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Introduction
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ṅ(h1 − h4)
COPc =
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Theoretical limit: COPh = TH/ (TH − TC) COPc = TC/ (TH − TC)
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Introduction

Stoecker, W. F., Industrial refrigeration handbook , McGraw-Hill,
1998:

The refrigerant leaving industrial refrigeration condensers
may be slightly sub-cooled, but sub-cooling is not
normally desired since it indicates that some of the heat
transfer surface that should be be used for condensation
is used for sub-cooling. At the outlet of the evaporator it is
crucial for protection of the compressor that there be no
liquid, so to be safe it is preferable for the vapor to be
slightly super-heated.
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Specifications in design and operation
Given #

Design Load (e.g. Qh), Pl , Ph, ∆Tsup and ∆Tsub 5

Operation Ws (load), choke valve opening (z), UA in two

heat exchangers and ? 5
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Specifications in design and operation
Given #

Design Load (e.g. Qh), Pl , Ph, ∆Tsup and ∆Tsub 5

Operation Ws (load), choke valve opening (z), UA in two

heat exchangers and active charge 5

mtot = mevap + mcon
︸ ︷︷ ︸

Active charge

+mtank

Neglect holdup in compressor, valve
and piping

QC

QH TH

TC

Wsz
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Pl
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Active charge and holdup tanks

• The “pressure level” is indirectly given by the active charge

• A liquid receiver makes operation independent of total charge

• Liquid level in the receiver has an indirect steady state effect

Rule 1

In each closed cycle, there is one degree of freedom related to
active charge

Rule 2

In each closed cycle, there is one liquid level that does not need to
be controlled, because the total mass is fixed.
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Adjusting holdup with extra valve

High pressure receiver

z

QC

QH

Ws

Pl

Ph

Pressure drop across the extra
valve gives sub-cooling

Low pressure reciever

z

QC

QH

Ws

Pl

Ph

The extra valve gives sub-optimal
operation!
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Extra valves removed

High pressure receiver

QH

• Tank and condenser may be
merged together

• Condenser exit will be saturated
liquid (∆Tsub = 0 ◦C)

• Disadvantage: Some
sub-cooling often optimal

• Have used one degree of
freedom (“no valve”) to set the
degree of sub-cooling to a
non-optimal value
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Extra valves removed

Low pressure receiver

QC TC

• Evaporator exit will be saturated
vapour (∆Tsup = 0 ◦C)

• Advantage: No super-heating is
optimal

• (Some super-heating might be
necessary to avoid droplets in
the compressor)

• Have used one degree of
freedom (“no valve”) to set the
degree of super-heating to an
optimal value
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Degrees of freedom for operation

During operation the equipment is given. Nevertheless, we have
some operational or control degrees of freedom.

1 The compression power Ws. We assume that it is used to set
the “load” for the cycle

2, 3 Effective heat transfer area (UA). There are two degrees of
freedom related to adjusting the heat transfer, which may
thought of as adjusting (reducing) the effective UA value in
each heat exchanger (i.e. bypasses). However, we generally
find that it is optimal to maximize the effective UA.

4 Adjustable choke valve (z)

5 Adjustable active charge
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Optimal designs

Optimal 1
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Sub-cooling
control

z
Pl
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• Liquid receiver before
compressor minimize
super-heating

• Choke valve may be used to
control sub-cooling (other
control policies also
possible)

• Potential problem: Vapour
“blow out”
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Optimal designs

Optimal 2

QC

QH

WsSub-cooling
control

z

LC

Pl

Ph

• Equivalent
thermodynamically

• High pressure receiver
prevents vapour “blow out”

• The new valve may control
sub-cooling (other control
policies also possible)

• Need to control one liquid
level according to rule 2
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Non-optimal designs

Non-optimal 1

QC

QH

Ws

Super-heat
controlz

Pl

Ph

Two errors:

• Super-heating is not optimal.
Can be controlled to a given
value with a thermostatic
expansion valve (TEV)

• There is no sub-cooling
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Non-optimal designs

Non-optimal 2
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One error:

• There is no sub-cooling
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Non-optimal designs

Non-optimal 3
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control
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One error:

