6 INTRODUCTION TO
 MULTIVARIABLE CONTROL [3]

6.1 Transfer functions for MIMO systems [3.2]

(a) Cascade system

(b) Positive feedback system

Figure 52: Block diagrams for the cascade rule and the feedback rule

1. Cascade rule. (Figure $52(\mathrm{a})) G=G_{2} G_{1}$
2. Feedback rule. (Figure $52(\mathrm{~b})) v=(I-L)^{-1} u$ where $L=G_{2} G_{1}$
3. Push-through rule.

$$
G_{1}\left(I-G_{2} G_{1}\right)^{-1}=\left(I-G_{1} G_{2}\right)^{-1} G_{1}
$$

MIMO Rule: Start from the output, move backwards. If you exit from a feedback loop then include a term $(I-L)^{-1}$ where L is the transfer function around that loop (evaluated against the signal flow starting at the point of exit from the loop).

Example

$$
\begin{equation*}
z=\left(P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21}\right) w \tag{6.1}
\end{equation*}
$$

Figure 53: Block diagram corresponding to (6.1)

Negative feedback control systems

Figure 54: Conventional negative feedback control system

- L is the loop transfer function when breaking the loop at the output of the plant.

$$
\begin{equation*}
L=G K \tag{6.2}
\end{equation*}
$$

Accordingly

$$
\begin{align*}
S \triangleq & (I+L)^{-1} \\
& \text { output sensitivity } \tag{6.3}
\end{align*}
$$

$T \triangleq \quad I-S=(I+L)^{-1} L=L(I+L)^{-1}$
output complementary sensitivity(6.4)

$$
L_{O} \equiv L, S_{O} \equiv S \text { and } T_{O} \equiv T
$$

- L_{I} is the loop transfer function at the input to the plant

$$
\begin{equation*}
L_{I}=K G \tag{6.5}
\end{equation*}
$$

Input sensitivity:

$$
S_{I} \triangleq\left(I+L_{I}\right)^{-1}
$$

Input complementary sensitivity:

$$
T_{I} \triangleq I-S_{I}=L_{I}\left(I+L_{I}\right)^{-1}
$$

- Some relationships:

$$
\begin{gather*}
(I+L)^{-1}+(I+L)^{-1} L=S+T=I \tag{6.6}\\
G(I+K G)^{-1}=(I+G K)^{-1} G \tag{6.7}\\
G K(I+G K)^{-1}=G(I+K G)^{-1} K=(I+G K)^{-1} G K \\
T=L(I+L)^{-1}=\left(I+L^{-1}\right)^{-1}=(I+L)^{-1} L
\end{gather*}
$$

Rule to remember: " G comes first and then G and K alternate in sequence".

6.2 Multivariable frequency response analysis [3.3]

$G(s)=$ transfer (function) matrix
$G(j \omega)=$ complex matrix representing response to sinusoidal signal of frequency ω

Figure 55: System $G(s)$ with input d and output y

$$
\begin{equation*}
y(s)=G(s) d(s) \tag{6.10}
\end{equation*}
$$

Sinusoidal input to channel j

$$
\begin{equation*}
d_{j}(t)=d_{j 0} \sin \left(\omega t+\alpha_{j}\right) \tag{6.11}
\end{equation*}
$$

starting at $t=-\infty$. Output in channel i is a sinusoid with the same frequency

$$
\begin{equation*}
y_{i}(t)=y_{i 0} \sin \left(\omega t+\beta_{i}\right) \tag{6.12}
\end{equation*}
$$

Amplification (gain):

$$
\begin{equation*}
\frac{y_{i o}}{d_{j o}}=\left|g_{i j}(j \omega)\right| \tag{6.13}
\end{equation*}
$$

Phase shift:

$$
\begin{equation*}
\beta_{i}-\alpha_{j}=\angle g_{i j}(j \omega) \tag{6.14}
\end{equation*}
$$

$g_{i j}(j \omega)$ represents the sinusoidal response from input j to output i.

Example 2×2 multivariable system, sinusoidal signals of the same frequency ω to the two input channels:

$$
d(t)=\left[\begin{array}{l}
d_{1}(t) \tag{6.15}\\
d_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
d_{10} \sin \left(\omega t+\alpha_{1}\right) \\
d_{20} \sin \left(\omega t+\alpha_{2}\right)
\end{array}\right]
$$

The output signal

$$
y(t)=\left[\begin{array}{l}
y_{1}(t) \tag{6.16}\\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
y_{10} \sin \left(\omega t+\beta_{1}\right) \\
y_{20} \sin \left(\omega t+\beta_{2}\right)
\end{array}\right]
$$

can be computed by multiplying the complex matrix $G(j \omega)$ by the complex vector $d(\omega)$:

$$
\begin{align*}
y(\omega) & =G(j \omega) d(\omega) \\
y(\omega) & =\left[\begin{array}{l}
y_{10} e^{j \beta_{1}} \\
y_{20} e^{j \beta_{2}}
\end{array}\right], d(\omega)=\left[\begin{array}{l}
d_{10} e^{j \alpha_{1}} \\
d_{20} e^{j \alpha_{2}}
\end{array}\right] \tag{6.17}
\end{align*}
$$

6.2.1 Directions in multivariable systems [3.3.2]

SISO system $(y=G d)$: gain

$$
\frac{|y(\omega)|}{|d(\omega)|}=\frac{|G(j \omega) d(\omega)|}{|d(\omega)|}=|G(j \omega)|
$$

The gain depends on ω, but is independent of $|d(\omega)|$. MIMO system: input and output are vectors.
\Rightarrow need to "sum up" magnitudes of elements in each vector by use of some norm

$$
\begin{align*}
& \|d(\omega)\|_{2}=\sqrt{\sum_{j}\left|d_{j}(\omega)\right|^{2}}=\sqrt{d_{10}^{2}+d_{20}^{2}+\cdots} \tag{6.18}\\
& \|y(\omega)\|_{2}=\sqrt{\sum_{i}\left|y_{i}(\omega)\right|^{2}}=\sqrt{y_{10}^{2}+y_{20}^{2}+\cdots} \tag{6.19}
\end{align*}
$$

The gain of the system $G(s)$ is

$$
\begin{equation*}
\frac{\|y(\omega)\|_{2}}{\|d(\omega)\|_{2}}=\frac{\|G(j \omega) d(\omega)\|_{2}}{\|d(\omega)\|_{2}}=\frac{\sqrt{y_{10}^{2}+y_{20}^{2}+\cdots}}{\sqrt{d_{10}^{2}+d_{20}^{2}+\cdots}} \tag{6.20}
\end{equation*}
$$

The gain depends on ω, and is independent of $\|d(\omega)\|_{2}$. However, for a MIMO system the gain depends on the direction of the input d.

