
General procedure in this course

1. Nonlinear dynamic model. dx/dt = f(x,u,d)
2. Steady state model.             dx*/dt=0 -> f(x*,u*,d*)=0 

– Use to find missing data

3. Introduce deviation variables and linearize
– dΔx/dt = Δf = A Δx(t) + B Δu(t) + Bd Δd(t)

4. Laplace of both sides of linear model* (t ! s)
– sx(s) = A x(s) + B u(s) + Bd d(s)

5. Algebra ! Transfer function, G(s)
6. Block diagram 
7. Controller design

*Note: We will only use Laplace for linear systems!



Transfer function

Some typical transfer functions:

1. First-order with delay process, G(s)=k e-θs/(τs+ 1)
– Many examples! Heated tank, y=T, u=Q

2. Integrating process, G(s)=k’/s
– Example: level (y) with u=qin

3. PID-controller , C(s) = Kc(1 + 1/(τIs) + τD s) 

G(s)
u(s) y(s) = G(s) u(s)

G(s) = transfer function of linear dynamic system

u and y: deviation variables

s: Laplace variable (replaces t as independt variable). 

Note (may be confusing): s has units s-1 = second-1

Can just multiply G and u!

= 𝐾𝑐

τ𝐼τD 𝑠
2 + τI s +1

τI s



General* Transfer Matrix

The n roots (generally complex) of the polynomial d(s)
are the same as the eigenvalues of the state matrix A, 
and are known as the «poles» of the system

*Warning: Not completely general. Does not include time delay, which
cannot be written as a polynomial in s. 



Initial and final values for step
response

• Transfer function g(s)

• Consider response y(t) to step of magnitude M in input.  u(s)=M/s

• Deviation variables for y(t) and u(t)
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s=tf('s')
g1 = 2/(10*s+1)
step(g1,50)
axis([0 40 -0.2 3])

Example g1 (k=2, ¿=10)

/)
yu

y(t)

u(t)

63%

g1( s) =
2

10s+ 1

M

kM

First-order system responses

Initial slope = 2/10 = 0.2
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s=tf('s')
g1 = 2/(10*s+1), step(g1,50)
axis([0 40 -0.2 3]); hold on,
g2 = 2/(12*s+1), step(g2,50)

Change time constant from 10 (g1, blue) to 12  (g2, green)       
…gives smaller initial slope & slower dynamics
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s=tf('s')
g1 = 2/(10*s+1), step(g1,50)
axis([0 40 -0.2 3]); hold on,
g2 = 2/(12*s+1), step(g2,50)
g3 = 2.2/(10*s+1), step(g3,50)

g3: Larger steady-state gain (k=2.2) (red).
Gives larger initial slope (but dynamics are not 
faster than g1, because also steady-state is larger)



Integrating system, g(s)=k’/s

• Special case of first-order system with ¿=1

and k=1 but slope k’=k/¿ is finite

• Large ¿:    g(s)=k/(¿ s+1) ≈ k/(¿ s) = k’/s

• Step response (u=M): y(t)/M = k’t (ramp)
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g4=0.2/s g3

s=tf('s')
g1 = 2/(10*s+1), step(g1,50)
axis([0 40 -0.2 3]); hold on,
g2 = 2/(12*s+1), step(g2,50)
g3 = 2.2/(10*s+1), step(g3,50)
g4 = 2/(10*s+0), step(g4,50)

g4: Integrating system =0.2/s
g1 & g4: Same initial response (slope = 0.2=k/¿)



g6: Unstable system (e.g., exothermic reactor):
Note: Sign change in denominator d(s)
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g1 = 
2

--------
10 s + 1

g4 =
2

----
10 s

g6 =

2
--------
10 s - 1

g4

g1
stable

g6
unstable

Integrating system: 
on the limit to unstable

Oops… Negative sign in d(s)… Pole p=0.1 Unstable



More on transfer functions & 
responses

1. A bit about poles and zeros

2. Second-order systems  (lecture 14)
– Can have oscillations (complex poles)

3. Closed-loop transfer function (with control) (lecture 15)

4. More on poles and zeros (lecture 16)
– Including inverse response (RHP-zeros)

5. Approximating transfer functions (lecture 17)
– Time delay

– Half rule

6. Derivation of SIMC PID rules (lecture 18)



Understanding transfer functions
g(s) = n(s)/d(s).

Example. 

