Part 2. Decomposition and optimal operation

* Hierarchical decomposition. Control layers.
* Design of overall control system for economic process control
* CV selection



Optimal operation and control of process

* Given process plant
* Want to Maximize profit P => Minimize economic cost J;=-P [S/s]

° JS = cost feed + cost energy — value products
* Excluding fixed costs (capital costs, personell costs, etc)

e Subject to satisfying constraints on

* Products (quality)
* Inputs (max, min)
» States = Internal process variables (pressures, levels, etc)

« Safety
* Environment
* Equipment degradation

* Degrees of freedom = manipulated variables (MVs) = inputs u



Economic motivation for better control: Squeeze
and shift rule
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Figure & Sgueeze and shift rule: Squeeze the variance by improving control and shift the

setpoint closer to the constraint (i.e., reduce the backoff) to optimize the economics (Richalet!

ot al| 1975).



Practical operation: Hierarchical (cascade) structure
based on time scale separation
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Two fundamental ways of decomposing the
controller

. . . Site-wide optimization
. Vertlcc?l (hierarchical; (day) e Horizontal
cascade) _ (decentralized)
* Based on time scale
separation ¢ Usually based on

* Decision: Selection of CVs distance

that connect layers

* Decision: Pairing of MVs
and CVs within layers

CV = controlled variable
MV = manipulated variable



O NTNU
Main objectives operation

1. Economics: Implementation of acceptable (near-optimal) operation
: Stable operation around given setpoint

ARE THESE OBJECTIVES CONFLICTING?
IS THERE ANY LOSS IN ECONOMICS?

e Usually NOT

— Different time scales
Stabilization fast time scale

— Stabilization doesn’t “use up” any degrees of freedom
Reference value (setpoint) available for layer above
But it “uses up” part of the time window



Hierarchical structure: Degrees of freedom
unchanged

* No degrees of freedom lost as setpoints y,. replace inputs u as new
degrees of freedom for control of y,

Cascade control:
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Systematic procedure for economic process control

Start “top-down” with economics (steady state):

* Step 1: Define operational objectives (J) and constraints o
* Step 2: Optimize steady-state operation feske)
* Step 3: Decide what to control (CVs) — ‘I’_ —
— Step 3A: Identify active constraints = primary CV1. Ny
— Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H)
* Step 4: Where do we set the throughput? TPM location AN
RTO N |
=1 Local optimization
Then bottom-up design of control system (dynamics): (houn v
————— - - - 1
* Step 5: Regulatory control r o~ 7
— Control variables to stop “drift” (sensitive temperatures, pressures, ....) MpCor | v_l , :
— Inventory control radiating around TPM Control : swerasoryconwol |
| minutes I a°:rr°
H . “ ” “ ” ! ov2 :Iy(:VZ
Finally: Make link between “top-down” and “bottom up | o
* Step 6: “Advanced/supervisory control” contrr | Reguitory control ||
* Control economic CVs: Active constraints and self-optimizing variables o e |
* Look after variables in regulatory layer below (e.g., avoid saturation) ~ ~~~-~°-° 3¢ ~~° "
S

e Step 7: Real-time optimization (Do we need it?)

S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).



Hierarchical decomposition
Example: Bicycle riding
Design of control system

Note: design starts from the bottom

* Regulatory control (step 5):

* First need to learn to stabilize the bicycle
e CV=y,=tilt of bike
* MV = body position

e Supervisory control (step 6):
* Then need to follow the road.
e CV =y, =distance from right hand side
* MVzVZs

* Usually a constant setpoint policy is OK, e.g. y,,=0.5
m

e Optimization (step 7):
* Which road should you follow?
* Temporary (discrete) changes in y,,

Scheduling
(weeks)

l

Site-wide optimization

(day)

—I Local optimization|
(hour)

Control i
layer !




