Nonlinear input transformations for disturbance rejection, decoupling and linearization

Sigurd Skogestad
Cristina Zotica

Department of Chemical Engineering
Norwegian University of Science and Technology (NTNU)
Trondheim

Sigurd Skogestad ${ }_{\text {Professor }}$

Start here..

- About me-CV - Lectures - My family - How to reach me - Email: skoge@chemens. . truu. no
- Teaching: Courses - Master students - - Proiect students
- Research: $\begin{aligned} & \text { Process } \\ & \text { Control } \\ & \text { Group }\end{aligned}$ - Research - Ph.D. students

We want to find a self-optimizing control structure where a cceptable operation under all conditions is achieved with constant setpoints
for the controlled variables. More generally, the idea is to use the model off line to find properties of the optimal solution suited for for the controlled varables. More generally, the idea is to use the model off-line to find properties of the optimal solution suited for
(simple modelfiee "News"...

"The goal of my research is to develop simple yet rigorous methods to solve problems of engineering significance"

- PhD position on "Production Optimization" (Deadline: 17 June 2019)
- Two PhD positions on "Process optimization using machine learning" (Deadline: 10 June 2019)
- optimization of processes using simple control structures, economic MPC or machine
- July 2018: PID-paper in JPC that verifies SIMC PI-rules and gives "Improved" SIMC PID-rules for processes with time delay

June 2018: Video of Sigurd giving lecture at ESCAPE-2018 in Graz on how to use classical advanced control for switching between active
May 2017: Presentation (slides) on economic plantwide control from AdCONIP conference in Taiwan
alanca Spain) 06-08 June 2016: IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS-2016), Trondheim, - Videos and proceedings from DYCOPS-2016

- Aug 2014: Sigurd recieves IFAC Fellow Award in Cape Tow

2014: Overview papers on "control strecture desion and "economic plantwide control"
Books.

- Book: S. Skogestad and I. Postlethwaite: MULTIVARIABLE FEEDBACK CONTROL-Analysis and design. Wiley (1996;

- Book: S. Skogestad: CHEMICAL AND ENERGY PROCESS ENGINEERING CRC Press (Taylor\&Francis Group) (Aug.

2008)

- Bok: S. Skogestad: PROSESSTEKNIKK- Masse- og energibalanser Tapir (2000; 2003; 2009)

More information.

- Publications from my Google scholar site
- Download publications from my official publication list
or look HERE if yo
Proceedings from conferences- some of these may be difficult to obtain elsewhere
ROST - Our activity is part of PROST - Center for Process Systems Engineering at NTNU and SINTEF PROST - Our activity is part of PROST - Center for Process Systems Engineering at NTNU and SIN
Process control library - We have an extensive library for which Ivar has made a nice on-line search
Photoraphs that I have collected from various events mavbe you are included... - Photographs that I have collected from various events smaybe you are included. - International conferences - updated with irregular intervals center on subsea production and processing) [Documend

Outline

- What are input transformations?
- Tranformed input (v) = static function of physical input (u)
- Inverting the input transformation
- Exact inverse (low relative order)
- Approximate inverse using feedback (cascade control)
- Systematic approaches for deriving input transformation
- From static model
- From dynamic model
- Comparison with «feedback linearization»
- Chain of transformations (Exact inverse for systems of higher order)
- Potential internal instability with exact inverse
- Linear analysis,
- Bode stability condition
- Output transformation
- Discussion/Conclusion

Motivation

- Industry frequently uses static model-based calculations blocks
- ... and sometimes combined with cascade control
- Idea: Use physical insight or model equations to derive control strategy
- But no theory for when and how to use

Definition of transformed inputs

$u=$ physical input
$y=$ controlled output
w = other measured output (state)
d = disturbance

Shinskey (1981): "There is no need to be limited to single measurable (y) or manipulable variables (u). If a more meaningful variable happens to be a mathematical combination of two or more measurable or manipulable variables, there is no reason why it cannot be used."
Transformed input: $\mathbf{v}=\mathrm{g}(\mathbf{u}, \mathbf{w}, \mathbf{y}, \mathrm{d})$ (static function)
Here d and w are assumed measured

$$
\text { Transformed output: } z=g_{z}(y, w, d)
$$

Use of transformed inputs

Transformed input $\mathbf{v}=\mathrm{g}(\mathrm{u}, \mathrm{w}, \mathrm{y}, \mathrm{d})$

