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Multivariable control

I. Single-loop control (decentralized)
II. Decoupling (similar to feedforward)
III. Model predictive control (MPC)
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I. Multivariable control using single loops

• Interactions
• Choice of pairings (RGA) 
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Example (Exercise 12): 
Shower (mix hot and cold water)
• u = (qh qc)
• y = (T q)
What pairing?
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Multivariable process
Distillation column

“Increasing reflux L from 1.0 to 1.1 changes yD
from 0.95 to 0.97, and xB from 0.02 to 0.03”

“Increasing boilup V from 1.5 to 1.6 changes yD
from 0.95 to 0.94, and xB from 0.02 to 0.01”
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Analysis of Multivariable processes

INTERACTIONS: Caused by nonzero offdiagonal elements (g12 and/or g21)

Process Model 2x2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 11 1 12 2

2 21 1 22 2

" "
( )

( )

Open loop
y s g s u s g s u s

y s g s u s g s u s

-
= +
= +

y1

y2

g12

g21

g11

g22u2

u1

(1)
(2)



6

RGA: Consider effect of u1 on y1

1) “Open-loop” (C2 = 0):                           y1 = g11(s)·u1

2) “Closed-loop” (close loop 2, C2≠0):

Change caused by 
“interactions”

C2

y1

y2

g12

g21

g11

g22u2

u1



7 * Alternative : Can derive by setting y2=0 in (2) and put resulting u2 into (1)

Limiting Case C2→∞ (perfect control of y2) *
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How much has “gain” from u1 to y1 changed by 
closing loop 2 with perfect control?

The relative Gain Array (RGA) is the matrix 
formed by considering all the relative gains
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With integral action : 
Negative RGA   individual
 loop unstable OR overall system  unstable 
when individual loops  saturates
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(1) Interactions

• RGA-element (λ)> 1: Smaller gain by closing other loops (“fighting 
loops” gives slower control)

• RGA-element (λ) <1: Larger gain by closing other loops (can be 
dangerous)

• RGA-element (λ) negative: Gain reversal by closing other loops 
(Oops!)

Use of RGA:

Rule 2. Choose pairings corresponding to RGA-elements close to 1

Traditional: Consider Steady-state

Better (improved Rule 2): Consider frequency 
corresponding to closed-loop time constant

Rule 1. Avoid pairing on negative steady-state relative gain –
otherwise you get instability if one of the loops become inactive 
(e.g. because of saturation)
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Property of RGA:
Columns and rows always sum to 1
RGA independent of scaling (units) for u and y.

>> rga=G.*pinv(G).'
rga =

0.3125    1.2500   -0.5625
1.2500   -0.2500         0

-0.5625         0    1.5625

G = [5 10 1; 20 -10 0; 18 0 2]
G =

5    10     1
20   -10     0
18     0     2

Example

Conclusion: of the 6 possible pairings only one has positive RGA’s



11

Example 3x3 process: 6 possible pairing 
options

Only diagonal pairings give positive steady-state RGA’s!
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TC
Ts

Distillation
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TC
Ts

TC
Ts

TC
Ts

Resulting RGA with temperature control:

Kc=0

0.1

1

Distillation

Can break interactions with cascade:
Frequency-dependent RGA with TC

35
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Sometimes useful: Iterative RGA

• For large processes, lots of pairing alternatives
• RGA evaluated iteratively is helpful for quick screening

• Converges to “Permuted Identity” matrix (correct pairings) for 
generalized diagonally dominant processes. 

