A MATRIX THEORY AND NORMS

A. 1 Basics

Complex Matrix $A \in \mathcal{C}^{l \times m}$
Real Matrix $\quad A \in \mathcal{R}^{l \times m}$
elements $a_{i j}=\operatorname{Re} a_{i j}+j \operatorname{Im} a_{i j}$
$l=$ number of rows
= "outputs" when viewed as an operator
$m=$ number of columns
$=$ "inputs" when viewed as an operator

- $A^{T}=$ transpose of A (with elements $a_{j i}$),
- $\bar{A}=$ conjugate of A (with elements $\left.\operatorname{Re} a_{i j}-j \operatorname{Im} a_{i j}\right)$,
- $A^{H} \triangleq \bar{A}^{T}=$ conjugate transpose (or Hermitian adjoint) (with elements $\operatorname{Re} a_{j i}-j \operatorname{Im} a_{j i}$),

Matrix inverse:

$$
\begin{equation*}
A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A} \tag{A.1}
\end{equation*}
$$

where $\operatorname{adj} A$ is the adjugate (or "classical adjoint") of A which is the transposed matrix of cofactors $c_{i j}$ of A,

$$
\begin{equation*}
c_{i j}=[\operatorname{adj} A]_{j i} \triangleq(-1)^{i+j} \operatorname{det} A^{i j} \tag{A.2}
\end{equation*}
$$

Here $A^{i j}$ is a submatrix formed by deleting row i and column j of A.
Example:

$$
\begin{gather*}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] ; \quad \operatorname{det} A=a_{11} a_{22}-a_{12} a_{21} \\
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] \tag{A.3}
\end{gather*}
$$

Some matrix identities:

$$
\begin{equation*}
(A B)^{T}=B^{T} A^{T}, \quad(A B)^{H}=B^{H} A^{H} \tag{A.4}
\end{equation*}
$$

Assuming the inverses exist,

$$
\begin{equation*}
(A B)^{-1}=B^{-1} A^{-1} \tag{A.5}
\end{equation*}
$$

A is symmetric if $A^{T}=A$,
A is Hermitian if $A^{H}=A$,
A Hermitian matrix is positive definite if $x^{H} A x>0$ for any non-zero vector x.

A.1.1 Some determinant identities

The determinant is defined as
$\operatorname{det} A=\sum_{i=1}^{n} a_{i j} c_{i j}$ (expansion along column j) or $\operatorname{det} A=\sum_{j=1}^{n} a_{i j} c_{i j}$ (expansion along row i), where $c_{i j}$ is the $i j$ 'th cofactor given in (A.2).

1. Let A_{1} and A_{2} be square matrices of the same dimension. Then

$$
\operatorname{det}\left(A_{1} A_{2}\right)=\operatorname{det}\left(A_{2} A_{1}\right)=\operatorname{det} A_{1} \cdot \operatorname{det} A_{2} \quad(\mathrm{~A} .6)
$$

2. Let c be a complex scalar and A an $n \times n$ matrix. Then

$$
\begin{equation*}
\operatorname{det}(c A)=c^{n} \operatorname{det}(A) \tag{A.7}
\end{equation*}
$$

3. Let A be a non-singular matrix. Then

$$
\begin{equation*}
\operatorname{det} A^{-1}=1 / \operatorname{det} A \tag{A.8}
\end{equation*}
$$

4. Let A_{1} and A_{2} be matrices of compatible dimensions such that both matrices $A_{1} A_{2}$ and $A_{2} A_{1}$ are square (but A_{1} and A_{2} need not themselves be square). Then

$$
\begin{equation*}
\operatorname{det}\left(I+A_{1} A_{2}\right)=\operatorname{det}\left(I+A_{2} A_{1}\right) \tag{A.9}
\end{equation*}
$$

(A.9) is useful in the field of control because it yields $\operatorname{det}(I+G K)=\operatorname{det}(I+K G)$.
5.

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]= & \operatorname{det}\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]= \\
& \operatorname{det}\left(A_{11}\right) \cdot \operatorname{det}\left(A_{2(2)} A \cdot 10\right)
\end{aligned}
$$

6. Schur's formula for the determinant of a partitioned matrix:

$$
\begin{array}{r}
\operatorname{det}\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]= \\
\operatorname{det}\left(A_{11}\right) \cdot \operatorname{det}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right) \\
=\operatorname{det}\left(A_{22}\right) \cdot \operatorname{det}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) \tag{A.11}
\end{array}
$$

where it is assumed that A_{11} and/or A_{22} are non-singular.

