
6 INTRODUCTION TO

MULTIVARIABLE

CONTROL [3]

6.1 Transfer functions for MIMO

systems [3.2]
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Figure 52: Block diagrams for the cascade rule and

the feedback rule

1. Cascade rule. (Figure 52(a)) G = G2G1

2. Feedback rule. (Figure 52(b) ) v = (I − L)−1u

where L = G2G1

3. Push-through rule.

G1(I −G2G1)
−1 = (I −G1G2)

−1G1
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MIMO Rule: Start from the output, move

backwards. If you exit from a feedback loop then

include a term (I − L)−1 where L is the transfer

function around that loop (evaluated against the

signal flow starting at the point of exit from the

loop).

Example

z = (P11 + P12K(I − P22K)−1P21)w (6.1)
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Figure 53: Block diagram corresponding to (6.1)

6-2



Negative feedback control systems

- c -+

-
K - c+ +?- G - c+ +? -q

6
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d2 d1

Figure 54: Conventional negative feedback control

system

• L is the loop transfer function when breaking the

loop at the output of the plant.

L = GK (6.2)

Accordingly

S
∆
= (I + L)−1

output sensitivity (6.3)

T
∆
= I − S = (I + L)−1L = L(I + L)−1

output complementary sensitivity(6.4)

LO ≡ L, SO ≡ S and TO ≡ T .

6-3



• LI is the loop transfer function at the input to

the plant

LI = KG (6.5)

Input sensitivity:

SI
∆
= (I + LI)

−1

Input complementary sensitivity:

TI
∆
= I − SI = LI(I + LI)

−1

• Some relationships:

(I + L)−1 + (I + L)−1L = S + T = I (6.6)

G(I +KG)−1 = (I +GK)−1G (6.7)

GK(I+GK)−1 = G(I+KG)−1K = (I+GK)−1GK

(6.8)

T = L(I + L)−1 = (I + L−1)−1 = (I + L)−1L

(6.9)

Rule to remember: “G comes first and then G

and K alternate in sequence”.
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6.2 Multivariable frequency response

analysis [3.3]

G(s) = transfer (function) matrix

G(jω) = complex matrix representing response

to sinusoidal signal of frequency ω

-- y
G(s)

d

Figure 55: System G(s) with input d and output y

y(s) = G(s)d(s) (6.10)
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Sinusoidal input to channel j

dj(t) = dj0 sin(ωt+ αj) (6.11)

starting at t = −∞. Output in channel i is a

sinusoid with the same frequency

yi(t) = yi0 sin(ωt+ βi) (6.12)

Amplification (gain):

yio

djo
= |gij(jω)| (6.13)

Phase shift:

βi − αj = 6 gij(jω) (6.14)

gij(jω) represents the sinusoidal response from input

j to output i.
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Example 2 × 2 multivariable system, sinusoidal

signals of the same frequency ω to the two input

channels:

d(t) =

[
d1(t)

d2(t)

]
=

[
d10 sin(ωt+ α1)

d20 sin(ωt+ α2)

]
(6.15)

The output signal

y(t) =

[
y1(t)

y2(t)

]
=

[
y10 sin(ωt+ β1)

y20 sin(ωt+ β2)

]
(6.16)

can be computed by multiplying the complex matrix

G(jω) by the complex vector d(ω):

y(ω) = G(jω)d(ω)

y(ω) =

[
y10e

jβ1

y20e
jβ2

]
, d(ω) =

[
d10e

jα1

d20e
jα2

]
(6.17)
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6.2.1 Directions in multivariable systems

[3.3.2]

SISO system (y = Gd): gain

|y(ω)|
|d(ω)| =

|G(jω)d(ω)|
|d(ω)| = |G(jω)|

The gain depends on ω, but is independent of |d(ω)|.
MIMO system: input and output are vectors.

⇒ need to “sum up” magnitudes of elements in each

vector by use of some norm

‖d(ω)‖2 =

√∑

j

|dj(ω)|2 =
√
d2
10 + d2

20 + · · · (6.18)

‖y(ω)‖2 =

√∑

i

|yi(ω)|2 =
√
y2
10 + y2

20 + · · · (6.19)

The gain of the system G(s) is

‖y(ω)‖2

‖d(ω)‖2
=

‖G(jω)d(ω)‖2

‖d(ω)‖2
=

√
y2
10 + y2

20 + · · ·√
d2
10 + d2

20 + · · ·
(6.20)

