pl-control of integrator:
% 1 -. - '1

g(s) = 51 cls) = K222
Get

oy — 7[5 K.(rrs+1) _

b= r1s2+Ketrs+Ke 7524+ Kemrs+ K- Ys
With -1 = 1. K, = 0.25:

0.25(s41) B ds (s+1)

¥ = 52+{].255+ﬂ.25d+ s2+0255+0 2595 452 1511 + 452 + 54+ 1 Ys

T,= his) T(s)
Notes:

e Steady-state gain h(0) for disturbance transfer function h(s) is zero (be-
cause controller has integral action)

e Steady-state gain T(0) for setpoint transfer function T(s) is 1 (because
controller has integral action)

e Denominator is on form 7252 +27(s+ 1 with 7 =2 and ( = 0.25 < 1, so
there will be oscillations with period P = 277

e Initial response (f — 0) to disturbance is the same as with no control

(his) = ﬂ% — g(s) when s — oc since g(s)c(s) — 0 (which is the case

for all real systems))



Simulink, tunepid4

Rl r [
To Workspace2 m_epz
>+ numis) +
i L g >y
Step id den(s) *
SUM  Transfer Fon Sum1 LTI System To Workspace1
S
Scope
@4& Tid
Clock To Workspace > u
To Workspace3

E Function Block Parameters: Transfer Fcnl

—Transfer Fcn

The numerator coefficient can be a vector or matrix expre
denominator coefficient must be a vector. The output widt!
number of rows in the numerator coefficient. You should s
coefficients in descending order of powers of s.

— Parameters

Mumerator coefficients:

Denominator coefficients:

| [ 0.01*taui*taud taui 0]

Absolute tolerance:

|autn

State Name: (e.g., 'position')

J oK Cancel Help




Pl-control of integrator (level control). G = 1/s, taui=1. VARY Kc

2.5

%tunepid4
s=tf('s')
theta=0

taud=0
taui=1

sim tunepid4; plot(Tid,y,'red");

sim tunepid4; plot(Tid,y,'green’);
hold off

Setpoint change at t=0

20

Input disturbance at t=20

40

Note: Need higher controller
gain to reduce “slow” oscillations!

Avoid slow oscillations: k'K.1; = 4
So would need to increase Kc to 4 in this case

g=(1/s)*exp(-theta*s) % integrating
Kc=0.5 % oscillations (Kc*k'*taui = 0.5 < 4)
sim tunepid4; plot(Tid,y); hold on %

Kc=0.25 % more oscillations (Kc*k'*taui = 0.25

Kc=1 % less oscillations (Kc*k'*taui = 1)




Pl-control of integrator (level control). G = 1/s, Kc=1. VARY taui

Note: Need larger integral
time reduce “slow” oscillations
Avoid slow oscillations: k'K 1; = 4
So need to use taui=4 to have
] no oscillations (SIMC-rule).
Get T(s)=(4s+1)/(2s+1)"2

0.4 K

0.2 i N

Input disturbance at t=20

Setpoint change at t=0



4. Back to Poles and zeros

Transfer functions G(s) of linear, time-invariant networks of first-order systems
are ratios of two polynomials in s (Laplace variable)

—  G(s) =n(s)/d(s)
Polynomials have roots.
root in denominator, d(s)=0: G(s) — o "pole” (x)
root in numerator, n(s)=0: G(s) > 0 "zero” (0)
Effect on dynamics:

— Poles determine stability and fast or slow dynamics
* Poles in right half plane (RHP): Unstable .
— Example: g(s)=1/(s-1). Has RHP-pole at s=1 |
* Complex poles (=eigenvalues of A): Oscillations 05-087i X
— Example: g(s) =1/(s"2+s+1). Solved(s)=s*2+s+1=0.Get polessl = -0.5+0.87%i,s2 =-0.5—0.87%i
— Zeros are responsible for shape of response

» Zeros in left half plane (LHP): «Lifts» the response and often give overshoot

_ . . Im(s
e Zeros in right half plane (RHP): always gives inverse response (s)
— Inverse response makes problems for feedback control
— Example: g(s)=(s-2) / (10s*2+11s+1). So n(s)=s-2. Has RHP-zero at s=2

Im(s)

