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More on nonlinear feedforward, decoupling
and linearization

* Tranformed inputs: Extremely simple and effective way of achieving
feedforward, decoupling and linearization



Feedforward control

* Feedforward control relies on model
* as opposed to feedback which relies mostly on data

e Feedback control: Linear model is often OK

* Feedforward control: Much less likely that linear model is OK
* Process changes and disturbances
* This presentation: Use nonlinear static model
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5.1. Classical solutions

5.1.1. Static feedforward compensator

A static feedforward compensator is a solution widely used in industry, yhich i1s given by:

Cpp =1 (15)

The reason to use this simple solution is that drastic improvements can be obtained compared with pure

feedback control by using just this simple compensator. Moreover, it can be used to account for any

non-realisable problem. However, the resulting performance is also limited because of its simplicity.



Use of transformed inputs

Transformed system d
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Transformed input v =g(u,w,y,d) Examples

* Replaces the physical input u for control of y. e v = u/d (ratio control for feedforwa rd)

* Aim: Transformed system is easier to control . .

. _ * v=u,/u, (ratiocontrol for decoupling)
* May include:
* Decoupling * v=u;+u, (from Mmass balance)
* Linearization e v=w(u)=F ->Cascade flow control

 Feedforward



General approach based on static model

e Static model: y = f, (u,d, w)
* Invert by solving with respect to u for given y = vy: u = fy 1 (vy, d, w) (14)
* vy = Transformed input

Transformed system:

Y = Vo
Y (decoupled, linear and

. alculati y oo
y* € R (fdli'lllldrlml u Process independent of d)

—»@—» Controller C u= fy (vo,d,w) (nonlincar) w

(btr_ltl[_.) ) The method in (14) and Fig. 29 was published only recently (Sko-

gestad et al., 2023), but it is not new. Industry frequently makes

t use of nonlinear static model-based “calculation blocks”, “function

blocks”, or “ratio elements” to provide feedforward action, decoupling

or linearization (adaptive gain), and Shinskey (1981) and Wade (2004)

provide examples. In particular, Wade (2004) (pages 217, 225 and 288)
Fig. 29. Feedforward, decoupling and linearization (red calculation block) using transformed inputs v, = f,(u. d.w) based on static model y= f,(u.d.w). In t presents similar ideas. However, the generality of the method is new.

model error, the transformed system from vy to y (as seen from the controller C) becomes y= Iy, at steady state. The method is based on a static model, so it may be necessary
to “fine tune” the implementation by adding dynamic compensation
(typically lead-lag with delay) on the measured variables (d or w)
to improve the dynamic response. Alternatively, there is also a dy-
namic variant of the method based on using a first-order model, which
turns out to be a special case of the nonlinear control method called
“feedback linearization” (Skogestad et al., 2023).



Example: Blending process

Fl-:-r'l

Fig. 28. Flowsheet of in-line blending process (mixer) where F is the flowrate [kg/s]
and x is the mass fraction of component A [kg A/kg].
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Static material balances, y = f, (u,d, w):

x=(Fix;+ Fx)/(F| + F)
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Solve foru = f; 1(vy,d, w):

to,2 (o1 — x2)

Fl —
X1 — X2
voa(xy =) (17)
F':u:
B II_IE

This can be implemented directly and give y=vO0.
Alternative simple implementation. Note that

’:;D.l — X9
X1 — U'D‘l (18)
Fy, = vy, — F,

F =F

Vo1, Vg2 = Transformed inputs



Calculation
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Fig. 30. Simple control structure which provides decoupling, feedforward control and linearization for the mixing process (blending system) in Fig. 28.

The output from the feedback controller C, is the ideal transformed input ;. From this and measured disturbances (inlet compositions x, and x,), the feedforward calculation
element (red) uses (18a) to compute F,/F,. The decoupling is given by one multiplication element and one subtraction element. To work also in the case of input saturation, it
uses the actual measured flowrates (F,, F,) a The resulting transformed system as seen from the feedback controllers (C,,C,) is sirnply\y] =1y, and y, = Lo (with no model error).

Note that we need two inner flow controllers (for F; and F,) which are not shown in the figure.

Besides being simple to understand and implement, the advantage
with the implementation in (18) and Fig. 30, compared to an inversion
using (17), is that it provides partial decoupling and disturbance rejec-
tion also when F, or F, saturate. That is, when F, saturates, we will
maintain control of y; = x but lose control of y, = F. Similarly, when
F, saturates, we will maintain control of y, but lose control of y,.

