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@ About me - CV - Lectures - My family - How to reach me - Email: skoge(@chemeng.ntnu.no
@ Teaching: Courses - Master students - Project students
@ Research: Process Control Group - Research - Ph.D. students

"We want to find a self-optimizing control structure where acceptable operation under all conditions is achieved with constant setpoints
Jor tha controlied variables. More generally, the idea is to use the model off-line to find properties of the optimal solution suited for
(simple, model-free) on-line implementation" { 5

"News'...

@ PhD position on "Production Optimization" (Deadline: 17 June 2019)

@ Two PhD positions on "Process optimization using machine learning" (Deadline: 10 June 2019)
@ Special issue of Processes on "Real-time optimization of processes using simple control structures. economic MPC or machine

learning." (Deadline: 15 Nov.2019)

@ July 2018: PID-paper in JPC that verifies SIMC Pl-rules and gives "Improved" SIMC PID-rules for processes with time delay
taud=theta/3

@ June 2018: Video of Sigurd giving lecture at ESCAPE-2018 in Graz on how to use classical advanced control for switching between active
constraints

@ May 2017: Presentation (slides) on economic plantwide control from AdCONIP conference in Tarwan

@ Feb. 2017: Youtube vidoes of Sigurd giving lectures on PID control and Plantwide control (at University of Salamanca, Spain)

@ 06-08 June 2016: IFAC Symposium on Dynamics and Control of Process Systems. including Biosystems (DYCOPS-2016). Trondheim,

Norway.

+ Videos and proceedings from DYCOPS-2016

@ Aug 2014: Sigurd recieves IFAC Fellow Award in Cape Town

@ 2014: Overview papers on "control structure design and "economic plantwide control"
@ OLD NEWS

Books...

@ Book: S Skogestad and 1. Postlethwaite: MULTIVARIABLE FEEDBACK CONTROL-Analysis and design. Wiley (1996:
2005)

@ Book: 8. Skogestad: CHEMICAL AND ENERGY PROCESS ENGINEERING CRC Press (Taylor&Francis Group) (Aug.
2008)

@ Bok: S. Skogestad: PROSESSTEENIKEK - Masse- og energibalanser Tapir (2000; 2003; 2009).

More information ...

@ Publications from my Google scholar site i'
@ Download publications from my official publication list or look HERE if you want to download our most recent and upublished Iﬁ‘
work i
@ Proceedings from conferences - some of these may be difficult to obtain elsewhere

@ PROST - Our activity is part of PROST - Center for Process Systems Engineering at NTNU and SINTEF
@ Process control library - We have an extensive library for which [var has made a nice on-line search

@ Photographs that I have collected from various events (maybe you are included...)

@ International conferences - updated with irregular intervals

@ SUBPRO (NTNU center on subsea production and processing) [ Documents ]




“The goal of my research is to
develop simple yet rigorous
methods to solve problems of
engineering significance”

One example: SIMC PID tuning rules (Skogestad, JPC, 2003)
«Probably the best simple PID tuning rules in the world»
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Outline

1. Optimal steady-state operation of a process plant
*  Control hieararchy
*  Active constraints

2.  Alternatives for implementing optimal operation and switching between active constraints
. Model predictive control (MPC)

. Standard advanced (process) control elements (APC)

3. APC elements for switching between active constraints

e MV-MV switching: Split range control ++
e CV-CV switching: Selectors
e CV-MV swithcing: Nothing

4. Examples

. Temperature control in room with combined heating and cooling
. Pressure/Flow control with Combined max and min selectors

. Serial Process with optimal buffer management

¢ ® NTNU



Control is about implementing optimal
operation in practice

Main objectives control system:

1. Economics: Implementation of (near)-optimal operation
2. Regulation: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

Usually NOT

— Different time scales

— Stabilization doesn’t “use up” any degrees of freedom
» Reference value (setpoint) available for layer above

. ®@NTNU



Process control: Hierarchical structure

==

Scheduling
(weeks)
Planning —
Site-wide optimization
(day)
— OBJECTIVE
L \\I I
RTO Local optimization] Mln J (economlCS)
(hour)

/f CVIS
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MPC : DUPErvisory : FOllOW path (+ look after

: control other variables)
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Control : '
e\ e,

PID i Regnistory | Stabilize + avoid drift

: control :

. (seconds) | i

CV = controlled variable (with setpoint) _____~~~~""""""""""""“"Si>""~ MV (ValVCS)

MV = manipulated variables (“inputs”)




How we design a control system for a complete
chemical plant?

