Overview and Classification of online
process optimization approaches

* |FAC DYCOPS Pre-symposium workshop

Sigurd Skogestad @NTNU
Norwegian University of
Johannes J3schke Science and Technology

Dinesh Krishnamoorthy



b

Trondheim

C\f(:'?»
Sweden
Faroe l
Islands waay f
Oslo
@
Stockholm
@
Baltit
North Sea
Edinburah
8 Copenhagen
Denmark ®
United
Kingdom
Y Isle of Man
Dublin Mincgester Hamburg
Ireland Liverpool
Amsterdam ¢ Berlin®., Poland
Lo"g‘:’" Nulhorl.a:nds
Srissels - Cologne
| Brassels™;Coloane  Germany |
Belgium Frankfurt " Prague
LN ] o X ®
Luxembourg

Czechia




@ NTNU
Presenters

Sigurd Skogestad Johannes Jaschke Dinesh Krishnamoorthy
Professor NTNU Associate Prof. NTNU PhD student NTNU (2019)
PhD Caltech (1987) PhD NTNU (2011) MS Imperial College (2012)



NAME

Alasdair Jack Speakman

Alireza Olama

Jose Dolores Vergara Dietrich

Aris Papasavvas

José Eduardo Weber dos Santos

Bruno Morabito

Lucian Silva

Carlos Roberto Chaves

Mandar Thombre

Christiam Segundo Morales Alvarado

Marta Zagorowska

Cristina Zotica

Mathilde Hotvedt

Diogo Filipe Mateus Rodrigues

Diogo Ortiz Machado

Gabriel Lapa Grandi

Hiago Antonio Sirino Dangui

JESUS DAVID HERNANDEZ ORTIZ

Joakim Rostrup Andersen

José€ Diogo Forte de Oliveira Luna

Otavio Fonseca Ivo

Rafael Sartori

Reinaldo Enrique Hernandez Rivas

Rodrigo Juliani Correa de Godoy

Seyed Jamal Haddadi




Agenda

13:30-13:50
13:50-14:00
14:00 - 14:10
14:10- 14:40
14:40-15:00

15:00-15:20
15:20-15:40
15:40 - 16:00
16:00-16:20
16:20-16:40
16:40-17:00
17:00-17:30
17:30-18:00

@ NTNU

Welcome and info

Introduction Real time optimization (Sigurd Skogestad)

1. Conventional approach: Steady-state optimization - and challenges (Sigurd Skogestad)
2. Academic approach: Economic MPC and Dynamic RTO (Johannes Jaschke)

3. Steady-state optimization with transient measurements — Hybrid RTO (Dinesh Krishnamoorthy)

4. Feedback-based RTO using model-based gradient estimation (Dinesh Krishnamoorthy)

5. Extremum seeking control (Dinesh Krishnamoorthy)

Coffee Break

6. Modifier Adaptation (Johannes Jaschke)

7. Self-optimizing Control (Sigurd Skogestad)

8. Classical Approach: Optimal operation using conventional advanced control (Sigurd Skogestad
The different approaches are complementary, not contradictory! (Johannes Jaschke)

Discussion and Concluding remarks (all)
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Main objectives control system

1. Economics: Implementation of acceptable (near-optimal) operation
: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

e Usually NOT

— Different time scales
Stabilization fast time scale

— Stabilization doesn’t “use up” any degrees of freedom
Reference value (setpoint) available for layer above
But it “uses up” part of the time window (frequency range)



In theory: Centralized controller 1s always optimal (e.g., EMPC)

Objectives Approach:

*Model of overall system

C E N T RAL IZ E D *Estimate present state

Present state *Optimize all degrees of freedom

OPTIMIZER

[
>

A 4

Process control:

Model of systém - Excellent candidate for centralized control
min J(x, u, d) Problems: |
v * Model not available
s.t. x = f(x,u,d), * Objectives = ?
h(x.u,d) =0, * Optimization complex

* Not robust (difficult to handle uncertainty)

g(x,u,d) <0. * Slow response time

S (Physical) Degrees of freedom, u= valve positions




@ NTNU

In practice: Hierarchical decision system
based on time scale separation

Scheduling

(weeks)

r

Site-wide optimization

(day)

Manager

Process engineer

min J (economics)

<\
AW
\

Local optimization
(hour)

Focus of this workshop
Operator/RTO

Setpoint control
(+ look after other variables)

Control
layer

Stabilize + avoid drift

DUPET VISOTY
control

\l

control

(seconds)

X

v

1
1 1
i . i
! ! minutes) !

Regulatory]

“Advanced classical control”/MPC

PID-control

u = valves
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General objective process operation (RTO):

Minimize cost J = maximize profit (—J) [S/s]
subject to constraints

J = z pr F + z po Q —z pp P Note: No capital costs or costs for operators
(assumed fixed for time scale of interest, a few hours)

where
* Y.pp F =price of feed [S/kg] x feed flow rate [kg/s]
* X.po Q =price of utility (energy) x energy usage

* Y. pp P =price(value) of product x product flow rate

Typical process constraints:
* Product quality (purity)

e Environment (amount and purity of waste products)

e Equipment (max. and min. flows, pressures)

Typical degrees of freedom (decision variables) (u)
* Flowrates: Feeds, splits (recycles), heating/cooling




Two main operation modes

. Sales limited by market: Given production (constraint)
e Optimal with high energy efficiency (good for environment)

Il. High price product and high demand: Maximize production
* Lower energy efficiency

e Optimal to overpurify waste products to recover more (good for
environment)
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Formulation of Real time optimization

Process |
constraints /}

Optimal decision variables (u)
/ Optimal setpoints (y)

S.t.

min J(x,u, d)

x = f(x,u,d)
glx,u,d) <0
x € X,

Internal variables

ueu

Decision variables

d: Parameter values / disturbances
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Conventional (commercial) steady-state RTO

* Steady-state models

* Two-step approach

1. “Data reconciliation”:

» Steady-state detection
* Update estimate of d: model parameters,
disturbances (feed), constraints
2. Re-optimize to find new optimal steady
state

d

—

@ NTNU

dhat
Static RTO
sp Parameter
Yy estlmator
Setpoint (Static)
control T
lu Steady state

detection

Process T

UoI1eI[12uU0d3J e1R(



O NTNU
Conventional steady-state RTO

* Typically uses detailed process models with full thermo package
e Hysys / Unisim (Honeywell)
* Aspen
* PROCESS

e But traditional RTO less used in practice than one should expect

e Ethylene plants (furnace)
* Some refinery applications



Why is conventinal static RTO not commonly used?

Problems (in expected order of importance):

1.

2.

3.

Cost of developing and updating the model (costly offline model update)

Wrong value of model parameters and disturbances d (slow online model update)
Not robust, including computational issues

Frequent grade changes make steady-state optimization less relevant

Dynamic limitations, including infeasibility due to (dynamic) constraint violation

Incorrect model structure

Not problems, but Challenges ©

@ NTNU
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Challenge 1 - Costly offline model development and update

* Lack of domain/expert knowledge
e Change in process configuration

* Model simplification

Other Gazes Claus Sulfur
Flant

25 from
Sour Hiiater Stripper
Gas Hy Gas Hy

Sulfur

Light y—T—L\ ]J_L\ tsomerate
Naphtha Plant

BGas Hy Bas  Ha
Heavy Catalytic | Reformate

Naphtha Reformer

Hydrooracked Gasoline
Gas Ha

Diesel Ol [ e otreater] Diesel 0l

Atmospheric

%
S Jet Fuel Gas
- el a5 Hy
Crude | g [ et Fuel ancl7or
] 2 [werosne Kerosens
£
2

Diesel Oil

i-Butane

Gazoline Blending Pool

‘(—A Fuel 0il
Coker Naphtha

Gas Oil —_— Alleylation
leavy Vacuum Pertenes
Gas Hy
o| meneandensibles = Napmha FCC Gasoline
2 5
& FEC Feed B
£ Lignt oo 22| rec s o
kS acuum 2 E
25

Gas Oil (ater hydrotreatng and reforming)

Delayed Coker I»E.’