The gain depends on ω, and is independent of

‖d(ω)‖2. However, for a MIMO system the gain

depends on the direction of the input d.
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Example Consider the five inputs ( all ‖d‖2 = 1)

d1 =
[

1

0

]
, d2 =

[
0

1

]
, d3 =

[
0.707

0.707

]
,

d4 =
[

0.707

−0.707

]
, d5 =

[
0.6

−0.8

]

For the 2 × 2 system

G1 =

[
5 4

3 2

]
(6.21)

The five inputs dj lead to the following output vectors

y1 =
[

5

3

]
, y2 =

[
4

2

]
, y3 =

[
6.36

3.54

]
, y4 =

[
0.707

0.707

]
, y5 =

[
−0.2

0.2

]

with the 2-norms (i.e. the gains for the five inputs)

‖y1‖2 = 5.83, ‖y2‖2 = 4.47, ‖y3‖2 = 7.30,

‖y4‖2 = 1.00, ‖y5‖2 = 0.28
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Figure 56: Gain ‖G1d‖2/‖d‖2 as a function of d20/d10

for G1 in (6.21)

The maximum value of the gain in (6.20) as the

direction of the input is varied, is the maximum

singular value of G,

max
d 6=0

‖Gd‖2

‖d‖2
= max

‖d‖2=1
‖Gd‖2 = σ̄(G) (6.22)

whereas the minimum gain is the minimum singular

value of G,

min
d 6=0

‖Gd‖2

‖d‖2
= min

‖d‖2=1
‖Gd‖2 = σ(G) (6.23)
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Figure 1: Outputs (right plot) resulting from use of
‖d‖2 = 1 (unit circle in left plot) for system G. The
maximum (σ̄(G)) and minimum (σ(G)) gains are ob-
tained for d = (v̄) and d = (v) respectively.
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6.2.2 Eigenvalues are a poor measure of gain

[3.3.3]

Example

G =

[
0 100

0 0

]
; G

[
0

1

]
=

[
100

0

]
(6.24)

Both eigenvalues are equal to zero, but gain is equal

to 100.

Problem: eigenvalues measure the gain for the

special case when the inputs and the outputs are in

the same direction (in the direction of the

eigenvectors).

For generalizations of |G| when G is a matrix, we

need the concept of a matrix norm, denoted ‖G‖.
Two important properties: triangle inequality

‖G1 +G2‖ ≤ ‖G1‖ + ‖G2‖ (6.25)

and the multiplicative property

‖G1G2‖ ≤ ‖G1‖ · ‖G2‖ (6.26)

ρ(G)
∆
= |λmax(G)| (the spectral radius), does not

satisfy the properties of a matrix norm
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6.2.3 Singular value decomposition [3.3.4]

Any matrix G may be decomposed into its singular

value decomposition,

G = UΣV H (6.27)

where

Σ is an l ×m matrix with k = min{l,m}
non-negative singular values, σi, arranged in

descending order along its main diagonal;

U is an l × l unitary matrix of output singular

vectors, ui,

V is an m×m unitary matrix of input singular

vectors, vi,

Example SVD of a real 2 × 2 matrix can always be

written as

G =

[
cos θ1 − sin θ1

sin θ1 cos θ1

]

︸ ︷︷ ︸
U

[
σ1 0

0 σ2

]

︸ ︷︷ ︸
Σ

[
cos θ2 ± sin θ2

− sin θ2 ± cos θ2

]T

︸ ︷︷ ︸
V T

(6.28)

U and V involve rotations and their columns are

orthonormal.
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Input and output directions.

The column vectors of U , denoted ui, represent the

output directions of the plant. They are orthogonal

and of unit length (orthonormal), that is

‖ui‖2 =
√
|ui1|2 + |ui2|2 + . . .+ |uil|2 = 1 (6.29)

uH
i ui = 1, uH

i uj = 0, i 6= j (6.30)

The column vectors of V , denoted vi, are orthogonal

and of unit length, and represent the input directions.

Gvi = σiui (6.31)

If we consider an input in the direction vi, then the

output is in the direction ui. Since ‖vi‖2 = 1 and

‖ui‖2 = 1 σi gives the gain of the matrix G in this

direction.

σi(G) = ‖Gvi‖2 =
‖Gvi‖2

‖vi‖2
(6.32)
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Maximum and minimum singular values.