- Replaces the physical input u for control of y.
- Aim: Transformed system is easier to control
- May include:
- Decoupling
- Linearization
- Feedforward

Examples

- $v=u / d$
- $v=u_{1} / u_{2}$
- $v=u_{1}+u_{2}$
- $v=w(u) \quad->$ Cascade control

Use of transformed inputs requires inversion

Input calculation block: Need to "invert / reverse" the transformation:

$$
\mathrm{u}=\mathrm{g}^{-1}(\mathrm{v}, \mathrm{w}, \mathrm{y}, \mathrm{~d})
$$

- Two main options:
- Exact inverse
- Approximate inverse by feedback

1. EXACT INVERSE

Exact inverse requires that $v=g(u, w, y, d)$ depends explicitly on u

Potential problems:

- Inverse may be complicated, easy to do mistakes
- May get internal instability (because of feedback from wand y)

2. INVERSE BY FEEDBACK

Only option when $\mathrm{v}=\mathrm{g}(\mathrm{w}(\mathrm{u}), \mathrm{y}, \mathrm{d})$ does not depend explicitly on u . Example: $v=w$ Other advantages:

- Avoid internal instability with exact inverse
- Avoid complicated inverse (and reduce errors!)

Disadvantages:

- Inverse not perfect dynamically (need fast slave controller)

Examples of transformed inputs

- Example 1: Mixing process (exact inverse)
- Example 2 (Industrial): Control of reactor temperature (inverse by feedback)

Example 1: Mixing of hot $\left(u_{1}\right)$ and cold $\left(u_{2}\right)$ water

- Want to control
$\mathrm{y}_{1}=$ Temperature T
$\mathrm{y}_{2}=$ total flow F
- Want to use two SISO PI-controllers

TC
FC

Mechanical inverse:

- Get decoupled response with transformed inputs

$$
\begin{aligned}
& \text { TC sets flow ratio, } v_{1}=u_{1} / u_{2} \\
& \text { FC sets flow sum, } v_{2}=u_{1}+u_{2}
\end{aligned}
$$

- Exact inverse («static calculation block»):

$$
\begin{aligned}
& u_{1}=v_{1} v_{2} /\left(1+v_{1}\right) \\
& u_{2}=v_{2} /\left(1+v_{1}\right)
\end{aligned}
$$

1. EXACT INVERSE

Decoupled transformed system

Pairings:

- $T-v_{1}$
- $F-v_{2}$

No interactions for setpoint change

Note:

- In practice u=valve position (z)
- So must add two flow controllers
- These generate inverse by feedback

1. EXACT INVERSE actually requires flow controllers

Decoupled transformed system

Pairings:

- $T-v_{1}$
- $F-v_{2}$

No interactions for setpoint change

Note:

- In practice u=valve position (z)
- So must add two flow controllers
- These generate inverse by feedback

Example 2: Reactor temperature control

The reactor solution is circulated through a heat exchanger (cooler).
The reaction is very exothermic: it is important to control the temperature.
Typical variations/disturbances: Cooling water header pressure, CW temperature

New control structure: Power (E) control

The slave power controller acts as a temperature-corrected flow controller

HEX power control reduces variations between batches

New control structure: Power (E) control

2. INVERSE BY FEEDBACK

Must generate inverse by feedback (slave v-controller EC)
since $v=E$ does not depend explicitly on $u=z_{c w}$

Looks good..... Works in practice...But is there any theory?

- Not too much
- Question 1: How to derive input transformations in a systematic matter?
- Question 2: Properties of transformed systems. Stability?
- Potential internal instability if transformed variable v depends on outputs (w)

Q1. Systematic derivation of input transformations

- From static model
- From dynamic model

Input transformation from static model

- Write nonlinear process model on form

$$
y=f_{0}(u, w, d)
$$

- Introduce transformed inputs as RHS

$$
\left.v=f_{0}(u, w, d) \quad \mathbf{l}^{*}\right)
$$

- Exact inverse: u is solution to (*) for given v :

$$
\mathrm{u}=f_{0}^{-1}(v, w, d)
$$

- Resulting transformed system

$$
y=v
$$

- Decoupled, linear and independent of disturbances
- Assumptions
- Know model and measure all disturbances (d)
- The solution to the static inverse problem exists and satisfies certain properties.
- Note: If $f_{0}($ and v) does not depend explicitly on u : Use feedback to generate approximate inverse