Example Consider the five inputs (all $\|d\|_{2}=1$)

$$
\begin{aligned}
& d_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], d_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], d_{3}=\left[\begin{array}{l}
0.707 \\
0.707
\end{array}\right] \\
& d_{4}=\left[\begin{array}{c}
0.707 \\
-0.707
\end{array}\right], d_{5}=\left[\begin{array}{c}
0.6 \\
-0.8
\end{array}\right]
\end{aligned}
$$

For the 2×2 system

$$
G_{1}=\left[\begin{array}{ll}
5 & 4 \tag{6.21}\\
3 & 2
\end{array}\right]
$$

The five inputs d_{j} lead to the following output vectors

$$
y_{1}=\left[\begin{array}{l}
5 \\
3
\end{array}\right], y_{2}=\left[\begin{array}{l}
4 \\
2
\end{array}\right], y_{3}=\left[\begin{array}{l}
6.36 \\
3.54
\end{array}\right], y_{4}=\left[\begin{array}{l}
0.707 \\
0.707
\end{array}\right], y_{5}=\left[\begin{array}{c}
-0.2 \\
0.2
\end{array}\right]
$$

with the 2 -norms (i.e. the gains for the five inputs)

$$
\begin{aligned}
\left\|y_{1}\right\|_{2} & =5.83,\left\|y_{2}\right\|_{2}=4.47,\left\|y_{3}\right\|_{2}=7.30 \\
\left\|y_{4}\right\|_{2} & =1.00,\left\|y_{5}\right\|_{2}=0.28
\end{aligned}
$$

Figure 56: Gain $\left\|G_{1} d\right\|_{2} /\|d\|_{2}$ as a function of d_{20} / d_{10} for G_{1} in (6.21)

The maximum value of the gain in (6.20) as the direction of the input is varied, is the maximum singular value of G,

$$
\begin{equation*}
\max _{d \neq 0} \frac{\|G d\|_{2}}{\|d\|_{2}}=\max _{\|d\|_{2}=1}\|G d\|_{2}=\bar{\sigma}(G) \tag{6.22}
\end{equation*}
$$

whereas the minimum gain is the minimum singular value of G,

$$
\begin{equation*}
\min _{d \neq 0} \frac{\|G d\|_{2}}{\|d\|_{2}}=\min _{\|d\|_{2}=1}\|G d\|_{2}=\underline{\sigma}(G) \tag{6.23}
\end{equation*}
$$

Figure 1: Outputs (right plot) resulting from use of $\|d\|_{2}=1$ (unit circle in left plot) for system G. The maximum $(\bar{\sigma}(G))$ and minimum $(\underline{\sigma}(G))$ gains are obtained for $d=(\bar{v})$ and $d=(\underline{v})$ respectively.
6.2.2 Eigenvalues are a poor measure of gain [3.3.3]

Example

$$
G=\left[\begin{array}{cc}
0 & 100 \tag{6.24}\\
0 & 0
\end{array}\right] ; \quad G\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
100 \\
0
\end{array}\right]
$$

Both eigenvalues are equal to zero, but gain is equal to 100 .

Problem: eigenvalues measure the gain for the special case when the inputs and the outputs are in the same direction (in the direction of the eigenvectors).

For generalizations of $|G|$ when G is a matrix, we need the concept of a matrix norm, denoted $\|G\|$. Two important properties: triangle inequality

$$
\begin{equation*}
\left\|G_{1}+G_{2}\right\| \leq\left\|G_{1}\right\|+\left\|G_{2}\right\| \tag{6.25}
\end{equation*}
$$

and the multiplicative property

$$
\begin{equation*}
\left\|G_{1} G_{2}\right\| \leq\left\|G_{1}\right\| \cdot\left\|G_{2}\right\| \tag{6.26}
\end{equation*}
$$

$\rho(G) \triangleq\left|\lambda_{\max }(G)\right|$ (the spectral radius), does not satisfy the properties of a matrix norm

6.2.3 Singular value decomposition [3.3.4]

Any matrix G may be decomposed into its singular value decomposition,

$$
\begin{equation*}
G=U \Sigma V^{H} \tag{6.27}
\end{equation*}
$$

where
Σ is an $l \times m$ matrix with $k=\min \{l, m\}$ non-negative singular values, σ_{i}, arranged in descending order along its main diagonal;
U is an $l \times l$ unitary matrix of output singular vectors, u_{i},
V is an $m \times m$ unitary matrix of input singular vectors, v_{i},

Example SVD of a real 2×2 matrix can always be written as
$G=\underbrace{\left[\begin{array}{cc}\cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2}\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}\cos \theta_{2} & \pm \sin \theta_{2} \\ -\sin \theta_{2} & \pm \cos \theta_{2}\end{array}\right]^{T}}_{V^{T}}$
U and V involve rotations and their columns are orthonormal.

Input and output directions.

The column vectors of U, denoted u_{i}, represent the output directions of the plant. They are orthogonal and of unit length (orthonormal), that is

$$
\begin{gather*}
\left\|u_{i}\right\|_{2}=\sqrt{\left|u_{i 1}\right|^{2}+\left|u_{i 2}\right|^{2}+\ldots+\left|u_{i l}\right|^{2}}=1 \tag{6.29}\\
u_{i}^{H} u_{i}=1, \quad u_{i}^{H} u_{j}=0, \quad i \neq j \tag{6.30}
\end{gather*}
$$

The column vectors of V, denoted v_{i}, are orthogonal and of unit length, and represent the input directions.

$$
\begin{equation*}
G v_{i}=\sigma_{i} u_{i} \tag{6.31}
\end{equation*}
$$

If we consider an input in the direction v_{i}, then the output is in the direction u_{i}. Since $\left\|v_{i}\right\|_{2}=1$ and $\left\|u_{i}\right\|_{2}=1 \sigma_{i}$ gives the gain of the matrix G in this direction.

$$
\begin{equation*}
\sigma_{i}(G)=\left\|G v_{i}\right\|_{2}=\frac{\left\|G v_{i}\right\|_{2}}{\left\|v_{i}\right\|_{2}} \tag{6.32}
\end{equation*}
$$

Maximum and minimum singular values.