The largest gain for any input direction is

σ̄(G) ≡ σ1(G) = max
d 6=0

‖Gd‖2

‖d‖2
=

‖Gv1‖2

‖v1‖2
(6.33)

The smallest gain for any input direction is

σ(G) ≡ σk(G) = min
d 6=0

‖Gd‖2

‖d‖2
=

‖Gvk‖2

‖vk‖2
(6.34)

where k = min{l,m}. For any vector d we have

σ(G) ≤ ‖Gd‖2

‖d‖2
≤ σ̄(G) (6.35)

Define u1 = ū, v1 = v̄, uk = u and vk = v. Then

Gv̄ = σ̄ū, Gv = σ u (6.36)

v̄ corresponds to the input direction with largest

amplification, and ū is the corresponding output

direction in which the inputs are most effective. The

directions involving v̄ and ū are sometimes referred

to as the “strongest”, “high-gain” or “most

important” directions.
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Example

G1 =

[
5 4

3 2

]
(6.37)

The singular value decomposition of G1 is

G1 =

[
0.872 0.490

0.490 −0.872

]

︸ ︷︷ ︸
U

[
7.343 0

0 0.272

]

︸ ︷︷ ︸
Σ

[
0.794 −0.608

0.608 0.794

]H

︸ ︷︷ ︸
V H

The largest gain of 7.343 is for an input in the direction

v̄ =
[

0.794

0.608

]
, the smallest gain of 0.272 is for an input in

the direction v =
[
−0.608

0.794

]
. Since in (6.37) both inputs

affect both outputs, we say that the system is interactive.

The system is ill-conditioned, that is, some combinations

of the inputs have a strong effect on the outputs, whereas

other combinations have a weak effect on the outputs.

Quantified by the condition number;

σ̄/σ = 7.343/0.272 = 27.0.

Example

Shopping cart. Consider a shopping cart (supermarket

trolley) with fixed wheels which we may want to move in

three directions; forwards, sideways and upwards. For the

shopping cart the gain depends strongly on the input

direction, i.e. the plant is ill-conditioned.
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Example: Distillation process.

Steady-state model of a distillation column

G =

[
87.8 −86.4

108.2 −109.6

]
(6.38)

Since the elements are much larger than 1 in magnitude

there should be no problems with input constraints.

However, the gain in the low-gain direction is only just

above 1.

G =

[
0.625 −0.781

0.781 0.625

]

︸ ︷︷ ︸
U

[
197.2 0

0 1.39

]

︸ ︷︷ ︸
Σ

[
0.707 −0.708

−0.708 −0.707

]H

︸ ︷︷ ︸
V H

(6.39)

The distillation process is ill-conditioned, and the

condition number is 197.2/1.39 = 141.7. For dynamic

systems the singular values and their associated

directions vary with frequency (Figure 57).
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Figure 57: Typical plots of singular values
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6.2.4 Singular values for performance [3.3.5]

Maximum singular value is very useful in terms of

frequency-domain performance and robustness.

Performance measure for SISO systems:

|e(ω)|/|r(ω)| = |S(jω)|

.

Generalization for MIMO systems ‖e(ω)‖2/‖r(ω)‖2

σ(S(jω)) ≤ ‖e(ω)‖2

‖r(ω)‖2
≤ σ̄(S(jω)) (6.40)

For performance we want the gain ‖e(ω)‖2/‖r(ω)‖2

small for any direction of r(ω)

σ̄(S(jω)) < 1/|wP (jω)|, ∀ω ⇔ σ̄(wPS) < 1, ∀ω
⇔ ‖wPS‖∞ < 1(6.41)

where the H∞ norm is defined as the peak of the

maximum singular value of the frequency response

‖M(s)‖∞ ∆
= max

ω
σ̄(M(jω)) (6.42)
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Typical singular values of S(jω) in Figure 58.
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Figure 58: Singular values of S for a 2 × 2 plant with

RHP-zero

• Bandwidth, ωB : frequency where σ̄(S) crosses
1√
2

= 0.7 from below.

Since S = (I + L)−1, the singular values inequality

σ(A) − 1 ≤ 1
σ̄(I+A)−1 ≤ σ(A) + 1 yields

σ(L) − 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (6.43)

• low ω : σ(L) ≫ 1 ⇒ σ̄(S) ≈ 1
σ(L)

• high ω: σ̄(L) ≪ 1 ⇒ σ̄(S) ≈ 1
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5.4 Poles [4.4]

Definition

Poles. The poles pi of a system with state-space

description (5.1)–(5.2) are the eigenvalues

λi(A), i = 1, . . . , n of the matrix A. The pole or

characteristic polynomial φ(s) is defined as

φ(s)
∆
= det(sI −A) =

∏n
i=1(s− pi). Thus the poles

are the roots of the characteristic equation

φ(s)
∆
= det(sI −A) = 0 (5.36)

5.4.1 Poles and stability

Theorem 6 A linear dynamic system ẋ = Ax+Bu

is stable if and only if all the poles are in the open

left-half plane (LHP), that is, Re{λi(A)} < 0, ∀i. A

matrix A with such a property is said to be “stable”

or Hurwitz.