Input transformation from dynamic model

- Write nonlinear dynamic process model on form

$$
\frac{d y}{d t}=f(u, w, y, d)
$$

- Introduce transformed inputs from RHS

$$
v=B^{-1}[f(u, w, y, d)-A y] \quad(*)
$$

- Tuning parameters (usually diagonal matrices): A and B.
- Exact inverse: u is solution to (*) for given v
- Resulting transformed dynamic system

$$
\frac{d y}{d t}=A y+B v
$$

- linear, decoupled (with A and B diagonal) and independent of disturbances!
- Assumptions
- Know model and measure all disturbances (d)
- The solution to the static inverse problem exists and satisfies certain properties
- Note: If $f(a n d v)$ does not depend explicitly on u : Use feedback to generate approximate inverse

Input transformation from dynamic model

- Write nonlinear dynamic process model on form

$$
\frac{d y}{d t}=f(u, w, y, d)
$$

- Introduce transformed inputs

$$
\begin{equation*}
v=B^{-1}[f(u, w, y, d)-A y] \tag{*}
\end{equation*}
$$

- Tuning parameters (usually diagonal matrices): A and B.
- Exact inverse: u is solution to (*) for given v
- Resulting transformed dynamic system

$$
\frac{d y}{d t}=A y+B v
$$

- Choices for B

$$
\begin{array}{ll}
\text { 1. } \mathrm{B}=\mathrm{l}, \quad & \rightarrow \quad \frac{d y}{d t}=A y+v \\
\text { 2. } \quad \mathrm{B}=-\mathrm{A}, & \rightarrow \quad \frac{d y}{d t}=A(y-v) \quad(\mathrm{y}=\mathrm{v} \text { at steady-state })
\end{array}
$$

Feedback linearization for system of relative order = 1

(Isidori)

- Nonlinear dynamic system (process)

$$
\frac{d y}{d t}=f(u, y, d)=f_{1}(y, d)+f_{2}(y, d) u
$$

- Introduce transformed inputs

$$
v=f(u, y, d)
$$

- New transformed system is linear, integrating, decoupled and independent of disturbances:

$$
\frac{d y}{d t}=v
$$

- Corresponds to $\mathrm{B}=\mathrm{I}$ and $\mathrm{A}=\mathbf{0}$

Why is $\mathrm{A}=0$ a poor choice?

- Feedback linearization: Transformed linear system is integrating: $\frac{d y}{d t}=v$
- $A=0$ (feedback linearization): Transform stable process into integrator (positive feedback from y)
- Transformed system cannot be operated alone
- Unknown disturbances will integrate.
- Industrial experience: Bad!
- Imagine that we want fast control of a process which is already fast.
- First make slow (integrating) by using $\mathrm{A}=0$ (positive feedback)
- Then make fast again using controller C (negative feedback)
- Does not make much sense!
- Also: Integrating systems are not easy to control using C
- Fortunately, it is not necessary to make choice $\mathrm{A}=0$ in feedback linearization
- Theory still holds
- A=0 was chosen as an example for simplicity (Isidori)
- Feedback linearization theory applies to input transformations

Nonlinear Decoupling via Feedback: A Differential Geometric Approach

ALBERTO ISIDORI, MEMBER, IEEE, ARTHUR J. KRENER, MEMBER, IEEE, CLAUDIO GORI-GIORGI, and Salvatore monaco
 0018-9286/81/0400-0331\$00.75 © 1981 IEEE

```
From: Alberto Isidori <albisidori@diag.uniroma1.it>
Sent: Sunday, October 4, 2020 5:24 PM
To: Sigurd Skogestad <sigurd.skogestad@ntnu.no>
Subject: Re: Feedback linearization generalization
```


Dear Sigurd

```
It is nice to hear from you....
Let's move to your questions. I believe that an answer could be as follows. In feedback linearization, one picks \(\mathrm{A}=0\) just as an example. .... The equation \(f(y, u)=A y-v\)
must be solvable for \(u\). This entails, in the higher-dimensional case, a definition of "relative degree" ....
Best regards
Alberto
```


