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cs = y1s

MPC

PID

y2s

RTO

u (valves)

Switch+Follow path 
(+ look after other variables)

CV=y1 (+ u); MV=y2s

Stabilize + avoid drift 
CV=y2; MV=u

Min J (economics); 
MV=y1s

OBJECTIVE

Plantwide control

Process control The controlled variables (CVs)
interconnect the layers 

MV = manipulated variable
CV = controlled variable
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• Alan Foss (“Critique of chemical process control theory”, AIChE 
Journal,1973):

The central issue to be resolved ... is the determination of control system 
structure. Which variables should be measured, which inputs should be 
manipulated and which links should be made between the two sets?
There is more than a suspicion that the work of a genius is needed here, 
for without it the control configuration problem will likely remain in a 
primitive, hazily stated and wholly unmanageable form. The gap is 
present indeed, but contrary to the views of many, it is the theoretician 
who must close it.

This talk: 
Controlled variable (CV) selection: What should we measure and control? 
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Implementation of optimal operation

• Optimal operation for given d*:

minu J(u,x,d)
subject to:

Model equations: f(u,x,d) = 0
Operational constraints: g(u,x,d) < 0

→ uopt(d*)

Problem: Usally cannot keep uopt constant because disturbances d change

How should we adjust the degrees of freedom (u)?
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Implementation of optimal operation

• Paradigm 1: Centralized on-line optimizing control where 
measurements are used to update model and states

• Paradigm 2: “Self-optimizing” control scheme found by exploiting 
properties of the solution
– Control the right variable! (CV selection)
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Implementation (in practice): Local feedback 
control!

“Self-optimizing 
control:” Constant 
setpoints for c gives 
acceptable loss

y

FeedforwardOptimizing controlLocal feedback: 
Control c (CV)

d
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“self-optimizing control”

• Old idea (Morari et al., 1980):

“We want to find a function c of the process variables which when held constant, leads 
automatically to the optimal adjustments of the manipulated variables, and with it, the 
optimal operating conditions.”

• But what should we control? Any systematic procedure for finding c?

• Remark: “Self-optimizing control” = acceptable steady-state behavior (loss) with 
constant CVs.
is similar to 
“Self-regulation” = acceptable dynamic behavior with constant MVs.
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Question: What should we control (c)?
(primary controlled variables y1=c)

• Introductory example: Runner

Issue:
What should we 
control?
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– Cost to be minimized, J=T
– One degree of freedom (u=power)
– What should we control?

Optimal operation - Runner

Optimal operation of runner
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Sprinter (100m)

• 1. Optimal operation of Sprinter, J=T
– Active constraint control:

• Maximum speed (”no thinking required”)

Optimal operation - Runner
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• 2. Optimal operation of Marathon runner, J=T
• Unconstrained optimum!
• Any ”self-optimizing” variable c (to control at 

constant setpoint)?
• c1 = distance to leader of race
• c2 = speed
• c3 = heart rate
• c4 = level of lactate in muscles

Optimal operation - Runner

Marathon (40 km)
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Conclusion Marathon runner

c = heart rate

select one measurement

• Simple and robust implementation
• Disturbances are indirectly handled by keeping a constant heart rate
• May have infrequent adjustment of setpoint (heart rate)

Optimal operation - Runner
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Need to find new “self-optimizing” CVs 
(c=Hy) in each region of active constraints

3

3 unconstrained degrees of freedom -> Find 3 CVs

2

2

1

1

Control 3 active constraints
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• Operational objective: Minimize cost function J(u,d)
• The ideal “self-optimizing” variable is the gradient (first-order 

optimality condition (ref: Bonvin and coworkers)):

• Optimal setpoint = 0

• BUT: Gradient can not be measured in practice
• Possible approach: Estimate gradient Ju based on measurements y

• Approach here: Look directly for c as a function of measurements y 
(c=Hy) without going via gradient

Ideal “Self-optimizing” variables 

Unconstrained degrees of freedom:
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H
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H
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Guidelines for selecting single measurements 
as CVs

• Rule 1: The optimal value for CV (c=Hy) should be insensitive to 
disturbances d (minimizes effect of setpoint error)

• Rule 2: c should be easy to measure and control (small implementation 
error n)

• Rule 3: “Maximum gain rule”: c should be sensitive to changes in u 
(large gain |G| from u to c) or equivalently the optimum Jopt should be 
flat with respect to c (minimizes effect of implementation error n)

Reference: S. Skogestad, “Plantwide control: The search for the self-optimizing control structure”, 
Journal of Process Control, 10, 487-507 (2000).
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Optimal measurement combination

H

•Candidate measurements (y): Include also inputs u
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Nullspace method
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Amazingly simple!