• Super-heating is not optimal
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Internal heat exchanger (tanks removed)

z
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QH
QA

Ws

Pl

Ph

Sometimes beneficial
thermodynamically and gives
useful super-heating

z

QC

QH

QA

Ws

Pl

Ph

No effect for pure fluids, but often
used for mixed refrigerant
systems such as LNG processes
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Conclusion

• Variable active charge makes operation independent of total
charge of the system

• Variable active charge gives one extra degree of freedom that
depending on the design might be available for control

• Optimally; ∆Tsup = 0 ◦C, but ∆Tsub 6= 0 ◦C

• There are two degrees of freedom in a simple cooling cycle
(given load and max effective UA in the heat exchangers)

• One should be used to minimize the super-heating

• The second should be used for self-optimizing control
• A receiver with no extra valve consumes one dof

• Optimal before compressor
• Sub-optimal before choke valve
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Process description

Ammonia case study

TC
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TH
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Qloss
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QC

z
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Ph

Pl

• Four constrained inputs:
• Ws controls the load

(with a temperature
controller)

• Maximum UA: We do
not manipulate flow of
hot and cold fluid, and
have no bypass of heat
exchangers

• Fixed super-heating;
∆Tsup = 0 ◦C

• One degree of freedom
• Choke valve opening z
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Process description

Ammonia case study

TC

TH

TH

TC
Qloss
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Pl

• TC = Troom

• TH = Tamb

• Qloss = UAloss · (TH − TC)

• Temperature control
gives QC = Qloss
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Modelling

Ammonia case study
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• SRK equation of state

• Cross flow heat
exchangers with constant
air temperature

• Constant isentropic
efficiency (95 %) in
compressor

• Molar flow through valve:
ṅ = z · Cv ·

√

∆P · ρ
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Design vs. operation

Ammonia case study

TC
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Design: ∆Tmin = 5 ◦C

min (Ws)

subject to ∆T − ∆Tmin ≥ 0

Operation: Amax = Adesign

min (Ws)

subject to A − Amax ≤ 0
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Alternative design method

Rigorous design

min
(
Joperation +

∑

i∈Units Cfixed,i +
∑

i∈Units Cvariable,i · Sni
i

)

• Consider only size dependent cost (Cfixed,i = 0)

• Consider only heat exchanger costs (Cvariable,i = 0 for i /∈ HX)

• Assume Cvariable,i = C0 and ni = n

• Fix n (i.e. to 0.65) and use C0 as tuning parameter to achieve
rules of thumb (may be given in ∆Tmin)

Simplified TAC method

min
(
Joperation + C0 ·

∑

i An
i

)

Ammonia case study

min
(
Ws + C0 · (A0.65

con + A0.65
vap )

)
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∆Tmin Simplified TAC

Des. Oper. C0 = 264 273 2650

∆T vap
min [◦C] 5.00 5.00 3.79 3.86 12.89

∆T con
min [◦C] 5.00 0.49 0.67 0.70 5.00

Acon [m2] 8.70 8.70 7.42 7.28 2.25

Avap [m2] 4.00 4.00 5.28 5.18 1.55

Atot [m2] 12.70 12.70 12.70 12.46 3.80

Cost [-] 1.00 1.00 1.01 1.00 0.46

Pl [bar] 2.17 2.17 2.28 2.28 1.53

Ph [bar] 11.63 11.68 12.00 12.05 18.93

∆Tsub [◦C] 0.00 4.66 5.40 5.50 17.39

Flow [mol s-1] 1.039 1.017 1.016 1.017 1.052

Ws [kW] 4648 4567 4496 4518 7623

COP [-] 4.30 4.38 4.45 4.43 2.62
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Design vs. operation

• The ∆Tmin method fail to indicate that sub-cooling is optimal

• Need to re-optimize with given equipment to achieve optimal
operation

• The simplified TAC method gives optimal operation directly
and correctly gives sub-cooling
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Selection of controlled variables (CV’s)
• We have one unconstrained degree of freedom that should be

used to optimize operation for all disturbances and operating
points

• We could envisage an on-line optimization scheme where one
continuously optimizes the operation by adjusting the valve

• Such schemes are quite complex and sensitive to uncertainty,
so in practice one uses simpler schemes, where the valve is
used to control some other variable

• What should be controlled?
• The objective is to achieve “self-optimizing” control where a

constant setpoint for the selected variable indirectly leads to
near-optimal operation