Wasuum Residuum Sour

Waners

T paieum Coke
fephalt
Blawing Asphalt
Steam

+ Finished products are shown in blus

+ Sour waters ane derived from warious distilation tower
reflux drums in the refinery

« The "other gases” entering the gas processing unit
includes allthe gas streams from the various
process units

Possible Fix: Data-methods based on measuring Cost (J) (Extremum seeking

control; see Approach 5)

Recent interest — Machine learning and Al to develop models

Steam Stripper

f L

. Ha$ to Sulfur Flant
Coker Gas Ol

stripped
Water
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Challenge 2 - Steady-state wait time

* Frequent disturbances (d)

* Long settling times dhat
Static RTO
* Data reconciliation step is infrequent - Parameter | -

Y estimator o O
Setpoint L (Static) o o

* Wrong value of model parameter/disturbances (dhat) control "=

Steady state =

Y detection =

e Process operates sub-optimally for long periods of d Process

’ Y

time

Fix: Use dynamic model in estimation step (Hybrid RTO; see Approach 3)
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Challenge 3 - Computational issues

Convergence issues and numerical failure

CPU times

scaling of variables

Complementary constraints

Fix — Methods that do not need to solve numerical optimization problems online

(Novel Feedback RTO; see Approach 4)
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Challenge 4 - Frequent grade changes

e Continuous process with frequent changes in
feed, product specifications, market
disturbances, slow dynamics/long settling time

e Continuous with frequent grade transitions
e Batch processes " m : |

. . 1—ELI Aty E‘ﬁ_tii .ilkt“ Aty |
* Cyclic operations

Source: Koller et al. (2017) Comput& Chem Eng, 106, pp.147-159.

Product grade

rade 2 Grade -1

Cycle Repeats

Fix (if relevant) — Dynamic optimization methods (DRTO or EMPC; see Approach 2)
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Challenge 5 - Dynamic limitations

e Dynamic constraint violations
* Force variables to fixed set points, may not utilize all degrees of freedom

* A steady-state optimization layer and a control layer may lead to model inconsistency

Partial Fix — Use setpoint tracking control layer below RTO
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Challenge 6 — Incorrect model structure

* E.g. missing one chemical reaction

e Cannot be fixed by parameter updates

Fix — Modifier adaptation based on measuring Cost (J)
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DRTO and Economic MPC

Optimize not only steady state, but also transients —

Product grade

e Continuous process with frequent changes in feed,
product specifications, market disturbances, slow
dynamics/long settling time

rade 2 Grade -1

‘-'\-1'1; Aty iﬂtgi ‘f:“'.'l At i
e Continuous with frequent grade transitions i e _ OvleRepeats

Time

Source: Koller et al. (2017) Comput& Chem Eng, 106, pp.147-159.

* Batch processes
* Energy storage

e Cyclic operations

Directly address challenge 4 (frequent changes, non-negligible transient operation)
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Dynamic RTO
Dynamic | d,,0
* Uses dynamic models online RTO
| ur Pt
* Repeatedly solve Dynamic RTO problem Sotpomt (Dynamic)

A

for a given horizon

control |e

* Closely related to economic MPC l “

Process




Main idea

Repeatedly solve

Step 1: Dynamic Estimation
ék = arg mgrn ||ymeas,k - h(iUk,Uk)”

st. xp = f(Tr—1,ur—1,0)
Step 2: Dynamic Optimization

k4T
uf = arg min > Iy, ur)
t=k
st Toy1 = f(@e, ue, Op)
Y = h(xe, ut)
9(ye, ug) <0

T = Tk VtE{k,...

k+T}

past

<

measurements

manipulated variable
sent to lower layer

LI B e e e e £

future

estimation horizon

prediction horizon



Main idea

Repeatedly solve

Step 1: Dynamic Estimation

0, = arg mg:n ||ymeas,k - h(iL‘k,’LLk)”

st. xp = f(Tr—1,ur—1,0)
Step 2: Dynamic Optimization
k+T

uj = argmin ) J(y, ue)
"ot=k

s.it. Ty11 = f(xe, uy, ékz)
Y = h(ﬂl?t,ut)
9(ye,ut) <0
Tr = & vt € {k,

o k+TY

Dynamic d,,0
RTO
sp Parameter
! uw estlma’qor
Setpoint (Dynfmlc)
control
l u
Process




Economic MPC ~ Dynamic RTO

d,z,0
Economic-
NMPC Parameter
Estiamtor
(dynamic)
u
Process

* Centralized “All-in-oné’ optimizer

* Higher sampling rates

@ NTNU

Dynamic d,,0
RTO
5P Parameter
estimator
Setpoint (Dynamic)
control
U
Process

Hierarchical layers with time scale separation

Lower sampling rates

Usually in Economic MPC a lower layer is also included, e.g. perfect level control, etc..



Industrial applications of Dynamic RTO

* Bartusiak (2007)

e polyolefin polymerization
processes

* Odloak+Petrobras
e FCC unit

* Cybernetica
e Polymerization reactors

* HVAC (Stanford) Rawlings



Challenges with Dynamic RTO o L

Process

Main Challenge: Manage complexity

* Trade-off
Cost to make it work <=sss=) 3nd improved profit.



Complexity: The challenge with Dynamic RTO

Obtaining and maintaining an accurate dynamic model

Computational issues

Robustness issues

Implementation issues
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reflux drums in the refinery Natursl Gas Tee—
+ The "sther gases” entering the gas processing unit Symnfs‘s
includes all the gas streams from the various Steam
process units




Obtaining and maintaining an accurate dynamic model

* Modelling efforts
e Requires plant testing over larger operation range

* Trade-off between learning model parameters and optimal operation



Computational issues

* Computational cost for solving the large NLP
* NLP solvers (IPOPT (Biegler) Conopt, others...

e Fast Sensitivity-based methods
» Realtime iterations (Diehl et al 2002)
* Advanced step NMPC (Zavala & Biegler 2009, Jaschke et al 2015)

* Convergence issues
* Thermodynamics model crashes, Flash computations

* Discrete and nonsmooth decisions

* Lead to mixed integer optimization problems
e Cannot be solved in real-time for large systems



Robustness issues

* Robustness issues oy )
* Model errors

* Uncertain parameters (predictions)

* Implications for stability

Probability distribution

0

* Tend to make computations significantly more complex Falre time



Implementation issues

* Tuning, regularization weights in cost function
» Typical cost in practice (Bartusiak 2007)

IJprro = Jeco + Jtrac +]input

Allowing for manual operations

What to put into which layer?