5.4.2 Poles from transfer functions

Theorem 7 The pole polynomial φ(s) corresponding

to a minimal realization of a system with transfer

function G(s), is the least common denominator of

all non-identically-zero minors of all orders of G(s).
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Example:

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s

−6 s− 2

]
(5.37)

The minors of order 1 are the four elements all have

(s+ 1)(s+ 2) in the denominator.

Minor of order 2

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(5.38)

Least common denominator of all the minors:

φ(s) = (s+ 1)(s+ 2) (5.39)

Minimal realization has two poles: s = −1; s = −2.

Example: Consider the 2× 3 system, with 3 inputs and

2 outputs,

G(s) =
1

(s + 1)(s + 2)(s − 1)
∗

∗

[
(s − 1)(s + 2) 0 (s − 1)2

−(s + 1)(s + 2) (s − 1)(s + 1) (s − 1)(s + 1)

]

(5.40)

Minors of order 1:

1

s + 1
,

s − 1

(s + 1)(s + 2)
,

−1

s − 1
,

1

s + 2
,

1

s + 2
(5.41)
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Minor of order 2 corresponding to the deletion of column

2:

M2 =
(s − 1)(s + 2)(s − 1)(s + 1) + (s + 1)(s + 2)(s − 1)2

((s + 1)(s + 2)(s − 1))2
=

=
2

(s + 1)(s + 2)
(5.42)

The other two minors of order two are

M1 =
−(s − 1)

(s + 1)(s + 2)2
, M3 =

1

(s + 1)(s + 2)
(5.43)

Least common denominator:

φ(s) = (s + 1)(s + 2)2(s − 1) (5.44)

The system therefore has four poles: s = −1, s = 1 and

two at s = −2.

Note MIMO-poles are essentially the poles of the

elements. A procedure is needed to determine

multiplicity.

5-20



5.5 Zeros [4.5]

• SISO system: zeros zi are the solutions to

G(zi) = 0.

In general, zeros are values of s at which G(s) loses

rank.

Example

[
Y =

s+ 2

s2 + 7s+ 12
U

]

Compute the response when

u(t) = e−2t, y(0) = 0, ẏ(0) = −1

L{u(t)} =
1

s+ 2

s2Y − sy(0) − ẏ(0) + 7sY − 7y(0) + 12Y = 1

s2Y + 7sY + 12Y + 1 = 1

⇒ Y (s) = 0

Assumption: g(s) has a zero z, g(z) = 0.

Then for input u(t) = u0e
zt the output is y(t) ≡

0, t > 0. (with appropriate initial conditions)
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5.5.2 Zeros from transfer functions [4.5.2]

Definition Zeros. zi is a zero of G(s) if the rank

of G(zi) is less than the normal rank of G(s). The

zero polynomial is defined as z(s) =
∏nz

i=1(s− zi)

where nz is the number of finite zeros of G(s).

Theorem The zero polynomial z(s), corresponding

to a minimal realization of the system, is the greatest

common divisor of all the numerators of all order-r

minors of G(s), where r is the normal rank of G(s),

provided that these minors have been adjusted in

such a way as to have the pole polynomial φ(s) as

their denominators.

Example

G(s) =
1

s + 2

[
s − 1 4

4.5 2(s − 1)

]
(5.45)

The normal rank of G(s) is 2.

Minor of order 2: det G(s) = 2(s−1)2−18

(s+2)2
= 2 s−4

s+2
.

Pole polynomial: φ(s) = s + 2.

Zero polynomial: z(s) = s − 4.

Note Multivariable zeros have no relationship with

the zeros of the transfer function elements.
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Example

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s

−6 s− 2

]
(5.46)

Minor of order 2 is the determinant

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(5.47)

φ(s) = 1.252(s+ 1)(s+ 2)

Zero polynomial = numerator of (5.47)

⇒ no multivariable zeros.

Example

G(s) =
[ s− 1

s+ 1

s− 2

s+ 2

]
(5.48)

• The normal rank of G(s) is 1

• no value of s for which G(s) = 0

⇒ G(s) has no zeros.
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5.6 More on poles and zeros[4.6]

5.6.1 *Directions of poles and zeros

Let G(s) = C(sI −A)−1B +D.

Zero directions. Let G(s) have a zero at s = z.