Choice of Tuning parameter A

- One idea: Select $A=\frac{d f}{d y}$ at nominal operating point
- Then: No feedback from y into transformation (nominally)
- Transformed system has the same dynamics as the original system (nominally)
- To get decoupling may choose: $A=\operatorname{diag}\left(\frac{d f}{d y}\right)$
- Will get some feedback from y also nominally.
- May want to «speed up» the response of the transformed systems by selecting a larger A.
- This involves negative feedback from y, and may as usual give robustness problems if time delay for y
- «Slowing down» the response (positive feedback from y) does not have robustness problems

$B=-A$ gives steady-state gain I^{*}

- $\frac{d y}{d t}=f(u, w, y, d)$
- Define $T_{A}=-A^{-1}$

- Select $v=\operatorname{TAf}(u, w, y, d)+\mathrm{y}$
- Get transformed system*: $\mathrm{T}_{\mathrm{A}} \frac{d y}{d t}=-y+v$
- Transformed system has linear «setpoint» response (from v to y) with
- time constant T_{A}
- steady-state gain I
- May in theory avoid the outer feedback controller C
- But note that the transformation works by feedforward action
- The outer controller \mathbf{C} is needed to correct for model errors and unknown disturbances

[^0]
Examples («magic»)

- Example 1 (revisit): Mixing with one static and one dynamic equation
- Example 2 (revisit): Reactor temperature control (dynamic)
- Example 3: Heat exchanger (static applied to dynamic system)
- Example 4: CSTR (with exact inverse using w)

Example 1. Mix hot (1) and cold (2) water (shower), $y=[q$ T]

Mass balance:

$$
\begin{aligned}
& q=q_{1}+q_{2} \\
& v_{0}=q_{1}+q_{2}
\end{aligned}
$$

Energy balance: $\quad \frac{d T}{d t}=\frac{q_{1}}{V}\left(T_{1}-T\right)+\frac{q_{2}}{V}\left(T_{2}-T\right) \quad$ (dynamic equation for $\mathrm{y}_{2}=\mathrm{T}$)

$$
v_{A}=\frac{q_{1}}{V}\left(T_{1}-T\right)+\frac{q_{2}}{V}\left(T_{2}-T\right)-A T
$$

New transformed inputs: v_{0} and v_{A}

- $\mathrm{v}_{0}=$ sum of flows
- v_{A} : not ratio (but would be similar to ratio if we used static energy balance)

Exact inverse transformation (with $\mathrm{u}_{1}=\mathrm{q}_{1}$ and $\mathrm{u}_{2}=\mathrm{q}_{2}$):

$$
\begin{aligned}
& q_{1}=\frac{\left.V\left(v_{A}+A T\right)+v_{0}\left(T-T_{2}\right)\right)}{T_{1}-T_{2}} \\
& q_{2}=v_{0}-q_{1}
\end{aligned}
$$

Tuning parameter, $\mathrm{A}=-(\mathrm{q} / \mathrm{V})^{*}$ (nominal)

Example 1. Simulation responses with transformation only.

-> Perfect disturbance rejection and decoupling

1. $\mathrm{d}_{1}=\mathrm{T}_{1}: 20->22^{\circ} \mathrm{C}$ at $\mathrm{t}=50 \mathrm{~s}$
2. $d_{2}=T_{2}: 50->55^{\circ} \mathrm{C}$ at $\mathrm{t}=100 \mathrm{~s}$
3. $\mathrm{y}_{2 \mathrm{~s}}=\mathrm{T}_{\mathrm{s}}: 35->36^{\circ} \mathrm{C}$ at $\mathrm{t}=150 \mathrm{~s}$
4. $\mathrm{y}_{1 \mathrm{~s}}=\mathrm{q}_{\mathrm{s}}: 10->11 \mathrm{~kg} / \mathrm{s}$ at $\mathrm{t}=200 \mathrm{~s}$

Example 2. Control of reactor temperature

Energy balance tank:

$$
\mathrm{m}_{1} \mathrm{c}_{\mathrm{p} 1} \mathrm{dT} / \mathrm{dt}=\mathrm{Q}+\mathrm{Q}_{\mathrm{rx}}
$$