A. 2 Eigenvalues and eigenvectors

Definition

Eigenvalues and eigenvectors. Let A be a square $n \times n$ matrix. The eigenvalues $\lambda_{i}, i=1, \ldots, n$, are the n solutions to the n 'th order characteristic equation

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{A.12}
\end{equation*}
$$

The (right) eigenvector t_{i} corresponding to the eigenvalue λ_{i} is the nontrivial solution $\left(t_{i} \neq 0\right)$ to

$$
\begin{equation*}
\left(A-\lambda_{i} I\right) t_{i}=0 \quad \Leftrightarrow \quad A t_{i}=\lambda_{i} t_{i} \tag{A.13}
\end{equation*}
$$

The corresponding left eigenvectors q_{i} satisfy

$$
\begin{equation*}
q_{i}^{H}\left(A-\lambda_{i} I\right)=0 \quad \Leftrightarrow \quad q_{i}^{H} A=\lambda_{i} q_{i}^{H} \tag{A.14}
\end{equation*}
$$

When we just say eigenvector we mean the right eigenvector.

Remarks

- The left eigenvectors of A are the (right) eigenvectors of A^{H}.
- $\rho(A) \triangleq \max _{i}\left|\lambda_{i}(A)\right|$ is the spectral radius of A.
- Eigenvectors corresponding to distinct eigenvalues are always linearly independent.
- Define

$$
T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} ; \quad \Lambda=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct.
Then we may then write (A.13) in the following form

$$
\begin{equation*}
A T=T \Lambda \tag{A.16}
\end{equation*}
$$

From (A.16) we then get that the eigenvector matrix diagonalizes A in the following manner

$$
\begin{equation*}
\Lambda=T^{-1} A T \tag{A.17}
\end{equation*}
$$

A.2.1 Eigenvalue properties

1. $\operatorname{tr} A=\sum_{i} \lambda_{i}$ where $\operatorname{tr} A$ is the trace of A (sum of the diagonal elements).
2. $\operatorname{det} A=\prod_{i} \lambda_{i}$.
3. The eigenvalues of an upper or lower triangular matrix are equal to the diagonal elements of the matrix.
4. For a real matrix the eigenvalues are either real, or occur in complex conjugate pairs.
5. A and A^{T} have the same eigenvalues (but in general different eigenvectors).
6. The eigenvalues of A^{-1} are $1 / \lambda_{1}, \ldots, 1 / \lambda_{n}$.
7. The matrix $A+c I$ has eigenvalues $\lambda_{i}+c$.
8. The matrix $c A^{k}$ where k is an integer has eigenvalues $c \lambda_{i}^{k}$.
9. Consider the $l \times m$ matrix A and the $m \times l$ matrix B. Then the $l \times l$ matrix $A B$ and the $m \times m$ matrix $B A$ have the same non-zero eigenvalues.
10. Eigenvalues are invariant under similarity transformations, that is, A and $D A D^{-1}$ have the same eigenvalues.
11. The same eigenvector matrix diagonalizes the matrix A and the matrix $(I+A)^{-1}$.
12. Gershgorin's theorem. The eigenvalues of the $n \times n$ matrix A lie in the union of n circles in the complex plane, each with centre $a_{i i}$ and radius $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$ (sum of off-diagonal elements in row i). They also lie in the union of n circles, each with centre $a_{i i}$ and radius $r_{i}^{\prime}=\sum_{j \neq i}\left|a_{j i}\right|$ (sum of off-diagonal elements in column i).
13. A symmetric matrix is positive definite if and only if all its eigenvalues are real and positive.