Then G(s) loses rank at s = z, and there exist

non-zero vectors uz and yz such that

G(z)uz = 0, yH
z G(z) = 0 (5.49)

uz = input zero direction

yz = output zero direction

yz gives information about which output (or

combination of outputs) may be difficult to control.

SVD:

G(z) = UΣV H

uz = last column in V

yz = last column of U

(corresponding to the zero singular value of G(z))

Pole directions. Let G(s) have a pole at s = p.

Then G(p) is infinite, and we may write

G(p)up = ∞, yH
p G(p) = ∞ (5.50)

up = input pole direction

yp = output pole direction.
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Example

Plant in (5.45) has a RHP-zero at z = 4 and a

LHP-pole at p = −2.

G(z) = G(4) =
1

6

[
3 4

4.5 6

]

=
1

6

[
0.55 −0.83

0.83 0.55

] [
9.01 0

0 0

] [
0.6 −0.8

0.8 0.6

]H

uz =
[
−0.80

0.60

]
yz =

[
−0.83

0.55

]
(5.51)

For pole directions consider

G(p+ ǫ) = G(−2 + ǫ) =
1

ǫ2

[−3 + ǫ 4

4.5 2(−3 + ǫ)

]

(5.52)

The SVD as ǫ→ 0 yields

G(−2+ǫ) =
1

ǫ2

[−0.55 −0.83

0.83 −0.55

] [
9.01 0

0 0

] [
0.6 −0.8

−0.8 −0.6

]H

up =
[

0.60

−0.80

]
yp =

[
−0.55

0.83

]
(5.53)

Note Locations of poles and zeros are independent

of input and output scalings, their directions are not.
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5.6.2 Remarks on poles and zeros [4.6.2]

1. For square systems the poles and zeros of G(s)

are “essentially” the poles and zeros of detG(s).

This fails when zero and pole in different parts of

the system cancel when forming detG(s).

G(s) =

[
(s+ 2)/(s+ 1) 0

0 (s+ 1)/(s+ 2)

]

(5.54)

detG(s) = 1, although the system obviously has

poles at −1 and −2 and (multivariable) zeros at

−1 and −2.

2. System (5.54) has poles and zeros at the same

locations (at −1 and −2). Their directions are

different. They do not cancel or otherwise

interact.

3. There are no zeros if the outputs contain direct

information about all the states; that is, if from y

we can directly obtain x (e.g. C = I and D = 0);

4. Zeros usually appear when there are fewer inputs

or outputs than states
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5. Moving poles. (a) feedback control

(G(I +KG)−1) moves the poles, (b) series

compensation (GK, feedforward control) can

cancel poles in G by placing zeros in K (but not

move them), and (c) parallel compensation

(G+K) cannot affect the poles in G.

6. Moving zeros. (a) With feedback, the zeros of

G(I +KG)−1 are the zeros of G plus the poles of

K. , i.e. the zeros are unaffected by feedback.

(b) Series compensation can counter the effect of

zeros in G by placing poles in K to cancel them,

but cancellations are not possible for RHP-zeros

due to internal stability (see Section 5.7). (c)

The only way to move zeros is by parallel

compensation, y = (G+K)u, which, if y is a

physical output, can only be accomplished by

adding an extra input (actuator).
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Example

Effect of feedback on poles and zeros.

SISO plant G(s) = z(s)/φ(s) and K(s) = k.

T (s) =
L(s)

1 + L(s)
=

kG(s)

1 + kG(s)
=

kz(s)

φ(s) + kz(s)
= k

zcl(s)

φcl(s)
(5.55)

Note the following:

1. Zero polynomial: zcl(s) = z(s)

⇒ zero locations are unchanged.

2. Pole locations are changed by feedback.

For example,

k → 0 ⇒ φcl(s) → φ(s) (5.56)

k → ∞ ⇒ φcl(s) → z(s).z̃(s) (5.57)

where roots of z̃(s) move with k to infinity (complex

pattern)

(cf. root locus)
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5.10 System norms [4.10]

-- zw
G

Figure 51: System G

Figure 51: System with stable transfer function matrix

G(s) and impulse response matrix g(t).

Question: given information about the allowed input

signals w(t), how large can the outputs z(t) become?

We use the 2-norm,

‖z(t)‖2 =

√∑

i

∫ ∞

−∞
|zi(τ)|2dτ (5.88)

and consider three inputs:

1. w(t) is a series of unit impulses.

2. w(t) is any signal satisfying ‖w(t)‖2 = 1.

3. w(t) is any signal satisfying ‖w(t)‖2 = 1, but

w(t) = 0 for t ≥ 0, and we only measure z(t) for

t ≥ 0.