Step 1. Define optimal operation (economics) ®NTNU
Usually steady state

Minimize cost J =J(u,x,d) J
subject to:
Model equations: f(u,x,d)=0

Operational constraints: g(u,x,d) <0

— u =degrees of freedom Jopt
— X = states (internal variables)
— d =disturbances

uopt

Typical cost function in process control:

J = cost feed + cost energy — value of products




constraint @ NTNU

Step 2. Optimize J

(a) Identify degrees of freedom

(b) Optimize for expected disturbances
Jopt

* Need good model, usually steady-state is OK

* Optimization is time consuming! But it is offline
* Main goal: Identify ACTIVE CONSTRAINTS

* A good engineer can often guess the active
constraints



Step 3. Decide what to control (Economic Cv1=Hy)

optimal operating conditions.”
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Sigurd’s rules for CV selection

1. Always control active constraints! (almost always)

2. Purity constraint on expensive product always active (no overpurification):
(a) "Avoid product give away" (e.g., sell water as expensive product)
(b) Save energy (costs energy to overpurify)

Unconstrained optimum:

3. Look for “self-optimizing” variables. They should
e Be sensitive to the MV
*  have close-to-constant optimal value

4. NEVER try to control a variable that reaches max or min at the optimum

* In particular, never try to control directly the cost J

Assume we want to minimize J (e.g., ) =V = energy) - and we make the stupid choice os
selectingCv =V =
. Then setting J < Jmin: Gives infeasible operation (cannot meet constraints)
. and setting J > Jmin: Forces us to be nonoptimal (which may require strange operation)



Control active constraints
@ NTNU
fd

Optimization with Pl-controller |

max y yP = ymax e l y
s.t. y<ymax " ' _ ’

u S umax

Example: Drive as fast as possible to airport (u=power, y=speed, y">* =110 km/h)

* Optimal solution has two active constraint regions:
1. y=ym* - speed limit
2. u=um* - max power

* Note: Positive gain from MV (u) to CV (y)
* Solved with Pl-controller

° SPp = ymax

* Anti-windup: I-action is off when u=u™

s.t. = subject to
y = CV = controlled variable



2. Control self-optimizing variables © NTNU

The less obvious case: Unconstrained optimum

A

* U = unconstrained MV )

* What to control? y=CV=?

Jopt | !




@ NTNU

Example: Optimal operation of runner

e Cost to be minimized, J=T
* One degree of freedom (u=power)
* What should we control?



1. Control active constraints © NTNU

1. Optimal operation of Sprinter

* 100m. J=T

* Active constraint control:
* Maximum speed (”no thinking required”)
e CV = power (at max)



2. Control self-optimizing variables © NTNU

2. Optimal operation of Marathon runner

e 40 km. J=T
 What should we control? CV=?
* Unconstrained optimum

A
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2. Control self-optimizing variables © NTNU

Marathon runner (40 km)

* Any self-optimizing variable (to control at
constant setpoint)?
* ¢, =distance to leader of race
* ¢,=speed
* ¢;= heart rate
* ¢, = level of lactate in muscles




2. Control self-optimizing variables

Conclusion Marathon runner
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@ NTNU

' >

select one measurement

e

Measu l‘l;‘l'['ll:"]]/
Feedback CV1 = heart rate combination
1 . |- S—
Controller [:H;I
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» CV = heart rate is good “self-optimizing” variable
» Simple and robust implementation
* Disturbances are indirectly handled by keeping a constant heart rate
« May have infrequent adjustment of setpoint (c,)

c=heart rate
Copt



Unconstrained degrees of freedom

@ NTNU

The ideal “self-optimizing” variable is the gradient, J ,
c=0J/0u=],

* Keep gradient at zero for all disturbances (c = J =0)

cost J

Problem: Usually no measurement of gradient



Unconstrained degrees of freedom
ldeal: c = J,
In practise, use available measurements: ¢ = H y. Task: Select H!
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@ NTNU

e Single measurements:

¢ =Hy Hzlg] ?

o o
o o
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e Combinations of measurements:

hiy1 hi2 hiz Mg ]
c=H H=
y [ a1 hop hoz hog



Unconstrained degrees of freedom

® NTNU
* Combinations of measurements, c= Hy

Nullspace method for H (Alstad):

HF=0 where F=dy, ./dd

Proof:y,,, = Fd
Copt = H Yopt = HF d

J Proof. Appendix B in:  Jaschke and Skogestad, “NCO tracking and self-optimizing control in the context of real-
time optimization”, Journal of Process Control, 1407-1416 (2011)



Unconstrained degrees of freedom

O NTNU
Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y, = hr [beat/min], y, =v [m/s]
c =Hy, H=[h; h,]]

F = dy,,,/dd = [0.25 -0.2]
HF=0 ->h,f,+h,f,=0.25h,—0.2 h, =0
Choose h,;=1-> h,=0.25/0.2=1.25

Conclusion:c=hr+1.25v
Control ¢ = constant -> hr increases when v decreases (OK uphill!l)



With measurement noise

@ NTNU

Exact local method for H

“=0" in nullspace method (no noise)

ming || ot (HGY) " H[FWy W]|2

Analytical solution:
H=c"'(YYyD)~1 where Y = [FW; W,y]

Advantages compared to nullspace method:
e Can have any number of measurementsy
* Includes measurement noise



Step 4: Inventory control and TPM
(later!)