-0.5+0.87i X I

xr

> Re(s

DN

v
X
[}



Example transfer function

a— 4542
g(S) — 532+§.5s-§—0.5

Time constant form:

9(8) = by Vithk=4,T=2,1 =10, =1

Pole-zero form.
— 4 s+0.5 S Y S—z
g9(s) = 5 (s+0.1)(s+1) " (s—p1)(s—p2)

with k’ —4/8,
zero z = —1/T = —0.5,
poles (or eigenvalues): p1 = Ay = —1/73 = —0.1,ps = Ay =

Step Response

Blue: g = 4*%(2*s+1)/((10*s+1)*(s+1)) 1
Red: g1 = 4/(10*s+1)

Amplitude

Initial slopes are different. \ /

g: slope=4*2/10=0.8 S
gl SlOpe 4/10 =04 0 10 20 30 Timtﬂ(sec;?ds} 60 70 80 90

]./7'2 = —1

>> s=tf('s")

Con’

tinuous-time transfer function.

>> g = 4% (2%s+1)/ ((10*s+1) * (s+1))

Con’

tinuous-time transfer function.

gl =

ontinuous-time transfer function.

>> step(g,gl)



Zeros

/eros
* Zeros are common in practise

*  Occur when there are several «paths» to the output.
*  RHP zero: «competing effects where slow wins (has largest gain)»

N

_— (—>Y

All coefficients positive: LHP zero

° 2
Example 1 91(8) = =T 92(8) 8+1 /
. 2(s+1)+0.3(10s4+1) _ « 2.17s+41
9(s) = g1+ 92 = 05T 3T = 23 0s3 1) (5 5D)
¢ Example 2 g1(s) = 1082“, g2(s) = —Sofl Sign change: RHP zero = Inverse response
o _ 2(s+1)-0.3(10s+1) —0.59s5+1
9(8) =911 92= (10s+1)(s+1) - 1'7z103+1jt3+1) . ‘ ‘ __Step Response ‘
e Exampl 0.3 2
oMPIE3 (0~ st o) =k .
. 2(s+1)—0.3(10s+1) _ 11.3s+1 °
9(5) = 91 + 92 = e = LT 0D Sis -
e g,
Note; Overshoot since 11.3>10 2
(overshoot: competing effects where fast wins) 0.
a

5 10 15 20 25 30 35 40
Time (seconds)

Example 2: RHP-zero with «time constant» -0.59: Similar to delay of 0.59.



Zeros

K(tes +1)
(115 + 1){(728 + 1)

3_

(5-14)

G(s) =

To

0
KM

Figure 5.3 Step response of an overdamped second-
order system (Eq. 5-14) for different values of 7, (7 = 4,
Ta = 1}.



Examples of dynamic model
structures

How do we get zeros?



RHP-zero (inverse response)

w_ [kg/s] = const.

_ T,=10C = const.
Electric heater

— g /T\/:\/%OS Ty y y=TIC]
u=w, [kg/s] 70C Mix 40C

Tg=10C QW]
=const.

Response in y=T to a 10% step increase in u=w,, =0.1:

41.5C
40C
38.5C
Two effects: 1) Direct effect of mixing: g,(s)=15 9(s) =g14+ g =
2) Indirect effect of changed T,: g,(s) =-30/(20s+1 — 15%‘1—1



Model derivation

Electric heater

d 1=W¢ [kg/s]
d,=T,

x=T, y=TIC]

g
u=w, [kg/s] //\N\
d,=T, d.=Q [W]

1. Model. Assume:
Mass m [kg| in heater constant
cp constant

Energy balance heater + mixer:

ﬁ%ﬂhl = wpep(Ty — Iy) + @
I - upian

2. Linearize:

y=AT.z = ATy, u= Aw,

rE — g4 L

dt
J—CI+DI£

A\
7

Mix

3. Nominal steady-state data:
I = 10C. Ty, = 70C. T = 40C
wp = w, = lkg/s,m = 20kg
Gives:

= Ta=Th _ 10-70 _ g

wy 1
T=m 'wh =20/1=20
C = —5— =0.5
w —I—w_it
D—T T:?O—nlﬂ:l_[_.
wetwp 2

4. Transfer function:

y(s) = G(s)uls)

G(s)=CE5+D
=0.5 ,,U_B:El + 15

—20s+1
— o511 20s+1




Zero at O (no steady-state effect)

Bypass (10%)
u=awlkg/s]

Electric heater 10C
wlkg/s]=1=const. T=22 | T,

T,=10C N\ 20C  Mix ‘64C

Q [W]
=const.