From the above we have, for example, that

$$
\begin{equation*}
\lambda_{i}(S)=\lambda_{i}\left((I+L)^{-1}\right)=\frac{1}{\lambda_{i}(I+L)}=\frac{1}{1+\lambda_{i}(L)} \tag{A.18}
\end{equation*}
$$

A. 3 Singular Value Decomposition

Definition: Unitary matrix. A (complex) matrix U is unitary if

$$
\begin{equation*}
U^{H}=U^{-1} \tag{A.19}
\end{equation*}
$$

Note:

$$
\|\lambda(U)\|=1 \quad \forall i
$$

Definition: SVD. Any complex $l \times m$ matrix A may be factorized into a singular value decomposition

$$
\begin{equation*}
A=U \Sigma V^{H} \tag{A.20}
\end{equation*}
$$

where the $l \times l$ matrix U and the $m \times m$ matrix V are unitary, and the $l \times m$ matrix Σ contains a diagonal matrix Σ_{1} of real, non-negative singular values, σ_{i}, arranged in a descending order as in

$$
\Sigma=\left[\begin{array}{c}
\Sigma_{1} \tag{A.21}\\
0
\end{array}\right] ; \quad l \geq m
$$

or

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{1} & 0 \tag{A.22}
\end{array}\right] ; \quad l \leq m
$$

where

$$
\begin{equation*}
\Sigma_{1}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\} ; \quad k=\min (l, m) \tag{A.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\sigma} \triangleq \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{k} \triangleq \underline{\sigma} \tag{A.24}
\end{equation*}
$$

- The unitary matrices U and V form orthonormal bases for the column (output) space and the row (input) space of A. The column vectors of V, denoted v_{i}, are called right or input singular vectors and the column vectors of U, denoted u_{i}, are called left or output singular vectors. We define $\bar{u} \equiv u_{1}, \bar{v} \equiv v_{1}, \underline{u} \equiv u_{k}$ and $\underline{v} \equiv v_{k}$.
- SVD is not unique since $A=U^{\prime} \Sigma V^{\prime H}$, where $U^{\prime}=U S, V^{\prime}=V S, S=\operatorname{diag}\left\{e^{j \theta_{i}}\right\}$ and θ_{i} is any real number, is also an SVD of A. However, the singular values, σ_{i}, are unique.

$$
\begin{equation*}
\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A^{H} A\right)}=\sqrt{\lambda_{i}\left(A A^{H}\right)} \tag{A.25}
\end{equation*}
$$

The columns of U and V are unit eigenvectors of $A A^{H}$ and $A^{H} A$, respectively. To derive (A.25) write

$$
\begin{align*}
A A^{H} & =\left(U \Sigma V^{H}\right)\left(U \Sigma V^{H}\right)^{H}=\left(U \Sigma V^{H}\right)\left(V \Sigma^{H} U^{H}\right) \\
& =U \Sigma \Sigma^{H} U^{H} \tag{A.26}
\end{align*}
$$

or equivalently since U is unitary and satisfies $U^{H}=U^{-1}$ we get

$$
\begin{equation*}
\left(A A^{H}\right) U=U \Sigma \Sigma^{H} \tag{А.27}
\end{equation*}
$$

$\Rightarrow U$ is the matrix of eigenvectors of $A A^{H}$ and $\left\{\sigma_{i}^{2}\right\}$ are its eigenvalues. Similarly, V is the matrix of eigenvectors of $A^{H} A$.

Definition: The rank of a matrix is equal to the number of non-zero singular values of the matrix. Let $\operatorname{rank}(A)=r$, then the matrix A is called rank deficient if $r<k=\min (l, m)$, and we have singular values $\sigma_{i}=0$ for $i=r+1, \ldots k$. A rank deficient square matrix is a singular matrix (non-square matrices are always singular).

A.3.3 SVD of a matrix inverse

Provided the $m \times m$ matrix A is non-singular

$$
\begin{equation*}
A^{-1}=V \Sigma^{-1} U^{H} \tag{A.28}
\end{equation*}
$$

Let $j=m-i+1$. Then it follows from (A.28) that

$$
\begin{align*}
\sigma_{i}\left(A^{-1}\right) & =1 / \sigma_{j}(A) \tag{A.29}\\
u_{i}\left(A^{-1}\right) & =v_{j}(A) \tag{A.30}\\
v_{i}\left(A^{-1}\right) & =u_{j}(A) \tag{A.31}
\end{align*}
$$

and in particular

$$
\begin{equation*}
\bar{\sigma}\left(A^{-1}\right)=1 / \underline{\sigma}(A) \tag{A.32}
\end{equation*}
$$