Static energy balance for cold side:

$$
Q=F c_{p}\left(T_{\text {out }}-T_{\text {in }}\right)=E c_{p}
$$

Neglecting heat of reaction $Q_{r x}$, we get

$$
\mathrm{dT} / \mathrm{dt}=\mathrm{k} \mathrm{E}, \quad \mathrm{k}=\mathrm{c}_{\mathrm{p}} /\left(\mathrm{c}_{\mathrm{p} 1} \mathrm{~m}_{1}\right)
$$

Transformed input with systematic approach

$$
\mathrm{v}=\mathrm{kE}-\mathrm{AT}
$$

Note: choice $v=E$ corresponds to $A=0$

- Some self-regulation removed by EC
- Maybe not so bad for this process which
 anyway needs to be stabilized (because of $Q_{r x}$)

In practice

- May not measure all disturbances
- Transformation will not longer be «perfect» but still useful

Example 3. Heat exchanger (static)

MVs (original inputs):

$$
u=F_{c}[\mathrm{~kg} / \mathrm{s}]
$$

CVs (outputs):

$$
y=T_{h}\left[{ }^{\circ} \mathrm{C}\right]
$$

DVs (disturbances):

$$
\begin{aligned}
d_{1} & =T_{c}^{i n}\left[{ }^{\circ} \mathrm{C}\right] \\
d_{2} & =T_{h}^{i n}\left[{ }^{\circ} \mathrm{C}\right] \\
d_{3} & =F_{h}[\mathrm{~kg} / \mathrm{s}]
\end{aligned}
$$

Energy balance, countercurrent flow, $Q=U A \Delta T_{L M}$

$$
\begin{aligned}
N_{t u} & =\frac{U A}{F_{c} c_{p, c}} \quad \\
C & =\frac{F_{c} c_{p, c}}{F_{h} c_{p, h}} \\
\epsilon_{c} & =1-\frac{y_{s}}{C-\exp \left(-N_{t u}(C-1)\right)} \\
\epsilon_{h} & =\epsilon_{c} C
\end{aligned}
$$

Use numerical inverse (to find u for given $T_{h}=v_{0}$)

Simulation: Static v_{0} with cell dynamic model

$$
\mathrm{d}_{1}=\Delta T_{c}^{i n}=+2^{\circ} \mathrm{C}
$$

$$
\mathrm{v}_{0}=\Delta T_{h}^{S}=+5^{\circ} \mathrm{C}
$$

Extension: Chain of transformations

- Idea: Extend exact inverse to systems of higher relative order (when v does not depend explicitly on u)
- Model for y (static case) or dy/dt (dynamic case)

$$
y=f_{0}(w, d) \quad \text { or } \quad \frac{d y}{d t}=f(w, y, d)
$$

- Until now: Cannot use exact inverse
- Alternative 1 (until now): Use feedback control to generate approximate inverse
- Alternative 2 (chain of transformations): Make use of known model for w

$$
\frac{d w}{d t}=f_{2}\left(u, w, y, d_{2}\right)
$$

- Use two exact inverses; find w from f, find u from f_{2}.
- May be viewed as alternative to «feedback linearization» for systems with high relative order

Chain of transformations

$$
\begin{array}{ll}
d y / d t=f(w, y, d)=\mathrm{A} \mathrm{y}+\mathrm{v} & \text { (Inverse 1: Solve for given } \left.\mathrm{v} \text { to find } \mathrm{w}^{s}\right) \\
\frac{d w}{d t}=f_{2}\left(u, w, y, d_{2}\right)=\mathrm{A}_{2}\left(\mathrm{w}-\mathrm{v}_{2}\right) & \text { (Inverse 2: Solve for given given } \left.\mathrm{w}^{s}=\mathrm{v}_{2} \text { to find } \mathrm{u}\right)
\end{array}
$$

- Input u has relative order 2 (from u to y)
- Get perfect disturbance rejection for d_{2} (enters same place as u)
- But not for d since it must go through subystem 2

$$
\tau_{2} \frac{d w}{d t}=v_{2}-w \quad \begin{aligned}
& \tau_{2}=-\mathrm{A}_{2}{ }^{-1} \\
& v_{2}=w^{s}
\end{aligned}
$$

- Note: Choose $B=-A$ in inner transformations to get steady-state gain of $I\left(v_{2}=w^{s}\right)$