The largest gain for any input direction is

$$
\begin{equation*}
\bar{\sigma}(G) \equiv \sigma_{1}(G)=\max _{d \neq 0} \frac{\|G d\|_{2}}{\|d\|_{2}}=\frac{\left\|G v_{1}\right\|_{2}}{\left\|v_{1}\right\|_{2}} \tag{6.33}
\end{equation*}
$$

The smallest gain for any input direction is

$$
\begin{equation*}
\underline{\sigma}(G) \equiv \sigma_{k}(G)=\min _{d \neq 0} \frac{\|G d\|_{2}}{\|d\|_{2}}=\frac{\left\|G v_{k}\right\|_{2}}{\left\|v_{k}\right\|_{2}} \tag{6.34}
\end{equation*}
$$

where $k=\min \{l, m\}$. For any vector d we have

$$
\begin{equation*}
\underline{\sigma}(G) \leq \frac{\|G d\|_{2}}{\|d\|_{2}} \leq \bar{\sigma}(G) \tag{6.35}
\end{equation*}
$$

Define $u_{1}=\bar{u}, v_{1}=\bar{v}, u_{k}=\underline{u}$ and $v_{k}=\underline{v}$. Then

$$
\begin{equation*}
G \bar{v}=\bar{\sigma} \bar{u}, \quad G \underline{v}=\underline{\sigma} \underline{u} \tag{6.36}
\end{equation*}
$$

\bar{v} corresponds to the input direction with largest amplification, and \bar{u} is the corresponding output direction in which the inputs are most effective. The directions involving \bar{v} and \bar{u} are sometimes referred to as the "strongest", "high-gain" or "most important" directions.

Example

$$
G_{1}=\left[\begin{array}{ll}
5 & 4 \tag{6.37}\\
3 & 2
\end{array}\right]
$$

The singular value decomposition of G_{1} is

$$
G_{1}=\underbrace{\left[\begin{array}{cc}
0.872 & 0.490 \\
0.490 & -0.872
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
7.343 & 0 \\
0 & 0.272
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
0.794 & -0.608 \\
0.608 & 0.794
\end{array}\right]^{H}}_{V^{H}}
$$

The largest gain of 7.343 is for an input in the direction $\bar{v}=\left[\begin{array}{l}0.794 \\ 0.608\end{array}\right]$, the smallest gain of 0.272 is for an input in the direction $\underline{v}=\left[\begin{array}{c}-0.608 \\ 0.794\end{array}\right]$. Since in (6.37) both inputs affect both outputs, we say that the system is interactive. The system is ill-conditioned, that is, some combinations of the inputs have a strong effect on the outputs, whereas other combinations have a weak effect on the outputs.
Quantified by the condition number;
$\bar{\sigma} / \underline{\sigma}=7.343 / 0.272=27.0$.

Example

Shopping cart. Consider a shopping cart (supermarket trolley) with fixed wheels which we may want to move in three directions; forwards, sideways and upwards. For the shopping cart the gain depends strongly on the input direction, i.e. the plant is ill-conditioned.

Example: Distillation process.

Steady-state model of a distillation column

$$
G=\left[\begin{array}{cc}
87.8 & -86.4 \tag{6.38}\\
108.2 & -109.6
\end{array}\right]
$$

Since the elements are much larger than 1 in magnitude there should be no problems with input constraints.
However, the gain in the low-gain direction is only just above 1.

$$
G=\underbrace{\left[\begin{array}{cc}
0.625 & -0.781 \\
0.781 & 0.625
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
197.2 & 0 \\
0 & 1.39
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
0.707 & -0.708 \\
-0.708 & -0.707
\end{array}\right]^{H}}_{V^{H}(6.39)}
$$

The distillation process is ill-conditioned, and the condition number is $197.2 / 1.39=141.7$. For dynamic systems the singular values and their associated directions vary with frequency (Figure 57).

(a) Spinning satellite in
(b) Distillation process in (6.44)

Figure 57: Typical plots of singular values

6.2.4 Singular values for performance [3.3.5]

Maximum singular value is very useful in terms of frequency-domain performance and robustness.

Performance measure for SISO systems:

$$
|e(\omega)| /|r(\omega)|=|S(j \omega)|
$$

Generalization for MIMO systems $\|e(\omega)\|_{2} /\|r(\omega)\|_{2}$

$$
\begin{equation*}
\underline{\sigma}(S(j \omega)) \leq \frac{\|e(\omega)\|_{2}}{\|r(\omega)\|_{2}} \leq \bar{\sigma}(S(j \omega)) \tag{6.40}
\end{equation*}
$$

For performance we want the gain $\|e(\omega)\|_{2} /\|r(\omega)\|_{2}$ small for any direction of $r(\omega)$

$$
\begin{aligned}
\bar{\sigma}(S(j \omega))<1 /\left|w_{P}(j \omega)\right|, \forall \omega & \Leftrightarrow \bar{\sigma}\left(w_{P} S\right)<1, \forall \omega \\
& \Leftrightarrow\left\|w_{P} S\right\|_{\infty}<(16.41)
\end{aligned}
$$

where the \mathcal{H}_{∞} norm is defined as the peak of the maximum singular value of the frequency response

$$
\begin{equation*}
\|M(s)\|_{\infty} \triangleq \max _{\omega} \bar{\sigma}(M(j \omega)) \tag{6.42}
\end{equation*}
$$

Typical singular values of $S(j \omega)$ in Figure 58.

Figure 58: Singular values of S for a 2×2 plant with RHP-zero

- Bandwidth, ω_{B} : frequency where $\bar{\sigma}(S)$ crosses $\frac{1}{\sqrt{2}}=0.7$ from below.
Since $S=(I+L)^{-1}$, the singular values inequality $\underline{\sigma}(A)-1 \leq \frac{1}{\bar{\sigma}(I+A)^{-1}} \leq \underline{\sigma}(A)+1$ yields

$$
\begin{equation*}
\underline{\sigma}(L)-1 \leq \frac{1}{\bar{\sigma}(S)} \leq \underline{\sigma}(L)+1 \tag{6.43}
\end{equation*}
$$

- low $\omega: \underline{\sigma}(L) \gg 1 \Rightarrow \bar{\sigma}(S) \approx \frac{1}{\underline{\sigma}(L)}$
- high $\omega: \bar{\sigma}(L) \ll 1 \Rightarrow \bar{\sigma}(S) \approx 1$

5.4 Poles [4.4]

Definition

Poles. The poles p_{i} of a system with state-space description (5.1)-(5.2) are the eigenvalues
$\lambda_{i}(A), i=1, \ldots, n$ of the matrix A. The pole or characteristic polynomial $\phi(s)$ is defined as
$\phi(s) \triangleq \operatorname{det}(s I-A)=\prod_{i=1}^{n}\left(s-p_{i}\right)$. Thus the poles are the roots of the characteristic equation

$$
\begin{equation*}
\phi(s) \triangleq \operatorname{det}(s I-A)=0 \tag{5.36}
\end{equation*}
$$

5.4.1 Poles and stability

Theorem 6 A linear dynamic system $\dot{x}=A x+B u$ is stable if and only if all the poles are in the open left-half plane (LHP), that is, $\operatorname{Re}\left\{\lambda_{i}(A)\right\}<0, \forall i$. A matrix A with such a property is said to be "stable" or Hurwitz.