The relevant system norms in the three cases are the

H2, H∞, and Hankel norms, respectively.
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5.10.1 H2 norm [4.10.1]

G(s) strictly proper.

For the H2 norm we use the Frobenius norm spatially

(for the matrix) and integrate over frequency, i.e.

‖G(s)‖2
∆
=

√√√√√
1

2π

∫ ∞

−∞
tr(G(jω)HG(jω))︸ ︷︷ ︸

‖G(jω)‖2
F

=
∑

ij
|Gij(jω)|2

dω

(5.89)

G(s) must be strictly proper, otherwise the H2 norm

is infinite. By Parseval’s theorem, (5.89) is equal to

the H2 norm of the impulse response

‖G(s)‖2 = ‖g(t)‖2
∆
=

√√√√√

∫ ∞

0

tr(gT (τ)g(τ))︸ ︷︷ ︸
‖g(τ)‖2

F
=
∑

ij
|gij(τ)|2

dτ

(5.90)

• Note that G(s) and g(t) are dynamic systems

while G(jω) and g(τ) are constant matrices (for

a given value of ω or τ).
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• We can change the order of integration and

summation in (5.90) to get

‖G(s)‖2 = ‖g(t)‖2 =

√√√√
∑

ij

∫ ∞

0

|gij(τ)|2dτ

(5.91)

where gij(t) is the ij’th element of the impulse

response matrix, g(t). Thus H2 norm can be

interpreted as the 2-norm output resulting from

applying unit impulses δj(t) to each input, one after

another (allowing the output to settle to zero before

applying an impulse to the next input). Thus

‖G(s)‖2 =
√∑m

i=1
‖zi(t)‖2

2 where zi(t) is the output

vector resulting from applying a unit impulse δi(t) to

the i’th input.
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5.10.2 H∞ norm [4.10.2]

G(s) proper.

For the H∞ norm we use the singular value (induced

2-norm) spatially (for the matrix) and pick out the

peak value as a function of frequency

‖G(s)‖∞ ∆
= max

ω
σ̄(G(jω)) (5.93)

The H∞ norm is the peak of the transfer function

“magnitude”.

Time domain performance interpretations of

the H∞ norm.

• Worst-case steady-state gain for sinusoidal

inputs at any frequency.

• Induced (worst-case) 2-norm in the time domain:

‖G(s)‖∞ = max
w(t) 6=0

‖z(t)‖2

‖w(t)‖2
= max

‖w(t)‖2=1
‖z(t)‖2

(5.94)

(In essence, (5.94) arises because the worst input

signal w(t) is a sinusoid with frequency ω∗ and a

direction which gives σ(G(jω∗)) as the maximum

gain.)
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Numerical computation of the H∞ norm.

Consider

G(s) = C(sI −A)−1B +D

H∞ norm is the smallest value of γ such that the

Hamiltonian matrix H has no eigenvalues on the

imaginary axis, where

H =

[
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]

(5.95)

and R = γ2I −DTD

5.10.3 Difference between the H2 and H∞
norms

Frobenius norm in terms of singular values

‖G(s)‖2 =

√
1

2π

∫ ∞

−∞

∑

i

σ2
i (G(jω))dω (5.96)

Thus when optimizing performance in terms of the

different norms:

• H∞: “push down peak of largest singular value”.

• H2: “push down whole thing” (all singular

values over all frequencies).
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Example

G(s) =
1

s+ a
(5.97)

H2 norm:

‖G(s)‖2 = (
1

2π

∫ ∞

−∞
|G(jω)|2︸ ︷︷ ︸

1
ω2+a2

dω)
1
2

= (
1

2πa

[
tan−1(

ω

a
)
]∞
−∞

)
1
2 =

√
1

2a

Alternatively: Consider the impulse response

g(t) = L−1

(
1

s+ a

)
= e−at, t ≥ 0 (5.98)

to get

‖g(t)‖2 =

√∫ ∞

0

(e−at)2dt =

√
1

2a
(5.99)

as expected from Parseval’s theorem.

H∞ norm:

||G(s)||∞ = max
ω

|G(jω)| = max
ω

1

(ω2 + a2)
1
2

=
1

a

(5.100)
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Example

There is no general relationship between the H2 and

H∞ norms.

f1(s) =
1

ǫs+ 1
, f2(s) =

ǫs

s2 + ǫs+ 1
(5.101)

||f1||∞ = 1 ||f1||2 = ∞
||f2||∞ = 1 ||f2||2 = 0

(5.102)

Why is the H∞ norm so popular? In robust

control convenient for representing unstructured

model uncertainty, and because it satisfies the

multiplicative property:

‖A(s)B(s)‖∞ ≤ ‖A(s)‖∞ · ‖B(s)‖∞ (5.103)

What is wrong with the H2 norm? It is not an

induced norm and does not satisfy the multiplicative

property.