Response in y=T to a step decrease in bypass fraction from 0.1 to 0.05:

67C
64C
Two effects: 1) Direct effect of mixing: g,(s)=-60 g(s)=g1+ g2 =
2) Indirect effect of changed T,: g,(s) = 60/(22s+1) — 60%



Model derivation

Bypass, u=a w [kg/s]

w[kg/s]=1=const.

<

T,=10C=const.

1. Model.

Mass m [keg| in heater constant

Assume:

cp constant
Energy balance heater + mixer:

i'lm;tﬂ =(1—a)wep(Ty —Tx)+ @

2. Linearize:
y=AT.x=AT,u=a«

T = —T+ ku
y=Cx+ Du
= _ Lo=Th
T=mjwy,
C=(l—a")
D= (T: - T})

h

Electric heater 10C
T — 228 Th W
N\/\ 70C Mix

/Q (W] \

3. Nominal steady-state data:
To =10C. T, =70C. T = 64C
w=1kg/s.a =0.1,m = 20kg
Gives:

p=—Te=T _ 1070 _ g6 67

{1 ) 0.0
=m/wy, = 20/0.9 =22

=(1—a")=0.9
D=(T, -T;)=—60

4. Transfer function:
y(s) = G(s)u(s)
G(s) = C ‘r‘ =+ D

Dgﬁﬁﬁr — 60

2251 .
= 60[005 T — 1) = 6020 =

y=TIC]
64C



Summary poles and zeros

G(s) = n(s) / d(s)=K’(s-z;) / (s-p;)(s-p,)..
Example: G(s) = 4 (3s-1)/(s?+s-2),
Get: k'=12, z,=1/3, p;=-2 p,=1

Poles p (=eigenvalues of A)
— Determine speed of response, exp(p*t)

— Negative sign in d(s) = p, in RHP: unstable, exp(p,*t) — oo (NEED
control)

— Pole p complex: oscillating response
Zeros z
— Determine shape of response
— Negative sign in n(s) = z, in RHP: inverse response (BAD for control)
— LHP-zero may give overshoot



5. Approximations of transfer
functions

» Skogestad half rule (get effective delay). IMPORTANT!
* Approximation of zeros (you are not expected to remember this)
* Approximation of delay as n(s)/d(s). «Going the other way»

— Pade approximation



Skogestad Half Rule*

OBTAINING THE EFFECTIVE DELAY ¥

Basis (Taylor approximation):

1 1
e 5~ 1—-0s and e ¥ =

Effective delay =
“true” delay
+ inverse reponse time constant(s)

+ half of the largest neglected time constant (the “half rule”)
(this is to avoid being too conservative)

+ all smaller high-order time constants
The “other half” of the largest neglected time constant is added to 7

(or to 7 if use second-order model).

* S. Skogestad, “Simple analytic rules for model reduction and PID controller
design”, J.Proc.Control, Vol. 13, 291-309, 2003 (Also reprinted in MIC)



Step Response
1 T L} L} T L}

Example 1

Amplitucie

The second-order process

L L L L L L L L L
0 1 1.5 2 25 4 45

gO(S) — (

1s+1)(0.6s+1)

with

k=1, mn=1406/2=1.3; 6=0.6/2=0.3;




Amplitude

0.9

0.8

Q.7

0.6

0.5

0.4

0.3

0.2

Q.1

Step Response

Original 2" order

1st-order+delay (half rule)

1.5

2.5
Time (sec)




Amplitude

Example 2

0.8

0.6

0.4

0.2

Step Response

s=tf('s")
g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
gl =exp(-2.1*s)/(6.5*%s+1)

g2 = exp(-0.35%s)/[(5*s+1)*(3.25%s+1)]
step(g,81,82)

Original (third-order with inverse response)
First-order approx. using half rule

Second-order approx. using half rule

Step Response

0.4

0.35f

0.3F

0.25r

0.2

Amplitude

0.15f

0.1F

10

15

20 25
Time (seconds)

w
o

0.051

-0.05 I I I I I I I I I
0 0.5 1 15 2 25 3 35 4 4.5

Time (seconds)



