Robust and Stochastic MPC; what is the correct formulation?

David Mayne

Workshop on optimal control / real-time optimization related to the process industries

Trondheim, Norway

November 8, 2019

Robust and Stochastic MPC; what is the correct formulation? - p.1/23

Objectives

- Present two contrasting approaches to robust and stochastic MPC
- First: simpler, practically and analytically
- Second: widely (universally) used
- Which is correct or better?
- Approaches presented first in context of linear MPC

Deterministic MPC

- System; $x^+ = f(x, u)$; $x(0) = x_0$
- Online OC Problem: $\mathbb{P}_N(x): \min_{\mathbf{u}} \{ V_N(x, \mathbf{u}) \mid \mathbf{u} \in \mathcal{U}_N(x) \}$
- $\mathbf{u} \triangleq (u_0, u_1, \dots, u_{N-1}), \mathbf{x} \triangleq (x_0, x_1, \dots, x_N)$
- If x = x(t), x_i is prediction of x(t+i) and u_i is prediction of u(t+i)
- and u_i is prediction of u(t+i)
- $V_N(x, \mathbf{u}) = \sum_{i=0}^{N-1} \ell(x_i, u_i) + V_f(x_N)$
- $U_N(x)$ is set of control sequences **u** satisfying state, control and terminal constraints if initial state is x

Current and Candidate Trajectories

• Recursive feasibility plus cost change $\leq -\ell(x, u)$ imply asymptotic stability of origin.

Linear Robust/Stochastic MPC

- Linear system is only seriously considered case for stochastic MPC
- System: $x^+ = Ax + Bu + w$
- Constraints: $x \in \mathbb{X}$, $u \in \mathbb{U}$
- Disturbance w takes values in $\mathbb W$
- X, U, W all convex, compact, and contain origin in their interiors.
- Robust and stochastic MPC require online determination of control policy π i.e. sequence of control laws $\pi_i(\cdot)$
- In which $\pi_i : \mathbb{R}^n \to \mathbb{R}^m$ ($u_i = \pi_i(x_i)$)

Control parameterization

- Optimizing over π with each law $\pi_i(\cdot)$ an arbitrary function is impossible
- Hence parameterize $\pi(\cdot)$
- Useful parameterization (Mayne:Langson:2001)
- Nominal system:

$$\overline{x}^{+} = A\overline{x} + B\overline{u}$$
$$u = \overline{u} + Ke, \quad e \triangleq x - \overline{x}$$

- The control policy π is now parameterized by the control sequence $\mathbf{\bar{u}} = (\bar{u}_0, \bar{u}_1, \dots, \bar{u}_{N-1})$
- $V_N(x, \pi)$ is replaced by $\overline{V}_N(x, \overline{\mathbf{u}})$.

Consequence of parameterization

- Can now optimize over control sequence \bar{u} (as in deterministic MPC) instead of control policy π .
- Also $e \triangleq x \overline{x}$ satisfies

 $e^+ = A_K x + w$ $A_K \triangleq A + BK$

- **u** chosen to ensure $\overline{x}(t) \rightarrow 0$
- A_K stable and w random, zero mean, ensure $e(t) = x(t) \overline{x}(t)$ tends to its steady state distribution.
- This plus $\overline{x}(t) \rightarrow 0$ ensures x(t) tends to steady state distribution of e(t); best possible outcome

Evolution of state x given $u = \overline{u} + K(x - \overline{x})$

- $\overline{u}(\cdot)$ solution of nominal OC Pb $\overline{\mathbb{P}}_N(x(0))$
- $u = \overline{u} + K(x \overline{x})$, K stabilizing linear controller
- Control u keeps x in Tube (initial state x(0))

Robust and Stochastic MPC; what is the correct formulation? - p.8/23

Variation of bounding set $S_K(t)$ ($e(t) \in S_K(t)$)

• $S_K(t) \triangleq \{e(t) \mid \mathbf{w} \in \mathbb{W}^t\}$. Since:

 $e^+ = A_K e + w, \qquad e(0) = 0$ $S_K^+ = A_K S_K + \mathbb{W}, \quad S_K(0) = \{0\}$

• So, the sequence $(S_K(t))$ is monotonically increasing if e(0) = 0. If A_K is a stability matrix, $S_K(t)$ converges (as Kolmanovsky and Gilbert have shown) to a compact, convex set $S_K(\infty)$.

Robust and stochastic MPC

- System, nominal system, control parmeterization, constraints on x ∈ X,u ∈ U, bound w ∈ W as above for both robust and stochastic MPC
- In addition, both robust and stochastic MPC have a terminal constraint $x_N \in X_f$ in the optimal control problem solved online
- For simplicity, we assume w is random, zero mean and that the optimal control problem $\mathbb{P}_N(x)$ solved on line at state x is the same for both problems.