A.3.4 Singular value inequalities

$$
\begin{align*}
& \underline{\sigma}(A) \leq\left|\lambda_{i}(A)\right| \leq \bar{\sigma}(A) \\
& \bar{\sigma}\left(A^{H}\right)=\bar{\sigma}(A) \quad \text { and } \quad \bar{\sigma}\left(A^{T}\right)=\bar{\sigma}(A) \\
& \bar{\sigma}(A B) \leq \bar{\sigma}(A) \bar{\sigma}(B) \tag{А.34}\\
& \underline{\sigma}(A) \bar{\sigma}(B) \leq \bar{\sigma}(A B) \quad \text { or } \quad \bar{\sigma}(A) \underline{\sigma}(B) \leq \bar{\sigma}(A B(\mathrm{~A} .36) \\
& \underline{\sigma}(A) \underline{\sigma}(B) \leq \underline{\sigma}(A B) \\
& \max \{\bar{\sigma}(A), \bar{\sigma}(B)\} \leq \bar{\sigma}\left[\begin{array}{l}
A \\
B
\end{array}\right] \leq \sqrt{2} \max \{\bar{\sigma}(A), \bar{\sigma}(B)\} \\
& \bar{\sigma}\left[\begin{array}{l}
A \\
B
\end{array}\right] \leq \bar{\sigma}(A)+\bar{\sigma}(B) \\
& \bar{\sigma}\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]=\max \{\bar{\sigma}(A), \bar{\sigma}(B)\} \\
& \sigma_{i}(A)-\bar{\sigma}(B) \leq \sigma_{i}(A+B) \leq \sigma_{i}(A)+\bar{\sigma}(B)
\end{align*}
$$

Two special cases of (A.41) are:

$$
\begin{align*}
& |\bar{\sigma}(A)-\bar{\sigma}(B)| \leq \bar{\sigma}(A+B) \leq \bar{\sigma}(A)+\bar{\sigma}(B) \tag{A.42}\\
& \underline{\sigma}(A)-\bar{\sigma}(B) \leq \underline{\sigma}(A+B) \leq \underline{\sigma}(A)+\bar{\sigma}(B) \tag{A.43}
\end{align*}
$$

(A.43) yields

$$
\begin{equation*}
\underline{\sigma}(A)-1 \leq \underline{\sigma}(I+A) \leq \underline{\sigma}(A)+1 \tag{A.44}
\end{equation*}
$$

On combining (A.32) and (A.44) we get

$$
\begin{equation*}
\underline{\sigma}(A)-1 \leq \frac{1}{\bar{\sigma}(I+A)^{-1}} \leq \underline{\sigma}(A)+1 \tag{A.45}
\end{equation*}
$$

A. 4 Condition number

The condition number of a matrix is defined as the ratio

$$
\begin{equation*}
\gamma(A)=\sigma_{1}(A) / \sigma_{k}(A)=\bar{\sigma}(A) / \underline{\sigma}(A) \tag{A.46}
\end{equation*}
$$

where $k=\min (l, m)$.

A. 5 Norms

Definition

A norm of e (which may be a vector, matrix, signal or system) is a real number, denoted $\|e\|$, that satisfies the following properties:

1. Non-negative: $\|e\| \geq 0$.
2. Positive: $\|e\|=0 \Leftrightarrow e=0$ (for semi-norms we have $\|e\|=0 \Leftarrow e=0$).
3. Homogeneous: $\|\alpha \cdot e\|=|\alpha| \cdot\|e\|$ for all complex scalars α.
4. Triangle inequality:

$$
\begin{equation*}
\left\|e_{1}+e_{2}\right\| \leq\left\|e_{1}\right\|+\left\|e_{2}\right\| \tag{A.47}
\end{equation*}
$$

We will consider the norms of four different objects (norms on four different vector spaces):

1. e is a constant vector.
2. e is a constant matrix.
3. e is a time dependent signal, $e(t)$, which at each fixed t is a constant scalar or vector.
4. e is a "system", a transfer function $G(s)$ or impulse response $g(t)$, which at each fixed s or t is a constant scalar or matrix.