Measurement faults, reliable state and parameter estimation

Require many Ad-hoc problem-dependent solutions



Academia

e Stability

* Numerical issues
* Computation speed
* Decentralizing

* Uncertainty
* Stochastic MPC
* Robust MPC
* Chance constraint
* Dual MPC

e

Proofs mainly of concern for academia

Handle complexity in real-time

Typically add complexity



DRTO and EMPC has many potential benefits

* Reduced amount of off-spec product

* Changing operational strategy:

* Agile operation switching productions
* Demand-side management
* Load-balancing services

* For sc))me processes, optimal operation is not at a steady state (Angeli
2011

* Promise: Truly optimal operation
e But that is hard/impossible to deliver



BNTNU

Norwegian University of
Science and Technology

3. Steady-state optimization using Transient
Measurements — Hybrid RTO

IFAC DYCOPS Pre-symposium workshop

Dinesh Krishnamoorthy

Krishnamoorthy, D., Foss, B. and Skogestad, S., 2018. Steady-state real-time optimization using transient
measurements. Computers & Chemical Engineering, 115, pp.34-45.
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Why is traditional static RTO not commonly used?

2. Wrong value of model parameters and disturbances (slow online model update)



Traditional Steady-state RTO

Step 1: Static Estimation
A . 2
O = arg IIlgln ||ymeas — f.ss(uk: 6’)“2
Step 2: Static Optimization

U1 = arg min J(y, )

s.t. y = fss(u, ék)
9(y,u) <0

(here
NMPC

)

Static RTO

@ NTNU

o,

i,

L

l y=P

Setpoint
control

l u

Process

Parameter
estimator
(Static)

L

Steady state
detection

]

Y



14

- = =—y=0.1t ),

Steady-state wait time |, o

* Transient measurements cannot be used

Value (y)

e Large chunks of data discarded

e Steady state detection issues 4 S o w e wo

0 20 40
Time (min)

* Erraneously accept transient data

* Non-stationary drifts

Qil Rate

May 02 May 03 May 04 May 05 May 06 May 07
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Steady-state wait time

1.2

e Based on statistical tests, 1" j
: 0.8 ‘
e.g: ] ‘
1 2
2 p— ¢ —
i Z (xi = X)
=1
2 1 ¢ 2
4= 1 ; (xi — xi_1)
1=2
2
R=4d
Sz ! 1 1 ] 1 |
-0'20 50 100 150 200 250 300 350

t (min)




How to address steady-state wait time?

* OBVIOUS: DYNAMIC RTO

Step 1: Dynamic Estimation
O, = arg Min [|Ymeas,k — Mk, ur)| (5)
st. xp = f(Th—1,Uk—1,0)

Step 2: Dynamic Optimization
k+T

uj = argl{llLitn Z J (e, ut) (6)
t—k
S.t. Ty = f(mt,ut,ék)
Yt = h(zy, us)
9(ye,ut) <0
o = vt e k..., k+T}

@ NTNU

Dynamic | d, 1,0
RTO
sp Parameter
U estlmatpr
Setpoint (Dynfmlc)
control
l u
Process

Dynamic RTO has problems — especially the optimization part
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Hybrid RTO

. 9!;: ) o O Dynamic Tk, O
Static RTOr Static RT O‘—‘ T K RTO - |
St & State &
= Parameter p A (here sp Parameter | (Bere
| Y estimator LY estimator | EKF) 1Y estimator |EKF)
- Static P Eirra, : D i
- Setpoint ( i (here Setpoint (Synamic) rere Setpoint (Dynamic)
NMPC) control |7 1 NMPC) control e MPC) control |« .
" Steady state » 4 7 /
d detection \ 3
¥ . Process
Process Process
Yy

Dynamic Estimation
+

Static Optimization

Krishnamoorthy, D., Foss, B. and Skogestad, S., 2018. Steady-State Real-time Optimization using Transient
Measurements. Computers and Chemical Engineering, Vol 115, p.34-45.



Hybrid RTO

Step 1: Dynamic Estimation
Or, = arg min ||Ymeas,k — h(Zx, ur)]|
st. xr = f(Xp—1,ux—1,0)

Step 2: Static Optimization

U1 = arg min J(y, )

s.t. y= fss(u, 9k)
9(y,u) <0

Krishanmoorthy, Foss, Skogestad, Comput & Chem Eng (2018) — Hybrid RTO
Matias & Le Roux, J. Proc. Control (2018) — ROPA
Valluru & Patwardhan, Ind. Eng. Chem. Res (2019) — Frequent RTO

A

@ NTNU

0, .
Static RTO T T
State &
Sp Parameter (here
l Yy (eStimatf)r) EKF)
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Process




Constraint: Max Gas capacity

CASE STUDY: Gas lift

Main objective: Max oil prod.

Wpo Wpg
Wi
2 E— D>E—
MV, MV,
max J =% Wo — $ war. | — $#|lw
i ( OZ pos glz gl@) fillwg|
! 1eEN 1eEN
8.1 prg < Wg,,,, T Wy
1EN
+ Reservoir

GOR = Gas/Oil ratio in feed (reservoir) Main disturbance (d): GOR variation



@ NTNU
Disturbance: GOR variation

0.14
5 0.12 _\—\_] .
=< well 1|
o
=,
e 0.1}
8 well 2

0.08

0 2 4 6 8 10 12

time [h]
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Typical measured data (pressures and flowrates)

ot
W

ot
[\)
T

ot
e}
T

wellhead pressure [bar]
N
oo

46 welll 7
well 2
44 ! |
0 2 4 6 8 10 12
= 106 . . .
=,
&
= 104
A
)
—
Q102 F
2
)
= 100
g well 1
= well 2
2 98 ' . . .
0 2 4 6 8 10 12
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GOR estimation - using “data reconciliation” (traditional static RTO)

0.14
1 ’ T
'?0'012 — ,I_ S — L
< T be—went s | [T =
b [ e T -
= ;= == | ' I
g 01-—11- | : I I
& well 2 : I |I I
1 I
0.08 | I
0 2 4 6 8 10 12

Problem: Steady-state wait time for data reconciliation
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GOR estimation — using extended Kalman filter (DRTO & HRTO)

0.14 T T T T T
= | I _— I~
<, | | | | |
————y
0.1 fm——— | I I I I I
8 I I | | | |
| | ' — = =1
0.08 | — :___,
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Oil and gas rates

SRTO = traditional static RTO
HRTO = hybrid RTO
DRTO = dynamic RTO



3,5

2,5

1,5

0,5

Results

Computation Time [s]

3
3,3631
2,5
2
1,5
1
0,9025
0,5
0,0184 0,0223 0,0199 0,0282 0
SRTO HRTO DRTO

M avg. time MW maxtime

Integrated Profit

1,8256

SRTO

2,7019

HRTO

@ NTNU

2,7509

DRTO
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Advantage of steady-state optimization (SRTO & HRTO)

 Computation time & numerical robustness
* Avoids causality issue / index problems

* Allows optimization on decision variables other than the MVs
e Simplifies the optimization

» Slower time scale (choose slow varying variables as decision variables)
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Why is traditional static RTO not commonly used?