5-48



Example

Consider again G(s) = 1/(s+ a) in (5.97), for which

‖G(s)‖2 =
√

1/2a.

‖G(s)G(s)‖2 =

√√√√√

∫ ∞

0

| L−1[(
1

s+ a
)2]

︸ ︷︷ ︸
te−at

|2

=

√
1

a

1

2a
=

√
1

a
‖G(s)‖2

2

(5.104)

for a < 1,

‖G(s)G(s)‖2 > ‖G(s)‖2 · ‖G(s)‖2 (5.105)

which does not satisfy the multiplicative property.

H∞ norm does satisfy the multiplicative property

‖G(s)G(s)‖∞ =
1

a2
= ‖G(s)‖∞ · ‖G(s)‖∞
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1 LIMITATIONS ON

PERFORMANCE IN MIMO

SYSTEMS

In a MIMO system, disturbances, the plant,
RHP-zeros, RHP-poles and delays each have
directions associated with them. A multivariable
plant may have a RHP-zero and a RHP-pole at the
same location, but their effects may not interact.

• yz: output direction of a RHP-zero,
G(z)uz = 0 · yz

• yp: output direction of a RHP-pole,
G(p)up = ∞ · yp
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1.1 Interpolation constraints

RHP-zero. If G(s) has a RHP-zero at z with
output direction yz, then for internal stability

yH
z T (z) = 0; yH

z S(z) = yH
z (1.1)

RHP-pole. If G(s) has a RHP-pole at p with
output direction yp, then for internal stability the
following interpolation constraints apply:

S(p)yp = 0; T (p)yp = yp (1.2)

Similar constraints apply to LI , SI and TI , but these
are in terms of the input zero and pole directions, uz

and up.
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1.2 Constraints on S and T [6.2]

From the identity S + T = I we get

|1− σ̄(S)| ≤ σ̄(T ) ≤ 1 + σ̄(S) (1.3)

|1− σ̄(T )| ≤ σ̄(S) ≤ 1 + σ̄(T ) (1.4)

⇒ S and T cannot be small simultaneously; σ̄(S) is
large if and only if σ̄(T ) is large. For example, if
σ̄(T ) is 5 at a given frequency, then σ̄(S) must be
between 4 and 6 at this frequency.
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1.3 Sensitivity peaks [6.2.4]

Theorem 1 Weighted sensitivity. Suppose the
plant G(s) has a RHP-zero at s = z. Let wP (s) be
any stable scalar weight. Then for closed-loop
stability the weighted sensitivity function must satisfy

‖wP (s)S(s)‖∞ = max
ω

σ̄(wP (jω)S(jω)) ≥ |wP (z)|
(1.5)

In MIMO systems we generally have the freedom to
move the effect of RHP zeros to different outputs by
appropriate control.

Theorem 2 Weighted complementary
sensitivity. Suppose the plant G(s) has a RHP-pole
at s = p. Let wT (s) be any stable scalar weight.
Then for closed-loop stability the weighted
complementary sensitivity function must satisfy

‖wT (s)T (s)‖∞ = max
ω

σ̄(wT (jω)T (jω)) ≥ |wT (p)|
(1.6)
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For a plant with one RHP-zero z and one RHP-pole
p,

MS,min = MT,min =

√
sin2 φ +

|z + p|2
|z − p|2 cos2 φ (1.7)

where φ = cos−1 |yH
z yp| is the angle between the

output directions of the pole and zero.

If the pole and zero are aligned such that yz = yp

and φ = 0, then (1.7) simplifies to give the equivalent
SISO conditions.

Conversely, if the pole and zero are orthogonal to
each other, then φ = 90◦ and MS,min = MT,min = 1,
and there is no additional penalty for having both a
RHP-pole and a RHP-zero.
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1.4 Example

Consider the plant

Gα(s) =




1
s−p 0

0 1
s+3


 Uα




s−z
0.1s+1 0

0 s+2
0.1s+1




Uα =


 cosα − sinα

sin α cosα


 , z = 2, p = 3

which has for all values of α a RHP-zero at z = 2
and a RHP-pole at p = 3.

For α = 0◦, Uα = I,

G0(s) =




s−z
(0.1s+1)(s−p) 0

0 s+2
(0.1s+1)(s+3)




g11 has both RHP-pole and RHP-zero (bad!).