A.5.1 Vector norms

General:

$$
\begin{equation*}
\|a\|_{p}=\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{1 / p} ; \quad p \geq 1 \tag{A.48}
\end{equation*}
$$

Vector 1-norm (or sum-norm)

$$
\begin{equation*}
\|a\|_{1} \triangleq \sum_{i}\left|a_{i}\right| \tag{A.49}
\end{equation*}
$$

Vector 2-norm (Euclidean norm).

$$
\begin{gather*}
\|a\|_{2} \triangleq \sqrt{\sum_{i}\left|a_{i}\right|^{2}} \tag{A.50}\\
a^{H} a=\|a\|_{2}^{2} \tag{A.51}
\end{gather*}
$$

Vector ∞-norm (or max norm)

$$
\begin{equation*}
\|a\|_{\max } \equiv\|a\|_{\infty} \triangleq \max _{i}\left|a_{i}\right| \tag{A.52}
\end{equation*}
$$

$$
\begin{equation*}
\|a\|_{\max } \leq\|a\|_{2} \leq \sqrt{m}\|a\|_{\max } \tag{A.53}
\end{equation*}
$$

$$
\begin{equation*}
\|a\|_{2} \leq\|a\|_{1} \leq \sqrt{m}\|a\|_{2} \tag{A.54}
\end{equation*}
$$

Figure 96: Contours for the vector p-norm, $\|a\|_{p}=1$ for $p=1,2, \infty$

A.5.2 Matrix norms

Definition

A norm on a matrix $\|A\|$ is a matrix norm if, in addition to the four norm properties in
Definition A.5, it also satisfies the multiplicative property (also called the consistency condition):

$$
\begin{equation*}
\|A B\| \leq\|A\| \cdot\|B\| \tag{A.55}
\end{equation*}
$$

Sum matrix norm.

$$
\begin{equation*}
\|A\|_{\text {sum }}=\sum_{i, j}\left|a_{i j}\right| \tag{A.56}
\end{equation*}
$$

Frobenius matrix norm (or Euclidean norm).

$$
\begin{equation*}
\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}=\sqrt{\operatorname{tr}\left(A^{H} A\right)} \tag{A.57}
\end{equation*}
$$

Max element norm.

$$
\begin{equation*}
\|A\|_{\max }=\max _{i, j}\left|a_{i j}\right| \tag{A.58}
\end{equation*}
$$

Not a matrix norm as it does not satisfy (A.55). However note that $\sqrt{l m}\|A\|_{\max }$ is a matrix norm.

Induced matrix norms

Figure 97: Representation of (A.59)

$$
\begin{equation*}
z=A w \tag{A.59}
\end{equation*}
$$

The induced norm is defined as

$$
\begin{equation*}
\|A\|_{i p} \triangleq \max _{w \neq 0} \frac{\|A w\|_{p}}{\|w\|_{p}} \tag{A.60}
\end{equation*}
$$

where $\|w\|_{p}=\left(\sum_{i}\left|w_{i}\right|^{p}\right)^{1 / p}$ denotes the vector p-norm.

- We are looking for a direction of the vector w such that the ratio $\|z\|_{p} /\|w\|_{p}$ is maximized.
- The induced norm gives the largest possible "amplifying power" of the matrix. Equivalent definition is:

$$
\begin{equation*}
\|A\|_{i p}=\max _{\|w\|_{p} \leq 1}\|A w\|_{p}=\max _{\|w\|_{p}=1}\|A w\|_{p} \tag{A.61}
\end{equation*}
$$

$$
\|A\|_{i 1}=\max _{j}\left(\sum_{i}\left|a_{i j}\right|\right)
$$

"maximum column sum"

$$
\begin{gathered}
\|A\|_{i \infty}=\max _{i}\left(\sum_{j}\left|a_{i j}\right|\right) \\
\text { "maximum row sum" }
\end{gathered}
$$

$$
\|A\|_{i 2}=\bar{\sigma}(A)=\sqrt{\rho\left(A^{H} A\right)}
$$

"singular value or spectral norm"

Theorem 14 All induced norms $\|A\|_{i p}$ are matrix norms and thus satisfy the multiplicative property

$$
\begin{equation*}
\|A B\|_{i p} \leq\|A\|_{i p} \cdot\|B\|_{i p} \tag{A.63}
\end{equation*}
$$

Figure 98:

