Approximate MPC based on machine learning and probabilistic verification

Sergio Lucia

Technische Universität Berlin
Einstein Center Digital Future
www.iot.tu-berlin.de
Motivation

Solving NMPC problems in real time is still challenging:
- For very fast systems
- On low-cost embedded hardware

Even more challenging in the case of robust NMPC

Goal: Development of an approach that simultaneously
- Obtains approximate optimal robust solutions
- Has small memory footprint
- Can be rapidly evaluated on an embedded device
Explicit MPC in the linear case

The MPC control law for LTI systems is a **piecewise-affine function**

- Depends only on the current state (and possibly parameters)
- Can be offline precomputed and stored

\[
K(x_{\text{init}}) = \begin{cases}
K_1 x_{\text{init}} + g_1 & \text{if } x_{\text{init}} \in \mathcal{R}_1, \\
& \vdots \\
K_r x_{\text{init}} + g_r & \text{if } x_{\text{init}} \in \mathcal{R}_r,
\end{cases}
\]

Each region is described by a polyhedron:

\[
\mathcal{R}_i = \{ x \in \mathbb{R}^{n_x} \mid Z_i x \leq z_i \} \quad \forall i = 1, \ldots, n_r.
\]

[A. Bemporad, M Morari, V. Dua, E.N. Pistikopoulos, 2002]
Reducing complexity of explicit MPC

• Optimal representations:
 • Merging of regions with same feedback law
 • Lattice representation

• Suboptimal approximations:
 • Trade-off between complexity reduction and performance
 • Simplicial partitions
 • Neural networks

[T. A. Johannsen, A. Bemporad, F. Borrelli, C. Jones, M. Morari, M. Kvanisca and others]
Using neural networks to approximate MPC

It is an old idea: already done in 1995 for nonlinear MPC

• What is new?

Common practice until recent successes in deep learning was:

• Because of universal approximation theorem: use only 1 layer

What are the possible advantages of deep learning for approximating complex MPC laws?

Deep neural networks (DNN)

Neural network with \(L \) hidden layers and \(M \) neurons per layer

\[
N(x; \theta, M, L) = f_{L+1} \circ g_L \circ f_L \circ \cdots \circ g_1 \circ f_1(x)
\]

- Affine transformation \(\theta_l = \{W_l, b_l\} \)
 \[
f_l(x_{l-1}) = W_l x_{l-1} + b_l
\]
- Activation function
 - \(\text{tanh}: g_l(f_l) = \tanh(f_l) = \frac{e^{f_l} - e^{-f_l}}{e^{f_l} - e^{-f_l}} \)
 - \(\text{ReLU}: g_l(f_l) = \max(0, f_l) \)
Why deep (and not shallow)?

Number of linear regions represented by a ReLU network of depth L and width M

$$n_r = \left(\prod_{l=1}^{L-1} \left[\frac{M}{n_x} \right]^{n_x} \right) \sum_{j=0}^{n_x} \binom{L}{j}$$

- **Exponential** growth of regions w.r.t. depth
- Greater expressiveness with same amount of weights

[Montufar et al., 2014]
Proposed approach

1: Generate training samples by solving many MPC problems

2: Offline training of the deep neural network

\[(x_0, u_0^*) \]

3: High performance implementation on low-cost embedded hardware
Increasingly popular

In many cases including strategies to have some guarantees:

- Chen et al., ACC 2018 (Projection at the output to achieve guarantees)
- Hertneck et al., IEEE Control System Letters 2018 (Hoeffdings inequality)
- Zhang, Bujarbaruah and Borrelli, ACC 2019 (Statistical validation)
- Drgona et al., Applied Energy 2018 (application on building control)
- Karg and Lucia, ECC 2018, NMPC 2018, ECC 2019 (applications, validation)
It works well in practice