5.4.2 Poles from transfer functions

Theorem 7 The pole polynomial $\phi(s)$ corresponding to a minimal realization of a system with transfer function $G(s)$, is the least common denominator of all non-identically-zero minors of all orders of $G(s)$.

Example:

$$
G(s)=\frac{1}{1.25(s+1)(s+2)}\left[\begin{array}{cc}
s-1 & s \tag{5.37}\\
-6 & s-2
\end{array}\right]
$$

The minors of order 1 are the four elements all have $(s+1)(s+2)$ in the denominator.

Minor of order 2
$\operatorname{det} G(s)=\frac{(s-1)(s-2)+6 s}{1.25^{2}(s+1)^{2}(s+2)^{2}}=\frac{1}{1.25^{2}(s+1)(s+2)}$ (5.38)

Least common denominator of all the minors:

$$
\begin{equation*}
\phi(s)=(s+1)(s+2) \tag{5.39}
\end{equation*}
$$

Minimal realization has two poles: $s=-1 ; s=-2$.

Example: Consider the 2×3 system, with 3 inputs and 2 outputs,

$$
\begin{gather*}
G(s)=\frac{1}{(s+1)(s+2)(s-1)} * \\
*\left[\begin{array}{ccc}
(s-1)(s+2) & 0 & (s-1)^{2} \\
-(s+1)(s+2) & (s-1)(s+1) & (s-1)(s+1)
\end{array}\right] \tag{5.40}
\end{gather*}
$$

Minors of order 1:

$$
\begin{equation*}
\frac{1}{s+1}, \frac{s-1}{(s+1)(s+2)}, \frac{-1}{s-1}, \frac{1}{s+2}, \frac{1}{s+2} \tag{5.41}
\end{equation*}
$$

Minor of order 2 corresponding to the deletion of column 2 :

$$
\begin{gather*}
M_{2}=\frac{(s-1)(s+2)(s-1)(s+1)+(s+1)(s+2)(s-1)^{2}}{((s+1)(s+2)(s-1))^{2}}= \\
=\frac{2}{(s+1)(s+2)} \tag{5.42}
\end{gather*}
$$

The other two minors of order two are

$$
\begin{equation*}
M_{1}=\frac{-(s-1)}{(s+1)(s+2)^{2}}, \quad M_{3}=\frac{1}{(s+1)(s+2)} \tag{5.43}
\end{equation*}
$$

Least common denominator:

$$
\begin{equation*}
\phi(s)=(s+1)(s+2)^{2}(s-1) \tag{5.44}
\end{equation*}
$$

The system therefore has four poles: $s=-1, s=1$ and two at $s=-2$.

Note MIMO-poles are essentially the poles of the elements. A procedure is needed to determine multiplicity.

5.5 Zeros [4.5]

- SISO system: zeros z_{i} are the solutions to

$$
G\left(z_{i}\right)=0 .
$$

In general, zeros are values of s at which $G(s)$ loses rank.

Example

$$
\left[Y=\frac{s+2}{s^{2}+7 s+12} U\right]
$$

Compute the response when

$$
\begin{aligned}
u(t) & =e^{-2 t}, y(0)=0, \dot{y}(0)=-1 \\
\mathcal{L}\{u(t)\} & =\frac{1}{s+2} \\
s^{2} Y & -s y(0)-\dot{y}(0)+7 s Y-7 y(0)+12 Y=1 \\
s^{2} Y & +7 s Y+12 Y+1=1 \\
& \Rightarrow Y(s)=0
\end{aligned}
$$

Assumption: $g(s)$ has a zero $z, g(z)=0$.
Then for input $u(t)=u_{0} e^{z t}$ the output is $y(t) \equiv$ $0, t>0$. (with appropriate initial conditions)

5.5.2 Zeros from transfer functions [4.5.2]

Definition Zeros. z_{i} is a zero of $G(s)$ if the rank of $G\left(z_{i}\right)$ is less than the normal rank of $G(s)$. The zero polynomial is defined as $z(s)=\prod_{i=1}^{n_{z}}\left(s-z_{i}\right)$ where n_{z} is the number of finite zeros of $G(s)$.

Theorem The zero polynomial $z(s)$, corresponding to a minimal realization of the system, is the greatest common divisor of all the numerators of all order- r minors of $G(s)$, where r is the normal rank of $G(s)$, provided that these minors have been adjusted in such a way as to have the pole polynomial $\phi(s)$ as their denominators.

Example

$$
G(s)=\frac{1}{s+2}\left[\begin{array}{cc}
s-1 & 4 \tag{5.45}\\
4.5 & 2(s-1)
\end{array}\right]
$$

The normal rank of $G(s)$ is 2 .
Minor of order 2: $\operatorname{det} G(s)=\frac{2(s-1)^{2}-18}{(s+2)^{2}}=2 \frac{s-4}{s+2}$.
Pole polynomial: $\phi(s)=s+2$.
Zero polynomial: $z(s)=s-4$.
Note Multivariable zeros have no relationship with the zeros of the transfer function elements.

Example

$$
G(s)=\frac{1}{1.25(s+1)(s+2)}\left[\begin{array}{cc}
s-1 & s \tag{5.46}\\
-6 & s-2
\end{array}\right]
$$

Minor of order 2 is the determinant

$$
\begin{gathered}
\operatorname{det} G(s)=\frac{(s-1)(s-2)+6 s}{1.25^{2}(s+1)^{2}(s+2)^{2}}=\frac{1}{1.25^{2}(s+1)(s+2)} \\
\phi(s)=1.25^{2}(s+1)(s+2)
\end{gathered}
$$

Zero polynomial $=$ numerator of (5.47)
\Rightarrow no multivariable zeros.

Example

$$
G(s)=\left[\begin{array}{ll}
\frac{s-1}{s+1} & \frac{s-2}{s+2} \tag{5.48}
\end{array}\right]
$$

- The normal rank of $G(s)$ is 1
- no value of s for which $G(s)=0$
$\Rightarrow G(s)$ has no zeros.