• Can converge to incorrect pairings, when no alternatives are dominant.
• Usually converges in 5-6 iterations
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Example of Iterative RGA

Correct pairing
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Exercise. Blending process

• Mass balances (no dynamics)
– Total:  F1 + F2 = F
– Sugar:  F1 = x F

(a) Linearize balances and introduce: u1=dF1, u2=dF2, y1=F1, y2=x, 
(b) Obtain gain matrix G  (y = G u)
(c) Nominal values are x=0.2 [kg/kg] and F=2 [kg/s]. Find G
(d) Compute RGA and suggest pairings
(e) Does the pairing choice agree with “common sense”?

sugar u1=F1

water u2=F2

y1 = F (given flowrate)
y2 = x (given sugar fraction)
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Decentralized control tuning

• Independent design 
– Use when small interactions (RGA close to I)

• Sequential design (similar to cascade)
– Start with fast loop
– NOTE: If close on negative RGA, system will go unstable of fast (inner) 

loop saturates
– Sequential vs. independent design

• + Generally better performance, but 
• - outer loop gets slow, and 
• - loops depend on each other
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Summary 
Single-loop control = Decentralized control
Use for: Noninteracting process

+ Tuning may be done on-line
+ No or minimal model requirements
+ Easy to fix and change

- Need to determine pairing
- Performance loss compared to multivariable control
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Multivariable control

1. Single-loop control (decentralized)
2. Decoupling (similar to feedforward)
3. Model predictive control (MPC)
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II. Decoupling
a) One-way Decoupling (improved control of y1)

c2

g11 g12
g21 g22

y1

y2

r1-y1

r2-y2 u2

u1c1

DERIVATION
Process:                   y1 = g11 u1 + g12 u2 (1)

y2 = g21 u1 + g22 u2 (2)

Consider u2 as disturbance for control of y1. 
Think «feedforward»: Adjust u1 to make y1=0. (1) gives u1 = - (g12/g11) u2

-g12/g11

one-way coupled process

D12
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b) Two-way Decoupling: 
Standard implementation (Seborg)

c2

g11 g12
g21 g22

y1

y2

r1-y1

r2-y2
u2

u1c1

… but note that diagonal elements of decoupled process are different from G
Problem for tuning!

Process:                   y1 = g11 u1 + g12 u2
Decoupled process: y1 = (g11-g12*g21/g22) u1’ + 0*u2’
Similar for y2.

-g12/g11

-g21/g22

decoupled process = ([G-1]diag)-1

u’1

u’2
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Two-way Decoupling: 
«Inverted» implementation (Shinskey)

c2

g11 g12
g21 g22

y1

y2

r1-y1

r2-y2
u2

u1c1

-g12/g11

-g21/g22

decoupled process= Gdiag

u’1

Advantages: (1) Decoupled process has same diagonal elements as G. Easy tuning!
(2) Handles input saturation! (if u1 and u2 are actual inputs)

Proof  (1): y1 = g11 u1 + g12 u2, where u1 = u1’ – (g12/g11)u2.
Gives : y1 = g11 u’1 + 0* u2’
Similar:  y2 = 0*u1’ + g22 u2’

u’2

Sigurd recommends this alternative!
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Pairing and decoupling

• To get ideal decoupling, diagonal elements should have smaller 
effective delay than the off-diagonal elements

• Thus, we should pair on elements with small effective delay (“pair 
close rule”)

• Pairing on negative steady state RGA elements is not necessarily a 
problem if we use decoupling
– Because negative RGA-elements are caused by interactions, which is what 

we are cancelling with decoupling
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Nonlinear decoupling

• It’s often easier to make nonlinear decoupler based on static model or 
insight
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Example: Mixing of hot (u1) and cold (u2) water

• Want to control
y1 = Temperature T
y2 = total flow F

• Inputs, u=flowrates
• May use two SISO PI-controllers

TC
FC

• Insight: Get decoupled response with transformed 
inputs

TC sets flow ratio, v1 = u1/u2
FC sets flow sum, v2 = u1 + u2

• Decoupler: Need «static calculation block» to 
solve for inputs

u1 = v1 v2 / (1+ v1)  
u2 = v2 / (1 + v1)