Standard forms:

1. Time constant form

2. Pole-zero form



Poles and zeros
Transfer function, g(s) = n(s)/d(s)

Poles (eigenvalues): Found from d(s)=det(sI-A)=0. 
– Determine speed of response

– Poles in right half plane, e.g., p=0.1 (negative sign in d(s)): Unstable

Zeros: Found from n(s)=0
– Determine shape of response

– Zeros in right half plane, e.g., z=0.5 (negative sign in n(s)): Inverse response



2. 2nd order system.
Special case: Two first-order in series

1 2

K
G(s)=

( s+1)( s+1) 

Example: Temperature in two tanks in series, τ1=V1/q, τ2 = V2/q

Step response (M = change in input): 

(5-47)



Two second-order systems 
with tau1+tau2=1:

g2a = 1/((0.5*s+1)*(0.5*s+1))
g2b = 1/((0.9*s+1)*(0.1*s+1))

Compare with first-order system with tau=1
g1 = 1/(s+1)  (Black line)

g2b = 1/((0.9*s+1)*(0.1*s+1))
g1b = exp(-0.1*s)/(0.9*s+1) 

Note: Second-order system with
tau1 much larger than tau2 can
be approximated as first-order 
plus delay with delay = tau2:

1 2

K
G(s)=

( s+1)( s+1) 

Step response for two first-order in series: S-shaped response

S-shaped: Initial slope=0 for g2a and g2b
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g1 = 2/(2*s+1), step(g1,50)
g2 = 2/(2*s+1)^2, step(g2,50)
g3 = 2/(2*s+1)^3, step(g3,50)
g4 = 2/(2*s+1)^4, step(g4,50)
g5 = 2/(2*s+1)^5, step(g5,50)
g6 = 2/(2*s+1)^6, step(g6,50)
g7 = 2/(2*s+1)^7, step(g7,50)

g1

g7

n identical first-order systems in series

Note: More poles (relative to zeros) gives flatter initial step response. Proof:

For system with poles excess= m = np-nz, we get that g(s) ~ 1/sm when s goes to infinity. 
Then the m’th derivative, y(m)(t), is finite (non-zero) for step-response. The other m-1 derivatives of y(t) are zero! 

Example G1(s) = 2/(2s+1). m=np=1. So first derivative y’(t) (initial slope) is non-zero
Example G7(s) = 2/(2s+1)^7. m=np=7. So six first derivatives of y(t) are zero -> Very flat initial response. Almkost like time delay.

g2
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Special case: Two real poles, ³¸ 1: Two first-order in series 

General 2nd order system

1 1 2 2

:

1/ , 1/

Two real poles

   

− −

= − = − (5-47)



Step response complex poles, |³|<1

2 2 2

1 2

G(s)=
2 1 ( )( )

K K

s s s s    
=

+ + − −

y(s) = G(s) u(s) with u(s)=1/s (step). 

Inverse Laplace (get terms eλt) and use Euler’s formula for 
complex parts:

2

1,2

1 




−  −
=

Get for y(t):
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s=tf('s')
zeta=0.5, tau=1
g = 1/[(tau*s)^2 + 2*tau*zeta*s + 1]
step(g)

g =
1
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s^2 + s + 1

>> pole(g)
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-0.5000 + 0.8660i
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Table 3.1  Laplace Transforms for Various Time-Domain

Functionsa (continued)

f(t) F(s)
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Alternative forms of step

response for 2nd order system
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=a/b

=c/a

Small ζ

tp=πτ

OS=exp(-πζ)

P=2πτ

1s2s

K
=G(s)

22 ++

|ζ|<1



Underdamped (Oscillating) second-order systems (|³|<1)

Corresponds to complex poles, 

Process systems:
Oscillations are usually caused by (too) aggressive control

Example: P-control of second-order process, k/(¿1 s+1)(¿2 s+1) 
• Oscillates (³<1) if Kck is large

But there also cases where we need control to avoid oscillatioons:

Example 2: PI-control of integrating process, k’/s
• Need control to stabilize
• Oscillates (³<1) if Kck’ is small

1s2s

K
=G(s)

22 ++

COMPLEX POLES IN PRACTISE



3. Closed-loop transfer function

(1) Process: y = g(s) u + gd(s) d
(2) Controller: u = c(s) (ys-ym)
(3) Measurement: ym = gm(s) y + n