Example 3. Integrating process

_ k'
gﬂ(b ~ s(720s+1)

Half rule D"n es

g(s) =% with 6 =
Proof:
Note that integrating process corresponds to an infinite time constant
Write

- _ krT] _ ‘E“ITI T _—
go(s) = et = T (mesT D) where 7 — 00

and then apply half rule as normal, noting that = + 222 =~ 7y:

.—|

(C; . h T'_[E_Ig.o-: L k-" e——iﬂ'u i . . . SfepRe_sponsle . . . .
g = ] (T'J_+_.'ELT; }9 = 40 | //'
s
A
2’ /////"
% 20 + / ,
Example. g0 = 5/(s*(3*s+1)), “ ol s
g = 5*exp(-1.5%s)/s, o} ///

step(g,g0,10) A



Approximation of LHP-zeros
To make these rules more general
/ (and not only applicable to the
choice t,=0): Replace 6 (time

. T
L > T > C )
;ﬂf T, ?Jr ?’ ; Tﬂg/{ (guii %l delay) by 7, (desired closed-loop
Tos + 1 0 or Lo —/— 7o (Rule Tla) response time). (6 places)
0 ~d 1 for 0% Ty > 7 (Rule T1b)
Tos + 1 To /o formy = 1y = ;ﬁ'Tc . (Rule T2)
| ) for 7y min(ro, 501 3T, (Rule T3)

Example E3. For the process (Ezample 4 in (Astrom et al. 1998))

2{153 +1)
: 13
005) = 505+ 1)(s + 1)(0.15 + 1)2 (13)
we first introduce from Rule T2 the approzimation
155 +1 s
=S =0.75
20s+1  20s

(Rule T2 applies since Ty = 15 is larger than 58, where 0 is computed below). Using the half rule,
the process may then be approzimated as a first-order time delay model with

kE=2-0.75=1.5; E"—Ul—|—02—l—ﬂlo T = l—I—%: 1.05
or as a second-order time delay model with
0.1 0.1
k= 1.5; E"Z?:U.UE; 7 =1; TJ—UI—F?—UI"

1. = desired closed-loop time constant




“Going the other way”

Amplitude

0.8

0.6

0.4

0.2

-0.2
-0.4
-0.6

-0.8

Approximations of time delay

Example: Step response of first-order system plus delay

Step Response

s=tf('s')

theta=1

g0=exp(-theta*s)
gl=-theta*s+1
g2=1/(theta*s+1)

g3 = (-theta*s/2+1)/(theta*s/2+1)
h=1/(s+1)
step(g0*h,g1*h,g2*h,g3*h)
axis([0 5 -1 1.1])

|
15 2 2.5 3 3.5 4 4.5 5

Time (seconds)

% 0. Original time delay. theta
% 1. As RHP-zero. —Ts+1, T=theta
% 2. As First order, tau=theta
% 3. Combined: Pade-approx



n’th order Pade approximation
of time delay

* Accurate for large n

Step Response

e

2 2.5 3 3.5 4 4.5
Time (seconds)

f
]
e
n

(3

)n
Note: Number of RHP-zeros
= number of 0-crossings of step response

s=tf('s')
theta=1
g0 =exp(-theta*s) % Original time delay
1 = (-theta*s/2+1)/(theta*s/2+1) % 1%t-order Pade-approxima

3 = (-theta*s/6+1)"3/(theta*s/6+1)*3 % 3rd-order Pade-approxin
h=1/(s+1)
step(g0*h,g1*h,g2*h,g3*h)
axis([0 5-0.2 1.1])

Why use Pade?
To get model on state space form, dx/dt=Ax+Bu



Extra slides



BUT more common case is:
Get oscillation if we have time delay
and use large K_



. . (5*) — lg_QS
Pl-control of integrator (level control). G = 1/s, taui=4 g\ s .
ADD DELAY, theta = 1 c(s) = Kc(1+ 77)
4
%tunepid4
35+ -+ s=tf('s")
theta=1
3 - g=(1/s)*exp(-theta*s) % integrating with delay (le\
, taud=0
o5 / | taui=4
Kc=1 % Too high Kc.
00_ « ” H H ”
Al Kc=1 | % -> “fast” oscillations because of delay

sim tunepid4; plot(Tid,y); hold on %

1 Kc=0.5 % OK
sim tunepid4; plot(Tid,y,'red");

Kc=0.25 % Too low Kc.

