

Comparing linear controllers (subsea pressure)

Comparison between IMC-PID controller and \mathcal{H}_{∞} controllers							
	IMC PID	\mathcal{H}_{∞} mixed-	\mathcal{H}_{∞}				
	IMO-FID	sensitivity	loop-shaping				
Gain Margin	0.38	0.46	0.29				
GM Frequency	0.19	0.18	0.16				
Phase Margin	61.68	50.63	64.44				
PM Frequency	0.52	0.43	0.64				
Delay Margin	2.07	2.07	1.77				
$ S _{\infty}$	1.02	1.17	1.14				
$ T _{\infty}$	1.63	1.86	1.41				
$\ KS\ _{\infty}$	43.17	36.86	55.67				
Z_{max}^*	50%	50%	58%				

*Controllers tuned at 30% valve opening

Anti-slug control with top-pressure is possible using fast nonlinear observers

The operating range of top pressure is still less than subsea pressure Surprisingly, nonlinear observer is not working with subsea pressure, but a (simpler) linear observer works very fine.

	Subsea pressure	Top Pressure
Nonlinear Observer	Not Working !?	Working*
Linear Observer	Working	Not Working
PI Control	Working	Not Working
Max. Valve	60%	20%

*but only for small valve openings

UNLN Solution 2: feedback linearization Nonlinear controller Inlet separator Topside choke Rise PT Subsea wells Subsea choke Jahanshahi, Skogestad and Grøtli, NOLCOS, 2013

	Solution 4: Gain-Scheduling IMC					
NT	Three identified model from step test	ts:				
ΠN	Z=20%: $G_1(s) = \frac{-0.015(s+0.26)}{s^2 - 0.045s + 0.0094}$					
	Z=30%: $G_2(s) = \frac{-0.0098(s+0.25)}{s^2 - 0.040s + 0.025}$					
	Z=40%: $G_3(s) = \frac{-0.0056(s+0.27)}{s^2 - 0.017s + 0.096}$					
	Three IMC controllers:					
	$C_1(s) = \frac{-16.15(s^2 + 0.016s + 0.0012)}{s(s + 0.26)}$	Gain-scheduling lo	ogic			
	$C_2(s) = \frac{-42.20(s^2 + 0.052s + 0.0047)}{s(s + 0.25)}$	$Pressure set-point$ $P_{set} \ge 24 \ kPa$ $24 \ kPa > P_{set} > 21.5 \ kPa$	$ \begin{array}{c} Controller\\ \hline C_1(s)\\ \hline C_2(s)\\ \hline \end{array} $			
	$C_3(s) = \frac{-115.11(s^2 + 0.052s + 0.014)}{s(s + 0.27)}$	$P_{set} \le 21.5 \; kPa$	$C_3(s)$			
42	· · · ·					

Comparison of Nonlinear Controllers

Gain-scheduling IMC is the most robust solution Adaptive PI controller is the second-best

Controllability remarks:

- Fundamental limitation control: gain of the system goes to zero for fully open valve
- _ Additional limitation top-side pressure: Inverse response (non-minimum-phase)

	CV	$\theta = 0$	$\theta = 1$	$\theta = 2$
Gain-scheduling IMC	P_{in}	60%	60%	50%
Adaptive PI	P_{in}	60%	50%	32%
Output linearization	$P_{rb} \& P_{rt}$	60%	40%	25%
Nonlinear observer	P_{rt}	28%	24%	22%