Closed-loop response: Want to find effect of ys , d an n on output y.
Task: Eliminate u and ymto find

y = T(s) ys + Td(s) d  + Tn(s) n

gm

n (measurement noise)



Closed-loop transfer functions

• Here: Perfect measurement (n=0, gm=1):
• Closed-loop output response: y = T ys + Td d 

T =  gc/(1+gc)
Td = gd/(1+gc)

• General rule for negative feedback: 
– Transfer function = «direct(s)» / (1 + «loop(s)»)
– Here: Loop (L) = g c



Example 1. Setpoint response for
P-control of 2nd order process

g(s) = 1/[(4s+1)(s+1)]
P-controller:  c(s) = Kc =4.5
Derive T(s)

Offset

Note: Larger value of Kc gives less offset but more oscillations



Offset



Sensitivity function S

• Consider control error: e = y-ys

• No control (c=0): e = gdd - ys

• With control (closed-loop): e = S (gdd – ys)
– S gives the effect of feedback. S = 1/(1+loop)

• No control: S=I

• Perfect control (infinite c): S=0



Steady-state offset with P-control
(k=process gain, Kc= controller gain)

e

Define sensitivity fuction: S(s) = 1/(1+L) where L(s)=loop = g c gm.
S is transfer function from ys to control error e: e = S(s) ys

Steady-state offset to step change in setpoint: e = S(0) ys where S(0)= 1/(1+Kck )

Example. k=1, Kc = 4.5. Relative Steady-state offset e/ys is  S(0)=1/(1+Kck ) = 1/5.5= 0.18 (18%) 

gm



Example 2. PI-control of 1st order 
process

Example.  g(s) = gd(s) = 2/(3s+1)
PI-controller:  c(s) = Kc*(2s+1)/2s

Note: Larger value of Kc gives faster response offset but less robustness to delay

Setpoint response with Kc=3:

Note: There are no oscillations.
The overshoot is caused by a zero in T(s)



y= T(s) ys
c>> s = tf('s')

>> g = 2/(3*s+1)

g = 

2

-------

3 s + 1

>> c = 3*(1+1/(2*s))

c =

6 s + 3

-------

2 s

>> T = g*c/(1+g*c)

T = 

72 s^3 + 60 s^2 + 12 s

-------------------------------

36 s^4 + 96 s^3 + 64 s^2 + 12 s

>> T1 = minreal(T)

T1 = 

2 s + 1

-----------------

s^2 + 2.333 s + 1

>> step(T1)

Setpoint response. ys=1, d=0

T(s) = (2s+1)/(s^2 + 2.333s+1)
2nd order system with a zero
(the overshoot is because of the zero polynomial n(s))

T(s) = n(s)/d(s)
n(s) = 2s + 1
d(s) = s^2 + 2.333s + 1 = 𝜏2 + 2𝜏𝜁𝑠 + 1, with τ=1, ζ= 1.167 (no oscillations since ζ > 1))

= (𝜏1𝑠 + 1)(𝜏2𝑠 + 1) with τ1=1.178, τ2=0.566

Initial slope = lim
𝑠→∞

𝑠𝑇 𝑠 = 2



Input Disturbance response (gd=g)

Td =
0.6667 s
-----------------
s^2 + 2.333 s + 1



>> delay = exp(-0.5*s)

delay =

exp(-0.5*s) * (1)

>> L =g*c*delay

L =   

12 s + 6

exp(-0.5*s) * -----------

6 s^2 + 2 s

>> T2 = L/(1+L)

Internal delays (seconds): 0.5  0.5 

>> step(T2)

Setpoint response. ys=1, d=0

Unstable with θ = 1 s

Complicated T(s) with delays…
Need to use simulations

Comment: Adding delay gives oscillations, 
θ = 0.5 s



Example 3. PI-control of level

• g(s) = k’/s

• c(s) = Kc(1+1/ϮIs)

• Derive condition to avoid «slow» ocillations
that may occur when Kc is too small*

*Yes, this may seem a bit strange, but for PI-control of integrating process you may get oscillatons when Kc is too small!
In addition, you may of course get the more common «fast» oscillations if Kc is too large because of «overreaction» with time delay. 



