Self-Optimizing Control for Recirculated Gas lifted Subsea Oil Well Production

Risvan Dirza1, Edmary Altamiranda2, Sigurd Skogestad1

1Department of Chemical Engineering
Norwegian University of Science and Technology (NTNU)
2Technology Department, Aker BP ASA, Norway

Toronto, July 2024
Optimization in Oil & Gas Industry
Main Research Questions

How to optimize the operation of a

- complex, large-scale oil and/or gas production system,
- varying timescales,
- numerous potential constraints,

Preferably utilizing simple tools like

- PID controllers,
- selectors,
- and small-scale solvers (if necessary)?
Outline

• Conventional RTO

Put optimization into control layer:
• Self-optimizing control (SOC)
 – Marathon runner
• Case study using SOC
• New results on gradient-based control for changing active constraints
 – Primal-dual using Lagrange multipliers
 – Region-based with selectors
Optimal Operation

RTO = real-time optimization
MPC = model predictive control
ARC = advanced regulatory (PID) control
Optimal Operation

- Traditional RTO

Issue: Steady-state wait time

Issue: Non-transparent constraint control

Issue: Complex, need on-line model
Optimal Operation

- Self-optimizing control: Select good CV

Advantage: Transparent and simple

Advantage: Fast

Issues: Nonlinearity (some loss in optimality) + not optimal if constraints change

CV = controlled variable
Example: Optimal operation of runner

- Cost to be minimized, $J=T$
- One degree of freedom ($u=\text{power}$)
- What should we control (CV)?

Self-optimizing CV?

- **Sprinter (100m):**
 - «Run as fast as you can»
 - **Active constraint control**
 - $CV=u$ (no controller needed), $CV_s = \text{max}$
Example: Optimal operation of runner

- Marathon (40 km)

\[J = T \]

\[u_{\text{opt}} \quad u = \text{power} \]

\(CV_1 = \) distance to leader of race
\(CV_2 = \) speed
\(CV_3 = \text{heart rate} \)
\(CV_4 = \) level of lactate in muscles
Conclusion Marathon runner

CV = heart rate

• CV = heart rate is a good “self-optimizing” variable
• Disturbances are indirectly handled by keeping a constant heart rate
• May have infrequent adjustment of setpoint (c_s)
Gas-Lifted Optimization Problem
Recirculated Gas-Lifted
Steady-state optimization problem

\[
\min_{\mathbf{u}} \quad J(\mathbf{u}, \mathbf{d}) = -p_{\text{oil}}w_{\text{os}} + p_{\text{en}}\Phi_{gl}
\]

s.t. \[
\begin{align*}
g_{z_{gl,i}}(\mathbf{u}, \mathbf{d}) : & \; z_{gl,i} - 1 \leq 0 & i = 1, \ldots, 6, \\
g_{z_{s,i}}(\mathbf{u}, \mathbf{d}) : & \; -z_{s,i} + 0 \leq 0 & i = 1, \ldots, 3, \\
g_{s_i}(\mathbf{u}, \mathbf{d}) : & \; s_i - \bar{s}_i \leq 0 & i = 1, \ldots, 3, \\
g(\mathbf{u}, \mathbf{d}) : & \; w_{gs} - \bar{w}_{gs} \leq 0
\end{align*}
\]

\[
\mathbf{y} = \begin{bmatrix} p_{bh,2} & p_{wh,2} & \boxed{p_{d,3}} & p_s \end{bmatrix}^T
\]

\[d = GOR_2\]

Maximize oil revenue \hspace{1cm} Minimize gas lift cost
GLC has max. opening \hspace{1cm} SCV has min. opening
Surge constraints \hspace{1cm} Max export/produced gas constraints
Available measurements \hspace{1cm} Disturbances
Self-optimizing Control Structures

- **Structure 1**
 - Keep the **valve positions constant** ($\mathbf{u} = \mathbf{u}^*$)

- **Structure 2**
 - **Control active constraints**
 - $z_{gl,5} \rightarrow g(\mathbf{u}, d)$
 - $z_{s,i} \rightarrow g_{z_{s,i}}(\mathbf{u}, d)$
Self-optimizing Control Structures