5.6 More on poles and zeros[4.6]

5.6.1 *Directions of poles and zeros

Let $G(s)=C(s I-A)^{-1} B+D$.
Zero directions. Let $G(s)$ have a zero at $s=z$.
Then $G(s)$ loses rank at $s=z$, and there exist non-zero vectors u_{z} and y_{z} such that

$$
\begin{equation*}
G(z) u_{z}=0, \quad y_{z}^{H} G(z)=0 \tag{5.49}
\end{equation*}
$$

$u_{z}=$ input zero direction
$y_{z}=$ output zero direction
y_{z} gives information about which output (or combination of outputs) may be difficult to control. SVD:

$$
G(z)=U \Sigma V^{H}
$$

$u_{z}=$ last column in V
$y_{z}=$ last column of U
(corresponding to the zero singular value of $G(z)$)
Pole directions. Let $G(s)$ have a pole at $s=p$. Then $G(p)$ is infinite, and we may write

$$
\begin{equation*}
G(p) u_{p}=\infty, \quad y_{p}^{H} G(p)=\infty \tag{5.50}
\end{equation*}
$$

$u_{p}=$ input pole direction
$y_{p}=$ output pole direction.

Example

Plant in (5.45) has a RHP-zero at $z=4$ and a LHP-pole at $p=-2$.

$$
\begin{align*}
G(z)= & G(4)=\frac{1}{6}\left[\begin{array}{cc}
3 & 4 \\
4.5 & 6
\end{array}\right] \\
= & \frac{1}{6}\left[\begin{array}{cc}
0.55 & -0.83 \\
0.83 & 0.55
\end{array}\right]\left[\begin{array}{cc}
9.01 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0.6 & -0.8 \\
0.8 & 0.6
\end{array}\right]^{H} \\
& u_{z}=\left[\begin{array}{c}
-0.80 \\
0.60
\end{array}\right] \quad y_{z}=\left[\begin{array}{c}
-0.83 \\
0.55
\end{array}\right] \tag{5.51}
\end{align*}
$$

For pole directions consider

$$
G(p+\epsilon)=G(-2+\epsilon)=\frac{1}{\epsilon^{2}}\left[\begin{array}{cc}
-3+\epsilon & 4 \\
4.5 & 2(-3+\epsilon)
\end{array}\right]
$$

The SVD as $\epsilon \rightarrow 0$ yields

$$
\begin{align*}
& G(-2+\epsilon)=\frac{1}{\epsilon^{2}}\left[\begin{array}{cc}
-0.55 & -0.83 \\
0.83 & -0.55
\end{array}\right]\left[\begin{array}{cc}
9.01 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0.6 & -0.8 \\
-0.8 & -0.6
\end{array}\right]^{F} \\
& u_{p}=\left[\begin{array}{c}
0.60 \\
-0.80
\end{array}\right] \quad y_{p}=\left[\begin{array}{c}
-0.55 \\
0.83
\end{array}\right] \tag{5.53}
\end{align*}
$$

Note Locations of poles and zeros are independent of input and output scalings, their directions are not.

5.6.2 Remarks on poles and zeros [4.6.2]

1. For square systems the poles and zeros of $G(s)$ are "essentially" the poles and zeros of $\operatorname{det} G(s)$. This fails when zero and pole in different parts of the system cancel when forming $\operatorname{det} G(s)$.

$$
G(s)=\left[\begin{array}{cc}
(s+2) /(s+1) & 0 \tag{5.54}\\
0 & (s+1) /(s+2)
\end{array}\right]
$$

$\operatorname{det} G(s)=1$, although the system obviously has poles at -1 and -2 and (multivariable) zeros at -1 and -2 .
2. System (5.54) has poles and zeros at the same locations (at -1 and -2). Their directions are different. They do not cancel or otherwise interact.
3. There are no zeros if the outputs contain direct information about all the states; that is, if from y we can directly obtain x (e.g. $C=I$ and $D=0$);
4. Zeros usually appear when there are fewer inputs or outputs than states
5. Moving poles. (a) feedback control $\left(G(I+K G)^{-1}\right)$ moves the poles, (b) series compensation ($G K$, feedforward control) can cancel poles in G by placing zeros in K (but not move them), and (c) parallel compensation $(G+K)$ cannot affect the poles in G.
6. Moving zeros. (a) With feedback, the zeros of $G(I+K G)^{-1}$ are the zeros of G plus the poles of K. , i.e. the zeros are unaffected by feedback. (b) Series compensation can counter the effect of zeros in G by placing poles in K to cancel them, but cancellations are not possible for RHP-zeros due to internal stability (see Section 5.7). (c) The only way to move zeros is by parallel compensation, $y=(G+K) u$, which, if y is a physical output, can only be accomplished by adding an extra input (actuator).

Example

Effect of feedback on poles and zeros.
SISO plant $G(s)=z(s) / \phi(s)$ and $K(s)=k$.

$$
T(s)=\frac{L(s)}{1+L(s)}=\frac{k G(s)}{1+k G(s)}=\frac{k z(s)}{\phi(s)+k z(s)}=k \frac{z_{c l}(s)}{\phi_{c l}(s)}
$$

Note the following:

1. Zero polynomial: $z_{c l}(s)=z(s)$
\Rightarrow zero locations are unchanged.
2. Pole locations are changed by feedback. For example,

$$
\begin{align*}
k \rightarrow 0 & \Rightarrow \quad \phi_{c l}(s) \rightarrow \phi(s) \tag{5.56}\\
k \rightarrow \infty & \Rightarrow \quad \phi_{c l}(s) \rightarrow z(s) . \widetilde{z}(s) \tag{5.57}
\end{align*}
$$

where roots of $\widetilde{z}(s)$ move with k to infinity (complex pattern)
(cf. root locus)

5.10 System norms [4.10]

Figure 51: System G

Figure 51: System with stable transfer function matrix $G(s)$ and impulse response matrix $g(t)$.

Question: given information about the allowed input signals $w(t)$, how large can the outputs $z(t)$ become? We use the 2-norm,

$$
\begin{equation*}
\|z(t)\|_{2}=\sqrt{\sum_{i} \int_{-\infty}^{\infty}\left|z_{i}(\tau)\right|^{2} d \tau} \tag{5.88}
\end{equation*}
$$

and consider three inputs:

1. $w(t)$ is a series of unit impulses.
2. $w(t)$ is any signal satisfying $\|w(t)\|_{2}=1$.
3. $w(t)$ is any signal satisfying $\|w(t)\|_{2}=1$, but $w(t)=0$ for $t \geq 0$, and we only measure $z(t)$ for $t \geq 0$.

The relevant system norms in the three cases are the $\mathcal{H}_{2}, \mathcal{H}_{\infty}$, and Hankel norms, respectively.