* Where do we start?

« What should we control? and why?
* efc.

* efc.
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Systematic design procedure

Start “top-down” with economics:

* Step 1: Define operational objectives and constraints
* Step 2: Optimize steady-state operation

* Step 3: Decide what to control (CV1)

* Step 4: Throughput manipulator (TPM) location

Then bottom-up:
* Step 5: Regulatory control (CV2)

Finally: Make link between “top-down” and “bottom up”
* Step 6: “Advanced/supervisory control” system

MPC or
Advanced
Control
Structures

PID
control

Scheduling
(weeks)

b

Site-wide optimization

(weeks)

Y

v "'Eu |
Local optimization
(hour)
= T K
1
W |
Supervisory control
a (minutes) Control
layer

—

E

Regulatory control
- (seconds)

I
I
I
I
!
cv2 '
!
!
!
!
I
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Scheduling
(weeks)

b

Site-wide optimization
(weeks)

Advanced / Supervisory control layer '/x,\:u |

— Follow set points CV1s

Local optimization

— Switch between active constraints (CV1) (hour)
— Keep an eye on regulatory layer |- - -~ - Tovi
e Avoid saturation (constraints) MPC or ]
. Advanced ¥ I
e Alternatives: Control Supervisory control
Structures | | (minutes) Control
layer

— Model predictive control (MPC)
— Standard advanced process control elements (APC)

A I

e Standard/Classical/Conventional P1D Requlato trol
egulatory contro

[ (seconds)

I

I

I

I

!

cv2 '
— l
!

!

I

CV = controlled variable
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Optimal steady-state operation

Optimize for expected disturbances (d)

min J(u,x,d)

s.t.
flux,d)=0 < Model equations
g(ux,d)<s0 < Operational constraints

 We need a good model, usually steady-state.
* Optimization can be time consuming.

Main goal for control puposes: identify active constraint regions

* |[n many cases we can do this by feedback - without a model




Optimal operation (unconstrained)

Minimize cost J = J(u,x,d)

* u=degrees of freedom

e X = states (internal variables)
Jopt

e d =disturbances

J = cost feed + cost energy — value of products




Optimal operation (constrained)

Minimize cost J = J(u,x,d) T
Subject to satisfying constraints ]

* u=degrees of freedom

e X = states (internal variables) Jopt

* d =disturbances

constraint

J = cost feed + cost energy — value of products




Active constraints

 Active constraints:

— variables that should optimally be kept at their limiting value.
* Active constraint region:

— region in the disturbance space defined by which constraints are active within it.

Optimal operation:
Region 2 How switch between regions?

Disturbance 1

Region 3

Region 1

Disturbance 2




Control is about implementing optimal
operation in practice

* Many cases: Optimal solution is constrained, but constraints change
- Key is to control the active constraints and switch when needed

e Alternatives:

— Model predictive control (MPC) (45 years old; Richalet)
e Extensively studied in academia

— Standard advanced process control elements (APC) (75 years old)
e Hardly mentioned in academia




Model predictive control (MPC)

* Need dynamic model

* Implemented after some time of operation

* Handles constraints dynamically

 But changes in active constraints (steady state) is not as explicit as
people think.