• First use a simple screening process where we use a linear
model
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Linear method
1. With fixed active constraints, obtain a linear model (G) from

the unconstrained inputs (u) to outputs:

y = Gu

2. Scale the linear model in the inputs such that the effect of all
inputs on the objective function is equal.

3. Scale the linear model in the outputs so their expected variety
is equal:

G′ = G/span y where span y = ∆yopt + n

4. We are looking for controlled variables that maximize the
minimum singular value of the scaled linear gain matrix.
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Linear method
Should be large

Variable G ∆yopt n |G′|

Pl [bar] 0.00 0.623 0.300 0.00

T out
com [◦C] -143.74 42.211 1 3.33

Ph [bar] -17.39 4.166 1.00 3.37

z [-] 1 0.092236 0.05 7.03

T out
con [◦C] 287.95 10.406 1 25.25

Vl,vap [m3] 5.1455 0.014263 0.05 80.07

∆Tsub [◦C] -340.78 2.6173 1.5 82.77

Vl,con [m3] -5.7 0.0064312 0.05 101.01

∆T out
con [◦C] -287.95 0.53062 1.5 141.80
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Non-linear analysis of CV’s

Disturbance rejection
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Conclusion ammonia case example

• The ∆Tmin method does not give the true optimum (might lead
to the conclusion that sub-cooling is not optimal)

• Optimal operation is with some sub-cooling in the condenser

• Sub-cooling gives a small decoupling between pressure and
temperature out of the condenser, which gives one extra
degree of freedom related to active charge

• For the ammonia case study we found that no sub-cooling
gives a loss in the order of 2 %

• The process has one unconstrained degree of freedom

• Controlling ∆T out
con gives self-optimizing control
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Process description

NG

LNG

25 ◦C

25 ◦C

−155 ◦C

SW

Ws

z

Pl

Ph

PRICO LNG process

• PNG = 55 bar

• ṅNG = 1 kmol s-1

• Composition of NG:
• 89.7 % methane
• 5.5 % ethane
• 1.8 % propane
• 0.1 % n-butane
• 2.8 % nitrogen

• Refrigerant is a mix of
C1, C2, C3, n−C4 and N2
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Process description

NG

LNG

25 ◦C

25 ◦C

−155 ◦C

SW

Ws

z

Pl

Ph

Steady state model

• SRK equation of state

• Compressor η = 0.80

• Constant heat transfer
coefficient

• Main heat exchanger
distributed in 100 points

• Constant pressure drops
• 5 bar in NG stream
• 0.1 bar in SW cooler
• 4 bar for hot ref.
• 1 bar for cold ref.
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Operation: Degree of freedom analysis

NG

LNG

25 ◦C

25 ◦C

−155 ◦C

SW

Ws

z

Pl

Ph

9 manipulated inputs

• Compressor power Ws

• Choke valve opening z

• Active charge (liquid
pump)

• Flow of sea water (SW)

• Flow of natural gas

• Four refrigerant
compositions (5-1)
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Degree of freedom analysis

NG

LNG

25 ◦C

25 ◦C

−155 ◦C

SW

Ws

z

Pl

Ph

2 active constraints

• ∆Tsup = 10 ◦C

• TLNG = −155 ◦C

2 given variables

• Flow of natural gas

• Maximum cooling,
assume T = 25 ◦C after
SW cooler
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Degree of freedom analysis

NG

LNG

25 ◦C

25 ◦C

−155 ◦C

SW

Ws

z

Pl

Ph

5 degrees of freedom

• Four refrigerant
compositions

• For example Ph

Assume constant
compositions

• 1 dof during operation
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Design vs. operation

Design with given ∆Tmin

min(Ws)

subject to ∆T − ∆Tmin ≥ 0

Operation (given equipment)

min(Ws)

subject to Amax − A ≥ 0

Simplified TAC design

min(Ws + C0 ·
∑

i

(
An

i

)
)
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∆Tmin Simplified TAC

Des. Oper. C0 = 21052 20650 62500

∆T HOT
min [◦C] 1.20 0.46 0.62 0.45 1.20

∆T NG
min [◦C] 1.20 0.55 0.46 0.61 1.44

AHOT [m2] 1683 1683 1722 1743 765

ANG [m2] 428 428 389 394 220

ATot [m2] 2111 2111 2111 2137 985

Cost [-] 1.00 1.00 0.99 1.00 0.61

Ph [bar] 18.32 22.86 22.62 22.54 29.77

Pl [bar] 3.44 3.37 3.34 3.35 2.60

ṅ [kmol s-1] 3.31 2.76 2.77 2.77 2.44

Ws [MW] 17.31 16.74 16.76 16.73 19.18
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Design vs. operation