5.10.1 \mathcal{H}_{2} norm [4.10.1]

$G(s)$ strictly proper.
For the \mathcal{H}_{2} norm we use the Frobenius norm spatially (for the matrix) and integrate over frequency, i.e.

$$
\|G(s)\|_{2} \triangleq \sqrt{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \underbrace{\operatorname{tr}\left(G(j \omega)^{H} G(j \omega)\right)}_{\|G(j \omega)\|_{F}^{2}=\sum_{i j}\left|G_{i j}(j \omega)\right|^{2}}} d \omega
$$

$G(s)$ must be strictly proper, otherwise the \mathcal{H}_{2} norm is infinite. By Parseval's theorem, (5.89) is equal to the \mathcal{H}_{2} norm of the impulse response

$$
\begin{equation*}
\|G(s)\|_{2}=\|g(t)\|_{2} \triangleq \sqrt{\int_{0}^{\infty} \underbrace{\operatorname{tr}\left(g^{T}(\tau) g(\tau)\right)}_{\|g(\tau)\|_{F}^{2}=\sum_{i j}\left|g_{i j}(\tau)\right|^{2}} d \tau} \tag{5.90}
\end{equation*}
$$

- Note that $G(s)$ and $g(t)$ are dynamic systems while $G(j \omega)$ and $g(\tau)$ are constant matrices (for a given value of ω or τ).
- We can change the order of integration and summation in (5.90) to get

$$
\begin{equation*}
\|G(s)\|_{2}=\|g(t)\|_{2}=\sqrt{\sum_{i j} \int_{0}^{\infty}\left|g_{i j}(\tau)\right|^{2} d \tau} \tag{5.91}
\end{equation*}
$$

where $g_{i j}(t)$ is the $i j^{\prime}$ th element of the impulse response matrix, $g(t)$. Thus \mathcal{H}_{2} norm can be interpreted as the 2-norm output resulting from applying unit impulses $\delta_{j}(t)$ to each input, one after another (allowing the output to settle to zero before applying an impulse to the next input). Thus $\|G(s)\|^{2}=\sqrt{\sum_{i=1}^{m}\left\|z_{i}(t)\right\|_{2}^{2}}$ where $z_{i}(t)$ is the output vector resulting from applying a unit impulse $\delta_{i}(t)$ to the i 'th input.

5.10.2 \mathcal{H}_{∞} norm [4.10.2]

$G(s)$ proper.
For the \mathcal{H}_{∞} norm we use the singular value (induced 2-norm) spatially (for the matrix) and pick out the peak value as a function of frequency

$$
\begin{equation*}
\|G(s)\|_{\infty} \triangleq \max _{\omega} \bar{\sigma}(G(j \omega)) \tag{5.93}
\end{equation*}
$$

The \mathcal{H}_{∞} norm is the peak of the transfer function "magnitude".

Time domain performance interpretations of

 the \mathcal{H}_{∞} norm.- Worst-case steady-state gain for sinusoidal inputs at any frequency.
- Induced (worst-case) 2-norm in the time domain:

$$
\begin{equation*}
\|G(s)\|_{\infty}=\max _{w(t) \neq 0} \frac{\|z(t)\|_{2}}{\|w(t)\|_{2}}=\max _{\|w(t)\|_{2}=1}\|z(t)\|_{2} \tag{5.94}
\end{equation*}
$$

(In essence, (5.94) arises because the worst input signal $w(t)$ is a sinusoid with frequency ω^{*} and a direction which gives $\bar{\sigma}\left(G\left(j \omega^{*}\right)\right)$ as the maximum gain.)

Numerical computation of the \mathcal{H}_{∞} norm.
Consider

$$
G(s)=C(s I-A)^{-1} B+D
$$

\mathcal{H}_{∞} norm is the smallest value of γ such that the Hamiltonian matrix H has no eigenvalues on the imaginary axis, where
$H=\left[\begin{array}{cc}A+B R^{-1} D^{T} C & B R^{-1} B^{T} \\ -C^{T}\left(I+D R^{-1} D^{T}\right) C & -\left(A+B R^{-1} D^{T} C\right)^{T}\end{array}\right]$
and $R=\gamma^{2} I-D^{T} D$

5.10.3 Difference between the \mathcal{H}_{2} and \mathcal{H}_{∞} norms

Frobenius norm in terms of singular values

$$
\begin{equation*}
\|G(s)\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{i} \sigma_{i}^{2}(G(j \omega)) d \omega} \tag{5.96}
\end{equation*}
$$

Thus when optimizing performance in terms of the different norms:

- \mathcal{H}_{∞} : "push down peak of largest singular value".
- \mathcal{H}_{2} : "push down whole thing" (all singular values over all frequencies).

Example

$$
\begin{equation*}
G(s)=\frac{1}{s+a} \tag{5.97}
\end{equation*}
$$

\mathcal{H}_{2} norm:

$$
\begin{aligned}
\|G(s)\|_{2}= & (\frac{1}{2 \pi} \int_{-\infty}^{\infty} \underbrace{|G(j \omega)|^{2}}_{\frac{1}{\omega^{2}+a^{2}}} d \omega)^{\frac{1}{2}} \\
& =\left(\frac{1}{2 \pi a}\left[\tan ^{-1}\left(\frac{\omega}{a}\right)\right]_{-\infty}^{\infty}\right)^{\frac{1}{2}}=\sqrt{\frac{1}{2 a}}
\end{aligned}
$$

Alternatively: Consider the impulse response

$$
\begin{equation*}
g(t)=\mathcal{L}^{-1}\left(\frac{1}{s+a}\right)=e^{-a t}, t \geq 0 \tag{5.98}
\end{equation*}
$$

to get

$$
\begin{equation*}
\|g(t)\|_{2}=\sqrt{\int_{0}^{\infty}\left(e^{-a t}\right)^{2} d t}=\sqrt{\frac{1}{2 a}} \tag{5.99}
\end{equation*}
$$

as expected from Parseval's theorem.
\mathcal{H}_{∞} norm:

$$
\|G(s)\|_{\infty}=\max _{\omega}|G(j \omega)|=\max _{\omega} \frac{1}{\left(\omega^{2}+a^{2}\right)^{\frac{1}{2}}}=\frac{1}{a}
$$

Example

There is no general relationship between the \mathcal{H}_{2} and \mathcal{H}_{∞} norms.

$$
\begin{gather*}
f_{1}(s)=\frac{1}{\epsilon s+1}, \quad f_{2}(s)=\frac{\epsilon s}{s^{2}+\epsilon s+1} \tag{5.101}\\
\left\|f_{1}\right\|_{\infty}=1 \quad\left\|f_{1}\right\|_{2}=\infty \\
\left\|f_{2}\right\|_{\infty}=1 \quad\left\|f_{2}\right\|_{2}=0 \tag{5.102}
\end{gather*}
$$

Why is the \mathcal{H}_{∞} norm so popular? In robust control convenient for representing unstructured model uncertainty, and because it satisfies the multiplicative property:

$$
\begin{equation*}
\|A(s) B(s)\|_{\infty} \leq\|A(s)\|_{\infty} \cdot\|B(s)\|_{\infty} \tag{5.103}
\end{equation*}
$$

What is wrong with the \mathcal{H}_{2} norm? It is not an induced norm and does not satisfy the multiplicative property.