T
F

u1

u2

v2=sum

v1=ratio
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TCys

u1=hot
flowrate y=

v1=ratio
u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO
controllers

Nonlinear Decoupler Process

T
F

Pairings:  
• T – v1
• F – v2

No interactions for setpoint change

v2=sum

Ts-T

Fs-F FC

Note:
• In practice u=valve position (z) 
• So must add two flow controllers

• These generate inverse by feedback

u2=cold
flowrate
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TCys y=
v1=ratio

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO
controllers

T
F

v = transformed inputs
u = flowrates
z = valve positions

In practice must add two slave flow controllers

v2=sum

Ts-T

Fs-F FC FC

FC

u2s

u2

z2

z1u1s

u1Nonlinear Decoupler 
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General approach: Combined Nonlinear decoupling, 
feedforward and linearization using Transformed Inputs *

• Linear decoupling and feedforward often work poorly because of 
nonlinearity

• Example of nonlinear feedforward: Ratio control
• Generalization: Nonlinear calculation block

Controller
Calculation

block
(static)

Process
ys

y

V

d

u y

Genaral Method: Select «transformed inputs» v as right hand side of 
steady state model equations, y = RHS(d,u,..)

*Zotica, Alsop and Skogestad. 2020 IFAC World Congress
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Controller
Calculation

block
(static)

Process
ys

y

V

d
u y

Example: Combined nonlinear decoupling and feedforward.
Mixing of hot and cold water

Generalized ratio

Decoupler with feedforward: 
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1. Th:  60->70 °C at t = 50 s
2. Tc:  30->20 °C at t = 100 s
3. Th

s: 40->42 °C at t = 150 s
4. qs:  1->1.1  L/s       at t = 200 s
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Transformed MVs for decupling, linearization and disturbance rejection
Mixing of hot and cold water (static process) 
New system: T=v1 and q=v2
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Advanced multivariable control with explicit 
constraint handling = MPC

Use for: Interacting process and changes in active constraints
+ Easy handling of feedforward control
+ Easy handling of changing constraints

• no need for logic
• But does not always work

- Requires multivariable dynamic model
- Tuning may be difficult 
- Less transparent 
- “Everything goes down at the same time”

MPC  = model predictive control
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Multivariable control: 
MPC versus decoupling

• Both MPC and decoupling require a multivariable process model
• MPC is usually preferred instead of decoupling because it can also 

handle feedforward control, nonsquare processes (cascade, input 
resetting) etc.

• MPC can also handle constraints
– Don’t need to add anti-windup

MPC = Model predictive control
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Model predictive control (MPC) = “online 
optimal control”

Note: Implement only current input Δu1

ydev=y-ys
udev=u-us

Discretize in time:
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Implementation MPC project
(Stig Strand, Equinor)

• Initial MV/CV/DV selection
• DCS* preparation (controller tuning, instrumentation, MV handles, communication logics etc)
• Control room operator pre-training and motivation
• Product quality control  Data collection (process/lab)  Inferential model (“soft sensor”)

• MV/DV step testing  dynamic models

• Model judgement/singularity analysis  remove models? change models?
• MPC pre-tuning by simulation MPC activation – step by step and with care – challenging different 

constraint combinations – adjust models?
• Control room operator training
• MPC in normal operation, with at least 99% service factor

*DCS = “distributed control system” = Basic PID control layer
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Depropaniser Train 100 – 24-VE-107
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Disturbance variables (DV) = Feedforward 24
AR

1005

C = C3
E = nC4
F = C5+

Debutaniser 24-VE-108

24
AR

1008

B = C2
C = C3
D = iC4

Controlled variables (CV) = Product qualities, column deltaP 
Normally 0 flow, used for start-ups to remove inerts

CV1=xD

CV3=DP

CV2=xB

MV1=L

MV2=Ts

DV=F
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Conventional control (PID)

Select pairings MV-CV (obvious here: L-xD, Ts-xB)
Selector: Give up xB when we meet DP constraint