% -> “slow” oscillations from integrator
sim tunepid4; plot(Tid,y,'green’);

hold off

20 25 30 35 40

Input disturbance at t=20

CONCLUSION
Kc too small (Kc=0.25): “Slow” oscillations (integrator not stabilize
Kc too large (Kc=1): “Fast” oscillations (because of time delay)

Setpoint change at t=0



Summary: Pl-control of integrating process (level)

g(s) ==

(s) = Ke(1+ )

1. Two low controller gain K_ (combined with too much integral action, i.e. T, small):
Can get «slow» oscillations

Avoid slow oscillations: k'K 1; = 4

2. Too high controller gain K_ (combined with time delay in the loop):
Can get the «normal» faster oscillations (and even instability)

Avoid fast oscillations (SIMC): k’K_6 < 0.5

Case study: k'=1, 6=1, taui=4.

1. Avoid slow oscillations : K_>1 Comment. SIMC-rule would give,
2. Avoid fast oscillations: K < 0.5 Ke=0.5, taui=8

Both not possible..... The best was K =0.5 (see simulation)



Maybe useful later: Obtaining a model from data using procest (matlab)

% We generate some artifical data from a high-order model
s=tf('s')
G =3*(1-0.1*%s)/((10*s+1)*(3*s+1)*((s+1)"3))

Ts=1; % samplingtime 1 s (Comment: This may be too long; could make shorter to fit only initial response)

t = Ts*[0:109]";
u = [zeros(10,1); ones(100,1)]; % Step response
y = Isim(G,u,t);

% Now fit it to a second-order plus delay model using Matlab
data=iddata(y,u,Ts); %

type=('P2D’) % P2D = 2nd order model + delay

sys = procest(data,type)

% Compare the two models

k=sys.Kp; taul=sys.Tpl; tau2=sys.Tp2; Td=sys.Td;
Gfit = k*exp(-Td*s)/((taul*s+1)*(tau2*s+1))
step(G,Gfit,'--")

figure(2),step(G,Gfit,'--',10)

OUTPUT FROM procest (MATLAB):

Process model with transfer function:

Kp
G(s) = - * exp(-Td*s)
(1+Tp1*s)(1+Tp2*s)
Kp = 2.9986
Tpl=3.9211
Tp2 =9.6838

Td =2.478

Amplitude

Step Response

[= [=
w o

(=
~

Time (seconds)




Amplitude

Zeros

Step Response
I

gl =2*(3*s+1)/[(10*s+1)*(s+1)], step(g1,50)
g0 = 2/[(10*s+1)*(s+1)], step(g0,50)
g2 = 2*(-3*s+1)/[(10*s+1)*(s+1)], step(g2,50)

2
9o (S) — (10s+1)(s+1)

g1(s) = (35 + 1)go(s)
(—3s+1)go(s) |

Q
bo
=
n
—
|

g2: Sign change for coeffcients in n(s) (RHP zero): Inverse response

| | | | | | |
0 5 10 15 20 25 30 35 40

Time (seconds)




Zeros

Example RHP zero: («competing effects where slow wins»).
Physical example electric heater: Increase hot water flow when Q is constant. u=q,, y =T (see below)

Step Response

3 [
s=tf(’s’)
.l gl=1 )
' g2 = 2/(10*s+1)
g=gl-g2
2 ans = ]
10s-1
1.5 s R
10s+1
e
=
<
05§ |
g=g1-g2,
— —
05+ |
1r | | | | | | | |
0 5 10 15 20 25 30 35 40

Time (seconds)



Zeros
Example LHP zero: Note no overshoot here (since T=3.33 < 7=10)

Step Response

3 [
- g=gl+g2 |
gl=1
i g2 = 2/(10*s+1), I
15 _ 2 _ 93.33s5+1 B
) G(s) =1+ To.57 = 350s 51
E
g
05F _
O =
-0.5 - _
_17 —
0 5 10 15 20 25 30 35 40

Time (seconds)