Implications of the multiplicative property

1. Choose B to be a vector, i.e $B=w$.

$$
\begin{equation*}
\|A w\| \leq\|A\| \cdot\|w\| \tag{A.64}
\end{equation*}
$$

The "matrix norm $\|A\|$ is compatible with its corresponding vector norm $\|w\|$ ".
2. From (A.64)

$$
\begin{equation*}
\|A\| \geq \max _{w \neq 0} \frac{\|A w\|}{\|w\|} \tag{A.65}
\end{equation*}
$$

For induced norms we have equality in (A.65)
$\|A\|_{F} \geq \bar{\sigma}(A)$ follows since $\|w\|_{F}=\|w\|_{2}$.
3. Choose both $A=z^{H}$ and $B=w$ as vectors. Then we derive the Cauchy-Schwarz inequality

$$
\begin{equation*}
\left|z^{H} w\right| \leq\|z\|_{2} \cdot\|w\|_{2} \tag{A.66}
\end{equation*}
$$

A.5.3 The spectral radius $\rho(A)$

$$
\begin{equation*}
\rho(A)=\max _{i}\left|\lambda_{i}(A)\right| \tag{A.67}
\end{equation*}
$$

Not a norm!

Example:

$$
\begin{gather*}
A_{1}=\left[\begin{array}{cc}
1 & 0 \\
10 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
1 & 10 \\
0 & 1
\end{array}\right] \tag{A.68}\\
\rho\left(A_{1}\right)=1, \quad \rho\left(A_{2}\right)=1 \tag{A.69}
\end{gather*}
$$

but

$$
\begin{equation*}
\rho\left(A_{1}+A_{2}\right)=12, \quad \rho\left(A_{1} A_{2}\right)=101.99 \tag{A.70}
\end{equation*}
$$

Theorem 15 For any matrix norm (and in particular for any induced norm)

$$
\begin{equation*}
\rho(A) \leq\|A\| \tag{A.71}
\end{equation*}
$$

A.5.4 Some matrix norm relationships

$$
\begin{equation*}
\bar{\sigma}(A) \leq\|A\|_{F} \leq \sqrt{\min (l, m)} \bar{\sigma}(A) \tag{А.72}
\end{equation*}
$$

$$
\|A\|_{\max } \leq \bar{\sigma}(A) \leq \sqrt{l m}\|A\|_{\max }
$$

$$
\bar{\sigma}(A) \leq \sqrt{\|A\|_{i 1}\|A\|_{i \infty}}
$$

$$
\begin{equation*}
\frac{1}{\sqrt{m}}\|A\|_{i \infty} \leq \bar{\sigma}(A) \leq \sqrt{l}\|A\|_{i \infty} \tag{A.75}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\sqrt{l}}\|A\|_{i 1} \leq \bar{\sigma}(A) \leq \sqrt{m}\|A\|_{i 1} \tag{A.76}
\end{equation*}
$$

$$
\begin{equation*}
\max \left\{\bar{\sigma}(A),\|A\|_{F},\|A\|_{i 1},\|A\|_{i \infty}\right\} \leq\|A\|_{\text {sum }} \tag{А.77}
\end{equation*}
$$

- All these norms, except $\|A\|_{\text {max }}$, are matrix norms and satisfy (A.55).
- The inequalities are tight.
- $\|A\|_{\max }$ can be used as a simple estimate of $\bar{\sigma}(A)$.

The Frobenius norm and the maximum singular value (induced 2-norm) are invariant with respect to unitary transformations.

$$
\begin{align*}
\left\|U_{1} A U_{2}\right\|_{F} & =\|A\|_{F} \tag{A.78}\\
\bar{\sigma}\left(U_{1} A U_{2}\right) & =\bar{\sigma}(A) \tag{А.79}
\end{align*}
$$

Relationship between Frobenius norm and singular values, $\sigma_{i}(A)$

$$
\begin{equation*}
\|A\|_{F}=\sqrt{\sum_{i} \sigma_{i}^{2}(A)} \tag{A.80}
\end{equation*}
$$

Perron-Frobenius theorem

$$
\begin{equation*}
\min _{D}\left\|D A D^{-1}\right\|_{i 1}=\min _{D}\left\|D A D^{-1}\right\|_{i \infty}=\rho(|A|) \tag{A.81}
\end{equation*}
$$

where D is a diagonal "scaling" matrix.

