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MPC Definition

Model Predictive Control (MPC) refers to a class of algorithms that 
utilize an explicit process model  to compute a manipulated variable 
profile that will optimize an open-loop performance objective over a 
future time interval.  The performance objective typically penalizes 
predicted future errors and manipulated variable movement subject to 
constraints.

ej = rj - yj = error at time j
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Multivariable Process Control System
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A Brief History of MPC
Algor ithm Model Objective Pred. Hor iz Constraints Feedback

LQG  (1960)           L  SS       min ISE IO        infinity     - KF

IDCOM (1976)      L conv     min ISE O         p                       IO output bias

DMC (1979)           L conv     min ISE IOM   p                       IO                    output bias

QDMC (1983)        L conv     min ISE IOM   p                       IO output bias

GPC (1987)            L  ARMA min ISE IO      p                  - output bias

IDCOM-M             L  conv     min ISE O        p                        IO                   output bias
(1988)                          min ISE I

SMOC (1988)        L  SS          min ISE IO      p              IO                   KF

Rawlings and         L  SS         min ISE IOM   infinity        IO KF
Scokaer t (1996)

Process
Perfecter  (1997)     N NN        min ISE IO      p                       IO                    output bias

NOVA-NLC
(1997) N FP          min ISE IO      p             IO                   output bias

Allgower 
et al . (1998)            N SS          min ISE IO      infinity IO                  M HE
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Genealogy of linear MPC algorithms
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MPC Industry Consolidation

Honeywell 
(Profimatics)

CPC-V

(Late 1995)

Update

(Late 2000)

CCI GE

DOT

Pavilion

AdersaNeuralwareSetpoint
DMCC

Aspentech
Adersa
CCI
DMCC
DOT Products
Honeywell
L itwin
Neuralware
Pavilion
Predictive Controls
Profimatics
Shell
Setpoint
Treiber Control
MDC Technology

L itwin SimSci Foxboro
Invensys

PCL

MDC

Emerson 
Elec.

FRSI

Treiber

SGS
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Survey of MPC Technology Products

• We surveyed eight major MPC vendors to determine the 
current state of industrial MPC technology
• Five linear MPC products
• Five nonlinear MPC products
• Information provided by vendors beginning in mid-

1999
• Most established vendors were asked to participate. The list 

of vendors is representative, not exhaustive  
• Vendors were asked to fill out a written survey, reporting 

only non-proprietary information
• Our goal is to determine the state of the art; not to judge 

the relative merits of one vendor’ s technology versus 
another
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Linear MPC Vendors and Products
♦ We surveyed five MPC vendors to determine the current 

state of industrial linear MPC applications:

– Adersa PFC (Predictive Functional Control)
HIECON (Hierarchical Constraint Control)
GLIDE (Identification)

– Aspentech DMCplus (Dynamic Matrix Control plus)
DMCplus-Model (Identification)

– Honeywell RMPCT (Robust MPC Technology)
– PCL Connoisseur  (Control and ID)
– Shell Global SMOC (Shell Multivariable Optimizing Control)

Solutions               AIDA (Identification)

♦ Yokogawa and MDC have licensed versions of SMOC

© S. Joe Qin and T. A. BadgwellUT/ TWMCC/AspenTech  10

Nonlinear  MPC Vendors and Products

♦ We surveyed five NMPC vendors to determine the current 
state of industrial NMPC technology:

– Adersa PFC (Predictive Functional Control)
– Aspen Technology Aspen Target
– Continental Controls MVC (Multivar iable Control)
– DOT Products NLC (NOVA Nonlinear Controller)
– Pavilion Technologies Process Per fecter

♦ A product must use a nonlinear dynamic model to be 
included in the survey
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Process Model Types
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Linear Models: Identified from process data
♦ Most products use PRBS-like or  multiple steps test signals. Glide uses 

non-PRBS signals
♦ Most products use FIR, ARX or  Step response models 

– Glide uses Transfer function G(s)
– RMPCT uses Box-Jenkins
– SMOC uses state space models

♦ Most products use least squares type: 
– equation er ror  or  output er ror  methods
– RMPCT uses prediction er ror  method
– Glide uses a global method to estimate uncertainty

♦ Connoisseur  has adaptive capability using RLS
♦ A few products (DMCplus, SMOC)  have subspace identification 

methods available 
♦ Most products have uncer tainty estimate, but most products do not 

make use of the uncertainty bound in control design
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Nonlinear Models: Process data or first principles