- **Structure 3**
 - **Region I**
 - Control active constraints
 - \(z_{gl,5} \rightarrow g(u, d) \)
 - \(z_{s,i} \rightarrow g_{z_{s,i}}(u, d) \)
 - Control **bottomhole pressure** as self-optimizing control variable
 - \(z_{gl,2} \rightarrow p_{bh,2} \)
 - **Region II**
 - Control active constraint
 - \(z_{s,i} \rightarrow g_{z_{s,i}}(u, d) \)
 - Control self-optimizing control variables
 - \(z_{gl,2} \rightarrow p_{bh,2} \)
 - \(z_{gl,5} = z_{gl,5}^* \)

Allowing active constraint switching
Self-optimizing Control Structures

- **Structure 4**

 Region I
 - Control active constraints
 - $z_{gl,5} \rightarrow g(u, d)$
 - $z_{s,i} \rightarrow g_{zs,i}(u, d)$
 - Control **wellhead pressure** as self-optimizing control variable
 - $z_{gl,2} \rightarrow p_{wh,2}$

 Region II
 - Control active constraint
 - $z_{s,i} \rightarrow g_{zs,i}(u, d)$
 - Control self-optimizing control variables
 - $z_{gl,2} \rightarrow p_{wh,2}$
 - $z_{gl,5} = z_{gl,5}^*$
Self-optimizing Control Structures

- **Structure 5**
 - **Region I**
 - Control active constraints
 - $z_{gl,5} \rightarrow g(u, d)$
 - $z_{s,i} \rightarrow g_{z_{s,i}}(u, d)$
 - Control tubing pressure as self-optimizing control variable
 - $z_{gl,2} \rightarrow \Delta p_{bw,2}$
 - **Region II**
 - Control active constraint
 - $z_{s,i} \rightarrow g_{z_{s,i}}(u, d)$
 - Control self-optimizing control variables
 - $z_{gl,2} \rightarrow \Delta p_{bw,2}$
 - $z_{gl,5} = z_{gl,5}^*$
Self-optimizing Control Structures

- **Structure 6**
 - **Region I**
 - Control active constraints
 - $z_{gl,5} \rightarrow g(u, d)$
 - $z_{s,i} \rightarrow g_{zs,i}(u, d)$
 - Control mix of tubing and wellhead pressure as self-optimizing control variable
 - $z_{gl,2} \rightarrow c := 0.521p_{bh,2} + 0.854p_{wh,2}$
 - **Region II**
 - Control active constraint
 - $z_{s,i} \rightarrow g_{zs,i}(u, d)$
 - Control self-optimizing control variables
 - $z_{gl,2} \rightarrow c := 0.521p_{bh,2} + 0.854p_{wh,2}$
 - $z_{gl,5} = z_{gl,5}^*$

Null space method:
- $HF = 0$
Self-optimizing Control Structures

Structure 7

Region I
- Control active constraints
 - $z_{gl,5} \rightarrow g(u, d)$
 - $z_{s,i} \rightarrow g_{zs,i}(u, d)$
- Control two optimal self-optimizing control variables
 - $z_{gl,2} \Rightarrow c(1)$
 - $z_{gl,4} \Rightarrow c(2)$

Region II
- Control active constraint
 - $z_{s,i} \rightarrow g_{zs,i}(u, d)$
- Control self-optimizing control variables
 - $z_{gl,2} \rightarrow c(1)$
 - $z_{gl,4} \rightarrow c(2)$
 - $z_{gl,5} = z_{gl,5}^*$

Null space method:

$$HF = 0$$
Simulations Results

- Steady-state monthly loss

Table 11.2: Steady-state monthly loss

<table>
<thead>
<tr>
<th>Control Structure</th>
<th>$-2.5% \text{GOR}_2$ (NOK)</th>
<th>$+2.5% \text{GOR}_2$ (est.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NOK 59.544</td>
<td>Inf</td>
</tr>
<tr>
<td>2</td>
<td>NOK 6116.745</td>
<td>NOK \sim 3.444.831</td>
</tr>
<tr>
<td>3</td>
<td>NOK 604.897</td>
<td>NOK \sim 2.810.376</td>
</tr>
<tr>
<td>4</td>
<td>NOK 686.095</td>
<td>NOK \sim 3.595.481</td>
</tr>
<tr>
<td>5</td>
<td>NOK 633.027</td>
<td>NOK \sim 3.065.285</td>
</tr>
<tr>
<td>6</td>
<td>NOK 124.246</td>
<td>NOK \sim 1.523.036</td>
</tr>
<tr>
<td>7</td>
<td>NOK 248.667</td>
<td>NOK \sim 1.817.930</td>
</tr>
</tbody>
</table>
Case study summary