Example 4. CSTR. $y=c_{A}, u=Q, w=T$

Component balance: $\frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dt}}=\frac{\mathrm{q}}{\mathrm{V}}\left(\mathrm{c}_{A 0}-c_{A}\right)-k(T) c_{A} \quad k=k_{0} \exp \left(-\frac{E_{A}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {ref }}}\right)\right)$

$$
v_{A}=\frac{q}{V}\left(c_{A 0}-c_{A}\right)-k(T) c_{A}-A c_{A}
$$

Energy balance: $\quad \frac{d T}{d t}=\frac{q}{V}\left(T_{0}-T\right)+\frac{Q}{V \rho c_{p}}-\frac{\Delta H_{r x} k(T) c_{A}}{\rho c_{p}}$

Q

Alt. 2 Chain of inverse transformations

$$
\begin{aligned}
& \frac{d c_{A}}{d t}=\frac{q}{V}\left(c_{A 0}-c_{A}\right)-k(T) c_{A}=A c A+v_{A} \\
& \frac{d T}{d t}=\frac{q}{V}\left(T_{0}-T\right)+\frac{Q}{V \rho c_{p}}-\frac{\Delta H_{r x} k(T) c_{A}}{\rho c_{p}}=A_{2}\left(T-v_{A 2}\right)
\end{aligned}
$$

Measured variables

Alt. 1. Cascade implementation

Measured

Two reasons to use slave controller

1. $u=Q$ does not appear in v_{A}
2. Avoid inverting expression for v_{A} with respect to T

But do not get perfect feedforward control for T_{0}

Q2. Stability problems?

- Consider any transformed input, $\mathrm{v}=\mathrm{g}(\mathrm{u}, \mathrm{w}, \mathrm{y}, \mathrm{d})$
- With exact inverse the transformed system may be internally unstable because we treat w as disturbance, but actually w depends on u
- Happens when w causes unstable zero dynamics from u to v
- Stability problems can be avoided with feedback (cascade) implementation which gives approximate inverse

Unstable zero dynamics

Indirect effect through w may cause

- unstable zero dynamics for T (from u to v)
- = inverse response from u to v (scalar)

Internal instability

Unstable zero dynamics for T give internal unstable tranformed system if we use exact inverse

Internally unstable:
Response from v to y is stable (apparently), but internal signals u and w are unstable

Example 5: Internal instability

Process

$$
\begin{aligned}
& y=u+w+d \\
& w=\frac{-2 u}{4 s+1}
\end{aligned}
$$

Transformed input

$$
\begin{array}{r}
v_{0}=g(u, w, d)=u+w+d \\
v_{0}=\frac{4 s-1}{4 s+1} u+d
\end{array}
$$

Exact inverse

$$
u=v_{0}-w-d \quad u=\frac{4 s+1}{4 s-1}\left(v_{0}-d\right)
$$

Response of transformed system

$$
y=v_{0}
$$

Response to step disturbance ($\mathrm{d}=1$)

Linear analysis

Transformed input

$$
\begin{aligned}
v & =K_{u} u+K_{w} w \\
& =\left(K_{u}+K_{w} G_{w}\right) u=T u
\end{aligned}
$$

where

$$
\begin{aligned}
& T=\left(K_{u}+K_{w} G_{w}\right)=K_{u}\left(I+L_{w}\right) \\
& L_{w}=K_{u}{ }_{u}^{-1} K_{w} G_{w}
\end{aligned}
$$

Transformed system with exact inverse

$$
u=T^{-1} v=\left(I+L_{w}\right)^{-1} K_{u}^{-1} v
$$

For internal stability of transformed system:

$$
\mathrm{T}^{-1}=\left(1+\mathrm{L}_{\mathrm{w}}\right)^{-1} \mathrm{~K}_{\mathrm{u}}^{-1} \text { must be stable }
$$

Equivalently: Transfer function

$$
T=K_{u}\left(1+L_{w}\right)
$$

from u to v must have stable zero dynamics
Trick: Can use Nyquist/Bode stability condition for L_{w}

Linear stability theorems

Transformed input

$$
v=K_{u}\left(I+L_{w}\right) u
$$

where

$$
L_{w}=K_{u}^{-1} K_{w} G_{w}
$$

Stability.

Transformed system is internally stable if and only if $\left(1+L_{W}\right)^{-1}$ is stable

Bode stability condition: Internally stable if and only if $\left|L_{w}\left(j \omega_{180}\right)\right|<1$ (scalar)

Small gain theorem. Stable if $\left|L_{w}(j \omega)\right|<1$ at all ω
In words: Stable if «indirect effect» $K_{w} G_{w}$ (through w) is smaller than «direct effect» K_{u} (through u).