Model for PI-control of integrating process (level)

g 𝑠 =
𝑘′

𝑠

c 𝑠 = 𝐾𝑐(1 +
1

𝜏𝐼𝑠
)

y = Δh

u = -Δqout

d = Δqin

LC
h

hs

qin

qout

MV=qout

FLOWSHEET: BLOCK DIAGRAM:

Mass balance with constant density (V=Ah):
dV/dt = qin – qout

Deviation variables + linearize (well, it’s already linear!)
A dΔh/dt = Δqin(t) – Δqout(t)

Laplace

Δh(s) = 
Δqin(s)−Δq𝑜𝑢𝑡 (s)

𝐴𝑠
= (k’/s) (u+d) k’ = 1/A

V [m3]

Task: Derive condition to avoid «slow» ocillations that may occur when Kc is too small



General rule to avoid slow oscillations 𝜁 ≥ 1 :
𝑘′𝐾𝐶𝜏𝐼 ≥ 4

Integrating process with PI-control:

G 𝑠 =
𝑘′

𝑠

𝐶 𝑠 = 𝐾𝑐(1 +
1

𝜏𝐼𝑠
)

Alternative Proof:

Need large controller gain and/or large integral time (!)



Closed-loop responses

Td=



Simulink, tunepid4



0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5 %tunepid4 
s=tf('s')
theta=0
g=(1/s)*exp(-theta*s) % integrating 
taud=0
taui=1   
Kc=0.5 % oscillations (Kc*k'*taui = 0.5 < 4)
sim tunepid4; plot(Tid,y); hold on % 

Kc=0.25 % more oscillations (Kc*k'*taui = 0.25 < 4)
sim tunepid4; plot(Tid,y,'red');

Kc=1   % less oscillations (Kc*k'*taui = 1)
sim tunepid4; plot(Tid,y,'green');
hold off

Kc=0.5

Kc=1

Kc=0.25

PI-control of integrator (level control). G = 1/s, taui=1. VARY Kc

Input disturbance at t=20

Setpoint change at t=0

Note: Need higher controller
gain to reduce “slow” oscillations! 

𝐴𝑣𝑜𝑖𝑑 𝑠𝑙𝑜𝑤 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠: 𝑘′𝐾𝐶𝜏𝐼 ≥ 4
So would need to increase Kc to 4 in this case
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taui=0.5

taui=4 (SIMC)
taui=2

PI-control of integrator (level control). G = 1/s, Kc=1. VARY taui

Input disturbance at t=20

Setpoint change at t=0

So need to use taui=4 to have 
no oscillations (SIMC-rule).
Get T(s)=(4s+1)/(2s+1)^2

Note: Need larger integral 
time reduce “slow” oscillations 
𝐴𝑣𝑜𝑖𝑑 𝑠𝑙𝑜𝑤 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠: 𝑘′𝐾𝐶𝜏𝐼 ≥ 4
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4. Back to Poles and zeros
• Transfer functions G(s) of linear, time-invariant networks of first-order systems 

are ratios of two polynomials in s (Laplace variable)
– G(s) = n(s)/d(s)

• Polynomials have roots.
root in denominator, d(s)=0: G(s) → ”pole” (x)
root in numerator,     n(s)=0:           G(s) → 0 ”zero”  (0)

• Effect on dynamics: 

– Poles determine stability and fast or slow dynamics
• Poles in right half plane (RHP): Unstable .

– Example: g(s)=1/(s-1).  Has RHP-pole at s=1

• Complex poles (=eigenvalues of A): Oscillations
– Example: g(s) = 1/(s^2 + s + 1).  Solve d(s)= s^2 + s + 1 = 0. Get poles s1 =  -0.5 + 0.87*i, s2 = -0.5 – 0.87*i

– Zeros are responsible for shape of response
• Zeros in left half plane (LHP): «Lifts» the response and often give overshoot

• Zeros in right half plane (RHP): always gives inverse response
– Inverse response makes problems for feedback control

– Example: g(s)=(s-2) / (10s^2+11s+1). So n(s)=s-2. Has RHP-zero at s=2

Re(s)

Im(s)

1

Re(s)

Im(s)

2
0

-0.5 + 0.87i

-0.5 - 0.87i



Blue: g = 4*(2*s+1)/((10*s+1)*(s+1))
Red: g1 = 4/(10*s+1)

Initial slopes are different.
g: slope= 4*2/10 = 0.8
g1: slope= 4/10     = 0.4



Zeros
• Zeros are common in practise

• Occur when there are several «paths» to the output.