When α = 90◦

G90(s) =


 0 − s+2

(0.1s+1)(s−p)

s−z
(0.1s+1)(s+3) 0




No interaction between the RHP-pole and RHP-zero
(good!).
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α 0◦ 30◦ 60◦ 90◦

yz

[
1

0

] [
0.33

−0.94

] [
0.11

−0.99

] [
0

1

]

φ = cos−1 |yH
z yp| 0◦ 70.9◦ 83.4◦ 90◦

‖S‖∞ ≥ 5.0 1.89 1.15 1.0

‖S‖∞ 7.00 2.60 1.59 1.98

‖T‖∞ 7.40 2.76 1.60 1.31

γmin(S/KS) 9.55 3.53 2.01 1.59

The table also shows the values of ‖S‖∞ and ‖T‖∞
obtained by an H∞ optimal S/KS design using the
following weights:

Wu = I; WP =
(

s/M + ω∗B
s

)
I; M = 2, ω∗B = 0.5

(1.8)
The weight WP indicates that we require ‖S‖∞ less
than 2, and require tight control up to a frequency of
about ω∗B = 0.5 rad/s. The minimum H∞ norm for
the overall S/KS problem is given by the value of γ

in Table.
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7.3 Limitations imposed by

uncertainty [6.10]

7.3.1 Input and output uncertainty

In a multiplicative (relative) form, the output and

input uncertainties (as in Figure 72) are given by

Output uncertainty: G′ = (I +EO)G or

EO = (G′ −G)G−1 (7.5)

Input uncertainty: G′ = G(I +EI) or

EI = G−1(G′ −G) (7.6)

cq cq
- -

? ?- ---

EI Eo

G
+

+
+

+

Figure 72: Plant with multiplicative input and output

uncertainty
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7.3.3 Uncertainty and the benefits of

feedback [6.10.3]

Feedback control. With one degree-of-freedom

feedback control the nominal transfer function is

y = Tr where T = L(I + L)−1 is the complementary

sensitivity function. Ideally, T = I. The change in

response with model error is y′ − y = (T ′−T )r where

T ′ − T = S′EOT (7.7)

Thus, y′ − y = S′EOTr = S′EOy, and we see that

• with feedback control the effect of the

uncertainty is reduced by a factor S′ relative to

that with feedforward control.
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7.3.4 Uncertainty and the sensitivity peak

We will derive upper bounds on σ̄(S′) which involve

the plant and controller condition numbers

γ(G) =
σ̄(G)

σ(G)
, γ(K) =

σ̄(K)

σ(K)
(7.8)

Factorizations of S′ in terms of the nominal

sensitivity S

Output uncertainty: S′ = S(I + EOT )−1 (7.9)

Input uncertainty: S′ = S(I + GEIG
−1T )−1 =

= SG(I + EITI)
−1G−1 (7.10)

S′ = (I + TK−1EIK)−1S =

= K−1(I + TIEI)
−1KS (7.11)
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We assume: G and G′ are stable; closed-loop

stability, i.e. S and S′ are stable; therefore

(I +EOT )−1 and (I +EITI)
−1 are stable; the

magnitude of the multiplicative (relative)

uncertainty at each frequency can be bounded in

terms of its singular value

σ̄(EI) ≤ |wI |, σ̄(EO) ≤ |wO| (7.12)

where wI(s) and wO(s) are scalar weights. Typically

the uncertainty bound, |wI | or |wO|, is 0.2 at low

frequencies and exceeds 1 at higher frequencies.

Upper bound on σ̄(S′) for output uncertainty

From (7.9) we derive

σ̄(S′) ≤ σ̄(S)σ̄((I +EOT )−1) ≤ σ̄(S)

1 − |wO|σ̄(T )
(7.13)
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Upper bounds on σ̄(S′) for input uncertainty

The sensitivity function can be much more sensitive

to input uncertainty than output uncertainty.

From (7.10) and (7.11) we derive:

σ̄(S′) ≤ γ(G)σ̄(S)σ̄((I +EITI)
−1) ≤

≤ γ(G)
σ̄(S)

1 − |wI |σ̄(TI)
(7.14)

σ̄(S′) ≤ γ(K)σ̄(S)σ̄((I + TIEI)
−1) ≤

≤ γ(K)
σ̄(S)

1 − |wI |σ̄(TI)
(7.15)

⇒ If we use a “round” controller (γ(K) ≈ 1) then

the sensitivity function is not sensitive to input

uncertainty.
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