Input-output Controllability Analysis

Idea: Find out how well the process can be controlled - without having to design a specific controller

Note: Some processes are impossible to control

Will not say so much about it this year Some of the old exam questions are not relevant!

Reference: S. Skogestad, <u>``A procedure for SISO controllability analysis - with application to design of pH neutralization processes''</u>, *Comp.Chem.Engng.*, **20**, 373-386, 1996.

Example: First-order with delay process

$$g(s) = k \frac{e^{-\theta s}}{1 + \tau s}; \quad G_d(s) = k_d \frac{e^{-\theta_d s}}{1 + \tau_d s}$$

+ Measurement delays: θ_m , θ_{md} .

Problem: What values are desired for good controllability? **Qualitative results:**

	Feedback control	ol Feedforward control	
k	T	Τ	
Τ			
θ			
k_d			
$ au_d$			
$- heta_d$			
θ_m			
θ_{md}			

WANT TO QUANTIFY!

Example: First-order with delay process

$$g(s) = k \frac{e^{-\theta s}}{1 + \tau s}; \quad G_d(s) = k_d \frac{e^{-\theta_d s}}{1 + \tau_d s}$$

+ Measurement delays: θ_m , θ_{md} .

Problem: What values are desired for good controllability? **Qualitative results:**

	Feedback control	Feedforward control	
k	Large	Large	\square
τ	Small	Small	T -
θ	Small	Small	
k_d	Small	Small	\square
$ au_d$	Large	Large	
$- heta_d$	No effect	Large	
θ_m	Small	No effect	Ī
θ_{md}	No effect	Small	[

Want fast and large response from input (MV) to output (CV)

Want slow and small response from disturbance (DV) to output (CV)

WANT TO QUANTIFY!

Quantify: Controllability requirements

- Assume process (g) has effective delay θ
- Assume maximum allowed output change (error) is Δy_{max}
- Consider response to disturbance, $g_d = k_d/(T_d s+1)$
 - For step Δd : Output reaches $\Delta y = (k_d \theta / \tau_d) \Delta d$ at time θ (approximately)
 - If this is larger than acceptable (Δy_{max}) then we are in trouble
 - To be controllable, we must require ($k_d \theta / \tau_d$) < $\Delta y_{max} / \Delta d$
- More generally:
 - Define ω_d as frequency where $|g_d(j\omega_d)| {=} \Delta y_{max} \! / \! \Delta d$
 - Then the controllability requirement is (Rule 1/2)
 - $\omega_{d} \theta < 1$

- In addition we must avoid input saturation. We have: $\Delta y = g_d \Delta d + g \Delta u$
- So to get $\Delta y=0$ without exceeding constraint Δu_{max} , we must require (Rule 4)

At all frequencies $\omega < \omega_d$ (where we need control): At steady state: Initial response (approximately): $|g(jw) \Delta u_{max}| > |g_d(jw) \Delta d|$ |k \Delta u_{max}| > |k_d \Delta d| |k /T \Delta u_{max}| > |k_d/T_d \Delta d|

Controllability analysis

- Use controllability analysis
 - To avoid spending time on impossible control problem
 - To help design the process (e.g., size buffer tanks)
- Also useful for tuning.
 - $-\tau_{c}$ = SIMC tuning parameter
 - Must for acceptable controllability have:

$$\theta \le \tau_c \le \frac{1}{\omega_d}$$

• Note

- Tight control: $\tau_c = \theta$
- "Smooth" control: $\tau_c = 1/\omega_d$

 ω_d is defined as frequency where $\,|g_d(j\omega_d)|\!=\!\!\Delta y_{max}\!/\!\Delta d$

If process is not controllable: Need to change the design

 For example, dampen disturbance by adding buffer tank: Level control unimportant,

(I) Averaging by mixing (mixing tank)

(II) Averaging level control (surge tank)

Figure 1. Two types of buffer tanks.

Scaled model

- In all problems, we assume that models have beed scaled such that
 - $\Delta y_{max}=1$
 - $\Delta u_{max}=1$
 - $\Delta d = 1$
 - Define wd = kd/taud as frequency where |Gd(jwd)|=1

Figure 3: Magnitude of G and G_d .

Problem 2

$$G(s) = \frac{3}{5s+1}$$
 $G_d(s) = \frac{2}{s+1}$

$$G(s) = \frac{200}{(20s+1)(10s+1)(s+1)} \quad G_d(s) = \frac{4}{(3s+1)((s+1)^3)}$$

$$G(s) = \frac{200}{(20s+1)(10s+1)(s+1)} \quad G_d(s) = \frac{4}{(3s+1)((s+1)^3)}$$

%PID (w/o D-action on setpoint) g = 200/((20*s+1)*(10*s+1)*(s+1)) gd = 4/((3*s+1)*(s+1)^3) Kc=(1/200)*20/1,taui=20,taud=10.5

$$G(s) = \frac{2.5e^{-0.1s}(1 - 5s)}{(3s+1)((s+1)^3)} \quad G_d(s) = \frac{2}{s+1}$$

NOT OK (Rule 1/2) since effective process delay is at least 5.1 (both PI and PID), so $k_d \theta / T_d = 2*5.1/1=10.2 > 1$

[magd,phased]=bode(gd,w);

loglog(w,mag(:),'blue',w,magd(:),'red',w,1,'black'), grid on

PROBLEM 7, g = 500/((50*s+1)*(10*s+1))

PID-control : θ_{eff} = 0. Controllable!

CHECK CONTROLLABILITY ANALYSIS WITH SIMULATIONS

PI control not acceptable*

*As expected since need $\omega_c > \omega_d = 0.9$, but can only achieve $\omega_c < 1/\theta = 1/5 = 0.2$

PID control acceptable: y and u are within ±1

Exam.

- Saturday 18 Dec. 2021. 9-13.
- Note: Remember to state clearly all assumptions you make.
- General: Look through the whole exam before you start, read the questions carefully!

Q&A session (proposed): Tuesday 14 Dec. 10-12, (R5 & Zoom) (please send questions before by email: sigurd.skogestad@ntnu.no)