5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation
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Dynamic limitations — not a big issue

MV2: Setpoint provided to tracking controller

\?\ 15 'II T il \?‘\ 1.5

= I ] =

™ I ; i ™

— 1 v I | — 1F

T I bR i E

= " 1 r_iﬂ |

Q i : I =

E 05 : i ! l“" ,|l.." =05

= ° [ II J. - .' )

g i | A T A =

fc@ | i ] %

U 0 I L 1 :.: i, !I U 0
0 2 4 6 8 10 12

SRTO = traditional static RTO
HRTO = hybrid RTO
DRTO = dynamic RTO
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Oil and gas rates

SRTO = traditional static RTO
HRTO = hybrid RTO
DRTO = dynamic RTO
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Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2019. Steady-state real-time optimization using transient
measurements. Industrial and Engineering Chemistry Research 115, pp.34-45.
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Why is traditional static RTO not commonly used?

3. Not robust, including computational issues
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Necessary condition of optimality

gi(u*; d) =J,(u*,d) =

 The ideal controlled variable is the gradient

 May use simple feedback controller to

control the gradient to constant setpoint of 0 //

Zero.

Problem: We do not usually have gradients as measurements
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Feedback RTO

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2018. A feedback real-time optimization strategy, Ind.
Eng. Res. Chem



Feedback RTO: Replace steady-state optimization by @&NINU
feedback control

Feedback RTO Hybrid RTO
fﬁ
Gradient x.d |x=f(x.u.d) x = f(x,u,d)
estimation J, y = h(x.u) y = h(x,u)
jll
Ymeas Ymeas
setpoint

. Ju P =0
tracking l@—-—

controller

u

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2018. A feedback real-time optimization strategy, Ind.
Eng. Res. Chem (submitted).



Feedback RTO

@ Step 1 - Linearize the dynamic model

x = f(x,u,d) x = Ax + Bu
=
J:g(x,lu) J = Cx+ Du
of of
A=) g &
ax X=X au X=X
_Jg _Jg
<= Ox x_iD a du X=X

@ Step 2 - At steady-state x =0

J = (—CA—lB T D) u
A

~

Ju

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2018. A feedback real-time optimization strategy, Ind.
Eng. Res. Chem (submitted).

@ NTNU
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Feedback RTO

. q state and
’ J ; g(():_t) ) parameter
[A B | estimation
Gradient ¢ pl| Linearize | ¢ d | x = f(x,u,d)
: : < model frome—— h <«
Estimation o ] y = (X’ u)
Jy,=-CA'B+D
Feedback
>
Controller u » Process Y Y meas
—» (e.g. PID) T ]
J., =0 n
tq

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2018. A feedback real-time optimization strategy, Ind.
Eng. Res. Chem (submitted).
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CSTR case study

Ca:Cp
A=B T;

X = [CA CB T]T
u— T,‘
d — [CAin CB

]T

in

Eas T Oy
B

J — _pCB CB —I_ (PT,-n Tin)2 \_/

* Economou, C. G.; Morari, M.; Palsson, B. O. Internal model control: Extension to nonlinear system. Industrial
& Engineering Chemistry Process Design and Development 1986, 25, 403-411.

* Ye, L,;Cao,VY.,;LiY.,;Song, Z. Approximating Necessary Conditions of Optimality as Controlled Variables.
Industrial & Engineering Chemistry Research 2013, 52, 798—-808.



Comparison of RTO approaches: MV

SRTO = traditional static RTO
HRTO = hybrid RTO

DRTO = dynamic RTO

New method = Feedback RTO

@ NTNU

closer look
450 1 _ 1 1 & 1 | 1 1 1
| I New method 440 [ N
| |_ — — —DRTO \
440 | B e -
v A - |
=) M0 | ki i :
RS 430 + & / i
g g New method |
201 - — — —DRTO e
————— SRTO v/
— — —HRTO [
380 | \/ |
410 ! 1 L 1 ] 1 1
350 400 450 500 950 0 500 1000 1500 2000
time [s] time [

t=400s, d1:IncreaseCy,
t =1400 s, d2: Increase Cg;,



Comparison of RTO approaches ®@NTNU

COMPUTATION TIME INTEGRATED LOSS
3 -
S
342.3
257.1
248.1 247.1
< 5 o
: & 3
- - - . 4 3 1
FEEDBACK  SRTO HRTO DRTO FEEDBACK  SRTO HRTO DRTO

RTO RTO
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Feedback RTO - Other case studies

* Evaporator process?
* Gas lift wells?

e Ammonia reactor?

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., Control of steady-state gradient for an Evaporator process, PSE Asia (Submitted 2019)

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2018. Gas-lift Optimization by Controlling Marginal Gas-Oil Ratio using Transient Measurements (in-Press),
IFAC OOGP, Esbjerg, Denmark

Bonnowitz, H., Straus, J., Krishnamoorthy, D., and Skogestad, S., 2018. Control of the Steady-State Gradient of an Ammonia Reactor usingTransient
Measurements, Computer aided chemical engineering, Vol.43, p.1111-1116 (ESCAPE 28)
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Why is traditional static RTO not commonly used?

1. Cost of developing and updating the model (costly offline model update)
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Necessary condition of optimality

gi(u*; d) =J,(u*,d) =

 The ideal controlled variable is the gradient

 May use simple feedback controller to

control the gradient to constant setpoint of 0 //

Zero.

Problem: We do not usually have gradients as measurements
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Data-driven method

* We do not use a model to estimate the gradient

>

* Estimate gradient Experimentally
 NB! Need Cost measurement

* Similar approaches
e Extremum seeking
« NCO tracking Ju <0 Ju >0
* Hill climbing control
* Experimental optimization

e Difference is in the way gradient is estimated >




Steady-state gradient

f 1y

Au

A

]u:E

Francois & Bonvin (2007)
Jaschke & Skogestad(2011)

Ju <0

@ NTNU




Classical Extremum seeking control

Gradient Estimation

(X)y—n

S+ wp

0 = f(z,a(x,0))
y = h(z)
Integral action
0 k| | € Wi
s | s + wy
a sin wt

Draper & Li (1951)
Krstic & Wang (2000)

@ NTNU
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Sinusoidal perturbation

0 + asin(wt) /\
T/—\'v*l‘ >< I-Qv»t _A—H SNLANLA X \/ — \_//\

sin(wt)

Special case of Fast Fourier Transform (FFT) - single frequency case



Extremum Seeking Control BNTNU

Kunnskap for en bedre verden

Probe the Y
system

AJ=0|

: : Observe how |
Decide which A | :

the cost
way to move

changes

Estimate

V:

Gradient Au Au




Classical Extremum Seeking Control @NTNU

Kunnskap for en bedre verden

* Needs time scale separation to

approximate plant as static map . ’ IV | =
b 11111

systems with slow dynamics

0

« Typically 100 times slower than the 1
system dynamics ! . /
0

 Can we remove the static map 05/
assumption?