(11)

Based on (11), Seborg et al. (2016) (page 343) write about the choice
of mansformed manipulated wariables in (10): “This means that the
controlled variables are identical to the manipulated variables! Thus,
the gain matrix is the identity matrix, and the two control loops do not
interact at all. This situation is fortuitous, and also unusual, because it
iz seldom possible to choose manipulated variables that are, in fact, the
controlled variables”.

As shown next, the statement that this is “formuitous, and also un-
usual” is not correct. If we assume that the disturbances are measured,
then it is always possible to derve ideal transformed manipulated
variables (inputs) r, which are equal to the controlled variables y,
simply by choosing 1y as the rght-hand side of the steady-state model
equations (Skogestad et al., 2023).



Also: Transformed outputs z

y*
— (v’ w.d)

: v (i
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Z

(a) General implementation of transformed output z

* No fundamental advantage, but can simplify input transformation
* For example, y=T, z=H (enthalpy)



More on transformed inputs
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What about MPC?

* First industrial use in the 1970s

* Became common in the refining and petrochemical industry in the 1980s

* In the 1990s a bright future was predicted for MPC in all industries (chemical, thermal power, ...)
e 30 years later: We know that this did not happen

* Why? First, the performance benefits of MPC compared to ARC are often minor (if any)

* |n addition, MPC has some limitations
1. Expensive to obtain model
2 Cannot easily handle integral action, cascade and ratio control
3. Normally, cannot be used at startup (so need ARC anyway)
4. Often difficult to tune
5. Slow, time consuming for large problems
6 Robustness (e.g., gain margin) handled indirectly

e Advantages of MPC
1. Interactive multivariable dynamic processes
2. Coordinate feedforward and feedback
3. Coordinate use of many inputs
4. Make use of information abou future disturbances, setpoints and prices (predictive capabilities of MPC)
5. Nonlinear dynamic processes (nonlinear MPC)

* What about constraints
* Not really a major advantage with MPC; can be handled well also with ARC



7.6.7. Summary of MPC shortcomings
Some shortcomings of MPC are listed below, in the expected order
of importance as seen from the user’s point of view:

1. MPC requires a “full” dynamic model involving all variables to
be used by the controller. Obtaining and maintaining such a
model is costly.

2. MPC can handle only indirectly and with significant effort from
the control engineer (designer), the three main inventions of pro-
cess control; namely integral control, ratio control and cascade
control (see above).

3. Since a dynamic model is usually not available at the startup of
a new process plant, we need initially a simpler control system,
typically based on advanced regulatory control elements. MPC
will then only be considered if the performance of this initial
control system is not satisfactory.

4. It is often difficult to tune MPC (e.g., by choosing weights or
sometimes adjusting the model) to give the engineer the desired
response. In particular, since the control of all variables is opti-
mized simultaneously, it may be difficult to obtain a solution
that combines fast and slow control in the desired way. For
example, it may be difficult to tune MPC to have fast feedforward
control for disturbances because it may affect negatively the
robustness of the feedback part (Pawlowski et al., 2012).

5. The solution of the online optimization problem is complex and
time-consuming for large problems.

6. Robustness to model uncertainty is handled in an ad hoc manner,
for example, through the use of the input weight R. On the other
hand, with the SIMC PID rules, there is a direct relationship
between the tuning parameter 7. and robustness margins, such
as the gain, phase and delay margin Grimholt and Skogestad
(2012), e.g., see (C.13) for the gain margin.

7.6.8. Summary of MPC advantages

The above limitations of MPC, for example, with respect to integral
action, cascade control and ratio control, do not imply that MPC will
not be an effective solution in many cases. On the contrary, MPC should
definitely be in the toolbox of the control engineer. First, standard ratio
and cascade control elements can be put into the fast regulatory layer
and the setpoints to these elements become the MVs for MPC. More
importantly, MPC is usually better (both in terms of performance and
simplicity) than advanced regulatory control (ARC) for:

1. Multivariable processes with (strong) dynamic interactions.

2. Pure feedforward control and coordination of feedforward and
feedback control.

3. Cases where we want to dynamically coordinate the use of many
inputs (MVs) to control one CV.

4. Cases where future information is available, for example, about
future disturbances, setpoint changes, constraints or prices.