Optimal Control Problem $\mathbb{P}_N(x)$

• The optimal control problem $\mathbb{P}_N(x)$ is

$$\min_{\boldsymbol{\pi}} \{ V_N(x, \boldsymbol{\pi}) \mid \boldsymbol{\pi} \in \Pi_N(x) \}$$

• in which $\Pi_N(x)$ is set of policies π satisfying the state, control and terminal constraints, and

$$V_N(x, \boldsymbol{\pi}) \triangleq E_{|x} \sum_{i=0}^{N-1} \ell(x_i, \pi_i(x_i)) + V_f(x_N)$$

with $\ell(x, u) \triangleq x'Qx + u'Ru$; also $E_{|x|}$ denotes expectation conditional on $x_0 = x$.

Equivalent Problem $\mathbb{P}_N(\bar{x})$

• Because $x = \overline{x} + e$, $u = \pi(x) = \overline{u} + Ke$, e is random, zero mean:

$$V_N(x,\boldsymbol{\pi}) = \overline{V}(\overline{x},\overline{u}) + c, \quad \overline{V}(\overline{x},\overline{u}) \triangleq \sum_{i=0}^{N-1} \ell(\overline{x}_i,\overline{u}_i) + V_f(\overline{x}_N)$$

The constant c arises from the variance of e.

• Resultant deterministic O.C. problem $\overline{\mathbb{P}}_N(\overline{x})$ is;

$$\min_{\mathbf{\bar{u}}} \{ \overline{V}_N(\overline{x}, \overline{u}) \mid \mathbf{\bar{u}} \in \overline{\mathcal{U}}_N(\overline{x}) \}$$

 $\overline{\mathcal{U}}_N(\overline{x})$ is the set of control sequences that satisfy the tightened state, control and terminal constraints for the nominal system

Tightened constraints: Robust MPC

- Want e.g. $\overline{\mathbb{X}}$ such that $\overline{x}(t) \in \overline{\mathbb{X}} \implies x(t) = \overline{x}(t) + e(t) \in \mathbb{X} \ \forall e(t) \in S_K(t)$
- Tightened constraints are easily computed if the constraint sets X, U and X_f are polyhedral
- Let $c'x \leq d$ be one inequality defining X
- $\bullet \ c'x(t) = c'\overline{x}(t) + c'e(t) \text{ so } c'x(t) \leq d \iff$
- $c'\overline{x}(t) + c'e(t) \le d$ for all $e(t) \in S_K(t)$
- So $c'x(t) \le d$ if $c'\overline{x}(t) \le \overline{d}(t)$ and
- $\max_{e(t)} \{ c'e(t) \mid e(t) \in S_K(t) \} \le d \overline{d}(t)$
- maximize over $\mathbf{w} \in \mathbb{W}^t$ instead of $e \in S_K(t)$

Tightened constraints: Stochastic MPC

- Want e.g. tightened constraint set \mathbb{X} such that $\overline{x}(t) \in \overline{\mathbb{X}} \implies \mathbb{P}r[x(t) = \overline{x}(t) + e(t) \in \mathbb{X}] \ge 1 \varepsilon$
- Let $c'x \leq d$ be one inequality defining \mathbb{X})
- Then $\mathbb{P}r[c'x(t) \leq d] \geq 1 \varepsilon$
- if $c'\overline{x}(t) \leq \overline{d}(t)$ and $\mathbb{P}r[c'e(t) \leq d \overline{d}(t)] \geq 1 \varepsilon$
- So probabilistic constraint sets $\overline{\mathbb{X}}(t)$, $\overline{\mathbb{U}}(t)$ and $\overline{\mathbb{X}}_f$ can be easily computed if they are polyhedral.
- $c'e(t) > d \overline{d}(t) \implies$ constraint transgressed. Comparing: Robust: $c'e(t) \le d - \overline{d}(t)$ with probability 1 Stochastic: $c'e(t) \le d - \overline{d}(t)$ with probability $1 - \varepsilon$

First approach to robust and stochastic MPC

- See Mayne, Langson (Electronic Letters 2001)
- Compute (ū, x̄). Deterministic Pb. MPC on (nominal model) satisfying tightened constraints.
- Compute $u = \overline{u} + K(x \overline{x})$.
- Very simple to compute and to analyse

Analysis of 1'st approach

- $(\mathbf{\bar{x}}, \mathbf{\bar{u}})$ obtained via determinstic MPC
- Under standard conditions, origin is asymptotically (exponentially) stable for MPC controlled system

$$\overline{x}^+ = A\overline{x} + \kappa_N(\overline{x}), \quad \overline{x}(0) = x(0)$$