• RHP zero: «competing effects where slow wins (has largest gain)»

• Example 1.

• Example 2

• Example 3 

g1(s)

g2(s)

u
y

g1(s) = 2
10s+ 1

; g2(s) = 0:3
s+ 1

g(s) = g1 + g2 =
2(s+ 1)+ 0:3(10s+ 1)

(10s+ 1)(s+ 1)
= 2:3 2:17s+ 1

(10s+ 1)(s+ 1)

g1(s) = 2
10s+ 1

; g2(s) = ¡ 0:3
s+ 1

g(s) = g1 + g2 =
2(s+ 1)¡ 0:3(10s+ 1)

(10s+ 1)(s+ 1)
= 1:7 ¡ 0:59s+ 1

(10s+ 1)(s+ 1)

All coefficients positive: LHP zero

Sign change: RHP zero ) Inverse response

g1(s) = ¡ 0:3
10s+ 1

; g2(s) = 2
s+ 1

g(s) = g1 + g2 =
2(s+ 1)¡ 0:3(10s+ 1)

(10s+ 1)(s+ 1)
= 1:7 11:3s+ 1

(10s+ 1)(s+ 1)
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2Note; Overshoot since 11.3>10

(overshoot: competing effects where fast wins)

Zeros

Example 2: RHP-zero with «time constant» -0.59: Similar to delay of 0.59.



Zeros



Examples of dynamic model 
structures

How do we get zeros?



RHP-zero (inverse response)

Q [W]
=const.

u=wH [kg/s]
T0=10C

wC [kg/s] = const.
T0=10C = const.

y = T [C]

Electric heater

Th

Mix70C 40C

Response in y=T to a 10% step increase in u=wH =0.1:

38.5C

41.5C

40C

Two effects: 1) Direct effect of mixing: g1(s)=15
2) Indirect effect of changed Th:  g2(s) = -30/(20s+1)

¿ = 20s

20s

} g(s) = g1 + g2 =

¡ 15¡ 20s+ 1
20s+ 1



Model derivation

d3=Q [W]

u=wH [kg/s]
d2=T0

d1=wC [kg/s]
d2=T0

y = T [C]

Electric heater

x = Th

1. Model. Assume:

Mass m [kg] in heater constant

cP constant

Energy balance heater + mixer:
d(m cP Th )

dt
= wh cP (T0 ¡ Th ) + Q

T = wh Th + wc Tc

wc + wh

Mix

2. Linearize:

y = ¢ T; x = ¢ Th ; u = ¢ wh

¿dx
dt

= ¡ x + ku

y = Cx + Du

k =
T ¤

o ¡ T ¤
h

w ¤
h

¿ = m=w¤
h

C =
w ¤

h

w ¤
c + w ¤

h

D =
T ¤

h ¡ T ¤

wc + w ¤
h

3. Nominal steady-state data:

T0 = 10C; Th = 70C; T = 40C

wh = wc = 1kg=s; m = 20kg

Gives:

k =
T ¤

o ¡ T ¤
h

w ¤
h

= 10¡ 70
1

= ¡ 60

¿ = m=w¤
h = 20=1 = 20

C =
w ¤

h

w ¤
c + w ¤

h

= 0:5

D =
T ¤

h ¡ T ¤

wc + w ¤
h

= 70¡ 40
2

= 15

4. Transfer funct ion:

y(s) = G(s)u(s)

G(s) = C k
¿s+ 1

+ D

= 0:5 ¡ 60
20s+ 1

+ 15

= ¡ 15¡ 20s+ 1
20s+ 1



Zero at 0 (no steady-state effect)

Q [W]
=const.

w[kg/s]=1=const.
T0=10C

y = T [C]
Electric heater

Th

Mix70C 64C

Response in y=T to a step decrease in bypass fraction from 0.1 to 0.05:

64C

67C

Two effects: 1) Direct effect of mixing: g1(s)=-60
2) Indirect effect of changed Th:  g2(s) = 60/(22s+1)

¿ = 22s

22s

} g(s) = g1 + g2 =

¡ 60 22s
22s+ 1

Bypass (10%)
u = ® w [kg/s]

10C



Model derivation

Q [W]