- Extend gas lift model to recirculated gas-lift oil production.
- Reconfirms the SOC can be an alternative for optimization.
- Selector allows active constraint region switching.
- Structure 6 is recommended. From nullspace method:
 \[CV = 0.52p_{bh,2} + 0.85p_{wh,2} \]
SOC: changing constraints are not handled optimally

- We have some more recent results based on KKT optimality conditions
- $\lambda = \text{Lagrange multiplier}$
- Cost gradient: $\nabla_u J \equiv J_u$

Theorem 2.3: Karush-Khun-Tucker (KKT) Optimality Conditions

Suppose that the objective function $J(u, d)$ and constraint $g(u, d)$ have subderivatives at point u^*. If u^* is a local optimum and the optimization problem satisfies some regularity or KKT conditions (see below), then there exist constants λ, called KKT multipliers or Lagrange multipliers or dual variables, such that the following conditions hold:

\begin{align}
\nabla_u \mathcal{L}(u, d, \lambda) &= 0 \\
g_i(u, d) &\leq 0, \quad \forall i = 1, \ldots, n_g \tag{2.9a} \\
\lambda_i &\geq 0, \quad \forall i = 1, \ldots, n_g \tag{2.9b} \\
\lambda_i g_i(u, d) &= 0, \quad \forall i = 1, \ldots, n_g \tag{2.9c}
\end{align}

where

$$\nabla_u \mathcal{L}(u, d, \lambda) = \nabla_u J(u, d) + \nabla_u^T g(u, d) \lambda,$$

$$g(u, d) = [g_1(u, d) \ldots g_{n_g}(u, d)]^T,$$

$$\lambda = [\lambda_1 \ldots \lambda_{n_g}]^T.$$

Eq. (2.9a) is called stationary condition, Eq. (2.9b) is called primal feasibility condition, Eq. (2.9c) is called dual feasibility condition, and Eq. (2.9d) is called complementary slackness condition [36].
I. Primal-dual control based on KKT conditions:
Tracks active constraints by adjusting Lagrange multipliers (= shadow prices = dual variables) λ

$\mathbf{L}_u = \mathbf{J}_u + \lambda^T g_u = 0$

Inequality constraints: $\lambda \geq 0$

- Problem: Constraint control using dual variables is on slow time scale

- D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Control 97 (2021) 72–83,
II. Region-based feedback solution with «direct» constraint control (for case with more inputs than constraints)

Process

Constraint controllers (fast PID-controllers)

\[g \text{ (constraints paired with } u_1) \]

\[N^T g_u = 0 \]

\[\text{Introduce } N: N^T g_u = 0 \]

Selector on primal variables (inputs)

Gradient estimation

\[J_u \]

\[J_{u_1} \]

\[J_{u_2} \]

\[\text{Changes!} \]

Control

1. Reduced gradient \(N^T J_u = 0 \)
 - «Self-optimizing variables»

2. Active constraints \(g_A = 0 \).

- Bernardino and Skogestad, Decentralized control using selectors for optimal steady-state operation with changing active constraints, J. Process Control, Vol. 137, 2024
New static gradient estimation based on SOC: Very simple and works well!

From «exact local method» of self-optimizing control:

\[
H^J = J_{uu} \left[G^y T \left(\tilde{F} \tilde{F}^T \right)^{-1} G^y \right]^{-1} G^y T \left(\tilde{F} \tilde{F}^T \right)^{-1}
\]

where \(\tilde{F} = [FW_d \quad W_{ny}] \) and \(F = \frac{d\psi_{opt}}{dd} = G^y_d - G^y J_{uu}^{-1} J_{ud} \).

- Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024
Conclusion

Move optimization into control layer by selecting good CVs

- CV = Active constraints

Unconstrained degrees of freedom:

- CV = Self-optimizing variables
- CV = Gradients

Reminder: DYCOPS conference in Bratislava (Slovakia) 16-19 June 2025. I hope to see you there!

CV = controlled variable