5. Nonlinear dynamic processes (nonlinear MPC).

The handling of constraints is often claimed to be a special advantage of
MPC, but it can it most cases also be handled well by ARC (using selec-
tors, split-range control solutions, anti-windup, etc.). Actually, for the
Tennessee Eastman Challenge Process, Ricker (1996) found that ARC
(using decentralized PID control) was better than MPC. Ricker (1996)
writes in the abstract: “There appears to be little, if any, advantage to
the use of NMPC (nonlinear MPC) in this application. In particular, the
decentralized strategy does a better job of handling constraints — an
area in which NMPC is reputed to excel”. In the discussion section he
adds: “The reason is that the TE problem has too many competing goals
and special cases to be dealt with in a conventional MPC formulation”.



Real-time optimization

* We have presented effective approach for constraint switching (MV-
MV, CV-CV, MV-CV).
* Most important is CV-CV switching
* CV = constraint or self-optimizing variable (ideal = gradient =1 )
e Each CV is paired with one MV

 MV-CV switching covers (some) cases where MV may saturate and we need to
pair with another MV.

e Optimal in many cases, but not in general

* For example, may not be able to cover cases with more than one
unconstrained region = More than one self-optimizing variable



Economic real-time optimization(RTO)
General approaches

|.  Separate RTO layer (online steady-state optimization)

Il. Feedback-optimizing control (put optimization into the feedback
layer)
* Alt.1. (Most general): Based on dual decomposition (iterate on Lagrange multipliers 1)
* Alt.2 (Tighter constraint control): Region-based with reduced gradient,

Ill. Data-based approaches (model freee)
* Hill-climbing methods = Extremum-seeking control

Computers and Chemical Engineering 161 (2022) 107723
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Unconstrained optimization.

Necessary condition of optimality (NCO):

e Gradient of cost function =0 J, <
*J,=dJ/du=0

Ju>0
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Feedback RTO (unconstrained case)
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J,=-CA'B+D

> Feedback

— (e.g. PID)
J.P =0

Controller —p{ Process

Linearize
model from

utod

state and
parameter
estimation
ij d ).( — f(Xj 11, d)
' =h
y - (Xa 1,1)
y Ymeas

fa

Linearize the dynamic model

X = F(x,i,d) x = Ax + Bu
=
J = g(x.u) J=Cx+ Du
of of
A= mx:f( a mx:)”(
c_ % p_ o

ox du

X=X x=%

Trick, set x = 0:

J= (—CA—15'+ D) u

h- ~

]

D Krishnamoorthy, E Jahanshahi, S Skogestad. Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient
Measurements. Industrial & Engineering Chemistry Research, 2019




Alt.1: Feedback implementation using dual decomposition

Including constraints s

SP=0 Master g (measured constraint)
| Constraint |,
controller
Constrained optimization problem ] Single-loop
A Pl controllers
: - d 0 v
"Hn _f { u, } . } —> Max-selector
J A
H-[i g(u'l }Iﬂ d] (:‘ "J ¥ g v j y
C&lCU]AatC V.“ﬁ < “ Gradient <
Solution: Turn into unconstrained optimization problem = Vol + AV |y, Estimator
using Lagrange multipliers _
] . - T - 1 Iy P: :
Luy.d A)=])(ny.d+ i g(uy) SP=0 I Gradient
controller
min, L |
u = primal variables = inputs u
A 2 0 = dual variables = Lagrange multipliers = shadow prices d /
Necessary conditions of optimality (KKT-conditions) — Process
VHE = 0? j’ :3 0‘ g . — 0 (COmpIementa ry Fig. 40. Dual decomposition of constrained optimization with upper (slow) constrain

controller and max-selector on the dual variable 1 (Lagrange multiplier).

condition)



Alternative 1: Feedback-RTO that tracks active constraints by
adjusting Lagrange multipliers (= shadow prices = dual variables) A

sp=0 — Constraint control
(n, slower Pl/I-controllers)

g (measured constraint)

A

O—>

MAX

A Dual variables

Unconstrained

SP=0 —— optimization
(n, PID-controllers or solver)

Ly=J,+Xg,=0

A

u| Primal variables

y

Ju

Gradient
estimation

1;

g (measured constraint)

«Primal-dual feedback control»

Makes use of «dual decomposition» of
constrained optimization
Selector on dual variables A
Very nice for cases with shared utility
g, for example steam plant

* Llocalcost:Li=J+Ag,
Problem 1: Constraint control on slow
time scale (upper layer)
Problem 2: Single-loop control in
lower layer (L,=0) may not be possible
for coupled processes

«Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization». Risvan Dirza, Sigurd Skogestad, Dinesh Krishnamoorthy. IFAC Adchem Conference, 2021



Alternative 2: Region-based Feedback-RTO with «direct»
constraint control

SP=0 Constraint controllers g (constraints paired with ul)
=V —

(fast PID-controllers)

ul ulo J
MAX/ l«—="— pip 31 N7 | (changes!)