♦ Nonlinear Identification
– Most products use nonlinear identification for  nonlinear  model 

development
– Process Per fecter uses pulse tests for  dynamics and histor ical 

data for  static nonlinearity
– Aspen Target identifies a core linear  state-space model with an 

additive nonlinear neural net
– Most products provide confidence limits or  safeguards against 

extrapolation
– Linear  models are used as back-up

♦ First Principles Modeling
– NOVA-NLC uses first pr inciples models (mass and energy 

balances)
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Nonlinear State-Space Models

♦ Aspen Target uses a state space model form:

– Linear  dynamics is built by a ser ies of first order  filters or  
Laguer re models

– The output C matr ix is built using PLS and NN is a neural 
network nonlinear mapping

– Model reduction is per formed between the state and output 
equations

– A model confidence index is der ived from identification. The 
NN por tion is turned off dur ing extrapolation

x A x B u B v

y g x Cx NN x
k k u k v k

k k k k

++++ ==== ++++ ++++
==== ==== ++++
1

( ) ( )
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Nonlinear Input-Output Models

♦ MVC and Process Perfecter use input-ouput model with 
static nonlinearity and linear dynamics.

♦ A linear ARX model is built around a steady state using 
deviation variables (using plant test data)

♦ A static nonlinear model is built over a wide operating 
region (using historical data)

♦ At each control calculation, 
– the static nonlinear model is linear ized around the initial and 

final steady state to obtain the gains; then a linear interpolation 
is used between the two gains as a function of inputs

– the linear dynamic model is re-scaled to match this gain

♦ Effectively a quadratic model is used at each step
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A General MPC Calculation

Read MV, CV, DV, and other process measurements

Output feedback (state estimation)

Determine controlled process subset

Remove ill-conditioning

Steady state target optimization

Dynamic optimization

Output MV’s to process
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Control: Output Feedback

• For  stable processes, all of the algor ithms surveyed here use the same 
form of feedback, based on compar ing the cur rent measured output to 
the predicted output:

b y yk k
m

k= −

The bias term is then added to the model for  subsequent predictions:

y g bk j k j kx+ += +( )

• This form of feedback is only optimal for  an output disturbance that 
remains constant for  all future time; it does, however , remove steady state 
offset (Rawlings, et al. 1994).

• Variations of this approach are used for  integrating dynamics, usually by 
combining bias terms from the output and the rate of change of the output 
in some way.

• Output feedback via Kalman filters isan option for  a few vendors 
(SMOC, Aspen Target, DOT)

© S. Joe Qin and T. A. BadgwellUT/ TWMCC/AspenTech  19

Control: Controlled Sub-Process
• At each control execution the controller  must determine  which MV’s
can be manipulated and which CV’s should  be controlled
• These decisions are made based on operator  input,  measurement status, 
and status of the under lying  MV control loops
• The shape of the controlled sub-process can therefore change at each 
control execution:

Thin
plant

MV’s

CV’s

CV’sCV’s

MV’s

MV’s

Square
plant Fat

plant

over -determined
DOF <0

under-determined
DOF >0

unique solution
DOF =0
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Control: Removal of Ill-Conditioning
• As the controlled sub-process changes in real-time, the controller must 
detect and remove ill-conditioning before it results in er ratic MV movement

• Because ill-conditioning is a process problem it can be addressed  only by 
modifying the internal model or  by giving up on control specifications

• Three strategies are cur rently used to address ill-conditioning:  Singular 
Value Thresholding, Controlled Variable Ranking, and Move Suppression

• Singular Value Thresholding involves decomposing the process  using 
SVD; singular  values below  a given threshold are discarded

• Controlled Var iable Ranking involves discarding low pr ior ity  CVs 
until the condition number  is reasonable

• Input Move Suppression can also be used; input move suppression will 
improve the condition number  similar to r idge regression
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Control: Local Steady-State Optimization
• Most controllers use a  separate steady-state optimization to determine 
steady-state targets for  the inputs and outputs

• Most controllers provide a Linear  Program (LP) option for  SS 
optimization; the LP is used to enforce input and output constraints and 
determine optimal input and output targets for  the thin and fat plant cases

• Most controllers also provide a Quadratic Program (QP) option to 
compute the steady-state targets

• All controllers enforce hard MV constraints at steady-state; CV constraint 
formulations vary

• The DMCplus controller solves a sequence of separate QPs to determine 
optimal input and output  targets; CV’s are ranked in pr ior ity so that SS 
control  per formance of a given CV will never be sacrificed to improve  
per formance of lower pr ior ity CV’s; MV’s are also ranked  in pr ior ity order  
to determine how extra degrees of freedom is used.
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Control: Dynamic Optimization
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A vector  of inputs uM is found which minimizes J subject to 
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Control: Dynamic Optimization