Sigurd is told how easy it is to find H

Proof nullspace method
Basis: Want optimal value of c to be independent of disturbances 

• Find optimal solution as a function of d: uopt(d), yopt(d)
• Linearize this relationship: yopt = F d  
• Want: 
• To achieve this for all values of  d: 

• To find a F that satisfies HF=0 we must require

• Optimal when we disregard implementation error (n)

V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'',
Ind.Eng.Chem.Res, 46 (3), 846-853 (2007).
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( , ) ( , )opt optL J u d J u d 

Ref: Halvorsen et al. I&ECR, 2003
Kariwala et al. I&ECR, 2008

Generalization (with measurement noise)
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'd

y
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cs = constant +

+

+
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+
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yG y

'yn

c

u

dW nW

“Minimize” in Maximum gain rule
( maximize S1 G Juu

-1/2 , G=HGy )
“Scaling” S1

“=0” in nullspace method (no noise)

Optimal measurement combination, c = Hy
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1/2 1min ( )y
uu FH

J HG HY Non-convex
optimization problem

(Halvorsen et al., 2003)

H
min HY F

st
1/ 2y
uuHG J

Improvement 1 (Alstad et al. 2009)

st
yHG Q

Improvement 2 (Yelchuru et al., 2010)

H
min HY F

-1 -1 -1 1 -1
1 y 1 y y y (H G ) H = (DHG ) DH = (HG ) D DH = (HG ) H 

1H DH D : any non-singular matrix

Have extra degrees of freedom

[ ]d nY FW W

Convex
optimization

problem

Global solution

- Do not need Juu
- Q can be used as degrees of freedom for faster solution
- Analytical solution
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Special case: Indirect control 
= Estimation using “Soft sensor”

• Indirect control: Control c= Hy such that primary output y1 is constant
– Optimal sensitivity F = dyopt/dd = (dy/dd)y1

– Distillation: y=temperature measurements, y1= product composition
• Estimation: Estimate primary variables, y1=c=Hy

– y1 = G1 u,  y = Gy u  
– Same as indirect control if we use extra degrees of freedom (H1=DH) such 

that (H1Gy)=G1
1/2 1 1(( ) ( ( ) ) ,
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Current research:
“Loss approach” can also be used for Y = data

• More rigorous alternative to “least squares” and extensions such as 
PCR and PLS (Chemiometrics)

• Why is least squares not optimal?
– Fits data by minimizing ||Y1-HY||
– Does not consider how estimate  y1=Hy is going to be used in the future.

• Why is the loss approach better?
– Use the data to obtain Y, Gy and G1 (step 1). 
– Step 2: obtain estimate y1=Hy that works best for the future expected 

disturbances and measurement noise (as indirectly given by the data in Y)

1/2 1 1(( ) ( ( ) ) ,
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Toy Example 

Reference: I. J. Halvorsen, S. Skogestad, J. Morud and V. Alstad, “Optimal selection of controlled 
variables”, Industrial & Engineering Chemistry Research, 42 (14), 3273-3284 (2003).
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Toy Example: Single measurements

Want loss < 0.1: Consider variable combinations

Constant input, c = y4 = u
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Toy Example
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Conclusion

• Systematic approach for finding CVs, c=Hy
• Can also be used for estimation

S. Skogestad, ``Control structure design for complete chemical plants'', Computers and Chemical Engineering, 28 (1-2), 219-234 
(2004). 

V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'', 
Ind.Eng.Chem.Res, 46 (3), 846-853 (2007). 

V. Alstad, S. Skogestad and E.S. Hori, ``Optimal measurement combinations as controlled variables'', Journal of Process Control, 19, 138-
148 (2009)

Ramprasad Yelchuru, Sigurd Skogestad, Henrik Manum , MIQP formulation for Controlled Variable Selection in Self Optimizing Control 
IFAC symposium DYCOPS-9, Leuven, Belgium, 5-7 July 2010 

Download papers: Google ”Skogestad”