Step 5: Design of regulatory control layer

Usually single-loop PID controllers

Choice of CVs (CV2):
e CV2 = «drifting variables»

Levels, pressures
Some temperatures
* CV2 may also include economic variables (CV1) that need to be controlled on a fast time scale
* Hard constraints

Choice of MVs and pairings (MV-CV):
o Main rule: “Pair close”. Want:
o Large gain
o Small delay
o  Small time constant

o Avoid pairing on negative steady-state RGA-elements
o It's possible, but then you must be sure that the loops are always working (no manual contriol or MV-saturation)

o Generally: Avoid MVs that may saturate in regulatory layer
o Otherwise, will need logic for re-pairing (MV-CV switching)

o May include cascade loops (flow control!) and some feedforward, decoupling, linearization



Step 6: Design of Supervisory layer

Alternative implementations:

1. Model predictive control (MPC)

2. Advanced regulatorty control (ARC)
* PID, selectors, etc.

Advanced
Control
Structures

PID

Scheduling
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Academia: (E)MPC

* MPC

* General approach, but we need a dynamic model
* MPC is usually based on experimental model
* and implemented after some time of operation

* Not all problems are easily formulated using MPC



Alternative simpler solutions to MPC

* Would like: Feedback solutions that can be implemented without a detailed models

* Machine learning?
* Requires a lot of data
* Can only be implemented after the process has been in operation

* But we have "advanced regulatory control” (ARC) based on simple control elements
* Goal: Optimal operation using conventional advanced control
* PID, feedforward, decouplers, selectors, split range control etc.
* Extensively used by industry
* Problem for engineers: Lack of design methods
e Has been around since 1940’s
* But almost completely neglected by academic researchers
* Main fundamental limitation: Based on single-loop (need to choose pairing)



How design ARC system based on simple elements?

* Main topic of this workshop
Advanced regulatory control (ARC) = Classical APC = Advanced PID contol

* Industrial literature (e.g., Shinskey).
Many nice ideas. But not systematic. Difficult to understand reasoning

* Academia: Very little work so far

APC = Advanced process control



Step 7: Do we really need RTO?

e Often not!
* We can usually measure the constraints

* From this we can identify the active constraints
 Example: Assume it’s optimal with max. reactor temperature
* No need for complex model with energy balance to find the optimal cooling
* Just use a Pl-controller
e CV = reactor temperature (with setpoint=max)
e MV = cooling
* And for the remaining unconstrained variables
* Look for good variables to control (where optimal setpoint changes little)
e «self-optimizing» variables

RTO = real-time optimization



Summary: Systematic procedure for economic process control

Start “top-down” with economics (steady state):

* Step 1: Define operational objectives (J) and constraints o
* Step 2: Optimize steady-state operation et
* Step 3: Decide what to control (CVs) — ‘I’_ —
— Step 3A: Identify active constraints = primary CV1. o
— Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H)
* Step 4: Where do we set the throughput? TPM location AN
RTO N
— Local optimization
Then bottom-up design of control system(dynamics): (howr) oV
————— - - - 1
* Step 5: Regulatory control ] ot =
— Control variables to stop “drift” (sensitive temperatures, pressures, ....) ecor v_l 1 :
— Inventory control radiating around TPM Sontrol : swervsoryconwal | |
Finally: Make link between “top-down” and “bottom up” | = 1 "oy
“« . ) 2
* Step 6: “Advanced/supervisory control | 4‘47\ :
* Control economic CVs: Active constraints and self-optimizing variables | — cont:ol .
* Look after variables in regulatory layer below (e.g., avoid saturation) | || seconds '
e Step 7: Real-time optimization (Do we need it?) =g !
MVs

S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).
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