Bode stability condition

$$
L_{w}=K_{u}^{-1} K_{w} G_{w}
$$

Bode (scalar): Internally stable if and only if $\left|L_{w}\left(j \omega_{180}\right)\right|<1$

Two cases

1. $L_{w}(0)<0$: Direct and indirect effect are opposite at steady-state. $\omega_{180}=0$

Get internal instability iff $\left|L_{w}(0)\right|>1$

- When Indirect effect is larger and opposite at steady state

Example 5: $K_{u}=K_{w}=1$ and $G_{w}=-2 /(4 s+1)$ so $L_{w}(0)=-2$ <-> internally unstable
Note: Transfer function from u to v is $T=K_{u}\left(1+L_{w}\right)=(4 s-1) /(4 s+1)$.
2. $L_{w}(0)>0$: Direct and indirect effect in same direction at steady state.

- Internal instability is less likely.
- Requires that indirect effect is large and that G_{w} has unstable zeros (inverse response) or delay

Example 6: $K_{u}=1, G_{w}=(-s+1) /(s+1) . \omega_{180}=\infty$. $\left|L_{w}\right|=K_{w}$ at all ω. Get internal instability iff $K_{w}>1$.
Note: With $K_{w}=2$, transfer function from u to v is $T=K_{u}\left(1+L_{w}\right)=(3-s) /((s+1)$.

What if uncertain about internal instability?

- Use feedback (cascade) implementation
- Slave loop involves controlling $v=T(s) u$.
$-T(s)=K_{u}+K_{w} G_{w}(s)$
- Unstable (RHP) zero or time delay in $\mathrm{T}(\mathrm{s})$ implies that slave loop cannot be fast
- Uncertain model: Can tune slave controller based on experimental T.

Transformed output

$$
\mathrm{z}=\mathrm{g}_{\mathrm{z}}(\mathrm{y}, \mathrm{w}, \mathrm{~d})
$$

Main idea: Simpler/more linear model for z than for y

Since we use the same transformation on both y and $y_{s^{\prime}}$ we will at steady state get $\mathrm{y}=\mathrm{y}_{\mathrm{s}}$.

Example: $\mathrm{y}=\mathrm{T}$ (temperature), $\mathrm{z=H}(\mathrm{~T}, \mathrm{p}, \mathrm{x})$ (enthalpy).
Easy to write energy balance in terms of $z=H$

Further discussion...

- We have looked at many other examples
- And in particular we have looked at the effect of uncertainty
- No big surprises
- It's fairly robust!
- Mater theses by Callum Kingstree and Simen Bjorvand

Conclusion

- "Control structures with embedded knowledge through input and output transformations"
- Based on simple process models, easy to understand and implement
- Systematic approach for dynamic model

$$
\frac{d y}{d t}=f(u, w, y, d)
$$

- Transformed input (B=I): $v=f(u, w, y, d)-A y$
- Can also hande static models: $\mathrm{y}=\mathrm{f}_{0}(\mathrm{u}, \mathrm{w}, \mathrm{d})$. Use $v_{0}=f_{0}(u, w, d)$
- Resulting transformed system from v to y :
- Linear, independent of disturbances, decoupled
- Potential internal instability with exact inverse
- No problem if indirect effect on v through w is small
- Otherwise use cascade implementation

■ NTNU

Academic control community fish pond

Extra

Example 5x. Level control with flow controller

flow in

- $y=V$ (level), $u=z$ (valve position), $d=\left[q_{i n}, \Delta P\right]$
- Model (mass balance): $\frac{d V}{d t}=q_{\text {in }}-q_{\text {out }}$
- where (valve equation): $q_{\text {out }}=c_{V} f_{V(Z)} \sqrt{\frac{\Delta P}{\rho}}$
- $f_{v}(z)$: nonlinear valve characteristic