Example

Consider again $G(s)=1 /(s+a)$ in (5.97), for which $\|G(s)\|_{2}=\sqrt{1 / 2 a}$.

$$
\begin{aligned}
\|G(s) G(s)\|_{2} & =\sqrt{\int_{0}^{\infty}|\underbrace{\mathcal{L}^{-1}\left[\left(\frac{1}{s+a}\right)^{2}\right]}_{t e^{-a t}}|^{2}} \\
& =\sqrt{\frac{1}{a}} \frac{1}{2 a}=\sqrt{\frac{1}{a}}\|G(s)\|_{2}^{2}
\end{aligned}
$$

(5.104)
for $a<1$,

$$
\begin{equation*}
\|G(s) G(s)\|_{2}>\|G(s)\|_{2} \cdot\|G(s)\|_{2} \tag{5.105}
\end{equation*}
$$

which does not satisfy the multiplicative property.
\mathcal{H}_{∞} norm does satisfy the multiplicative property

$$
\|G(s) G(s)\|_{\infty}=\frac{1}{a^{2}}=\|G(s)\|_{\infty} \cdot\|G(s)\|_{\infty}
$$

1 LIMITATIONS ON PERFORMANCE IN MIMO SYSTEMS

In a MIMO system, disturbances, the plant, RHP-zeros, RHP-poles and delays each have directions associated with them. A multivariable plant may have a RHP-zero and a RHP-pole at the same location, but their effects may not interact.

- y_{z} : output direction of a RHP-zero,

$$
G(z) u_{z}=0 \cdot y_{z}
$$

- y_{p} : output direction of a RHP-pole,

$$
G(p) u_{p}=\infty \cdot y_{p}
$$

1.1 Interpolation constraints

RHP-zero. If $G(s)$ has a RHP-zero at z with output direction y_{z}, then for internal stability

$$
\begin{equation*}
y_{z}^{H} T(z)=0 ; \quad y_{z}^{H} S(z)=y_{z}^{H} \tag{1.1}
\end{equation*}
$$

RHP-pole. If $G(s)$ has a RHP-pole at p with output direction y_{p}, then for internal stability the following interpolation constraints apply:

$$
\begin{equation*}
S(p) y_{p}=0 ; \quad T(p) y_{p}=y_{p} \tag{1.2}
\end{equation*}
$$

Similar constraints apply to L_{I}, S_{I} and T_{I}, but these are in terms of the input zero and pole directions, u_{z} and u_{p}.

1.2 Constraints on S and T [6.2]

From the identity $S+T=I$ we get

$$
\begin{align*}
& |1-\bar{\sigma}(S)| \leq \bar{\sigma}(T) \leq 1+\bar{\sigma}(S) \tag{1.3}\\
& |1-\bar{\sigma}(T)| \leq \bar{\sigma}(S) \leq 1+\bar{\sigma}(T) \tag{1.4}
\end{align*}
$$

$\Rightarrow S$ and T cannot be small simultaneously; $\bar{\sigma}(S)$ is large if and only if $\bar{\sigma}(T)$ is large. For example, if $\bar{\sigma}(T)$ is 5 at a given frequency, then $\bar{\sigma}(S)$ must be between 4 and 6 at this frequency.

1.3 Sensitivity peaks [6.2.4]

Theorem 1 Weighted sensitivity. Suppose the plant $G(s)$ has a RHP-zero at $s=z$. Let $w_{P}(s)$ be any stable scalar weight. Then for closed-loop stability the weighted sensitivity function must satisfy

$$
\begin{equation*}
\left\|w_{P}(s) S(s)\right\|_{\infty}=\max _{\omega} \bar{\sigma}\left(w_{P}(j \omega) S(j \omega)\right) \geq\left|w_{P}(z)\right| \tag{1.5}
\end{equation*}
$$

In MIMO systems we generally have the freedom to move the effect of RHP zeros to different outputs by appropriate control.

Theorem 2 Weighted complementary

 sensitivity. Suppose the plant $G(s)$ has a RHP-pole at $s=p$. Let $w_{T}(s)$ be any stable scalar weight.Then for closed-loop stability the weighted complementary sensitivity function must satisfy

$$
\begin{equation*}
\left\|w_{T}(s) T(s)\right\|_{\infty}=\max _{\omega} \bar{\sigma}\left(w_{T}(j \omega) T(j \omega)\right) \geq\left|w_{T}(p)\right| \tag{1.6}
\end{equation*}
$$

For a plant with one RHP-zero z and one RHP-pole p,

$$
\begin{equation*}
M_{S, \text { min }}=M_{T, \text { min }}=\sqrt{\sin ^{2} \phi+\frac{|z+p|^{2}}{|z-p|^{2}} \cos ^{2} \phi} \tag{1.7}
\end{equation*}
$$

where $\phi=\cos ^{-1}\left|y_{z}^{H} y_{p}\right|$ is the angle between the output directions of the pole and zero.

If the pole and zero are aligned such that $y_{z}=y_{p}$ and $\phi=0$, then (1.7) simplifies to give the equivalent SISO conditions.

Conversely, if the pole and zero are orthogonal to each other, then $\phi=90^{\circ}$ and $M_{S, \min }=M_{T, \min }=1$, and there is no additional penalty for having both a RHP-pole and a RHP-zero.

1.4 Example

Consider the plant

$$
\begin{array}{r}
G_{\alpha}(s)=\left[\begin{array}{cc}
\frac{1}{s-p} & 0 \\
0 & \frac{1}{s+3}
\end{array}\right] U_{\alpha}\left[\begin{array}{cc}
\frac{s-z}{0.1 s+1} & 0 \\
0 & \frac{s+2}{0.1 s+1}
\end{array}\right] \\
U_{\alpha}=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right], \quad z=2, p=3
\end{array}
$$

which has for all values of α a RHP-zero at $z=2$ and a RHP-pole at $p=3$.

For $\alpha=0^{\circ}, U_{\alpha}=I$,

$$
G_{0}(s)=\left[\begin{array}{cc}
\frac{s-z}{(0.1 s+1)(s-p)} & 0 \\
0 & \frac{s+2}{(0.1 s+1)(s+3)}
\end{array}\right]
$$

g_{11} has both RHP-pole and RHP-zero (bad!).

When $\alpha=90^{\circ}$

$$
G_{90}(s)=\left[\begin{array}{cc}
0 & -\frac{s+2}{(0.1 s+1)(s-p)} \\
\frac{s-z}{(0.1 s+1)(s+3)} & 0
\end{array}\right]
$$

No interaction between the RHP-pole and RHP-zero (good!).