250

0 50 100 150 200 250
Time
Come to my talk at....
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CASE STUDY: Gas lift well

— Classical ESC

Wp [0) Wp g 450 a §
l 44 - |
&
T 430 )
Wg L 42 ' | : | | .
e 0 4 8 12 16 20 24
MV,
20 [ | |
5 18- ]
16 M —
| \ \ \ \
0 4 8 12 16 20 24
“,\f 4/'\/\ .
e 02 e R ]
i 3 -
an fé 0.1 - B
Reservoir 0l | | T | ]
GOR = Gas/Oil ratio in feed 0 4 8 12 16 20 24
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Least square Extremum seeking control

: dither ¢Ju8p _ Extremum seeking controller :

| ~ : :

: l I 1 3, | Gradient g J w Fit a linear model

-control [<@——— estimator i T~

: (LSE) [ C - : J=Jg a+m
Buffer |

|

I i : Using least squares fit

u  [Controlled
| ZOH— Process L’ J(y) 2 '{3'_

Hunnekens et al. (2011)
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Least square Extremum seeking control

U_Juu‘_*'d =

ol 2.8 6
—— steady-state map
- 3 u
- “ 2.6 ]
§ 2.5 1 .
S oy ] 0 5 10 15
: :
S 23 1 ' ‘ ‘
o
0,22 1 s o5
& 0
21 I
2 L
2
0 2 4 6 0 10 15

i
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e Multiple units (Srinivasan et al. 2007)
_ » Recursive least squares estimation (Chioua, 2016)
e Phasor based extremum seeking control (Trolleberg &
Jacobsen, 2012)

Other gradient

estimation

... and some other model-based schemes
SCh €mes * Neibhouring extremals (Gros et al. 2009)
e Parameter estimation (Adetola & Guay, 2007)




Issues with Extremum seeking

Need Cost measurement

e Often cost function is a sum of several terms
] = ZPFF‘l'ZpQ Q—prP

* Estimation of cost requires model (dependency on model — no longer model free)

e All terms must be measured

Time scale separation
* Process dynamics affects gradient estimation

* Prohibitively slow convergence to the optimum

Constant probing of the system

Unknown and abrupt disturbances affects gradient estimation

ESC more suited for single units, but not for entire chemical plants



BNTNU

Norwegian University of
Science and Technology

6. Modifier Adaptation

IFAC DYCOPS Pre-symposium workshop

Johannes Jaschke



® NTNU
Why is traditional static RTO not commonly used?

1. Costof updating the model (costly offline model update)

6. Wrong model structure



. . ®NTNU
Modifier adaptation addresses the problem of plant

model mismatch

* Mismatch between model and plant leads to
performance loss

u from RTO (setpoints)

CostJ
Supervisory control (MPC)

Loss —

Regulatory control

Process Input u

Optimal input u Optimal input wu,,
From model of the plant
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Modifier adaptation addresses the problem of plant

model mismatch

* Mismatch between model and plant leads to
constraint violations (infeasibility)

u from RTO (setpoints)

CostJ
Supervisory control (MPC)

Loss —

Regulatory control

Process Input u

Optimal input u Optimal input wu,,
From model of the plant
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Possible solutions

1. Find a better model

* Better parameters

* Better structure (that matches the plant better)

2. Modify optimization problem directly (Marchetti et al, 2009, Gao et al 2016)
e Use plant measurements

* No need to have an exact model

Marchetti et al. 2009, Ind. Eng. Chem. Res., 48 (13), pp 6022-6033
Gao et al.2016 Comp. & Chem. Eng. 91, pp 318-328



How should modify the optimization problem

/° Plant Optimization problem \

ml}n Jp
S.t.
gp(u) <0

KModel optimization problem \

min
u

S.t.
gu) <0

. 4

* Key idea

. 4

* Add modifiers to make “optimality conditions” of the plant and
optimality conditions of the model match

* [teratively repeat the optimization at sample times k.



How should modify the optimization problem

/° Plant Optimization problem \

ml}n Jp
S.t.
gp(u) <0

°/I\/Iodified model optimization proble}

minJ, = J () + € + A (U — w)

S.t.
Jgm = gu) + E,f +/1‘,€(u —u) <0

. 4

* Key idea

. 4

* Add modifiers to make “optimality conditions” of the plant and
optimality conditions of the model match

* [teratively repeat the optimization at sample times k.



Modifiers to match plant derivatives

* Plant and modified model
function gradients are equal

Constraints

Im(u)

gp (W) 0 I B 0],

€9 —
A du  Ju
/ g(u) And
29" (u — )

99p _ 99m
Ju ou
u Input
Ip = IYm

Cost and constraint gradients are modified to match ~=————) P|ant and model optimum coincide




Constraints

How to compute modifiers

Im (W)
/K;(u)
S les
e Zero order modifiers
] | AT (U= wy)
e/ = J,(u) —J(u) |

€9 =g,(u) —g(u) o Input

Gradients from real plant
_99pi(w) 0g:(w)
du du




Challenges

* Finding gradients of the plant

* Requires excitation

 Finite differences (Marchetti et al. 2009),
* Experiments and past points

Broydens method

Gradients from fitted surface (Gao et al 2016, Matias, J. 2019)
Dynamic model identification (using transient data)

Parallel units (Srinivasan 2007)



Case Study

e Gas lifted oil well
e 2Degrees of freedom

. .
F s u =Wy Wi

* Constraints:
* Max gas lift for each well
BRA e * Max total gas handling capacity

-+—— Product pipeline

* Objective
] = Wg"t — O.S(W‘gz1 + Wgzz)

Wells

-—— Bottom hole ——

P'LT, Bl

Wrat1 Wro2




Gas lift flow 2 [kg/s]

Case Study — Plant-model mismatch

4900
Feasible regim
> 48
% %3 %0—|

2 25 3
Gas lift flow 1 [kg/s]

3.5

Gas lift flow 2 [kg/s]

* Blue dashed line: max gas constraint

4.5
4
3.5
3
2.5
@ easible region «+
2 =
©
1.5 3514
1 3
Q@ 7, 0 3 347,
9,%700 o0 qu OH‘"’T‘*—-—-————#—””HH
0-5 \1\ | | 344m | | |
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Gas lift flow 1 [kg/s]

* Black dashed line: max individual gas flow rate




iterative RTO using Modifier adaptation

Gas lift flow 2 [kg/s]

25

[p*]
T

Profit contour lines [$]
T T T | T

Gas lift flow 1 [kg/s]

e Circle: and Diamond:
Points from: MA-RTO iterations

e Stars: Probing point for
estimating gradients



Alternative: Output modifier adaptation

* Instead of adjusting cost and constraints, adjust output model
V(W) = y() + ¥ + 7 (u — wy)
* Modified RTO problem

Uperq = argmin Jyy = J(wy(w) + € + A} (u — )
S.t. .
g,y +e¥ + 47 (u—uy) <0

Marchetti et al 2009

Cost and constraint gradients are modified to match ~=————) P|ant and model optimum coincide




Conclusion

A effective way to handle plant-model mismatch
* Combines properties from model-based and data-based optimization

Optimization problem is updated using plant gradient estimates
* Same gradient estimation problems as ESC

Iteratively converges to an optimum.
* Relatively slow, but we start at a better point (from the model).
* Can (should) be combined with other approaches
e Better than doing nothing, and living with the mismatch

Other refinements
* Decentralized schemes (Schneider et al. 2018)
* Second order modifiers (Faulwasser, Bonvin 2014)
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Do we really need real-time optimization?

e Often not!

* We often know or can guess the active constraints
* Example: Assume it’s optimal with max. reactor temperature

* No need to have a comples dynamic model with energy balance to find the
optimal cooling
* Just use a Pl-controller

* CV =reactor temperature
* MV = cooling



Systematic procedure for economic process control

Start “top-down” with economics (steady state):

» Step 1: Define operational objectives (J) and constraints Scheduling

* Step 2: Optimize steady-state operation J

* Step 3: Decide what to control (CVs) Stewid pttsion
— Step 3A: Identify active constraints = primary CV1. ’

— Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H)

* Step 4: Where do we set the throughput? TPM location RTO "’\, | |
=1 Local optimization
(hour)
Then bottom-up (dynamics): fo-T== —=--. OV
e Step 5: Regulatory control woor | —] :
— Control variables to stop “drift” (sensitive temperatures, pressures, ....) fovaneed | ~—_— |
Structures | Supe:\r::is:urze;;mtrol : Control
| layer
. . . “ B ” “ ” I Ccv2 ! yCV
Finally: Make link between “top-down” and “bottom up , V2
* Step 6: “Advanced/supervisory control” w — t]. :
e Control economic CVs: Active constraints and self-optimizing variables | || P econas |
e Look after variables in regulatory layer below (e.g., avoid saturation) - e :
e Step 7: Real-time optimization (Do we need it?) MVs

S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).