- Can use «standard method» with: $f(y, u, d)=q_{i n}-c_{V} f_{V(Z)} \sqrt{\frac{\Delta P}{\rho}}$
- $v_{A}=f(y, u, d)$
- Invert f to find u from given v_{A}
- Complicated + Valve characteristic $f_{v}(z)$ uncertain + need measurement of DP
- Much better if $\mathrm{q}_{\text {out }}$ is measured: Introduce $w=q_{\text {out }}$ and use cascade control
- Tranformed input: $v=q_{\text {in }}-q_{\text {out }}$
- Equivalent to standard solution with cascade control based on flow controller

Example 6: Distillation

```
y = distillate compostion
u=L (reflux)
```


CONDENSER

Model reflux drum (component balance):

$$
M \frac{d y}{d t}=V\left(y_{T}-y\right)
$$

Note: $f=\frac{V}{M}\left(y_{T}-y\right)$ does not depend explicity on $u=\mathrm{L}$.
But y_{T} depends indirectly on L . Introduce $\mathrm{w}=\mathrm{y}_{\mathrm{T}}$

$$
v_{A}=f-A y=\frac{V}{M}\left(y_{T}-y\right)-A y
$$

Solution: Cascade control of v_{A} or $\mathrm{w}=\mathrm{y}_{\mathrm{T}}$

- y_{T} is difficult to measure

- But y_{T} is closely related to temperature
- This leads us towards the conventional solution with temperature cascade!

Nonlinear decoupling and feedforward using calculation blocks*

- Linear decoupling and feedforward often work poorly because of nonlinearity
- Example of nonlinear feedforward: Ratio control
- Generalization: Nonlinear calculation block

Method: Select «transformed inputs» v as right hand side of steady state model equations

Example: Combined nonlinear decoupling and feedforward.

Mixing of hot and cold water

Figure 1: Mixer system
Steady-state model written as $\mathrm{y}=\mathrm{f}(\mathrm{u}, \mathrm{d})$:

$$
\begin{aligned}
u & =\binom{q_{h}}{q_{c}} \\
d & =\binom{T_{h}}{T_{c}} \\
y & =\binom{T}{q}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}=\frac{q_{h T h}+q c T c}{q h+q c} \\
& q=q_{c}+q_{h}
\end{aligned}
$$

Select transformed inputs as right hand side, $\mathrm{v}=\mathrm{f}$

$$
\begin{align*}
& \mathrm{v}_{1}=\frac{q_{h} T h+q c T c}{q h+q c} \\
& \mathrm{v}_{2}=q_{c}+q_{h} \tag{2}
\end{align*}
$$

Model from v to y (red box) is then decoupled and with perfect disturbance rejection:

$$
\begin{aligned}
& \mathrm{T}=\mathrm{v}_{1} \\
& \mathrm{q}=\mathrm{v}_{2}
\end{aligned}
$$

- Can then use two single-loop PI controllers for T and q !
- These controllers are needed to correct for model errors and unmeasured disturbances
- Note that v_{1} used to control T is a generalized ratio, but it includes also feedforward from Tc and Th .
Implementation (calculation block) : Solve (1) and (2) with respect to $\mathrm{u}=(\mathrm{qc} \mathrm{qh})$:

Transformed MVs for decupling, linearization and disturbance rejection
Mixing of hot and cold water (static process)
New system: $T=\mathrm{v}_{1}$ and $\mathrm{q}=\mathrm{v}_{2}$
Outer loop: Two I-controllers with $\tau_{C}=1 \mathrm{~s}$

linear

Special case (series system, f is independent of u) : Control of by Chain of transformations

Some cases: Slave controller can be replaced by static block

- NO: series system (f independent of u. Here a static block for u is impossible so we must use cascade control. Problem: may be difficult to get fast slave loop)
- MAYBE parallell system (dangerous: may get unstable zero dynamics, so recommend cascade)
- YES. recycle system (no big problem, at least if delayed, since recycle gives positive feedback, here a static block may be OK)
- Recycle system
- $y=G_{1}\left(u+G_{2} y\right)$
$-y=G_{1} /\left(1-G_{2}\right) u=T(s) u$
$-G_{2}=\frac{k_{2} \exp \left(-\theta_{2} s\right)}{d_{2(s)}}$
$-T=\frac{G_{1} d_{2}(s)}{d_{2}(s)-k_{2} \exp \left(-\theta_{2} s\right)}=G_{1}$ for initial response (s=infinity)
- But be careful. Cascade is safer because then we can get real dynamics experimentally.

[^0]: *Zotica, Alsop and Skogestad. 2020 IFAC World Congress