Design

h [J mol-1]

P
[P

a]

-11.5 -11 -10.5 -10 -9.5 -9 -8.5
×104

105

106

107

Operation

h [J mol-1]

P
[P

a]

-11.5 -11 -10.5 -10 -9.5 -9 -8.5
×104

105

106

107

Note: Different composition
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Design vs. operation

Design

Position [-]
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Operation

Position [-]
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Selection of CV’s: Linear analysis

CV G n ∆yopt |G′| · 1e7

∆Tsub [◦C] -2.30e-5 1.5 41.3 5.44

TH(13) [◦C] -2.11e-5 1 55.0 3.76

TC(11) [◦C] -1.78e-5 1 48.3 3.62

TNG(12) [◦C] -1.75e-5 1 48.7 3.53

∆TH(40) [◦C] 8.24e-6 1.5 24.6 3.16

∆TH(22) [◦C] -3.38e-6 1.5 10.3 2.87

T out
com [◦C] 2.88e-5 1 104.2 2.74

Ph [Pa] 1 1e5 37.69e5 2.58

Pl [Pa] -0.04 0.5e5 5.57e5 0.66
Loss ∝ (1/G′)2
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Selection of CV’s: Non-linear analysis

Max. losses

• Ph: 2.98 %

• T out
com: 1.14 %

• ∆Tsub: 0.78 %

25 ◦C

25 ◦C

−155 ◦C
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Ph

W
s
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ց

{Loss
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Selection of CV’s: Structure

TC

TC z

Ws

SW

Super-heat
control

NG

LNG

Ph

Pl

Control AC

• ∆Tsup = 10 ◦C

• TLNG = −155 ◦C

Control

• T out
com = 114 ◦C
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Conclusion

• We have found an operating point that is better than what has
been reported previously

• The method of specifying ∆Tmin in design does not give the
true optimum

• We found that there are one unconstrained degree of freedom
(in addition to composition)

• Controlling either the degree of sub-cooling (∆Tsub) or the
compressor outlet temperature (T out

com) gives good steady state
performance
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MFC LNG process
Snøhvit
Process description
Degree of freedom analysis
Optimization results
Control structure
Conclusion
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Snøhvit

Figures from Statoil∗

∗
www.statoil.com/snohvit

www.ntnu.no Jensen & Skogestad, Meeting on LNG at Hydro Oil & Energy RC

www.statoil.com/snohvit


48

MFC process: Flowsheet
NG
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LNG

NG1A NG1B NG2 NG3

Ph

Ph
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Pl

Pl
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SWSW
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www.ntnu.no Jensen & Skogestad, Meeting on LNG at Hydro Oil & Energy RC



49

Nominal conditions:

• Feed: NG enters with P=61.5 bar and T=11◦C after
pretreatment. The composition is: 88.8% methane, 5.7%
ethane, 2.75% propane and 2.75% nitrogen. Nominal flow rate
is 1 kmol/s

• Product: LNG is at P=55.1 bar and T=-155◦C

• The refrigerants are a mix of nitrogen (N2), methane (C1),
ethane (C2) and propane (C3) and the compositions are used
in optimization.

• The refrigerant vapour to the compressors are super-heated
10◦C

• The refrigerants are cooled to 11◦C in all sea water (SW)
coolers (assumed maximum cooling)
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Nominal conditions:

• Pressure drops are 0.5 bar in SW coolers, 0.5 bar for hot flows
in main heat exchangers and 0.2 bar for cold refrigerant in
main heat exchangers

• The SRK equation of state is used both for NG and the
refrigerants

• The heat exchangers are distributed models with constant
heat transfer coefficients

• The compressors are isentropic with 90% constant efficiencies
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Degree of freedom analysis

In total 26 manipulated variables (degrees of freedom):