Step 1. Define optimal operation (economics) ®NTNU
Usually steady state

Minimize cost J =J(u,x,d) J
subject to:
Model equations: f(u,x,d)=0

Operational constraints: g(u,x,d) <0

— u =degrees of freedom Jopt
— X = states (internal variables)
— d =disturbances

uopt

Typical cost function in process control:

J = cost feed + cost energy — value of products




constraint @ NTNU

Step 2. Optimize J

(a) Identify degrees of freedom

(b) Optimize for expected disturbances
Jopt

* Need good model, usually steady-state is OK

* Optimization is time consuming! But it is offline
* Main goal: Identify ACTIVE CONSTRAINTS

* A good engineer can often guess the active
constraints
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Active constraints

* Active constraints:
 variables that should optimally be kept at their limiting value.

* Active constraint region:
* region in the disturbance space defined by which constraints are active within it.

Region 3
Optimal operation:

N\

Need to switch between regions
using control system

Region 2

Region 1

Disturbance 2

Disturbance 1
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Step 3. Implementation of optimal operation

* Have found the optimal way of operation. How should it be
implemented?

* What to control ? (CV,).
1. Active constraints
2. Self-optimizing variables (for unconstrained degrees of freedom)

Always try first: Move optimization into control layer



Active constraint control using Pl-controller
5 ® NTNU
fd

Optimization with Pl-controller |

max y yP = ymax e l y
s.t. y<ymax " ' _ ’

u S umax

Example: Drive as fast as possible to airport (u=power, y=speed, y">* =120 km/h)

* Optimal solution has two active constraint regions:
1. y=ym* - speed limit
2. u=um* - max power

* Note: Positive gain from MV (u) to CV (y)
* Solved with Pl-controller

o ysP = ymax

* Anti-windup: I-action is off when u=u™

s.t. = subject to
y = CV = controlled variable
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The less obvious case: Unconstrained optimum

A

* U: unconstrained MV )

* What to control? y=CV=?

Jopt | !
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Example: Optimal operation of runner

e Cost to be minimized, J=T
* One degree of freedom (u=power)
* What should we control?
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1. Optimal operation of Sprinter

* 100m. J=T

* Active constraint control:
* Maximum speed (”no thinking required”)
e CV = power (at max)
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2. Optimal operation of Marathon runner

e 40 km. J=T
 What should we control? CV=?
* Unconstrained optimum

A
- u

. > __
Ugpy PN %ﬁ} %
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Marathon runner (40 km)

* Any self-optimizing variable (to control at
constant setpoint)?
* ¢, =distance to leader of race
* ¢,=speed
* ¢;= heart rate
* ¢, = level of lactate in muscles




Conclusion Marathon runner

~
- >

\\Nplinli,xﬂ‘/
_RTQ)

~
% .- ~
ot ~.
C’«'."

>

=T @ NTNU

' >
C c=heart rate
opt

select one measurement

e

Measu l‘l;‘l'['ll:"]]/
Feedback CV1 = heart rate combination
1 . |- S—
Controller [:H;I
u
Y

d % -

ﬁ-—"\ | y n’

» CV = heart rate is good “self-optimizing” variable
» Simple and robust implementation
* Disturbances are indirectly handled by keeping a constant heart rate
« May have infrequent adjustment of setpoint (c,)



Self-optimizing control

@ NTNU

Self-optimizing control is when we can achieve an acceptable loss with constant

setpoint values for the controlled variables

ost J

C y
hiy) |
—P : u
. Setpoint LU Process
—__»| control

bd

‘I Good

C

(b) Flat optimum: Imple-
mentation easy

\_/B AD

[}

(¢) Sharp optimum: Sensi-
tive to implementation erros



Unconstrained degrees of freedom

@ NTNU

The ideal “self-optimizing” variable is the gradient, J ,
c=0J/0u=],

* Keep gradient at zero for all disturbances (c = J =0)

cost J

Problem: Usually no measurement of gradient



Unconstrained degrees of freedom
ldeal: c = J,
In practise, use available measurements: ¢ = H y. Task: Select H!

l cs:constant
Controller |- |
l u T
c

- p| Meaurement
Process ¥ Combination H

@ NTNU

e Single measurements:

¢ =Hy Hzlg] ?

o o
o o
L 1

e Combinations of measurements:

hiy1 hi2 hiz Mg ]
c=H H=
y [ a1 hop hoz hog



Unconstrained degrees of freedom

@ NTNU

Combinations of measurements, c= Hy
Nullspace method for H (Alstad):

HF=0 where F=dy, /dd

J Proof. Appendix B in:  Jaschke and Skogestad, “NCO tracking and self-optimizing control in the context of real-
time optimization”, Journal of Process Control, 1407-1416 (2011)



Unconstrained degrees of freedom

O NTNU
Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y, = hr [beat/min], y, =v [m/s]
c =Hy, H=[h; h,]]

F = dy,,,/dd = [0.25 -0.2]
HF=0 ->h,f,+h,f,=0.25h,—0.2 h, =0
Choose h,;=1-> h,=0.25/0.2=1.25

Conclusion:c=hr+1.25v
Control ¢ = constant -> hr increases when v decreases (OK uphill!l)



With measurement noise
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Exact local method for H

“=0"in nuIIspace method (no noise)

ming || JH2(HGY) VHIFWy Wo]|ls

Analytical solution:
H=acV'(YYT)~1 where Y = [FW; W,y]



Unconstrained degrees of freedom in practice

®© NTNU
What variable c=Hy should we control? (self-optimizing variables)

ming || Jutl (HGY)™ gFWd o] ||z

1. The optimal value of c should be insensitive to disturbances

e Small HF = dc,,/dd

e large = dc/du
e Equivalent: Want flat optimum

' Good |* UBAD

C C

(b) Flat optimum: Imple- (c) Sharp optimum: Sen
mentation easy tive to implementation erros

Note: Must also find optimal setpoint for c=CV,
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Example: CO2 refrigeration cycle

J =W, (work supplied)
DOF = u (valve opening, z)
Main disturbances:

d, =Ty

d, = T, (setpoint)

d3 - UAloss

What should we control?

Ty
Qlos:‘-

-
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CO2 refrigeration cycle

Step 1. One (remaining) degree of freedom (u=z)
Step 2. Objective function. J = W, (compressor work)
Step 3. Optimize operation for disturbances (d,=T, d,=T,,, d;=UA)

e Optimum always unconstrained

Step 4. Implementation of optimal operation
* No good single measurements (all give large losses):

* P Th 2, ...
Nullspace method: Need to combine n +n,=1+3=4 measurements to have zero
disturbance loss

Simpler: Try combining two measurements. Exact local method:
* c=h;p,+h, T, =p,+kT,; k=-853bar/K
Nonlinear evaluation of loss: OK!