• Most control algorithms use a single quadratic objective

• The HIECON algor ithm uses a sequence of separate dynamic 
optimizations to resolve conflicting control objectives; CV errors are 
minimized first, followed by MV errors

• Connoisseur  allows for  a multi-model and adaptive approaches

• The Process Per fecter uses var iable trajectory weights         to increase the  
output er ror penalty over  the prediction hor izon

• The RMPCT algor ithm defines a funnel and finds the optimal trajectory 
yr and input uM which minimize the following objective:

subject to a funnel constraint:

2 2

11,
min
r M
k j

P r
k j k j M ssj

J
+

+ + −=
= − + −

�
SQy u

y y u u

r
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Control: Constraint Formulations
• There are two basic types of constraints: hard and soft  Hard constraints are 
never  violated; soft constraints  may be violated but the violation is minimized
• Soft constraints are sometimes approximated using  a setpoint

Hard constraint

past     future

Soft constraint

past     future

quadratic penalty

past     future

Setpoint approximation of soft constraint

quadratic penalty
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Control: Constraint Formulations

• All of the algor ithms allow hard MV maximum, minimum  and rate of 
change constraints; the PFC algorithm also enforces hard MV 
acceleration constraints

• Most algor ithms enforce soft CV constraints

• Enforcing hard CV constraints may lead to an infeasible  program or  to 
a feasible solution that is closed loop unstable;  for  this reason the hard CV 
constraint formulations differ considerably

• The DMCplusand RMPCT algor ithms consider hard output constraints 
only in the steady-state optimization

• The HIECON, PFC, and NOVA-NLC algor ithms consider hard output 
constraints in the dynamic optimization; in HIECON and PFC  these are 
ranked so that low prior ity constraints can be dropped to recover  
feasibility
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Control: Output Trajectories
• There are four  ways to specify future output behavior : setpoint, zone, 
reference trajectory and funnel
• Move suppression is necessary when reference trajectory  is not used

quadratic penalty

past  future

Setpoint

quadratic penalty

past  future

Zone

quadratic penalty

past  future

Reference trajectory

quadratic penalty

past  future

Funnel
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Control: Output Horizon
There are two ways to parameter ize the output hor izon;  finite hor izon 
and coincidence points

past  future

Finite hor izon

prediction hor izon P

Coincidence points
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Control: Input Parameterization
There are three options for parameter izing the input signal; multiple 
move, single move, and basis functions

Multiple moves (with blocking)u

control hor izon

Single move (extreme blocking)u

Basis function (parametrized)

u
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Linear MPC Control Technology

Company Aspen Tech Honeywell 
Hi-spec 

Adersa Adersa PCL SGS 

Product 
 

DM Cplus RMPCT HIECON PFC Connois. SMOC 

Model 
for ms 

FSR 
L,S,I,U 

ARX,TF 
L,S,I,U 

FIR 
L,S,I 

LSS,TF,ARX 
L,S,I,U 

ARX,FIR 
L,S,I,U 

LSS 
L,S,I,U 

Feedback 
 

CD,ID CD,ID CD,ID CD,ID CD KF 

SS 
Opt. 

L/Q[I,O],...,R L/Q[I,O] - Q[I,O] L[I,O] Q[I,O],R 

Dyn. 
Opt. 

Q[I,O,M],S Q[I,O] Q[O],Q[I] Q[I,O],S Q[I,O,M] Q[I,O] 

Output 
Traj. 

S,Z S,Z,F S,Z,RT S,Z,RT S,Z S,Z,RT 

Output 
Hor iz. 

FH FH FH CP FH FH 

Input 
Param. 

MMB MM SM BF MMB MMB 

Other  
features 

    Adaptive  
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Nonlinear MPC Control Technology

Company Adersa Aspen Tech Continental 
Controls 

DOT 
Products 

Pavil ion 

Product 
 

PFC Aspen 
Target 

MVC NOVA NLC Pr ocess 
Per fecter  

Model 
for ms 

NSS-FP 
S,I,U 

NNN-NSP 
S,I,U 

SNP-ARX 
S,I,U 

NSS-FP 
S,I,U 

NNN-ARX 
S,I,U 

Feedback 
 

CD,ID CD,ID,EKF CD,ID CD,ID CD 

SS 
Opt. 

Q[I,O] Q[I,O] Q[I,O] Q[I,O] Q[I,O] 

Dyn. Opt. Q[I,O],S Q[I,O],S Q[I,O,M] (Q,A)[I,O,M] Q[I,O] 

Output 
Traj . 