Alt. 1. (Academic) Select weights in objective function
* Indirect approach

Alt. 2. (Industrial) Two-stage MPC with priority list
» Steady-state feasibility part recomputes setpoints to meet active constraints
* Not all problems are easily formulated using MPC
— In practice logic must often bed added




Alternative approach for handling changes in active
constraints: Standard APC elements

Some standard APC elements used for constraint switching:

— Pl-controller

— Anti windup

— Max/min-Selectors

— Split range control

— Different setpoints

— Valve position control

— Other logic elements

Main limitation with standard APC is that we need to pair inputs (MVs) and outputs (CVs)
— Often an advantage as it gives explicit constraint handling
— But for some problems it may require complicated logic and MPC may be simpler




Optimization with Pl-controller i

max y yrEym, S . l+ y
s.t. y < ymox ‘_ ’

u s umax

Example: Drive as fast as possible from A to B (u=power, y=speed, y"*= 130 km/h)

 Optimal solution has two active constraint regions:

1. y=ym>* - speed limit (d=smooth road)

2. u=um* - max power (d=steep hill)
 Note: Constraint on y satisfied with small input u (u™** no problem)
e Solved with Pl-controller («cruise control»)

sp = ymax

— Need anti-windup: l-action is off when u=um H

s.t. = subject to
y = CV = controlled variable

19 ®@NTNU




Optimization with Pl-controller i

min u y® =ymn E' v l+ oy
s.t. y>ymin ‘_ ’

u>umn=0

Example Norway: Minimize heating cost (u=heating, y=temperature, y""=20 °C)
 Optimal solution has two active constraint regions:

1. y=ym" = minimum temperature (d=winter)

2. u=umn - heating off (d=summer)
e Note: Constraint on vy satisfied with large input u (u™" no problem)
e Solved with Pl-controller

— ySP = ymin

— Need anti-windup: I-action is off when u=u™"

s.t. = subject to
y = CV = controlled variable

20 ® NTNU




Optimization with Pl-controller i

min u y® =ymn E' v l+ oy
s.t. y < ymox ‘_ ’

u>umn=0

Example Brazil: Minimize cooling cost (u=cooling, y=temperature, ym*=23 °C)

 Optimal solution has two active constraint regions:

1. y=ym>* - max temperature (d=summer)

2. u=um" - cooling off (d=winter)
e Note: Constraint on vy satisfied with large input u (u™" no problem)
e Solved with Pl-controller

— ySP = ymax

— Need anti-windup: I-action is off when u=u™"

s.t. = subject to
y = CV = controlled variable

2 ® NTNU




Anti-windup

* All the controllers shown need anti-windup to «stop integration» during periods
when the control action (v,) is not affecting the process:
— Controller is disconnected (because of selector)
— Physical MV u;is saturated

Selector or
saturation
Sp ul:l'l:-lx
E=Yy" —Y U; U;
| K¢ — _/_ »| Process
ymin
T
1
- KC:E TI.i8
€s
Kri |

Anti-windup using back-calculation. Typical choice for tracking constant, K;=1




Optimization with Pl-controller y P

+ 1 -+ il

- - ¢ - 9 O
All cases: ‘

 Normal operation: y=y*P

When u (MV) reaches constraint: control of y (CV) is given up (and this is optimal)

Input saturation pairing rule:
* «Pair MV that saturates with CV that can be given up»




Constraints switching with standard APC

Three cases:
e MV-MV switching
— One CV paired with many MVs (to cover whole range)
1. Split range control

2. Many controllers with different setpoints
3. \Valve position control

* CV-CV switching
— Many CVs paired with one MV
* Selectors
* CV-MV switching
— CV paired with MV that may saturate

1. Simple Pl control is optimal if we follow «input saturation pairing rule»

2. If we don’t follow this rule:
— Must combine MV-MV and CV-CV (selector)

* A. Reyes-Lua and S. Skogestad, «Systematic design of active constraint switching using classical advanced control structures», Ind.Eng.Chem.Res, Vol. 59, 2229-2241 (2020)

24 ®@NTNU




MV'MV SWItChIng — Process [

One CV paired with many MVs (to cover whole range).

Want to use only MV at a time
Eckman, D.P. (1945). Principles of industrial control, pp.204-207. John

Wiley & Sons, New York.

Switching options:
1. Split range control
2. Many controllers with different setpoints

1ne temperature of plating tanks is controlled by means of dual con-
trol agents. The temperature of the circulating water is controlled by
admitting steam when the temperature is low, or cold water when it is
high. Figure 1012 illustrates a system where pneumatic proportional
control and diaphragm valves
with split ranges are used, The ’mr
steam valve is closed at 8.5 Ib
per sq in. pressure from the con-
troller, and fully open at 14.5 Ib
per 8q in. pressure. The cold
water valve is closed at 8 Ib per
sq in. air pressure and fully open
at 2 Ib per sq in. air pressure.

If more accurate valve set-
tings are required, pneumatic
valve positioners will accomplish
the same function. The zero;
action, and range adjustments
of valve positioners are set so thst both the steam and cold water
valves are closed at 8 1b per sq in. controller output pressure. The
advantages gained with valva nasitinnare men dhot ca. 1 s s

®@NTNU

3. Valve position control

Fia. 10-12. Dual-Agent Control System
for Adjusting Heating and Cooling of Bath.




MV-MV switching

Example: Room heating with one CV (T) and 4 MVs

MVs (two for summer and two for winter):
ST 1. AC (expensive cooling)
2. CW (cooling water, cheap)
222 y=T 3. HW (hot water, quite cheap)
g g 4. Electric heat, EH (expensive)

Alt. 1 Split-range control (SRC).

amb
SRC T | .
i l Cwmax HW™
LN
1 1
: '
f : : W EH
T e! U H T
E\l—:> Cpr ~| SR | . |Room > aEn
_ 220(: —J ' . UHW
= ! . >
_ | p
: : u-EH .
1 1 o o
1 1 A'UAC A'UCVV A'UH\N AUEH
"""""""""" pmin=0 pmax=1

Internal signal to split range block (v)
Note: may adjust the location of split (x-axis) to make loop gains equal.

Disadvantage SRC: 1. Must use same integral time for all MVs
2. Does not work well for cases where constraint values change




MV-MV switching

Alt. 1 Split-range control (SRC).

O 40
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MV-MV switching

Example: Room heating with one CV (T) and 4 MVs

MVs (two for summer and two for winter):
ST 1. AC (expensive cooling)
2. CW (cooling water, cheap)
222 y=T 3. HW (hot water, quite cheap)
g g 4. Electric heat, EH (expensive)

Alt. 2. Multiple controllers with different setpoints

T:nnh

UAC ‘]'

23°C
22°C

=Y

UCwW

N
~J

Room

UHW

21°C—%
20°C

UEH

v 4 v y
OO (OO
w

S




MV-MV switching

Example: Room heating with one CV (T) and 4 MVs

MVs (two for summer and two for winter):
ST 1. AC (expensive cooling)
2. CW (cooling water, cheap)
222 y=T 3. HW (hot water, quite cheap)
g g 4. Electric heat, EH (expensive)

Alt. 3. Input resetting (Valve position control)

T:nnl
UAC ‘]'
EH=10% _1; > C1 -
EH=10% —y—t—| C, — .
UHW Room
EH=10% T " C,
220G Jlc,




Summary MV-MV switching

e Use Alt.1 (split range control) for fixed MV ranges (max and min values)
— Advantage: Easy to understand, because SR-block shows clearly sequence of MVs

e Use Alt. 2 (controllers for different setpoints) for cases where MV ranges vary
— Advantage: Easier to implement than SRC and can have different controller tunings
— Often preferred for CV-MV switching
e Use Alt. 3 (input resetting) for cases where CV (y) should always be controlled by
same MV

— Not so common

— Gives some economic loss




CV-CV switching

——| Process

Many CVs paired with one MV.
But only one CV controlled at a time.

Use: Max or Min selector

> = MAX = HS

< - MIN = LS




Selectors have basis in constrained optimization theory

g (measured constraint)

A

sp=0 —| Constraint control

(n. slower PI/I-controllers) «Primal-dual feedback control»

* Makes use of «dual decomposition»
of constrained optimization
0 ——| MAX P
* Selector on dual variables A
)\ | Lagrange multipliers = Dual variables * Problem: Constraint control using

Unconstrained dual variables is on slow time scale
SP=0 , optimization . Ju Gradient
(n, PID—con;roIIers) Ju estimation
L'UJ:JU+>\ gu:O A

ul Primal variables

y

g (measured constraint)

«Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization». Risvan Dirza, Sigurd Skogestad, Dinesh Krishnamoorthy. IFAC Adchem Conference, 2021




CV-CV switching using selectors

AT yl
i £ iy
:‘é :: e
—

selector u
ap [ e Smin )

Hia =) o .
- % ' = u=min(u,,u,) y
2

e Sometimes called “override”

* Typical Example: Want to keep y1 at a setpoint,
but y2 (higher priority) must not exceed constraint.

Process F

A 4

* With selector: When y2 reaches constraint, we give up control of y1.

— Example: adaptive cruise control.
* yl=speed limit, y2= distance (3s), Min-selector

* Selectors work well, but require pairing each constraint
with a given input (not always possible)




Design of selector structure

Rule 1 (max or min selector)
* Use max-selector for constraints that are satisfied with a large input
* Use min-selector for constraints that are satisfied with a small input

Rule 2 (order of max and min selectors):

* If need both max and min selector: Potential infeasibility
* Order does not matter if problem is feasible

* If infeasible: Put highest priority constraint at the end

“Systematic design of active constraint switching using selectors.”
Dinesh Krishnamoorthy, Sigurd Skogestad. Computers & Chemical Engineering, Volume 143, (2020)
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https://www.sciencedirect.com/science/journal/00981354
https://www.sciencedirect.com/science/journal/00981354/143/supp/C

Maximize flow with pressure constraints

. equipment .
Po P2

Fig. 6. Example 2: Flow through a pipe with one MV (u =z;).

Optiriliz_atinn problem is:

max F
s.k.
F < Fpgx (15)
P1 < P1.max
P1 2 P1.min
21 = Z1_max

where Fmax =10 kgfs, z1 max = 1. P1.max = 2.5 bar, and pq pp, = 1.5
bar. Note that there are both max and min- constraints on p;. De-

Inputu =2z,

Want to maximize flow, J=-F:

Unconstrained: Optimal input is infinity:
ug = o



Desired input u, without constraints (can b{?ven up) into first selector block

Z1,m /Pl.max P1,min

i = 20
k J

FC 11111% PC na PC
s Frax
1 P1,mhx

Fmas:

<1,max }

P1,min

h |

ma. @
F F
Process process
& —— )
Po 2 1 equipment P2 equipment ?}2"'
(a)

[ i I
—=2F
= i
. — T_;”
= T
[} 1 1 1 1
0 500 1000 1500 2000

time unit

Disturbances in p, and p, (unmeasured)




Frar #l,mazx Pl max P1,min

n = oo uc‘ = "0
FC 11111% PC na PC
= Fma;:r:
! P1,min - Zl,max Pl mpz
ma. @ 1in @
F _ F
Process process
- p—— . —_—l
cqupment equipment |
Po Z1 P (P P2 Po 21 D1 1t P2

(a) (b)
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Challenges selectors

» Standard approach requires pairing of each active constraint with a single input
— May not be possible in complex cases

» Stability analysis of switched systems is still an open problem

— Undesired switching may be avoided in many ways:
* Filtering of measurement
* Tuning of anti-windup scheme
* Minimum time between switching

* Minimum input change




CV-MV switching —_ s

—— —

CVs paired with MV that may saturate

If we cannot follow «input saturation pairing rule» then we must combine
— MV-MV switching (Alt.2 Different setpoint usually best)
— CV-CV switching (selector)




Example. Inventory control for Serial process

Unit 1 L Unit 2 R Unit 3

CVs: 3 inventories (levels) within min and max
MVs: 4 flows (valves)

Objective (in addition to controlling levels): Maximize throughput (integrated over time)
-> one valve fully open or at bottleneck

How to control?
Need MPC?




TPM = throughput manipulator

Typically at bottleneck («active constraint»)

Disturbances: Temporary bottelenecks i 5 i | i | E
(max-constraints) for FO, F1, F2 or F3 i e e~d 5 e % ]
’ Tank 1 1 Tank 2 ’ Tank 3 ’

(b) TPM at Fy. Inventory control radiating around the TPM. .E

Tank 1 Tank 2 Tank 3

(d) TPM at F;. Inventory control in direction opposite of flow.




Example B. Very smart selector strategy: Bidirectional inventory control
Reconfigures automatically with optimal buffer management!!

FoH L P oL P oL

Max flow: \ Y Y '
FS:oo min T I T T = min B T T T T - Imin el T T - min
. . A . .