Linear “maximum gain™ analysis of controlled variables for CO3 case

CO2 cycle: Maximum gain rule

Variable (v) Nom. G Avoptidi)| | Avoptl n Span vy |G
_ Ay _ G
N dy (Ty) dy (T¢) dy (UAjoss) |Ayope| +1 = Spany
Py/T;(bar °ch 0.32 —0.291 0.140 —0.047 0.093 0.174 0.0033 0.177 0.25
Ph (bar) 07.61 —T78.85 483 —15.5 31.0 59.4 1.0 60.4 1.3
TI(°C) 355 36.7 16.27 —2.93 T.64 18.21 1 19.2 1.91
TE—TH ("C) 3.62 24 4,10 —1.92 5.00 6.75 1.5 8.25 2.91
z 0.34 1 0.15 —0.04 0.18 0.24 0.05 0.29 3.45
Vi (m3) 0.07 0.03 —0.02 0.005 —0.03 0.006 0.001 0.007 477
T2 (°C) 25.5 60.14 8.37 0.90 3.18 Q.00 1 10.0 (.02
Ph combine (bar) 97.61 —592.0 —23.1 —23.1 3.91 33.0 9.53 42.5 13.9
Mg, (kg) 4.83 —11.18 0.151 —0.136 0.119 0.235 0.44 0.675 16.55

Nullspace method: ¢ = pp combine = h1pn + halh = pp + k15 k = —8.53 bar/K
P

J.B. Jensen, 8. Skogestad / Computers and Chemical Engineering 31 (2007) 1590-1601

h

@ NTNU
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Refrigeration cycle: Proposed control structure

CV1= Room temperature
CV2= “temperature-corrected high CO2 pressure”
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Summary Step 3. What should we control (CV,)?

Selection of primary controlled variables c = CV,

1. Control active constraints!
2. Unconstrained variables: Control self-optimizing variables!

* Self-optimizing control is an old idea (Morari et al., 1980):

“We want to find a function c of the process variables which
when held constant, leads automatically to the optimal
adjustments of the manipulated variables, and with it, the
optimal operating conditions.”



O NTNU
Self-optimizing control (SOC)

* Local approximation: c = Hy. Challenges SOC:

Need detailed steady-state

* Nonli it
model to find optimal H onfineanty

* Nullspace method * Need new SOC variables for each
* Exact local method active constraint region
* Must reopt.imize for each * Similar to multiparametric
expected disturbance optimization and lookup tables

e But calculations are offline
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Supervisory control layer

Alternative implementations:

* Model predictive control (MPC)
* Classical advanced control structures (PID,
selectors, etc.)

@ NTNU

Scheduling
(weeks)

hd

Site-wide optimization
(weeks)

e

RTO

I |

'

MPC or
Advanced
Con trol
Stbructures

PID
control

Local optimization
(hour)

cvl

—

W |

Supervisory control
L {minutes)

:‘Z‘ cv2
—

A I

Regulatory control
[ (seconds)

P |

Control
layer
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|II

Classical “Advanced control” structures

1. Cascade control (measure and control internal variable)
2. Feedforward control (measure disturbance, d)
* Including ratio control
3. Change in CV: Selectors (max,min)
4. Extra MV dynamically: Valve position control (zinput resetting =midranging)
5. Extra MV steady state: Split range control (+2 alternatives)
6. Multivariable control (MIMO)

» Single-loop control (decentralized)
* Decoupling
* MPC (model predictive control)

Extensively used in practice, but almost no academic work

CV = controlled variable (y)
MV = manipulated variable (u)



Split range control:
Donald Eckman (1945)

1ne temperature of plating tanks is controlled by means of dual con-
trol agents. The temperature of the circulating water is controlled by
admitting steam when the temperature is low, or cold water when it is
high. Figure 10-12 illustrates & system where pneumatic proportional
control and diaphragm valves
with split ranges are used. The ";mﬂ;"
steam valve is closed at 8.5 Ib
per &q in. pressure from the con- [ Split range
troller, and fully open at 14.5 1b o e
per 8q in. pressure. The cold
water valve is closed at 8 Ib per cud
8q in. air pressure and fully open
at 2 Ib per sq in. air pressure.
If more accurate valve set- Waterin
tings are required, pneumatic
valve positioners will DAl Fia. 10-12. Dual-Agent Control System

the same function. The Zero, - A . _
. . for A usting Heat, and Coolj f th.
action, and range adjustments djusting Heating ooling of Ba

of valve positioners are set so that both the steam and cold water
valves are closed at 8 1b per 8q in. controller output pressure. The
advantages gained with valva nacitianare men 4l-i 4+ o e
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Switching between active constraints

1. Output to Output (CV - CV) switching (SIMO)

e Selector

2. Input to output (CV — MV) switching

Do nothing if we follow the pairing rule: «Pair MV that saturates with CV that can
be given up»

3. Input to input (MV — MV) switching (MISO)
* Split range control
 OR: Controllers with different setpoint value
 OR: Valve position control (= midranging control)



CV-MV switching ?NTNU
Optimization with Pl-controller |

max y yP = ymax e l y
s.t. y<ymax " ' _ ’

u S umax

Example: Drive as fast as possible to airport (u=power, y=speed, y">* =120 km/h)

* Optimal solution has two active constraint regions:
1. y=ym* - speed limit
2. u=um* - max power

* Note: Positive gain from MV (u) to CV (y)
* Solved with Pl-controller

° SPp = ymax

* Anti-windup: I-action is off when u=u™

s.t. = subject to
y = CV = controlled variable



CV-MV switching

Optimization with Pl-controller 5
min u y® = ymin e l .
s.t. y=>ymn " ’

Example: Minimize heating cost (u=heating, y=temperature, y™"=20 °C)

* Optimal solution has two active constraint regions:
1. y=y™" - minimum temperature
2. u=umn - heating off

* Note: Positive gain from MV (u) to CV (y)
* Solved with Pl-controller

o yYSP = ymin

* Anti-windup: l-action is off when u=u™"

s.t. = subject to
y = CV = controlled variable



CV-MV switching ®NTNU
Optimization with Pl-controller

The two examples:
* Optimal operation: Switch between CV constraint and MV saturation

* A simple Pl-controller was possible because we followed the pairing rule:
«Pair MV that saturates with CV that can be given up»



MV-MV switching

Split-range control (SRC): One CV (y). Two or more MVs (u1,u2)
Example: Room heating with 4 MVs

MVs:
% _T 1. AC (expensive cooling)
¥= 2. CW (cooling water; cheap)
3. HW (hot water, quite cheap)
¢2¢ 4. Electric heat, EH (expensive)
Wr 222 222
SRC e
i-_----___----_! Uac ‘]'
» i i “Cf‘l,‘i-' )
! (z) ‘ Crt =SB [} 1y |Room .
B E i UEH

Avpw Avgn .
Jmax=

{‘mm:O L

Internal signal to split range block (v)



MV-MV switching

Simulation Pl-control: Setpoint changes temperature
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MV-MV switching

Example: Room heating with 4 MVs

/\ MVS:

1. AC (expensive cooling)

=) 2. CW (cooling water; cheap)
5553 y=T .
3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)
222

e 1200

Three Alternatives:

1. Split range control (SP=22C)

Controllers with different setpoint values (SP=24C, 23C, 22C, 21C)
Valve position control (= midranging control) (Use always HW for SP=22C)



CV-CV switching

Blending process with max selector

SUGAR with some impurity

F
L] L]
Xs3 P XE3
cvii® ™ cv2

s X¥53=0.1 i f x%g; = 0.001

: -

F:splé ér Fw)p_

------------------------------- MAX

MV = Water feed (F,)

CV1 = Sugar concentration (Should be at SP=0.1 whenever feasible|)
CV2 = Impurity concentarion (Max. 0.001)

Disturbances: Variation in sugar feed (F,) and concentration of impurity in sugar



CV-CV switching
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Figure 10: Simulation results for a step disturbance F, = 1.5kg/s at { = 10s and xg, = 0.006
at £ = 100 s (extreme case). The black dotted lines show the concentration specification for
xg3 and xps respectively. In the normal case, the controller is controlling y; = xg3 at
y1s = 0.1, while in the extreme case, the controller is controlling y» = rp3 at yo, = 0.001.



