S. Skogestad, 2006

Example regulatory control: Distillation

E.A. Wolff and S. Skogestad, "Temperature cascade control of distillation columns", Ind. Eng. Chem. Res., 35, 475-484, 1996.

LV-configuration used for levels (most common)

BUT: To avoid strong sensitivity to disturbances: Temperature profile must also be "stabilized"

Even with the level and pressure loops closed the column is <u>practically unstable</u> - either close to integrating or even truly unstable (e.g. with mass reflux: Jacobsen and Skogestad, 1991)

- To stabilize the column we <u>must</u> use feedback (feedforward will give drift)
- Simplest: "Profile feedback" using sensitive temperature

Stabilizing the column profile

- Should close one "fast" loop (usually temperature) in order to "stabilize" the column profile
 - Makes column behave more linearly
 - Strongly reduces disturbance sensitivity
 - Keeps disturbances within column
 - Reduces the need for level control
 - Makes it possible to have good dual composition control
- P-control usually OK (no integral action)
 - Similar to control of liquid level

Stabilizing the column profile

- Which fast loop should be closed ("pairing")?
 - Which end? Close loop in end with "most important" product
 - Which output (temperature)? Choose "sensitive" stage
 - Which input (flow)? Want fast control \Rightarrow "pair close"
 - "Use same end" (reduces interactions for composition control):
 - Use V (or indirect by B) for temperature control in bottom section
 - Use L (or indirect by D) for temperature control in top section
 - Dynamics
 - L: Some delay for liquid to go down the column
 - V: Vapor flow moves quickly up the column, but may take some time before it starts changing (heat transfer dynamics)
 - In general, for stabilizing loops: Avoid using an input (flow) that can saturate

Temperature control: Which stage?

Example column

- Example: Ideal 4-component mixture (A,B,C,D) with all relative volatilities = 1.5
 - $\alpha_{AB} = \alpha_{BC} = \alpha_{CD} = 1.5$
- 40 stages and feed in middle of column
- Two cases:
 - Binary: 50% B and 50% C ("column A")
 - Multicomponent: Equimolar feed (25% if each)
- B and C are key components
- Top product: 1% H (C), Bottom product: 1% L (B)

Which temperature? Rule: Maximize the scaled gain

- Scalar case. Minimum singular value = gain |G|
- Maximize scaled gain: $|G| = |G_0| / \text{span}$
 - $|G_0|$: gain from independent variable (u) to candidate controlled variable (c)
 - span (of c) = variation (of c) = optimal variation in c + control error for c

Binary distillation: Unscaled steady-state gain $G_0 = \Delta T / \Delta L$ for small change in L

Procedure scaling

- 1. Nominal simulation
- 2. Unscaled gains ("steady-state sensitivity")
 - Make small change in input (L) with the other inputs (V) constant. Find gain = T_i/L
 - Do the same for change in V
- 3. Obtain scalings ("optimal variation for various disturbances")
 - Find T_{i.opt} for the following disturbances

1.	F (from 1 to 1.2)	yoptf
2.	$z_{\rm F}$ from 0.5 to 0.6	yoptz

"Optimal" may be defined in two different ways

- 1. SCALING 1 (normally used). Keep constant x_D and x_B by changing <u>both</u> L and V (disturbance in F has no effect in this case)
- 2. SCALING 2 (in some cases). Change only L (or V) and minimize 2-norm of product composition offset
- 4. Control (implementation) error. Assume=0.5 K on all stages
- 5. Find

scaled-gain = gain/span

where span = abs(yoptf)+abs(yoptz)+0.5

"Maximize gain rule": Prefer stage where scaled-gain is large

10

Scaled gain = $\frac{\text{Gain}}{\text{span}} = \frac{(\text{unscaled})\text{Gain}}{\text{noise+opt.variation}}$

Implementation error used , n = 0.5C

Conclusion:
Control in middle of section (not at column ends or around feed)
Scalings not so important here

Maximum gain rule: Tray 30 is most sensitive (middle top section)

Simulation with temperature loop closed: Response in x_B to 1% feedrate change

Simulation: Response with temperature loop closed using L (can improve with L/F!)

Bonus 1 of temp. control: Indirect level control

Disturbance in V, q_F: Detected by TC and counteracted by L -> Smaller changes in D required to keep M_d constant!

Bonus 2 of temp. control: Less interactive

Bonus 2 of temp. control: Less interactive

Less interactive: RGA with temperature loop closed

Less interactive: Closed-loop response with decentralized PID-composition control

Interactions much smaller with "stabilizing" temperature loop closed

Figure 4.9: Time simulations with composition loops closed.

Integral action in temperature loop has little effect

Figure 4.11: Response to a 50% step change in feed rate F with and without integral action in the secondary loop.

No need to close two inner temperature loops

Would be even better with V/F:

A "winner": L/F-T-conguration

Only caution: V should not saturate

 $J = (x_{\rm D} - x_{\rm Ds})^2 + (x_{\rm B} - x_{\rm Bs})^2$

Table 1: Losses of several possible configurations for binary mixture.

Configuration	Exact loss (x10 ⁻⁶)	Configuration	Exact loss (x10 ⁻⁶)
T ₁₂ - T ₃₀	28	L-B	44300
T ₁₅ – L/F	83	D–V	45000
T ₁₆ - V/F	131	L/D – V	53400
T ₁₉ – L	149	T ₄₀ – B/F	62800
T ₁₅ – L/D	174	T ₄₀ – D/F	62800
T ₂₂ – V	216	T ₄₀ –B	89200
T ₂₄ – V/B	292	T ₄₀ –D	89200
L/D – V/B	25100	L-V	402200
L/F – V/B	34600	L/F – V/F 😑	810600

Multicomponent: Composition profiles

Multicomponent: Temperature profile

Profile steepest in middle and at column ends (!??)

Multicomponent distillation

Scaled gain = $\frac{\text{Gain}}{\text{span}} = \frac{(\text{unscaled})\text{Gain}}{\text{noise+opt.variation}}$

Conclusion: Control temperature in middle of sectionsAlmost same as for binary

•Very different from slope of temperature profile (initial response):

Conclusion: Stabilizing control distillation

- Control problem as seen from layer above becomes much simpler if we control a sensitive temperature inside the column $(y_2 = T)$
- Stabilizing control distillation
 - 1. Condenser level
 - 2. Reboiler level
 - 3. Pressure (sometimes left "floating" for optimality)
 - 4. Column temperature
- Most common pairing:
 - "LV"-configuration for levels
 - Cooling for pressure
 - (a) L for T-control (if V may saturate; or top composition important)
 - (b) V for T-control (if delay from L to T; or btm composition important)

Conclusion stabilizing control: Remaining supervisory control problem

+ may adjust setpoints for p, M_1 and M_2 (MPC)