Examination paper for TKP 4140 – Process Control

Academic contact during examination: Cristina Zotica
Phone: 92290702

Examination date: 11 December 2018
Examination time (from-to): 09:00 – 13:00
Permitted examination support material: One (1) A4 double-sided piece of paper with your handwritten notes. Standard calculator.

Other information: State clearly all assumptions you make. You may answer in Norwegian or English

Language: English
Number of pages (front page excluded): 5 (including Bode paper which may be handed in)
Problem 1 – Feedforward control (20%)

Feedforward control is frequently used in process control. It may however lead to problems if the model is wrong.

a) Make a block diagram with the feedforward controller \(C_{ff} \) included for the following case:

\[d \]
\[\downarrow \]
\[G_d \]
\[u \rightarrow G \rightarrow + \rightarrow y \]

b) In which situation is it advisable to use feedforward control? Also consider possible measurement delays associated with \(d \) and \(y \).

c) What is the transfer function for the perfect feedforward controller, \(C_{ff,ideal} \)? Why can you not always realize a perfect feedforward controller?

d) Design a feedforward controller when the process models are \(G = 5 \) and \(G_d = 3/(5s+1) \).

e) Sketch the response in \(y \) to a step in \(d \) (\(d=1 \)) for the following three cases

i. No control (\(u=0 \))
ii. With the feedforward controller from part d and no model error.
iii. With the feedforward controller from part d and the real plant has \(G = 8 \) and \(G_d = 2/(5s+1) \).

Problem 2 . Size of mixing tank for disturbance rejection (15%).

Consider a sinusoidal temperature disturbance in the feed of magnitude \(\pm 5 \) °C and frequency \(\omega = 4 \text{ rad/min} \), \(T_F(t) = 5 \sin(\omega t) \). The feed flow is \(q = 1 \text{ m}^3/\text{min} \). The tank is well mixed and the volume is kept constant (using a level controller which is not shown on the flowsheet). The temperature variations in the outlet flow should be less than \(\pm 1 \) °C.

\[T_F(t) = 5 \sin(\omega t) \]
\[q = 1 \text{ m}^3/\text{min} \]
\[V = ? \]
\[T(t) = 1 \sin(\omega t) \]
\[q \]

a) (3%) Find the transfer function from \(T_F \) to \(T \).
b) (2%) What is the period \(P \) [min] of the oscillations?
c) (10%) What should the volume of the tank be to satisfy the desired damping of the temperature disturbance?
Problem 3– SIMC and Disturbance rejection (25%)

a) Consider the closed-loop response to a disturbance d. What are the closed-loop transfer functions from d to y and from d to u (using symbols for g and g_d)?

b) In the following let:

$$g(s) = \frac{10 \ e^{-0.3s}}{(6s + 1)^2}, \quad g_d(s) = k_d \ g(s)$$

Design a SIMC PI-controller for the process using “tight” tuning.

c) Assume $k_d=1$, that is, $g_d=g$.

i. Plot the magnitude of g_d as a function of frequency (log-log-scale) (you may use the Bode magnitude template).

ii. Make a sketch of the input $u(t)$ to a step disturbance d of magnitude 1 ($|d|=1$). What is the steady-state value of u?

d) It is desired that the output change (y) should be less than 1 ($|y|<1$), but with the SIMC PI-controller, $y(t)$ goes up to almost 4 before returning back to zero. Is it possible to retune the PI-controller to make $y(t)$ acceptable? What about using PID-control?
Problem 4. Mixing tank with changing control objective (40%)

You are mixing two streams. Stream 1 contains water (W), sugar (S) and some preservative (E). Your task is to mix the feed (stream 1) with pure water (stream 2) to get a product (stream 3) that satisfies:

- Desired sugar content (want to keep product close to this value): $x_{s3} = 0.1$
- Maximum E in product (required at all times): $x_{E3} \leq 0.001$

Both these two mass fractions (x_{s3}, x_{E3}) are measured online, and the time delay for both measurements is 8 seconds. You can assume that stream 1 is the DV (disturbance) and stream 2 is the MV. The feed concentration (stream 1) varies, but nominally $x_{s1} = 0.5$ and $x_{E1} = 0.002$. The volumes of the pipes and mixer are small, so dynamics can be neglected (except for the measurement delay of 8 seconds).

(a) (5%) Consider first the nominal case with $x_{s1} = 0.5$ and $x_{E1} = 0.002$. If $F_1 = 1$ kg/s, how large is the value of F_2? What are the corresponding concentrations of S and E in the product? (To solve this problem you need to make a steady-state model of the process)

(b) (10%) Linearize the (steady-state) model of the system around the nominal point with $u = F_2$, $d = F_1$, $y_1 = x_{s3}$ and $y_2 = x_{E3}$. What are the steady-state gains from u to y_1 and y_2?

(c) (5%) Suggest a control structure that handles the nominal case (draw a flow sheet).

(d) (5%) What tunings do you suggest for a pure I-controller ($c_1 = K_i/s$) that uses u to control y_1?

(e) (5%) The feed sugar concentrations has quite small variations. However, in the extreme case x_{E1} may get as high as 0.006. Consider the extreme case with $x_{s1} = 0.5$ and $x_{E1} = 0.006$. If $F_1 = 1$ kg/s, how large is the value of F_2? What are the corresponding concentrations of S and E in the product?

(f) (10%) Suggest a control structure involving two composition controllers (for y_1 and y_2) which can handle both the nominal and extreme cases. Do you need to use anti windup?
Bode paper: