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•1955: Born in Norway
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“The goal of my research is to 
develop simple yet rigorous 
methods to solve problems of 
engineering significance” 

One example: SIMC PID tuning rules (Skogestad, JPC, 2003)
«Probably the best simple PID tuning rules in the world»
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Outline

1. Optimal steady-state operation of a process plant
• Control hieararchy

• Active constraints

2. Alternatives for implementing optimal operation and switching between active constraints
• Model predictive control (MPC)

• Standard advanced (process) control elements (APC)

3. APC elements for switching between active constraints
• MV-MV switching: Split range control ++

• CV-CV switching: Selectors

• CV-MV swithcing: Nothing

4. Examples
• Temperature control in room with combined heating and cooling

• Pressure/Flow control with Combined max and min selectors

• Serial Process with optimal buffer management
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Main objectives control system:

ARE THESE OBJECTIVES CONFLICTING?

• Usually NOT
– Different time scales
– Stabilization doesn’t “use up” any degrees of freedom

• Reference value (setpoint) available for layer above

1. Economics: Implementation of (near)-optimal operation
2. Regulation: Stable operation 

Control is about implementing optimal 
operation in practice



CV1sAPC/
MPC

PID

CV2s

RTO

Follow path (+ look after 
other variables)

Stabilize + avoid drift 

Min J (economics)

MV (valves)

OBJECTIVE

CV = controlled variable (with setpoint)
MV = manipulated variables (“inputs”)

Process control: Hierarchical structure

Planning



How we design a control system for a complete 
chemical plant?
• Where do we start?
• What should we control? and why?
• etc.
• etc.
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Systematic design procedure

Start “top-down” with economics: 
• Step 1: Define operational objectives and constraints
• Step 2: Optimize steady-state operation
• Step 3: Decide what to control (CV1) 
• Step 4: Throughput manipulator (TPM) location

Then bottom-up:
• Step 5: Regulatory control (CV2)

Finally: Make link between “top-down” and “bottom up” 
• Step 6: “Advanced/supervisory control” system 
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Advanced / Supervisory control layer
– Follow set points CV1s
– Switch between active constraints (CV1)
– Keep an eye on regulatory layer

• Avoid saturation (constraints)

• Alternatives: 
– Model predictive control (MPC) 
– Standard advanced process control elements (APC)

• Standard/Classical/Conventional 

CV = controlled variable
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Optimal steady-state operation

Optimize for expected disturbances (d)

• We need a good model, usually steady-state.
• Optimization can be time consuming.

Main goal for control puposes: identify active constraint regions

• In many cases we can do this by feedback - without a model

Model equations
Operational constraints

min J(u,x,d)
s.t.

f(u,x,d) = 0
g(u,x,d)≤ 0

u
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Optimal operation (unconstrained)

Minimize cost J = J(u,x,d)

• u = degrees of freedom
• x = states (internal variables)

• d = disturbances

J = cost feed + cost energy – value of products

J

uopt

Jopt
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Optimal operation (constrained)

Minimize cost J = J(u,x,d)
Subject to satisfying constraints

• u = degrees of freedom
• x = states (internal variables)

• d = disturbances

J

uopt

Jopt

constraint

J = cost feed + cost energy – value of products
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Active constraints

• Active constraints: 
– variables that should optimally be kept at their limiting value.

• Active constraint region:
– region in the disturbance space defined by which constraints are active within it. 

Region 1
Region 2

Region 3

Disturbance 1

Di
st

ur
ba

nc
e

2 Optimal operation:
How switch between regions?
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Control is about implementing optimal 
operation in practice

• Many cases: Optimal solution is constrained, but constraints change
 Key is to control the active constraints and switch when needed

• Alternatives: 
– Model predictive control (MPC) (45 years old; Richalet)

• Extensively studied in academia
– Standard advanced process control elements (APC) (75 years old)

• Hardly mentioned in academia
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Model predictive control (MPC)

• Need dynamic model 
• Implemented after some time of operation
• Handles constraints dynamically 
• But changes in active constraints (steady state) is not as explicit as 

people think.
Alt. 1. (Academic) Select weights in objective function

• Indirect approach
Alt. 2. (Industrial) Two-stage MPC with priority list 

• Steady-state feasibility part recomputes setpoints to meet active constraints
• Not all problems are easily formulated using MPC

– In practice logic must often bed added
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Alternative approach for handling changes in active 
constraints: Standard APC elements

Some standard APC elements used for constraint switching:
– PI-controller 
– Anti windup 
– Max/min-Selectors 
– Split range control
– Different setpoints
– Valve position control
– Other logic elements

Main limitation with standard APC is that we need to pair inputs (MVs) and outputs (CVs)
– Often an advantage as it gives explicit constraint handling
– But for some problems it may require complicated logic and MPC may be simpler
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Optimization with PI-controller
max y
s.t. y ≤ ymax

u ≤ umax

Example: Drive as fast as possible from A to B (u=power, y=speed, ymax = 130 km/h)
• Optimal solution has two active constraint regions: 

1. y = ymax  speed limit (d=smooth road)
2. u = umax max power (d=steep hill)

• Note: Constraint on y satisfied with small input u (umax no problem)
• Solved with PI-controller  («cruise control»)

– ysp = ymax

– Need anti-windup:  I-action is off when u=umax

s.t. = subject to
y = CV = controlled variable

ysp = ymax PI
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Optimization with PI-controller
min u
s.t. y ≥ ymin

u ≥ umin =0

Example Norway: Minimize heating cost (u=heating, y=temperature, ymin=20 °C)
• Optimal solution has two active constraint regions: 

1. y = ymin minimum temperature (d=winter)
2. u = umin  heating off (d=summer)

• Note: Constraint on y satisfied with large input u (umin no problem)
• Solved with PI-controller 

– ysp = ymin

– Need anti-windup:  I-action is off when u=umin

s.t. = subject to
y = CV = controlled variable

ysp = ymin PI
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Optimization with PI-controller
min u
s.t. y ≤ ymax

u ≥ umin =0

Example Brazil: Minimize cooling cost (u=cooling, y=temperature, ymax=23 °C)
• Optimal solution has two active constraint regions: 

1. y = ymax max temperature (d=summer)
2. u = umin  cooling off (d=winter)

• Note: Constraint on y satisfied with large input u (umin no problem)
• Solved with PI-controller 

– ysp = ymax

– Need anti-windup:  I-action is off when u=umin

s.t. = subject to
y = CV = controlled variable

ysp = ymin PI
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Anti-windup

• All the controllers shown need anti-windup to «stop integration» during periods
when the control action (vi) is not affecting the process:
– Controller is disconnected (because of selector)
– Physical MV ui is saturated

Anti-windup using back-calculation. Typical choice for tracking constant, KT=1

KT,i

Selector or
saturation
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Optimization with PI-controller
All cases:
• Normal operation: y=ysp

• When u (MV) reaches constraint: control of y (CV) is given up (and this is optimal)

Input saturation pairing rule:
• «Pair MV that saturates with CV that can be given up»

PI
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Constraints switching with standard APC

Three cases:
• MV-MV switching

– One CV paired with many MVs (to cover whole range)
1. Split range control
2. Many controllers with different setpoints
3. Valve position control 

• CV-CV switching
– Many CVs paired with one MV

• Selectors

• CV-MV switching
– CV paired with MV that may saturate

1. Simple PI control is optimal if we follow «input saturation pairing rule»
2. If we don’t follow this rule: 

– Must combine MV-MV and CV-CV (selector) 

* A. Reyes-Lua and S. Skogestad, «Systematic design of active constraint switching using classical advanced control structures», Ind.Eng.Chem.Res, Vol. 59, 2229-2241 (2020)



25

MV-MV switching

One CV paired with many MVs (to cover whole range).

Want to use only MV at a time

Switching options:
1. Split range control
2. Many controllers with different setpoints
3. Valve position control 

Process
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MVs (two for summer and two for winter):
1. AC (expensive cooling)
2. CW (cooling water, cheap)
3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)

y=T

Alt. 1 Split-range control (SRC).