• Since $x(t) = \overline{x}(t) + e(t)$, $\overline{x}(t) \to 0$, $e(t) \in S_K(t)$ and $S_K(t) \to \overline{X}_{\infty} \triangleq S_K(\infty)$, it follows that

 $x(t) \to \overline{\mathbb{X}}_{\infty}, \ \& \ x(t_1) \in \overline{\mathbb{X}}_{\infty} \implies x(t_2) \in \overline{\mathbb{X}}_{\infty} \ \forall t_2 \ge t_1$

for all realizations \mathbf{w} of the random disturbance w

Second approach to robust and stochastic MPC

Analysis of 2'nd approach; recursive feasibility

- Given tightened constraints for $\bar{\mathbf{x}}_0$, tightened constraint for $\bar{\mathbf{x}}_1$ cannot be determined as in deterministic MP (because $\bar{x}_1(1) = x(1) \neq \bar{x}_0(1)$ as in version 1)
- But can be determined using $x(1) = \overline{x}_0(1) + w(0)$, so that e(0) = w(0) AND $e^+ = A_K e + w$ yielding the sequence e and, hence, stricter, tightened affine constraints for \overline{x}_1 (using $x(\tau) = \overline{x}_1(\tau) + e(\tau)$).
- This yields a candidate for recursive feasibility
- Lorenzen et al also impose a computationally expensive 'first-step constraint' that guarantees recursive feasibility.

Analysis of 2'nd approach; stochastic convergence

- In Approach 2, the nominal state \bar{x} is random
- Because \overline{x} is reset to x at each time (and x is random)
- It follows that \overline{V}_N is random
- Stochastic analysis is required to establish convergence (eg convergence in probability) of the state to a set enclosing the origin in its interior.
- Lorenzen et al incorrectly use a result of Chisci et al (2001) (viz, $u(k) Kx(k) \rightarrow 0$) to establish convergence in probability to X, the minimal positive invariant set for $x^+ = A_K x + w$; the state x moves randomly to X and then randomly in X.
- Convergence can be established using appropriate stabilizing conditions.
 Robust and Stochastic MPC; what is the correct formulation? – p. 19/23

Comparison: 1. Ease of Implementation

- Implementation of first approach simple: almost standard deterministic MPC
- Main complication: continual tightening of constraint (due to increasing effect of disturbance)
- Mitigated; by replacing $S_K(t)$ by $S_K(\infty)$ for $t \ge T_I$ say.
- Implementation of seond approach considerably more complex due to complication caused by randomness of 'nominal' control $\bar{u}(t)$.
- Caused by resetting $\overline{x}(t)$ to x(t) at each t (in obtaining solution to $\mathbb{P}_N(x(t))$.

Comparison 2. Performance

- Depends of definition
- IF Performance is minimization of $V_N(x, \pi)$, in which x is the initial state x(0) of the system, then

$$V_N(x, \boldsymbol{\pi}) = \overline{V}_N(\overline{x}, \overline{\mathbf{u}}) + c, \quad \overline{x} = x = x(0)$$

- Approach 1 is optimal (minimizes $\overline{V}_N(x(0), \overline{\mathbf{u}})$)
- Stated objective (e.g. Lorenzen et al), Chatterjee and Lygeros, 2015) is often $\limsup(1/N)V_N(x,\pi)$ that is:

$$\limsup_{i=0}^{N-1} \ell(x_i, \pi_i(x_i)) + V_f(x_N)$$

This objective also implies Approach 1 is optimal; $E_{|x|}$ denotes expectation conditional on x(0) = x.

Robust and Stochastic MPC; what is the correct formulation? - p.21/23

Comparison

- Approach 2 (minimizing $\overline{\mathbb{P}}_N(x)$ at each state x) may yield lower cost for actual realization of disturbance sequence (rather than average cost)
- But confuses role of ū (controlling mean) and Ke (controlling variance).

CONCLUSION

- Is proposing solving $\overline{\mathbb{P}}_N(\overline{x})$ rather than $\overline{\mathbb{P}}_N(x)$ absurd?
- Proposal limited to robust/stochastic MPC of linear systems using control parameterization $u = \overline{u} + K(x \overline{x})$
- And cost is cost from initial state x(0)
- Not cost to go from current state x(t)
- Possible new avenue of MPC research
- Control strategies that address (more or less separately) controlling mean (eg \bar{u}) and variance (eg $u = \bar{u} + Ke$ OR MPC controlling e)
- As in nonlinear robust MPC (mayne et al: IJRNLC 2011)

THANK YOU!