• 5 Compressor
powers Ws,i

• 4 Choke valve
openings zi

• 4 SW flows in
coolers

• 1 NG flow

• 9 Composition

• 3 active charges

NG

LIQ

SUB

PRE1 PRE2

LNG

NG1A NG1B NG2 NG3

Ph

Ph

Ph

Pl

Pl

Pl

Pm

Pm

SWSW

SW

SW
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Constraints during operation

There are some constraints that must be satisfied during operation:

• Super-heating: The vapour entering the compressors must be
≥10◦C super-heated

• T out
LNG: NG Temperature out of NG3 must be ≤-155◦C or colder

• Pressure: 2 bar≥ P ≤60 bar

• NG temperature after NG1A and NG1B (not considered in this
paper)

• Compressor outlet temperature (not considered in this paper)
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Active constraints

We are able to identify some constraints that will be active at
optimum. In total there are 12 active constraints:

• 4 Super-heatings to be minimized, that is ∆Tsup,i=10◦C at 4
locations

• Excess cooling is costly so T out
LNG=-155◦C

• Optimal with low pressure in cycles so Pl=2 bar (for all 3
cycles)

• Maximum cooling: Assume T=11◦C at 4 locations
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Unconstrained degrees of freedom

After using 12 of the 26 manipulated inputs to satisfy active
constraints, we are left with 14 MV’s. We consider NG flow given,
so we have 13 unconstrained degrees of freedom:

• 3 NG temperatures (after NG1A, NG1B and NG2)

• Pm in SUB

• 9 Refrigerant compositions

We will not consider manipulating refrigerant composition in
operation (only in the optimization), so of the 13 unconstrained
degrees of freedom we are left with 4 during operation.
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Optimization results
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Optimization results
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Optimization results

PRE1 PRE2 LIQ SUB

Pl [Pa] 6.45 2.00 2.00 2.00

Pm [Pa] 6.45 - 28.38

Ph [Pa] 15.03 15.03 20.58 56.99

C1 [%] 0.00 0.00 4.02 52.99

C2 [%] 37.70 37.70 82.96 42.45

C3 [%] 62.30 62.30 13.02 0.00

N2 [%] 0.00 0.00 0.00 4.55

Flow [mol/s] 464 685 390 627

Ws [MW] 1.2565 + 2.644 2.128 3.780+1.086
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Optimization results

• The total shaft work is 10.896 MW

• The optimal NG temperature out of NG1A, NG1B and NG2 is
255.9 K, 221.7 K and 196.1 K, respectively

• In the true design there will separators at the high pressure
side of the cycles, which has not been considered here

• In SUB cycle the pressure ratios over the two compressor
stages are far from equal. This is because the inlet
temperature to the first stage (approximately -80◦C) is much
lower than inlet temperature to the second stage (11◦C)

• Nitrogen is present in SUB only to satisfy the minimum
pressure of 2 bar
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Implemented optimum in practice

First we need to control the active constraints:

• Degree of super-heating (4 locations): For this we may use the
corresponding choke valve opening

• Pl is for each of the 3 cycles: For this we may use “active
charge” (see discussion above)

• Maximum cooling in 4 SW coolers: SW flow at maximum

• LNG outlet temperature at -155◦C: May use first compressor
stage in SUB
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Implemented optimum in practice

Now the unconstrained degrees of freedom:

• T out
NG1A: May use first compressor stage in PRE

• T out
NG1B: May use second compressor stage in PRE

• T out
NG2: May use compressor in LIQ

• Pm in SUB: May use second compressor stage in SUB
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Control structure

NG LNG
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Conclucion

• The MFC LNG process has at most four unconstrained
degrees of freedom (without composition control)

• We have a working model of the MFC process
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Conclusion

• We started with very simple cooling processes to understand
the basics and found some interesting results

• Sub-cooling is often optimal
• The ∆Tmin method is unreliable
• Active charge might be used for control

• Have worked our way to the PRICO LNG process
• Have optimized the process
• Have studied control by using self-optimizing control

• Are now looking at more complex processes (MFC etc.)
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Further work

• Publish the work on the simple cooling cycles

• Finnish and publish the work on the PRICO LNG process

• Study control of the MFC LNG process

• Study other LNG processes?

• Work with Linde on the MFC process?

• Compare different LNG processes with the same conditions
(how large differences are there?)

• Write the thesis!
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