Conclusion: Systematic procedure to avoid RTO-layer and

even MPC-layer

Start “top-down” with economics (steady state):
* Step 1: Define operational objectives and constraints
* Step 2: Optimize steady-state operation

* Step 3: Decide what to control (CVs)

— Step 3A: Identify active constraints = primary CV1.
— Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H)

* Step 4: Where do we set the throughput? TPM location RTO

Then bottom-up (dynamics):

MPC or

* Step 5: Regulatory control Advanced

— Control variables to stop “drift” (sensitive temperatures, pressures, ....) Structures

Finally: Make link between “top-down” and “bottom up”

PID

* Step 6: “Advanced/supervisory control” control

e Control economic CVs: Active constraints and self-optimizing variables
e Look after variables in regulatory layer below (e.g., avoid saturation)

S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).
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Why not combine different approaches to give
improved performance?!

Examples:
* Combining model and data-based approaches
* Combining online and offline methods

Some benefits
 Faster rejection of known disturbances
e Capability of handling unmodeled disturbances



© NTNU
Standart RTO + MPC + self-optimizing control

|dea: take the best from all worlds

* Self-optimizing Control

- Reconlciliation ” e Fast correction for known
—— Gross Error Detection and modelled disturbances
Parameter Estimation
’ [}
H Steady State MPC:
Real-time Optimizer Detection ° Predicting responSES’ and
< v good constraint handling
MPC <— H le—
€ y e Standard RTO:
u
Disturbances T R * Handling nonlinearity and
M large disturbances optimally

Graciano et al. 2015, Journal of Process Control 34, 35-48



Distillation Case Study

e Separation of 3 components RTO Problem

min Cost°P' = pgF + py(VB1 + VB2) — pgD1 — prD2 — pxB2
u

/‘?Eé} . /ﬁ@’ . Xb > 0.95

a2 D2 Xt >0.95
FoF Xx >0.95
VB1 < 4.080 [kmol/min]

AL} VB2 VB2 < 2.405 [kmol/min]
T & PG
B > B2

* MPC
oo * Setpoint tracking
i = B e Standard (concentrations+temperature)
- - * Self-optimizing variable combinations
v aosrs|i  Constraint handling
3 Xt, VB2 -0,0450

* Enforce constraints as they become active

-0.0450 -0,0375 -0.0300 -0.0225 -0,0150 -0_.0075]0,0000'0,0075 0.0150
| Toluene |




Profit of combined approach

Profit profile

T | ' ' '

_ --- standard MPC controlling

concentrations and 1 tray temp.
--- MPC Controlling SOC variables

0.96 -
€ 094 ———— ;:"E"l"-"
-E_ e I
a \
g RTO update
o 0.92- _|

0.9} -
0.88 —disturbance occurs |
‘:__—
| | ] ] | | | | |
0 10 20 30 40 50 60 70 80 90 100

time (min)

* Disturbances are rejected also inbetween RTO updates.
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NCO tracking + self-optimizing control

* |dea: take the best from both worlds
 Self-optimizing Control: Fast correction for known and modelled disturbances
* NCO tracking: use Plant gradient estimates to handle unmodeled disturbances



Selt-optimizing Control and NCO tracking

Self-optimizing control
* Find a good output combination

e Control to zero with favourite
controller

Disturbances
d

Controller
¢ = const

NCO tracking idea
* Measure gradient
e Adjust input to make it zero

Plant gradient

Disturbances

d

uk+l=uk+Au

Controller T

Au=- J_qu Ju

NCO: Necessary conditions of Optimality



Combination of self-optimizing control and NCO tracking

* Fast time scale (lower layer):
* reject known (modelled) disturbances

Optimization
NCO tracking

as RTO using self-optimizing control
Chi"‘])lliln
PID/MPC | ¢ :
{ o el }— * Slow time scale (upper layer)
~ socC * reject unknown (unmodeled)
! | ¢ =Hy,, disturbances in NCO tracking

disturbance d

Plant

yl”
/

Jaschke & Skogestad (2011)



* Self-optimizing and NCO
tracking (sampling time 10

min)

1.4
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—— NCO profit
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4000 5000

* Combined Self-optimizing

Profit

and NCO tracking (sampling
time 25 min)

1.4

1.2}

0.8}

0.6}

0.4

0.2

—— Combined System
— NCO tracking

N A

0 1000 2000 3000

4000

5000



@ NTNU

Similar approach: ESC/RTO + Self-optimizing control

 Self-optimization control is
always complementary

e Can combine with

* Extremum-seeking control

e Traditional Static RTO

Straus. J, Krishnamoorthy, D., and Skogestad, S., 2018. On combining extremum seeking control and self-

optimizing control. J. Proc. Control (In-Press).

EE— Process

Extremum

controller

dither i=c,

Setpoint
Control

iu

seeking ]

y

y ™

o
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T+SOCH+ESC
— — —T+S0C
T+ESC
—— =T

£opt,SS

Objective: Maximize extent of reaction

Case study: Ammonia Reactor
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CONCLUSION: ® NTNU

Why is traditional static RTO not commonly used?
Some alternatives

1. Cost of developing and updating the model (costly offline model update)
-> Fix: estimate plant gradients directly, like extremum-seeking - Machine learning (new)
2. Wrong value of model parameters and disturbances (slow online model update)
- Fix: DRTO, HRTO, self-optimizing control (fastest)
3. Notrobust, including computational issues
-> Fix: Feedback RTO, self-optimizing control
4. Frequent grade changes make steady-state optimization less relevant
=> Fix: Dynamic RTO (DRTO) or EMPC
5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation
=> Fix: DRTO, EMPC (also HRTO ok!)
6. Incorrect model Structure
-> Fix: Modifier adaptation



Proposal : Combine RTO with other approaches

* ESC / modifier adaptation layer: make RTO approach the real
optimum .

* SOC layer: make optimization faster, reduce wait time for model
update and online optimization



Conclusion

Extremely slow (days)

Slow (hour)

Fast (minute)

Data based approach
Plant gradlent based method

Real-time optimization
(SRTO/DRTO/HRTO)

-

Self-optimizing control
(in MPC/PID layer)

| o

d —3}

Process

Gradient
estimator

< A

y

* Thank you

Measurements

........................................... > |

Model free

RTO:
Detailed model
(online)

SOC:
Detailed model
(offline)
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 Next slide

Red box = bad,
green box = good,

No box = neutral



self- extremum new proposed economic
optimizing seeking method Static RTO Hybrid RTO MPC/
control! control? (Feedback RTO) Dynamic RTO?

Cost Measured No Yes No No No No
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