[Lucia, Andersson, Brandt, Diehl and Engell. JPC 2014]
An industrial polymerization reactor

\[\dot{m}_W = \dot{m}_{W,F} \]
\[\dot{m}_A = \dot{m}_{A,F} - k_{R1}m_{A,R} - \frac{p_1k_{R2}m_{AWT}m_A}{m_{ges}} \]
\[\dot{m}_P = k_{R1}m_{A,R} + \frac{p_1k_{R2}m_{AWT}m_A}{m_{ges}} \]
\[\dot{T}_R = \frac{1}{c_{p,R}m_{ges}} \left[\dot{m}_{F}c_{p,F}(T_F - T_R) + \Delta H_R k_{R1}m_{A,R} - k_A(T_R - T_S) - \dot{m}_{AWT}c_{p,R}(T_R - T_{EK}) \right] \]
\[\dot{T}_S = \frac{1}{c_{p,S}m_S}[k_A(T_R - T_S) - k_A(T_S - T_M)] \]
\[\dot{T}_M = \frac{1}{c_{p,W}m_{M,KW}} \left[\dot{m}_{M,KW}c_{p,W}(T_{M}^N - T_M) + k_A(T_S - T_M) \right] \]
\[\dot{T}_{EK} = \frac{1}{c_{p,R}m_{AWT}} \left[\dot{m}_{AWT}c_{p,W}(T_R - T_{EK}) - \alpha(T_{EK} - T_{AWT}) + \frac{p_1k_{R2}m_{A}m_{AWT}\Delta H_R}{m_{ges}} \right] \]
\[\dot{T}_{AWT} = \frac{1}{c_{p,W}m_{AWT,KW}} \left[\dot{m}_{AWT,KW}c_{p,W}(T_{AWT}^N - T_{AWT}) - \alpha(T_{AWT} - T_{EK}) \right] \]

8 differential states
3 control inputs
2 uncertain parameters
Simulation results for multi-stage NMPC

Simple scenario tree
- Extreme values of the uncertainty
- Branch the tree only one stage
- Economic cost function

Simulations for different values of k and ΔH (±30%)
Proposed approach

1: Generate training samples by solving many MPC problems

\[\mathbf{x}_0, \mathbf{u}^* \]

2: Offline training of the deep neural network

\[\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}) \]

3: High performance implementation on low-cost embedded hardware
Performance of deep-learning based ms-NMPC

Exact vs. deep vs. shallow multi-stage NMPC

Deep-learning based multi-stage NMPC
Performance of deep-learning based ms-NMPC

Exact vs. deep vs. shallow multi-stage NMPC

Average performance over random 100 batches

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Batch time [h]</th>
<th>Cons. Viol. [°C/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>1.6459</td>
<td>0.0058</td>
</tr>
<tr>
<td>Shallow</td>
<td>1.7328</td>
<td>0.3087</td>
</tr>
<tr>
<td>Deep</td>
<td>1.6297</td>
<td>0.0549</td>
</tr>
</tbody>
</table>
Two main advantages

Enable low-cost emb. implementation
- 32 bit ARM Cortex M0+
- 48 MHz with 32 kB RAM

Approx. robust NMPC:
- Memory footprint: 27 kB
- Evaluation time on a uC: 37 ms
- Trivial code-generation (uC, FPGA)
Two main advantages

Enable low-cost emb. implementation
- 32 bit ARM Cortex M0+
- 48 MHz with 32 kB RAM

Approx. robust NMPC:
- Memory footprint: 27 kB
- Evaluation time on a uC: 37 ms
- Trivial code-generation (uC, FPGA)

Enable large(r)-scale systems
Problem with 5 uncertainties
- 243 scenarios
- ~115,000 variables and constraints
Mixed-integer case: Energy management system

- You can learn a **global optimal** solution

$$A = \begin{pmatrix}
0.8511 & 0.0541 & 0.0707 & 0 \\
0.1293 & 0.8635 & 0.0055 & 0 \\
0.0989 & 0.0003 & 0.0002 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad B = \begin{pmatrix}
0.0035 \\
0.0003 \\
0.0002 \\
-5
\end{pmatrix}.$$

$$E = 10^{-3} \begin{pmatrix}
22.217 & 1.7912 & 42.212 \\
1.5376 & 0.6944 & 2.9214 \\
103.18 & 0.1032 & 196.04 \\
0 & 0 & 0
\end{pmatrix}.$$

\[
\min_{(x,u)} \sum_{k=0}^{N-1} \left(P_{\text{grid}}^k + \gamma (E_{\text{bat}}^k - E_{\text{bat}}^{\text{ref}})^2 \right)
\]

subject to

\[
x_{k+1} = Ax_k + Bu_k + Ed_k,
\]

\[
x_{lb} \leq x_k \leq x_{ub},
\]

\[
u_{lb} \leq u_k \leq u_{ub},
\]