Here:

- $|A|$ denotes the matrix A with all its elements replaced by their magnitudes.
- $\rho(|A|)=\max _{i}\left|\lambda_{i}(|A|)\right|$ is the Perron root (Perron-Frobenius eigenvalue). Note: $\rho(A) \leq \rho(|A|)$

A.5.5 Matrix and vector norms in MATLAB

$$
\begin{aligned}
& \bar{\sigma}(A)=\|A\|_{i 2} \quad \operatorname{norm}(\mathrm{~A}, 2) \text { or max }(\operatorname{svd}(\mathrm{A})) \\
& \|A\|_{i 1} \quad \operatorname{norm}(\mathrm{~A}, 1) \\
& \|A\|_{i \infty} \quad \operatorname{norm}\left(\mathrm{~A},{ }^{\prime}\right. \text { inf') } \\
& \|A\|_{F} \quad \operatorname{norm}(\mathrm{~A}, \text { 'fro') } \\
& \|A\|_{\text {sum }} \quad \operatorname{sum}(\operatorname{sum}(\operatorname{abs}(\mathrm{A}))) \\
& \|A\|_{\max } \quad \max (\max (\operatorname{abs}(\mathrm{A}))) \\
& \text { (which is not a matrix norm) }
\end{aligned}
$$

$$
\begin{aligned}
\rho(A) & \max (\operatorname{abs}(\operatorname{eig}(\mathrm{A}))) \\
\rho(|A|) & \max (\operatorname{eig}(\operatorname{abs}(\mathrm{A}))) \\
\gamma(A)=\bar{\sigma}(A) / \underline{\sigma}(A) & \operatorname{cond}(\mathrm{A})
\end{aligned}
$$

For vectors:

$$
\begin{aligned}
\|a\|_{1} & \operatorname{norm}(\mathrm{a}, 1) \\
\|a\|_{2} & \operatorname{norm}(\mathrm{a}, 2) \\
\|a\|_{\max } & \operatorname{norm}\left(\mathrm{a},,^{\prime} \mathrm{inf} \prime^{\prime}\right)
\end{aligned}
$$

A.5.6 Signal norms

Contrary to spatial norms (vector and matrix norms), choice of temporal norm makes big difference for signals.

Example:

Figure 99: Signals with entirely different 2-norms and ∞-norms.

$$
\begin{align*}
\left\|e_{1}(t)\right\|_{\infty} & =1, \quad\left\|e_{1}(t)\right\|_{2}=\infty \tag{A.82}\\
\left\|e_{2}(t)\right\|_{\infty}=\infty, & \left\|e_{2}(t)\right\|_{2}=1
\end{align*}
$$

Compute norm in two steps:

1. "Sum up" the channels at a given time or frequency using a vector norm.
2. "Sum up" in time or frequency using a temporal norm.

Figure 100: Signal 1-norm and ∞-norm.

General:

$$
l_{p} \text { norm: } \quad\|e(t)\|_{p}=\left(\int_{-\infty}^{\infty} \sum_{i}\left|e_{i}(\tau)\right|^{p} d \tau\right)^{1 / p}
$$

1-norm in time (integral absolute error (IAE), see Figure 100):

$$
\begin{equation*}
\|e(t)\|_{1}=\int_{-\infty}^{\infty} \sum_{i}\left|e_{i}(\tau)\right| d \tau \tag{A.84}
\end{equation*}
$$

2-norm in time (quadratic norm, integral square error (ISE), "energy" of signal):

$$
\begin{equation*}
\|e(t)\|_{2}=\sqrt{\int_{-\infty}^{\infty} \sum_{i}\left|e_{i}(\tau)\right|^{2} d \tau} \tag{A.85}
\end{equation*}
$$

∞-norm in time (peak value in time, see Figure 100):

$$
\begin{equation*}
\|e(t)\|_{\infty}=\max _{\tau}\left(\max _{i}\left|e_{i}(\tau)\right|\right) \tag{A.86}
\end{equation*}
$$

Power-norm or RMS-norm (semi-norm since it does not satisfy property 2)

$$
\begin{equation*}
\|e(t)\|_{\text {pow }}=\lim _{T \rightarrow \infty} \sqrt{\frac{1}{2 T} \int_{-T}^{T} \sum_{i}\left|e_{i}(\tau)\right|^{2} d \tau} \tag{A.87}
\end{equation*}
$$