T T

MIN Jy n N Vugﬁ(u, d =0

Ju
Gradient . Selector on primal variables

estimation (inputs)

Y e Similar to selectors in APC

ul u2 e Limitation: need to pair each

constraint with an input u, may not
work if many constraints

A

SP=0 Jy d» = NTJ, reduced gradients
! («self-optimizing variables»)

y

g (measured constraint)

«Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», D. Krishnamoorthy and S. Skogestad, I&EC Res., 2019
«Optimal controlled variables for” polynomial systems». Jaschke, J.; Skogestad, S., J. Process Control, 2012
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Fig. 1. Region-based control strategy using selectors

L. Bernadino, D. Krishnamoorthy and S. Skogestad, Comparison of Simple Feedback Control
Structures for Constrained Optimal Operation, Dycops-2022, IFAC PapersOnLine 55-7 (2022) 833—-888



Model-free optimization:
Extremum Seeking Control (ESC)

Why?
e Expensive to obtain model
* May be used on top of RTO to correct for model error

Main problems with model-free optimization:
* Cost function J not measured (need model...)
* Very slow. Typically 100-1000 times slower than process dynamics
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Data-based optimization: “Hill-climbing” / “Extremum seeking contro
Drive gradient J =dJ/du to zero.

Probe the 'Y

system
J,=0 at top of hill
Al =0

: . Observe how
Decide which AJ I

the cost
way to move

changes

Estimate
Gradient Au Au
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Equivalent: Minimize cost J (go to bottom of valley)

A
J

Ju <0

* Optimal setpoint: J =0
* If Hessian ], is constant:
* J,as afunction of u is a straight line
with slope J
* Nice properties for feedback control of J
* No dynamics: Pure I-controller optimal
* SIMC-rule: K, =1/(J,, T.)
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Classical Extremum seeking control using sinusoids

Gradient Estimation

S

|

A

S+ wp

Remove bias inJ

u Process
|-controller
) s | s+w |
Averaging
/I\
a sin wt

Multiplication trick: Draper & Li (1951)
Theory: Krstic & Wang (Automatica, 2000)

Qv

One side of optimum: Same phase
Other side: opposite phase

« Simple to implement (don’t need computer), but
» Prohibitively slow convergence for systems with slow dynamics
» Typically 100 times slower than the system dynamics !
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More common today: Estimate Steady-state

gradient using discrete perturbations (steps)

Usually only one input. Simplest: step change in u:
/_?A] * Hill climbing control (Shinskey, 1967)
! * Evolutionary operation (EVOP) (1960’s)
v * NCO tracking (Francois & Bonvin, 2007)

e “Peturb and observe” = Maximum power point tracking
(MPPT) (2010’s).

A
' Au More advanced variants which may also be applied
u Y to multivariable systems
* Least squares estimation
* Fast Fourier transform
A . .
J, = A_] To avoid waiting for steady state
u

* Fitting of data to ARX model (difficult to make robust)

Note: Assumes steady state -> samling (step) time > 3-10 time process time constant
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Least square Extremum seeking control

Extremum seeking controller |

Ju
[-control |(@——

Gradient

estimator

(LSE)

u Controlled| ¥
Process

Note: Assumes no dynamics -> samling time > 3-10 time process constant

Hunnekens et al. (2011, 2014)

\|\

LSE: Fit a linear model
J=J"ta+m

Using least squares fit

Y= Uk Jk=1: - -Jk_N+1]T_
U= [llk ..... Up_nait ]T
0 = [Jo. ml'

A = arg min [[Y - dTH )3
to which the analytical solution is given by
0 =[DTD1DTY
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Summary extremum seeking control

|dea: Estimate the cost gradient J, from data and drive it to zero

e Common to all methods:
* Need measurement of cost J

Ju=0

* Must wait for steady state (except ARX method which fails frequently) >

* Must assume no «fast» disturbances (while optimizing)

Algorithm needs two layers on top of process:
1. Optimization layer (slowest): Drive J, to zero (may use I-controller)

2. Lower estimation layer: Estimate the local gradient J, using data
* Must wait for the process to reach steady state

* Need time scale separation between layers.
* At best this means that the optimization needs to be 10 times slower than the process.
* Often it needs to be 100 times slower.
» Useful for fast processes with settling time a few seconds
* Not useful for many chemical processes where time constant typically are several minutes
* 10 minutes * 100 = 1000 minutes = 16 hours
* Unllikely with 16 hours without disturbance



ARC: Research tasks



8.1. A list of specific research tasks

Here is a list of some research topics, which are important but have
received limited (or no) academic attention:

1.

o

10.