α	0°	30°	60°	90°		
y_{z}	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$	$\left[\begin{array}{c}0.33 \\ -0.94\end{array}\right]$	$\left[\begin{array}{c}0.11 \\ -0.99\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$		
$\phi=\cos ^{-1}\left\|y_{z}^{H} y_{p}\right\|$	0°	70.9°	83.4°	90°		
$\\|S\\|_{\infty} \geq$	5.0	1.89	1.15	1.0		
$\\|S\\|_{\infty}$	7.00	2.60	1.59	1.98		
$\\|T\\|_{\infty}$	7.40	2.76	1.60	1.31		
$\gamma_{\min }(S / K S)$	9.55	3.53	2.01	1.59		

The table also shows the values of $\|S\|_{\infty}$ and $\|T\|_{\infty}$ obtained by an \mathcal{H}_{∞} optimal $S / K S$ design using the following weights:

$$
\begin{equation*}
W_{u}=I ; \quad W_{P}=\left(\frac{s / M+\omega_{B}^{*}}{s}\right) I ; M=2, \omega_{B}^{*}=0.5 \tag{1.8}
\end{equation*}
$$

The weight W_{P} indicates that we require $\|S\|_{\infty}$ less than 2 , and require tight control up to a frequency of about $\omega_{B}^{*}=0.5 \mathrm{rad} / \mathrm{s}$. The minimum \mathcal{H}_{∞} norm for the overall $S / K S$ problem is given by the value of γ in Table.

7.3 Limitations imposed by uncertainty [6.10]

7.3.1 Input and output uncertainty

In a multiplicative (relative) form, the output and input uncertainties (as in Figure 72) are given by

Output uncertainty: $G^{\prime}=\left(I+E_{O}\right) G$ or

$$
\begin{equation*}
E_{O}=\left(G^{\prime}-G\right) G^{-1} \tag{7.5}
\end{equation*}
$$

Input uncertainty: $\quad G^{\prime}=G\left(I+E_{I}\right) \quad$ or

$$
\begin{equation*}
E_{I}=G^{-1}\left(G^{\prime}-G\right) \tag{7.6}
\end{equation*}
$$

Figure 72: Plant with multiplicative input and output uncertainty

7.3.3 Uncertainty and the benefits of feedback [6.10.3]

Feedback control. With one degree-of-freedom feedback control the nominal transfer function is $y=T r$ where $T=L(I+L)^{-1}$ is the complementary sensitivity function. Ideally, $T=I$. The change in response with model error is $y^{\prime}-y=\left(T^{\prime}-T\right) r$ where

$$
\begin{equation*}
T^{\prime}-T=S^{\prime} E_{O} T \tag{7.7}
\end{equation*}
$$

Thus, $y^{\prime}-y=S^{\prime} E_{O} T r=S^{\prime} E_{O} y$, and we see that

- with feedback control the effect of the uncertainty is reduced by a factor S^{\prime} relative to that with feedforward control.

7.3.4 Uncertainty and the sensitivity peak

We will derive upper bounds on $\bar{\sigma}\left(S^{\prime}\right)$ which involve the plant and controller condition numbers

$$
\begin{equation*}
\gamma(G)=\frac{\bar{\sigma}(G)}{\underline{\sigma}(G)}, \quad \gamma(K)=\frac{\bar{\sigma}(K)}{\underline{\sigma}(K)} \tag{7.8}
\end{equation*}
$$

Factorizations of S^{\prime} in terms of the nominal sensitivity S

Output uncertainty:

$$
\begin{equation*}
S^{\prime}=S\left(I+E_{O} T\right)^{-1} \tag{7.9}
\end{equation*}
$$

Input uncertainty:

$$
\begin{align*}
S^{\prime} & =S\left(I+G E_{I} G^{-1} T\right)^{-1}= \\
& =S G\left(I+E_{I} T_{I}\right)^{-1} G^{-1} \tag{7.10}
\end{align*}
$$

$$
\begin{align*}
S^{\prime} & =\left(I+T K^{-1} E_{I} K\right)^{-1} S= \\
& =K^{-1}\left(I+T_{I} E_{I}\right)^{-1} K S \tag{7.11}
\end{align*}
$$

We assume: G and G^{\prime} are stable; closed-loop stability, i.e. S and S^{\prime} are stable; therefore $\left(I+E_{O} T\right)^{-1}$ and $\left(I+E_{I} T_{I}\right)^{-1}$ are stable; the magnitude of the multiplicative (relative) uncertainty at each frequency can be bounded in terms of its singular value

$$
\begin{equation*}
\bar{\sigma}\left(E_{I}\right) \leq\left|w_{I}\right|, \quad \bar{\sigma}\left(E_{O}\right) \leq\left|w_{O}\right| \tag{7.12}
\end{equation*}
$$

where $w_{I}(s)$ and $w_{O}(s)$ are scalar weights. Typically the uncertainty bound, $\left|w_{I}\right|$ or $\left|w_{O}\right|$, is 0.2 at low frequencies and exceeds 1 at higher frequencies.

Upper bound on $\bar{\sigma}\left(S^{\prime}\right)$ for output uncertainty

From (7.9) we derive

$$
\begin{equation*}
\bar{\sigma}\left(S^{\prime}\right) \leq \bar{\sigma}(S) \bar{\sigma}\left(\left(I+E_{O} T\right)^{-1}\right) \leq \frac{\bar{\sigma}(S)}{1-\left|w_{O}\right| \bar{\sigma}(T)} \tag{7.13}
\end{equation*}
$$

Upper bounds on $\bar{\sigma}\left(S^{\prime}\right)$ for input uncertainty

The sensitivity function can be much more sensitive to input uncertainty than output uncertainty.

From (7.10) and (7.11) we derive:

$$
\begin{array}{r}
\bar{\sigma}\left(S^{\prime}\right) \leq \gamma(G) \bar{\sigma}(S) \bar{\sigma}\left(\left(I+E_{I} T_{I}\right)^{-1}\right) \leq \\
\leq \gamma(G) \frac{\bar{\sigma}(S)}{1-\left|w_{I}\right| \bar{\sigma}\left(T_{I}\right)} \\
\bar{\sigma}\left(S^{\prime}\right) \leq \gamma(K) \bar{\sigma}(S) \bar{\sigma}\left(\left(I+T_{I} E_{I}\right)^{-1}\right) \leq \\
\leq \gamma(K) \frac{\bar{\sigma}(S)}{1-\left|w_{I}\right| \bar{\sigma}\left(T_{I}\right)} \tag{7.15}
\end{array}
$$

\Rightarrow If we use a "round" controller $(\gamma(K) \approx 1)$ then the sensitivity function is not sensitive to input uncertainty.