S,Z,RT S,Z,FT S,Z,RT S,Z,RTUL S,Z,TW 

Output 
Hor iz. 

CP CP FH FH FH 

Input 
Param. 

BF MM SM MM MM 
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Control: Design and Tuning
• The MPC control design and tuning procedure is described as follows:

1.  From the stated control objectives, define the size of the problem, and 
determine the relevant CV’s, MV’sand DV’s
2. Test the plant systematically by varying MV’sand DV’s; capture and 
store the real-time data showing how the CV’s respond
3. Derive a dynamic model from the plant test data using an 
identification package, or  estimate parameters for  a first-pr inciples 
model
4. Configure the MPC controller  and enter initial tuning parameters
5. Test the controller off-line using closed loop simulation to  verify the 
controller per formance
6. Download the configured controller to the destination  machine and 
test the model predictions in open-loop model
7. Commission the controller and refine the tuning as needed

• Tuning knobs are available to trade-off between per formance and 
robustness
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MPC Applications Summary

• Total number of reported applications is 4600*, up from 
2200 in late 1995

• Majority of applications (67%) are in refining and 
petrochemicals
• Chemical and pulp &  paper come in 2nd and 3rd

• Applications reported in a wide range of other areas, 
including food, automotive, and aerospace industries
• Caution: different vendors may count applications 
differently

*  This number  does not include in-house implementations by operating 
companies
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Linear MPC Applications

Area Aspen 
Tech 

Honeywell 
Hi-Spec 

Adersa PCL SGS Total 

Refining 1200 480 280 25  1985 

Petrochemicals 450 80  20   550 

Chemicals 
 

100 20 3 21   144 

Pulp and Paper  18 50       68 

Air  and Gas   10       10 

Util ity   10   4   14 

Mining/Metallurgy 8 6 7 16  37 

Food Processing     41 10   51 

Polymer  17         17 

Furnaces   42 3  45 

Aerospace/Defense   13   13 

Automotive    7  7 

Unclassified 40 40 1045 26 450 1601 

Total 1833 696 1438 125 450 4542 
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Nonlinear MPC Applications

Area Ader sa Aspen 
Tech 

Continental 
Controls 

DOT 
Prodcuts 

Pavilion Total 

Air  and Gas      18     18 

Chemicals 2     15   5  22 

Food Processing           9 9 

Polymer     1    5  15 21 

Pulp and Paper          1  1 

Refining       13 13 

Utilities  5 2   7 

Unclassified 1   1     2 

Total 3 6 36 5 43 93 
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Next-Generation MPC Technology

♦ Models: nonlinear models from first principles, linear state-space 
models, adaptive capabilities

♦ Output feedback: state estimation using unmeasured disturbance 
models, Kalman filters, moving horizon estimation 

♦ Dynamic optimization: multiple objective functions, infinite prediction 
horizon, incorporation of model uncertainty, input parameterization by 
basis functions

♦ Numer ical solution: highly structured methods that exploit recent 
developments (interior point methods)

♦ User  inter face: simplified interfaces that hide complexity, sensible 
default tuning

♦ Platforms: tight integration into DCS, tight integration into supply-
chain systems

♦ Markets: further extension into non-traditional markets such as 
microelectronics, automotive, pulp&paper
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Future Needs for  MPC Technology

♦ Model Development: Need tools that allow seamless integration of first 
principles with process data

♦ Output feedback: need to further develop state estimation and 
disturbance modeling technologies

♦ Dynamic optimization: Need nominally stabilizing infinite-horizon 
formulations

♦ Numer ical solution: Need to exploit recent developments (interior 
point methods)

♦ Robustness: Need to incorporate model uncertainty from identification 
into the control calculation

♦ Justification of NMPC: Need systematic methods to determine when 
MPC can be justified, and when nonlinear MPC is required.
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Conclusions
♦ MPC technology has been applied to a wide var iety of control problems 

with over  4600 repor ted applications, up from 2200 in 1995

♦ Major  recent trends are consolidation of vendors and development of 
nonlinear  MPC technology

♦ Nonlinear  MPC technology has been applied to small problems in areas 
where the linear technology has fared poor ly, such as in polymer
processing

♦ Each MPC product has specific plusses and minuses; the most impor tant 
consideration in choosing a vendor  is their  exper ience with the specific 
process and control problem under  consideration

♦ The most significant challenges today for  MPC technology are:
– nonlinear  model development
– state estimation and disturbance modeling
– rapid and reliable real-time optimization
– j ustification cr iteria
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