1. Model. Assume:

Mass m [kg] in heater constant

cP constant

Energy balance heater + mixer:
d(m cP Th )

dt
= (1 ¡ ®)wcP (T0 ¡ Th ) + Q

T = (1 ¡ ®)Th + ®Tc

2. Linearize:

y = ¢ T; x = ¢ T; u = ®

¿dx
dt

= ¡ x + ku

y = Cx + Du

k = ¡
T ¤

o ¡ T ¤
h

(1¡ ®¤ )

¿ = m=w¤
h

C = (1 ¡ ®¤)

D = (T¤
o ¡ T¤

h )

3. Nominal steady-state data:

T0 = 10C; Th = 70C; T = 64C

w = 1kg=s; ® = 0:1; m = 20kg

Gives:

k = ¡
T ¤

o ¡ T ¤
h

(1¡ ®¤ )
= ¡ 10¡ 70

0:9
= 66:67

¿ = m=w¤
h = 20=0:9 = 22

C = (1 ¡ ®¤) = 0:9

D = (T¤
o ¡ T¤

h ) = ¡ 60

4. Transfer funct ion:

y(s) = G(s)u(s)

G(s) = C k
¿s+ 1

+ D

= 0:9 66:67
22s+ 1

¡ 60

= 60( 1
22s+ 1

¡ 1) = ¡ 60 22s
22s+ 1

w[kg/s]=1=const.
T0=10C=const.

y = T [C]
Electric heater

Th

Mix70C 64C

¿ = 22s

Bypass, u = ® w [kg/s]

10C



Summary poles and zeros

• G(s) = n(s) / d(s)=k’(s-z1) / (s-p1)(s-p2)..
• Example: G(s) = 4 (3s-1)/(s2+s-2), 

Get: k’=12, z1=1/3, p1=-2 p2=1

• Poles p (=eigenvalues of A)
– Determine speed of response, exp(p*t)
– Negative sign in d(s) ) p2 in RHP: unstable, exp(p2*t) ! 1 (NEED 

control)
– Pole p complex: oscillating response

• Zeros z
– Determine shape of response 
– Negative sign in n(s) ) z1 in RHP: inverse response (BAD for control)
– LHP-zero may give overshoot



5. Approximations of transfer 
functions

• Skogestad half rule (get effective delay). IMPORTANT!

• Approximation of zeros (you are not expected to remember this)

• Approximation of delay as n(s)/d(s). «Going the other way»

– Pade approximation



Skogestad Half Rule*

* S. Skogestad, “Simple analytic rules for model reduction and PID controller 
design”, J.Proc.Control, Vol. 13, 291-309, 2003 (Also reprinted in MIC)



Half rule

Example 1



Original 2nd order

1st-order+delay (half rule)



s=tf('s')
g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
g1 = exp(-2.1*s)/(6.5*s+1)
g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)] 
step(g,g1,g2)
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Example 2

Original (third-order with inverse response)
First-order approx. using half rule
Second-order approx. using half rule



Example 3. Integrating process

Example. g0 = 5/(s*(3*s+1)), 
g = 5*exp(-1.5*s)/s,
step(g,g0,10)



Approximation of LHP-zeros

τc  = desired closed-loop time constant

To make these rules more general 

(and not only applicable to the 

choice c=): Replace  (time 

delay) by c (desired closed-loop 

response time). (6 places)

c

c

c

c
c

c



Approximations of time delay
Example: Step response of first-order system plus delay 
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s=tf('s')
theta=1
g0=exp(-theta*s)                                 % 0. Original time delay. theta
g1= - theta*s + 1                                  % 1. As RHP-zero. –Ts+1, T=theta
g2= 1/(theta*s+1)                                % 2. As First order, tau=theta
g3 = (-theta*s/2+1)/(theta*s/2+1)   % 3. Combined: Pade-approx
h=1/(s+1)
step(g0*h,g1*h,g2*h,g3*h)
axis([0 5 -1 1.1])

0

3

1

2

“Going the other way”



n’th order Pade approximation
of time delay

• Accurate for large n

s=tf('s')
theta=1
g0 =exp(-theta*s)                                         % Original time delay
g1 = (-theta*s/2+1)/(theta*s/2+1)           % 1st-order Pade-approximation
g2 = (-theta*s/4+1)^2/(theta*s/4+1)^2   % 2nd-order Pade-approximation
g3 = (-theta*s/6+1)^3/(theta*s/6+1)^3   % 3rd-order Pade-approximation
h=1/(s+1)
step(g0*h,g1*h,g2*h,g3*h)
axis([0 5 -0.2 1.1])