\[
\alpha \in \{0, 1\},
\]

\[
m_{lb} \leq Du_k + Gd_k \leq m_{ub}.
\]

\[
x = [T_r, T_{w,i}, T_{w,e}, E_{\text{bat}}]^T
\]

\[
u = [P_{\text{grid}}, P_{\text{hvac}}, P_{\text{bat}}, \alpha]^T
\]

\[
d = [d_{\text{amb}}, d_{\text{sol}}, d_{\text{int}}]^T
\]
Mixed-integer case

<table>
<thead>
<tr>
<th>Controller</th>
<th>Average integrated cost</th>
<th>Average violations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIP</td>
<td>1.469e3</td>
<td>0</td>
</tr>
<tr>
<td>DNN</td>
<td>1.463e3</td>
<td>1.46e-2</td>
</tr>
</tbody>
</table>

[Karg and Lucia, ECC 2018]
Robust NMPC in 1 microsecond

Induction heating is currently used in many industrial and domestic applications

Control switching frequency and duty cycle. Satisfy constraints under uncertainty
Hardware-in-the-loop implementation

Advanced approximate optimization-based control in 1 μs (on an FPGA).
Easy to optimize FPGA implementation
Moving horizon estimation for sensor fusion

Fusing visual information and inertial sensors

- Common problem in autonomous driving, robotics
- Usually many assumptions to simplify online optimization (or EKF)

Fiedler et al., ECC 2020
Wait a minute... guarantees?

Compute the maximum approximation error

\[d = \max_{x_0} |\pi_{\text{NN}}(x_0) - \pi_{\text{MPC}}(x_0)| \]

Design a controller that is robust against \(d \) and iterate
Wait a minute... guarantees?

Compute the maximum approximation error

\[d = \max_{x_0} |\pi_{\text{NN}}(x_0) - \pi_{\text{MPC}}(x_0)| \]

Design a controller that is robust against \(d \) and iterate

- Computing the maximum is often not possible
 - Probabilistic Validation
Wait a minute... guarantees?

Compute the maximum approximation error

\[
d = \max_{x_0} |\pi_{\text{NN}}(x_0) - \pi_{\text{MPC}}(x_0)|
\]

Design a controller that is robust against \(d\) and iterate

• Computing the maximum is often not possible

• **Probabilistic Validation**
 – Hertneck et al., IEEE CSL 2018:
 – Based on Hoeffdings inequality and indicator (binary functions)
 – Based on Hoeffdings inequality and temporal logic with finite-time simulations
 – Zhang et al., ACC 2019:
 – Based on prob. validation results (Tempo, Bai, Dabbene, 1997) to achieve primal and dual guarantees
Probabilistic validation with performance indicators

A general (not necessarily binary) finite-time performance indicator

\[\phi(w; N_{\text{sim}}, \kappa) = \phi(x(0), \hat{x}(0), \kappa(\hat{x}(0)), d(0), x(1), \kappa(\hat{x}(1)), d(1), \ldots, x(N_{\text{sim}})). \]

Given a controller \(\kappa \), a final simulation step \(N_{\text{sim}} \) and \(N \) i.i.d samples

\[w^{(j)} = \{ x^{(j)}(0), \hat{x}^{(j)}(0), d^{(j)}(0), \ldots, d^{(j)}(N_{\text{sim}}) \}, \quad j = 1, \ldots, N, \]
Probabilistic validation with performance indicators

A general (not necessarily binary) finite-time performance indicator

$$\phi(w; N_{\text{sim}}, \kappa) = \phi(x(0), \hat{x}(0), \kappa(\hat{x}(0)), d(0), x(1), \kappa(\hat{x}(1)), d(1), \ldots, x(N_{\text{sim}})).$$

Given a controller κ, a final simulation step N_{sim} and N i.i.d samples

$$w^{(j)} = \{x^{(j)}(0), \hat{x}^{(j)}(0), d^{(j)}(0), \ldots, d^{(j)}(N_{\text{sim}})\}, \ j = 1, \ldots, N,$$

With probability no smaller than δ

$$\text{Prob}\{\phi_i(w) > \psi_N^\phi(r)\} \leq \epsilon, \ i = 1, \ldots, M,$$

$\psi_N^\phi(r)$ is the maximum value of simulated $\phi_i(w)$ among all N, after removing the largest r elements