Note: may adjust the location of split (x-axis) to make loop gains equal.

Disadvantage SRC: 1. Must use same integral time for all MVs
2. Does not work well for cases where constraint values change

Example: Room heating with one CV (T) and 4 MVs

= 22oC

MV-MV switching
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Alt. 1 Split-range control (SRC).

MV-MV switching
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MVs (two for summer and two for winter):
1. AC (expensive cooling)
2. CW (cooling water, cheap)
3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)

y=T

Alt. 2. Multiple controllers with different setpoints

Example: Room heating with one CV (T) and 4 MVs

C1

C2

C3

C4

23oC

22oC

21oC

20oC

MV-MV switching
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MVs (two for summer and two for winter):
1. AC (expensive cooling)
2. CW (cooling water, cheap)
3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)

y=T

Alt. 3. Input resetting (Valve position control)

Example: Room heating with one CV (T) and 4 MVs

C1

C2

C3

C4
22oC

EH=10%

MV-MV switching

EH=10%

EH=10%
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Summary MV-MV switching

• Use Alt.1 (split range control) for fixed MV ranges (max and min values)
– Advantage: Easy to understand, because SR-block shows clearly sequence of MVs 

• Use Alt. 2 (controllers for different setpoints) for cases where MV ranges vary
– Advantage: Easier to implement than SRC and can have different controller tunings
– Often preferred for CV-MV switching

• Use Alt. 3 (input resetting) for cases where CV (y) should always be controlled by 
same MV
– Not so common
– Gives some economic loss
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CV-CV switching

Many CVs paired with one MV.
But only one CV controlled at a  time.

Use: Max or Min selector

> MAX= HS=

< MIN= LS=

Process



«Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization». Risvan Dirza, Sigurd Skogestad, Dinesh Krishnamoorthy. IFAC Adchem Conference, 2021

Process

Unconstrained
optimization

(nu PID-controllers)
Gradient 

estimation

Constraint control
(nc slower PI/I-controllers)

MAX0

y

g (measured constraint)

g (measured constraint)
SP=0

SP=0

u

d

«Primal-dual feedback control»
• Makes use of «dual decomposition» 

of constrained optimization
• Selector on dual variables λ
• Problem: Constraint control using

dual variables is on slow time scale

Lagrange multipliers = Dual variables

Primal variables

Selectors have basis in constrained optimization theory
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CV-CV switching using selectors

• Sometimes called “override”
• Typical Example: Want to keep y1 at a setpoint,  

• but y2 (higher priority) must not exceed constraint. 
• With selector: When y2 reaches constraint, we give up control of y1.  

– Example: adaptive cruise control. 
• y1= speed limit, y2= distance (3s), Min-selector

• Selectors work well, but require pairing each constraint 
with a given input (not always possible)

y2

y1

u=min(u1,u2)

y1

y2
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Design of selector structure

Rule 1 (max or min selector)
• Use max-selector for constraints that are satisfied with a large input
• Use min-selector for constraints that are satisfied with a small input

Rule 2 (order of max and min selectors): 
• If need both max and min selector: Potential infeasibility
• Order does not matter if problem is feasible
• If infeasible: Put highest priority constraint at the end

“Systematic design of active constraint switching using selectors.”
Dinesh Krishnamoorthy , Sigurd Skogestad. Computers & Chemical Engineering, Volume 143, (2020)

https://www.sciencedirect.com/science/journal/00981354
https://www.sciencedirect.com/science/journal/00981354/143/supp/C
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Maximize flow with pressure constraints

Op

Input u = z1  
Want to maximize flow, J=-F: 
Unconstrained: Optimal input is infinity:
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Desired input u0 without constraints (can be given up) into first selector block

Disturbances in p0 and p2 (unmeasured)
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t>1800: u=zmax=1
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Challenges selectors

• Standard approach requires pairing of each active constraint with a single input
– May not be possible in complex cases