Original delay

1

2 3

Why use Pade? 
To get model on state space form, dx/dt=Ax+Bu

Note: Number of RHP-zeros 
= number of 0-crossings of step response



Extra slides



BUT more common case is: 
Get oscillation if we have time delay 

and use large Kc
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Kc=1

Kc=0.25Kc=0.5

PI-control of integrator (level control). G = 1/s, taui=4
ADD DELAY, theta = 1

Input disturbance at t=20
Setpoint change at t=0

%tunepid4 
s=tf('s')

theta=1
g=(1/s)*exp(-theta*s) % integrating with delay (level control)
taud=0
taui=4   
Kc=1 % Too high Kc. 
% -> “fast” oscillations because of delay!!
sim tunepid4; plot(Tid,y); hold on % 

Kc=0.5 % OK 
sim tunepid4; plot(Tid,y,'red');

Kc=0.25 % Too low Kc. 
% -> “slow” oscillations from integrator
sim tunepid4; plot(Tid,y,'green');
hold off

CONCLUSION
Kc too small (Kc=0.25): “Slow” oscillations (integrator not stabilized)
Kc too large (Kc=1): “Fast” oscillations (because of time delay)



Summary: PI-control of integrating process (level)

g 𝑠 =
𝑘′

𝑠

c 𝑠 = 𝐾𝑐(1 +
1

𝜏𝐼𝑠
)

1. Two low controller gain Kc (combined with too much integral action, i.e. τI small):
Can get «slow» oscillations

2. Too high controller gain Kc (combined with time delay in the loop):
Can get the «normal» faster oscillations (and even instability)

𝐴𝑣𝑜𝑖𝑑 𝑠𝑙𝑜𝑤 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠: 𝑘′𝐾𝐶𝜏𝐼 ≥ 4

Avoid fast oscillations (SIMC): k’Kcθ < 0.5 

Case study: k’=1, θ=1, taui=4.  
1. Avoid slow oscillations : Kc >1
2. Avoid fast oscillations: Kc < 0.5
Both not possible….. The best was Kc=0.5 (see simulation)

Comment. SIMC-rule would give, 
Kc=0.5, taui=8



Maybe useful later: Obtaining a model from data using procest (matlab)
% We generate some artifical data from a high-order model
s=tf('s')
G = 3*(1-0.1*s)/((10*s+1)*(3*s+1)*((s+1)^3))

Ts=1;     % sampling time 1 s  (Comment: This may be too long; could make shorter to fit only initial response)
t = Ts*[0:109]';
u = [zeros(10,1); ones(100,1)];  % Step response
y = lsim(G,u,t);  

% Now fit it to a second-order plus delay model using Matlab
data=iddata(y,u,Ts);  %
type=('P2D')          % P2D =  2nd order model + delay
sys = procest(data,type)

% Compare the two models

k=sys.Kp; tau1=sys.Tp1; tau2=sys.Tp2; Td=sys.Td;
Gfit = k*exp(-Td*s)/((tau1*s+1)*(tau2*s+1))
step(G,Gfit,'--')
figure(2),step(G,Gfit,'--',10)

OUTPUT FROM procest (MATLAB):

Process model with transfer function:  
Kp

G(s) = ----------------- * exp(-Td*s)
(1+Tp1*s)(1+Tp2*s)            

Kp = 2.9986                   
Tp1 = 3.9211                   
Tp2 = 9.6838                   
Td = 2.478                    
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g1 = 2*(3*s+1)/[(10*s+1)*(s+1)], step(g1,50)
g0 = 2/[(10*s+1)*(s+1)], step(g0,50)
g2 = 2*(-3*s+1)/[(10*s+1)*(s+1)], step(g2,50)

g2: Sign change for coeffcients in n(s) (RHP zero): Inverse response

g1: LHP zero

g0: No zero

Zeros
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s=tf(‘s’)
g1 = 1
g2 = 2/(10*s+1)
g=g1-g2

ans = 
10 s - 1
---------
10 s + 1

g = g1 - g2, 

Example RHP zero: («competing effects where slow wins»).
Physical example electric heater: Increase hot water flow when Q is constant. u = qh, y = T (see below)

Zeros
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g1 = 1
g2 = 2/(10*s+1),

g = g1 + g2

Example LHP zero: Note no overshoot here (since T=3.33 < ¿=10)

Zeros