Vertical decomposition including time scale separation in hi-
erarchically decomposed systems (considering performance and
robustness)

Horizontal decomposition including decentralized control and
input/output pairing

Selection of variables that link the different layers in the control
hierarchy, for example, self-optimizing variables (CV1 in Fig. 4)
and stabilizing variables (CV2).

Selection of intermediate controlled variables (w) in a cascade
control system.’

. Tuning of cascade control systems (Figs. 9 and 10)

Structure of selector logic

. Tuning of anti-windup schemes (e.g., optimal choice of tracking

time constant, z;-) for input saturation, selectors, cascade control
and decoupling.

How to make decomposed control systems based on simple
elements easily understandable to operators and engineers

. Default tuning of PID controllers (including scaling of variables)

based on limited information
Comparison of selector on input or setpoint (cascade)

8.2. The harder problem: Control structure synthesis

The above list of research topics deals mainly with the individual
elements. A much harder research issue is the synthesis of an overall
decomposed control structure, that is, the interconnection of the simple
control elements for a particular application. This area definitely needs
some academic efforts.

One worthwhile approach is case studies. That is, to propose “good”
(= effective and simple) control strategies for specific applications, for
example, for a cooling cycle, a distillation column, or an integrated
plant with recycle. It is here suggested to design also a centralized
controller (e.g., MPC) and use this as a benchmark to quantify the per-
formance loss (or maybe the benefit in some cases) of the decomposed
ARC solution. A related issue, is to suggest new smart approaches to
solve specific problems, as mentioned in item 11 in the list above.

A second approach is mathematical optimization: Given a process
model, how to optimally combine the control elements E1-E18 to meet
the design specifications. However, even for small systems, this is a
very difficult combinatorial problem, which easily becomes prohibitive
in terms of computing power. It requires both deciding on the control
structure as well as tuning the individual PID controllers.

As a third approach, [machine learning |[may prove to be useful.
Machine learning has one of its main strength in pattern recognition,
in a similar way to how the human brain works. I have observed
over the years that some students, with only two weeks of example-
based teaching, are able to suggest good process control solutions with
feedback, cascade, and feedforward/ratio control for realistic problems,
based on only a flowsheet and some fairly general statements about
the control objectives. This is the basis for believing that machine
learning (e.g., a tool similar to ChatGPT) may provide a good initial
control structure, which may later be improved, either manually or by
optimization. It is important that such a tool has a graphical interface,
both for presenting the problem and for proposing and improving
solutions.




> Complex optimal centralized

Present Academic control community fish pond Solution (EMPC, FL)

Simple solutions
that work (ARC, PID
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Solution (EMPC, FL)

Simple solutions
that work (SRC,PID)




	Slide 1: Part 6
	Slide 2: More on nonlinear feedforward, decoupling and linearization
	Slide 3: Feedforward control
	Slide 4
	Slide 5: Use of transformed inputs
	Slide 6: General approach based on static model
	Slide 7: Example: Blending process
	Slide 8
	Slide 9: Also: Transformed outputs z
	Slide 10: More on transformed inputs 
	Slide 11: What about MPC?
	Slide 12
	Slide 13: Real-time optimization 
	Slide 14: Economic real-time optimization(RTO) General approaches
	Slide 15
	Slide 16: Feedback RTO (unconstrained case)
	Slide 17: Including constraints
	Slide 18: Alternative 1: Feedback-RTO that tracks active constraints by adjusting Lagrange multipliers (= shadow prices = dual variables) λ
	Slide 19: Alternative 2: Region-based Feedback-RTO with «direct» constraint control 
	Slide 20
	Slide 21: Model-free optimization: Extremum Seeking Control (ESC) 
	Slide 22: Data-based optimization: “Hill-climbing” / “Extremum seeking control” Drive gradient Ju=dJ/du to zero.
	Slide 23: Equivalent: Minimize cost J (go to bottom of valley)
	Slide 24: Classical Extremum seeking control using sinusoids
	Slide 25: More common today: Estimate Steady-state gradient using discrete perturbations (steps)
	Slide 26: Least square Extremum seeking control
	Slide 27: Summary extremum seeking control
	Slide 28: ARC: Research tasks
	Slide 29
	Slide 30
	Slide 31