• Stability analysis of switched systems is still an open problem
– Undesired switching may be avoided in many ways:

• Filtering of measurement
• Tuning of anti-windup scheme
• Minimum time between switching
• Minimum input change
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CV-MV switching

CVs paired with MV that may saturate

If we cannot follow «input saturation pairing rule» then we must combine
– MV-MV switching (Alt.2 Different setpoint usually best)
– CV-CV switching (selector)

Process
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Example. Inventory control for Serial process

CVs: 3 inventories (levels) within min and max
MVs: 4 flows (valves)

Objective (in addition to controlling levels): Maximize throughput (integrated over time)
-> one valve fully open or at bottleneck

How to control?
Need MPC?
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TPM = throughput manipulator
Typically at bottleneck («active constraint»)

Disturbances: Temporary bottelenecks
(max-constraints) for F0, F1, F2 or F3
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Example B. Very smart selector strategy: Bidirectional inventory control
Reconfigures automatically with optimal buffer management!!

F.G. Shinskey, «Controlling multivariable processes», ISA, 1981
C. Zotica, S. Skogestad and K. Forsman, Comp. Chem. Eng, 2021

Max flow:
Fs=∞
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F0=1 F2=1 F3=1F1=1

1=∞=∞ =∞
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F0=1 F2=1 F3=1F1=0.5

1=∞=∞
0.5
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F0=0.5 F2=1 F3=1F1=0.5

1
0.5

=∞=∞
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F0=0.5 F2=0.5 F3=1F1=0.5

1
0.5

=∞=∞
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F0=0.5 F2=0.5 F3=0.5F1=0.5

1
0.5

=∞=∞ =∞
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F0=1 F2=1 F3=1F1=1

1=∞=∞

Challenge: Can MPC be made to do his? Optimally reconfigure loops and find optimal buffer? I doubt it. We tried.



Important insight

• Many problems: Optimal steady-state solution always at constraints
• In this case optimization layer may not be needed

– if we can identify the active constraints and control them using selectors
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CV-MV switching. Optimal control of a cooler

TH FH

FC

TC
in

Main control objective:
y1=TH=TH

sp = 26.5C

Secondary objective (can be given up)
y2= FH=FH

sp

Manipulated Variables: 
u1=zC , u2=zH

Both valves may satúrate at max

Disturbance: 
TC

in

Cooling water
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Pairings at nominal «unconstrained» operating point

TC

FC

TH

FH
sp

TH
sp 

FH

FC

TC
in

FC  may saturate for a 
large disturbance (TC

in) 
Use FC to control TH
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Tuning of TC  using SIMC rule:
τc = 2θ = 88 s
Kc  = -0.55
τI =  74 s

SRC TC min

TC
in

TH

1
2 FH

FH
spTH

spFC

Alt.1: Split range control with min-selector
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Simulation: Split range control with min-selector
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MPC for cooler

For represents the flow at the nominal point.

 Objective function
(CV constraints)

Model

MV constraints

Tuning trial and error
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MPC vs PI

Disturbance
(TC

in)
t = 10 s;     + 2°C  
t = 1000 s; + 4°C

Yellow: MPC: 
Δt = 50 s 
ω₁ = 3
ω₂ = 0.1

FC

FH

TH
Red: Split Range 
Control (PI)
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MPC weight selection

α = [3.0, 0.1]

β = [1.0, 1.0]

γ = [0.1, 3.0]

Tunings:
[ω₁ , ω₂ ]

Yellow: 
Selected



60

4. Conclusion

• Optimal steady-state operation is achieved by controlling changing active constraints
• For most systems we can use PI-control + standard Advanced Process Control 

elements
– MV-MV switching: Split range controllers or different setpoints
– CV-CV switching: Max/min-selectors
– CV-MV swithing: Nothing or combine MV-MV and CV-CV

• Comparison with MPC
– Comparable response to MPC
– Much less modeling efforts
– Simpler implementation
– More explicit constraint control
– MPC preferable for more complex interactive processes 
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