Provided that:

$$N \geq \frac{1}{\epsilon} \left(r - 1 + \ln \frac{M}{\delta} + \sqrt{2(r - 1) \ln \frac{M}{\delta}} \right).$$
Differences with previous works

• Validation on general closed-loop performance guarantees
 • Not only binary functions
 • Not only error in the controller. Validation includes e.g. estimation errors

• Discard the r largest values to facilitate successful validations

• Simultaneous design of several controllers (finite families)

More details in:
Some further results

Probabilistically safe, embedded robust output-feedback NMPC

\[
\dot{\theta}_{\text{kite}} = \frac{v_a}{L_T} (\cos \psi_{\text{kite}} - \frac{\tan \theta_{\text{kite}}}{E}),
\]

\[
\dot{\phi}_{\text{kite}} = -\frac{v_a}{L_T \sin \theta_{\text{kite}}} \sin \psi_{\text{kite}},
\]

\[
\dot{\psi}_{\text{kite}} = \frac{v_a}{L_T} \ddot{u} + \dot{\phi}_{\text{kite}} \cos \theta_{\text{kite}},
\]

Objective is to maximize thrust
Two states can be measured, EKF to estimate
Uncertain aerodynamic coefficients and wind parameters

Erhard and Strauch, 2012
Results

Embedded real-time implementation on an ARM-Cortex M3
• 96 kB memory footprint, 32 ms running time for DNN and 28 ms for EKF
Summary

1. Efficient approximation of the MPC control law using deep learning
 - Enables simple embedded implementation with very low memory footprint
 - Enables real-time robust NMPC of large complex systems

2. Statistical verification can be used to achieve guarantees

3. Recently good results for many different applications
Some material for discussion

• What is better:
 • First approximate then solve (usual path)
 • First solve (as complex as you can) then approximate

• What is more rigorous:
 • A priori guarantees (assumes knowledge of reality, including unc. description)
 • Probabilistic validation (assumes a reality simulator exists)
 • Many approaches use safety sets / backup controllers:
 • Nonlinear optimization running online -> one probably needs safety checks anyway…

• Hierarchy: learn a new controller when *something* changes

• Are finite-time guarantees acceptable? (even t is large?)
Open Invited Track at IFAC WC 2020 in Berlin

• Together with Ali Mesbah (UC Berkeley)
• Open Invited Track on „Machine Learning and MPC“
• Use submission code a1d55

• Deadline just extended to November 18th
Graceful performance degradation

Larger set of random initial conditions and uncertain parameters (±40%)

Exact multi-stage NMPC

Deep-learning based multi-stage NMPC

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Batch time [h]</th>
<th>Cons. Viol. [°C/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>1.7882</td>
<td>0.1007</td>
</tr>
<tr>
<td>Deep</td>
<td>1.7800</td>
<td>0.1502</td>
</tr>
</tbody>
</table>
Training

Samples generated solving multi-stage NMPC (CasADi + IPOPT)
100 batches of data (with random initial cond. and uncertain param.)
 - 50 s sampling time
 - Total of 21050 samples
• Training with Keras / Tensorflow

\[
\min_{W_i, b_l} \frac{1}{n_{tr}} \sum_{i=1}^{n_{tr}} \left(\hat{u}(x_{tr,i}) - u^*(x_{tr,i}) \right)^2
\]

Output neural network Output multi-stage NMPC

<table>
<thead>
<tr>
<th>n_l</th>
<th>n_n</th>
<th>n_{tot}</th>
<th>n_w</th>
<th>MSE_{train}</th>
<th>MSE_{test}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>90</td>
<td>1263</td>
<td>0.0043</td>
<td>0.0046</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>90</td>
<td>2703</td>
<td>0.0024</td>
<td>0.0024</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>90</td>
<td>1413</td>
<td>0.0015</td>
<td>0.0014</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>90</td>
<td>1023</td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
</tbody>
</table>
Summary

• Scheme to approximate complex model predictive controllers
• Efficient approximation of the MPC control law using deep learning
• Two main advantages
 • Enable embedded implementation with very low memory footprint
 • Enable real-time robust NMPC of large complex systems

• Some kind of safety net is necessary to have guarantees
 • (don't we always need this in reality, at least for the complex nonlinear case?)
• Other problems: adaptation and RL, optimal training, optimal structure