-----------------------------------

Unit 1 Unit 2 Unit 3

F.G. Shinskey, «Controlling multivariable processes», ISA, 1981
C. Zotica, S. Skogestad and K. Forsman, Comp. Chem. Eng, 2021
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Figure 12: Simulation of a 19 min temporary bottleneck in flow F) for the control structures
in Fig. 3d with the TPM downstream of the bottleneck.
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Figure 12: Simulation of a 19 min temporary bottleneck in flow F) for the control structures
in Fig. 3d with the TPM downstream of the bottleneck.

Challenge: Can MPC be made to do his? Optimally reconfigure loops and find optimal buffer? | doubt it. We tried.
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Important insight

* Many problems: Optimal steady-state solution always at constraints
* |In this case optimization layer may not be needed

— if we can identify the active constraints and control them using selectors

®@NTNU



CV-MV switching. Optimal control of a cooler

Main control objective: Cooling water

V=T, =T, = 26.5C

Secondary objective (can be given up)

Y= Fy=FP m
Manipulated Variables: !a

Ui=2Z¢, Up=2y V,
Both valves may saturate at max /\ )

Disturbance:
TCin




Pairings at nominal «unconstrained» operating point

F. may saturate for a

Use F- to control T ﬁ
- " large disturbance (T.")




Alt.1: Split range control with min-selector

Tuning of TC using SIMC rule:
T, =20=88s control action (u)
Kc =-0.55
T, =74s

split value
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Simulation: Split range control with min-selector

—_
o

Mass flow (kg/s)
ot
S
S
!
!
|

N
0 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time (s)
;5 T T T T T
= — Ty ——-T%
-+
(v}
Q20 F - '
g . . . | . split value : >
=0 1000 2000 3000 4000 5000 6000 control action (u)
Time (s)
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MPC for cooler

Tuning < trial and error

N
min Y’ D(Fe — Fy,) H2) < Objective function
k=1 ‘ (CV constraints)
S.t.
Model = Tii=f(Tu,iTh,i—1- T, i Te, iv1 . Fr, Fo,)
0 < Fy, < Fp Vke{l,....N}

MV constraints 2 < F, < Fo

0 < AFy, <0.1F
0 < AFe, < 0.1F1® Vke{l,....N—1}

AFj, :Fk—Fk_th c {I,N— ]}

For k = 1, Fj_ represents the flow at the nominal point.




MPC vs PI

10

30 .
Disturbance

29.5¢ - (T

29t t=10s; +2°C
@ &)
%ﬂ "— 285 t=1000 S, + 4°C
< 6 5 "
E g ’g Red: Split Range
2 4l L Control (PI)
g £ 27.5
= =
277
2 L
26.5t
0 ' ' ' 26 ' ' '
0 500 1000 1500 2000 0 500 1000 1500 2000

Time (s) Time (s)




MPC weight selection

3.5 . . : 30 :
e 4 v 0 9 y
FH"'FH_FH _____ F;p I TH___TH_TH _____ T;p | N
295 min' Y (o] (7~ 737)|+
3 .._L,_j_ ................... ] k=1
: _: . 291 I 'wzH(Ff’ﬁ‘”—FHk)HZ)
Eﬂ - = RS ]
E2] | 3 28.5 |
| Tunings:
2 | 2 23 | - 5
= L, 5 1 (w1, w2 ]
2 2 |o------- 5275 I Yellow:
= Y S " Selected
27t L
15} B =[1.0,1.0]
26.5 ¢
''''''''''''''''''' B v =1[0.1, 3.0]
1 ' ' ' 26 ' ' '
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (s) Time (s)
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4. Conclusion

* Optimal steady-state operation is achieved by controlling changing active constraints

* For most systems we can use Pl-control + standard Advanced Process Control
elements
— MV-MV switching: Split range controllers or different setpoints
— CV-CV switching: Max/min-selectors
— CV-MV swithing: Nothing or combine MV-MV and CV-CV

e Comparison with MPC
— Comparable response to MPC
— Much less modeling efforts
— Simpler implementation
— More explicit constraint control
— MPC preferable for more complex interactive processes
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