Tune 3 PI controllers 
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Depropaniser Train 100 – 24-VE-107
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Normally 0 flow, used for start-ups to remove inerts

CV1=xD

CV3=DP

CV2=xB

MV1=L

MV2=Ts

DV=F

DPCMAX
DPmax

Conventional control: selector when DP>DPmax

Here selector on MV from TC.
Could have selector on Ts instead
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Conventional control (PID)

Select pairings MV-CV (obvious here: L-xD, Ts-xB)
Selector: Give up xB when we meet DP constraint

Tune 3 PI controllers 

MPC

Don’t need to make pairing choices

But need model
And need to tune MPC controller
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Depropaniser Train100 step testing
• 3 days – normal operation during night
•

CV1=TOP COMPOSITION

CV2=BOTTOM COMPOSITION

CV3=¢p

DV =Feedrate

MV1 = L

MV2 = Ts
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Estimator: inferential models 
• Analyser responses are delayed – temperature measurements respond 20 min earlier
• Combine temperature measurements  predicts product qualities well

Calculated by 24TI1011 (tray 39)

Calculated by 24TC1022 (t5), 24TI1018 (bottom), 24TI1012 (t17) and 24TI1011 (t39)

CV1=TOP COMPOSITION

CV2=BOTTOM COMPOSITION
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Depropaniser Train100 step testing – Final model 
• Step response models: 

• MV1=reflux set point increase of 1 kg/h
• MV2=temperature set point increase of 1 degree C
• DV=output increase of 1%.

3 t 20 min

MV2 = TsMV1 = L DV =Feedrate

CV1=TOP COMPOSITION

CV2=BOTTOM COMPOSITION

CV3=Δp
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Depropaniser Train100 MPC – controller activation
• Starts with 1 MV and 1 CV – CV set point changes, controller tuning, model verification and 
corrections
• Shifts to another MV/CV pair, same procedure
• Interactions verified – controls 2x2 system (2 MV + 2 CV)
• Expects 3 – 5 days tuning with set point changes to achieve satisfactory performance 

MV1 = L

MV2 = Ts

DV =Feedrate

CV1=TOP COMPOSITION

CV2=BOTTOM COMPOSITION

CV3=Dp
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Reflux drum

Reflux pumps

21

20

1

10

16

23

28

34

Heat ex

PC

Propane

Product pumps

LC

TC

To Depropaniser
LP Condensate

LP Steam

Feed from stabilizators

FC

Flare

0 – 65%65-100%

FC

FC

FC

LC

PC

Fuel gas
to boilers

CV

CV
CV

MV MV

DV

Another column:
Deethanizer

Quality estimator

Quality estimator

LC

Presenter
Presentation Notes
One example of using MPC at the column level. 
What do we want to control? Product quality + avoid flaring
Bias update from analyzators
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Top: Binary separation in this case
Quality estimator vs. gas chromatograph
(use logarithmic composition to reduce nonlinearity, CV = - ln ximpurity) 

7 temperatures

2 temperatures

=little difference if the right temperatures are chosen
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The final test: MPC in closed-loop

CV1

CV2

CV3

MV1

MV2

DV
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Conclusion MPC

• Sometimes simpler than previous advanced control
• Well accepted by operators
• Equinor: Use of in-house technology and expertise successful
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V. Pole placement (state feedback)
• Place closed-loop poles. Old design method
• Useful for insight, but difficult to use. Not used much in practice, at least not for linear 

controllers
• Basis: 

– Linear system on state space form

– and use “State feedback” (assuming we can measure all the states) 
u = K x

Note
1. SIMC is “pole placement” (p=-1/tauc), but with output feedback (y), 

and we also place zeros 
2. If we cannot measure all the states, then we can estimate x from y 

using a “Kalman filter”.
3. State feedback uses extra measurements – an altertive is cascade 

control

dx/dt = A x + B u
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