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More on nonlinear feedforward, decoupling
and linearization
• Tranformed inputs: Extremely simple and effective way of achieving

feedforward, decoupling and linearization



Feedforward control

• Feedforward control relies on model
• as opposed to feedback which relies mostly on data

• Feedback control: Linear model is often OK

• Feedforward control: Much less likely that linear model is OK
• Process changes and disturbances

• This presentation: Use nonlinear static model





Transformed input v =g(u,w,y,d)
• Replaces the physical input u for control of y.
• Aim: Transformed system is easier to control

• May include: 
• Decoupling
• Linearization
• Feedforward

Examples
• v = u/d      (ratio control for feedforward)
• v = u1/u2    (ratio control for decoupling)
• v = u1+ u2  (from mass balance)
• v = w(u) = F      -> Cascade flow control

Use of transformed inputs
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General approach based on static model

• Static model: 𝑦 = 𝑓0 (𝑢, 𝑑, 𝑤)

• Invert by solving with respect to 𝑢 for given 𝑦 = 𝑣0:  𝑢 = 𝑓0
−1(𝑣0, 𝑑, 𝑤) (14)

• 𝑣0 = Transformed input

Transformed system:
𝑦 = 𝑣0

(decoupled, linear and 
independent of d)



Example: Blending process

Static material balances, 𝑦 = 𝑓0 (𝑢, 𝑑, 𝑤):

Solve for 𝑢 = 𝑓0
−1 𝑣0, 𝑑, 𝑤 :

This can be implemented directly and give y=v0.

Alternative simple implementation. Note that

(17)

(18)

𝑣01, 𝑣02 = Transformed inputs



(11)



Also: Transformed outputs z

• No fundamental advantage, but can simplify input transformation
• For example, y=T, z=H (enthalpy)



More on transformed inputs 



What about MPC?
• First industrial use in the 1970s

• Became common in the refining and petrochemical industry in the 1980s

• In the 1990s a bright future was predicted for MPC in all industries (chemical, thermal power, …)

• 30 years later: We know that this did not happen

• Why? First, the performance benefits of MPC compared to ARC are often minor (if any)

• In addition, MPC has some limitations
1. Expensive to obtain model
2. Cannot easily handle integral action, cascade and ratio control
3. Normally, cannot be used at startup (so need ARC anyway)
4. Often difficult to tune
5. Slow, time consuming for large problems
6. Robustness (e.g., gain margin) handled indirectly

• Advantages of MPC
1. Interactive multivariable dynamic processes
2. Coordinate feedforward and feedback
3. Coordinate use of many inputs
4. Make use of information abou future disturbances, setpoints and prices (predictive capabilities of MPC)
5. Nonlinear dynamic processes (nonlinear MPC)

• What about constraints
• Not really a major advantage with MPC; can be handled well also with ARC





Real-time optimization

• We have presented effective approach for constraint switching (MV-
MV, CV-CV, MV-CV). 

• Most important is CV-CV switching
• CV = constraint or self-optimizing variable (ideal = gradient = Ju)

• Each CV is paired with one MV

• MV-CV switching covers (some) cases where MV may saturate and we need to 
pair with another MV.

• Optimal in many cases, but not in general 

• For example, may not be able to cover cases with more than one
unconstrained region ⇒ More than one self-optimizing variable



Economic real-time optimization(RTO)
General approaches
I. Separate RTO layer (online steady-state optimization)  

II. Feedback-optimizing control (put optimization into the feedback 
layer)

• Alt.1. (Most general): Based on dual decomposition (iterate on Lagrange multipliers λ)

• Alt.2 (Tighter constraint control): Region-based with reduced gradient, 

III. Data-based approaches (model freee)
• Hill-climbing methods = Extremum-seeking control



Unconstrained optimization. 

Necessary condition of optimality (NCO):
• Gradient of cost function = 0

• Ju = dJ/du = 0



Feedback RTO (unconstrained case)

D Krishnamoorthy, E Jahanshahi, S Skogestad. Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient

Measurements. Industrial & Engineering Chemistry Research, 2019

Linearize the dynamic model

Trick, set ሶ𝑥 = 0:



Including constraints
Constrained optimization problem

Solution: Turn into unconstrained optimization problem
using Lagrange multipliers

minu,λ L 
u = primal variables = inputs
λ ≥ 0 = dual variables = Lagrange multipliers = shadow prices

Necessary conditions of optimality (KKT-conditions)

J

J

(complementary
condition)

Master

Single-loop 
PI controllers

Alt.1: Feedback implementation using dual decomposition
(Krishnamoorthy, Dirza, Skogestad)



Alternative 1: Feedback-RTO that tracks active constraints by 
adjusting Lagrange multipliers (= shadow prices = dual variables) λ

«Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization». Risvan Dirza, Sigurd Skogestad, Dinesh Krishnamoorthy. IFAC Adchem Conference, 2021
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«Primal-dual feedback control»
• Makes use of «dual decomposition» of 

constrained optimization
• Selector on dual variables λ
• Very nice for cases with shared utility

g, for example steam plant
• Local cost: Li = Ji + λ gi

• Problem 1: Constraint control on slow
time scale (upper layer)

• Problem 2: Single-loop control in 
lower layer (Lu=0) may not be possible
for coupled processes

Dual variables

Primal variables



Alternative 2: Region-based Feedback-RTO with «direct» 
constraint control 
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SP=0 Ju1, Ju2  = NTJu reduced gradients 
(«self-optimizing variables»)

«Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», D. Krishnamoorthy and S. Skogestad, I&EC Res., 2019
«Optimal controlled variables for ̈ polynomial systems». Jaschke, J.; Skogestad, S., J. Process Control, 2012

• Selector on primal variables 
(inputs)

• Similar to selectors in APC
• Limitation: need to pair each

constraint with an input u, may not 
work if many constraints



L. Bernadino, D. Krishnamoorthy and S. Skogestad, Comparison of Simple Feedback Control
Structures for Constrained Optimal Operation, Dycops-2022, IFAC PapersOnLine 55-7 (2022) 883–888



Model-free optimization:
Extremum Seeking Control (ESC) 

Why? 
• Expensive to obtain model
• May be used on top of RTO to correct for model error

Main problems with model-free optimization:
• Cost function J not measured (need model…)
• Very slow. Typically 100-1000 times slower than process dynamics



Data-based optimization: “Hill-climbing” / “Extremum seeking control”
Drive gradient Ju=dJ/du to zero.
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Equivalent: Minimize cost J (go to bottom of valley)

uopt

Ju

0

• Optimal setpoint: Ju=0
• If Hessian Juu is constant: 

• Ju as a function of u is a straight line 
with slope Juu

• Nice properties for feedback control of Ju

• No dynamics: Pure I-controller optimal
• SIMC-rule: KI = 1/(Juu τc)



Classical Extremum seeking control using sinusoids

Gradient EstimationI-controller

Multiplication trick: Draper & Li (1951)
Theory: Krstic & Wang (Automatica, 2000)

Processu

uc

J

• Simple to implement (don’t need computer), but

• Prohibitively slow convergence for systems with slow dynamics

• Typically 100 times slower than the system dynamics !

KI

Averaging Remove bias in J

One side of optimum: Same phase
Other side: opposite phase



More common today: Estimate Steady-state
gradient using discrete perturbations (steps)

J

u
∆𝑢

∆𝐽

𝐽𝑢 =
Δ𝐽

Δ𝑢

Usually only one input. Simplest: step change in u:
• Hill climbing control (Shinskey, 1967)

• Evolutionary operation (EVOP) (1960’s)

• NCO tracking (Francois & Bonvin, 2007)

• “Peturb and observe” = Maximum power point tracking 
(MPPT) (2010’s).

More advanced variants which may also be applied 
to multivariable systems

• Least squares estimation

• Fast Fourier transform

To avoid waiting for steady state 
• Fitting of data to ARX model (difficult to make robust)

Note: Assumes steady state -> samling (step) time > 3-10 time process time constant



Least square Extremum seeking control

LSE: Fit a linear model

Using least squares fit

Hunnekens et al. (2011, 2014)

Note: Assumes no dynamics -> samling time > 3-10 time process constant



Summary extremum seeking control
Idea: Estimate the cost gradient Ju from data and drive it to zero

• Common to all methods: 
• Need measurement of cost J
• Must wait for steady state (except ARX method which fails frequently)
• Must assume no «fast» disturbances (while optimizing) 

Algorithm needs two layers on top of process:
1. Optimization layer (slowest): Drive Ju to zero (may use I-controller)
2. Lower estimation layer: Estimate the local gradient Ju using data 

• Must wait for the process to reach steady state

• Need time scale separation between layers. 
• At best this means that the optimization needs to be 10 times slower than the process. 

• Often it needs to be 100 times slower.

• Useful for fast processes with settling time a few seconds
• Not useful for many chemical processes where time constant typically are several minutes

• 10 minutes * 100 = 1000 minutes = 16 hours

• Unllikely with 16 hours without disturbance



ARC: Research tasks





Complex optimal centralized 

Solution (EMPC, FL)

Sigurd

Present Academic control community fish pond

Simple solutions
that work (ARC, PID)



Complex optimal centralized 

Solution (EMPC, FL)Future Academic control community fish pond

Simple solutions
that work (SRC,PID)
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