
Online Process Optimization 
Grand Challenges and Opportunities

Manfred Morari

Workshop 08 Nov. 2019
NTNU  Trondheim



A Practitioner’s Perspective
• Chemical Process Control

• Shell, BP, Exxon, DuPont, ICI PLC

• Building Climate/Energy Control (HVAC)
• Siemens, Carrier

• Automotive Systems
• Ford, Daimler-Chrysler

• Aircraft Systems 
• United Technologies

• Power Electronics, Electrical Power Systems
• ABB



MODELLING OF FLUIDIZED BED REACTORS-VI(a) 

AN ISOTHERMAL BED WITH STOCHASTIC BUBBLES 

JOHN ROBERT LIGON 
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 

421 Washington Avenue SE., Minneapolis, MN 55455, U.S.A. 

and 

NEAL R. AMUNDSON* 
Department of Chemical Engineering, University of Houston, Houston, TX 77004, U.S.A. 

(Received 30 April 1980: accepted 10 July 1980) 

Ah&a&-A two-phase stochastic isothermal fluidized bed reactor model with first order reaction in the dense 
phase is developed to investigate the signiicance of the fluctuating nature of fluidiid beds on reactor performance. 
Several stochastic processes are employed as the overall mass transfer coefficient between phases. Analytical 
moment solutions are obtained for white noise coefficients while hybrid computer simulation was used for 
correlated stochastic coefficients. Results indicate that a gamma distributed coefficient is preferred over white noise 
and Gaussian correlated coefficients. When compared with the deterministic model, randomness in the mass 
transfer coe5cient is seen to lead to a decrease in reactor performance. Deviation from the deterministic model 
increases with increasing variance and decreasing fluctuation frequency of the correlated stochastic coefficients, 

INTRODUCTION 

The features of most fluidized bed reactor models have 
been summarized by Grace [II, Rowe[Zl, Pyle131 and 
Bukur et aL[41. These models differ in many important 
aspects but it is generally accepted that interphase mass 
transfer and solids mixing are related to the size and 
location of bubbles in the bed. Hence, the size and 
spatial distribution of bubbles throughout the bed are of 
considerable importance in predicting reactor perfor- 
mance. Small bubbles form at low levels of a fluidiied 
bed and randomly coalesce with neighboring bubbles as 
they ascend resulting in randomly fluctuating bubble size 
distributions throughout. However, most models con- 
sider bubble size to be uniform in the bed or to increase 
linearly with height. It has been found that none of these 
common models accurately represents observed reactor 
behavior[5]. The chaotic nature of a bubbling fluidized 
bed as observed through any small-scale glass-enclosed 
fluidized system implies that such beds are probably 
better described as stochastic systems than deterministic 
ones. Bukur et a1.[4] have suggested that no deter- 
ministic model will ever describe bubbling fluidized bed 
reactors with any precision. A few simple models have 
been proposed which consider the random behavior of 
fluidized beds. The model of Krambeck et al. [6] consists 
of two constant volume stirred tank reactors, one for 
each phase with gas interchange between phases. The 
interchange coefficient is modelled as a random process 
which fluctuates between two possible values. Although 
this model does not represent the reactor accurately, it 
provides some evidence of the effect of the unsteady 
nature of the transport processes on reactor perfor- 
mance. Krambeck et al. found that the fluctuations had 
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the effect of decreasing the mean conversion with devia- 
tion from the nonfluctuating case greater at lower 
fluctuation frequencies. 

Another random fluidized bed model is due to Orcutt 
and Carpenter[‘l]. This model consists of a computer 
simulation of a vertical chain of rising bubbles. Bubbles 
enter a bed with random size at fixed frequency and rise 
through a well mixed dense phase in which an isothermal 
first order reaction occurs. Empirical expressions for 
bubble velocity interactions and coalescence are 
employed. Although this model does allow for variation 
in bubble size, a realistic bubble size distribution cannot 
be obtained from a single vertical chain of bubbles. Since 
these results were not compared with a similar model 
without randomness, the significance of the fluctuating 
distribution of bubble size was not determined. 

It is the objective of this work to investigate further 
the significance of the fluctuating nature of fluidized beds 
on reactor performance. The models employed consist of 
nonlinear vector stochastic differential equations. The 
reader is referred to the discussions of stochastic pco- 
cesses and stochastic differential equations in the chem- 
ical engineering literature by Seinfeld and Lapidus[ll] 
and KingPI. 

TliE D-C ISOTHERMAL MODEL 

The isothermal fluidized bed model consists of two 
well-mixed cells, one representing the bubble phase, the 
other the dense phase. Mass transfer takes place be- 
tween phases with g the overall mass transfer 
coefficient. A schematic diagram of the system is shown 
in Fig. 1. A mass balance over a pair of cells with first 
order reaction in the dense phase gives 

+=P(c,-c.)+4k(c,-c,) (1) 
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A Tractable Approximation of Chance Constrained
Stochastic MPC based on Affine Disturbance Feedback

Frauke Oldewurtel, Colin N. Jones, Manfred Morari

Abstract— This paper deals with model predictive control
of uncertain linear discrete-time systems with polytopic con-
straints on the input and chance constraints on the states.
When having polytopic constraints and bounded disturbances,
the robust problem with an open-loop prediction formulation
is known to be conservative. Recently, a tractable closed-loop
prediction formulation was introduced, which can reduce the
conservatism of the robust problem. We show that in the
presence of chance constraints and stochastic disturbances, this
closed-loop formulation can be used together with a tractable
approximation of the chance constraints to further increase
the performance while satisfying the chance constraints with
the predefined probability.

I. INTRODUCTION
This paper deals with solving a model predictive control

(MPC) problem for the class of discrete-time linear systems
subject to stochastic disturbances. The aim is to provide a
method for efficiently finding control policies that ensure to
satisfy a given set of polytopic input constraints and uncer-
tain linear constraints on the state, but which is sufficiently
computationally tractable that it is also applicable to larger
systems. The uncertain linear constraints are of the form

P(Fx + Gw ≤ f) ≥ 1 − α, (1)

where x is the system state and w is the disturbance. f
is a vector, F and G are matrices of appropriate sizes
and α ∈ [0, 1]. This constraint requires that the condition
Fx + Gw ≤ f is fulfilled with probability greater or equal
than 1 − α. Such uncertain constraints that linearly depend
on the disturbance as well as uncertain constraints of a
more complex structure are called chance constraints. If
disturbances are to be accounted for in the formulation of
an MPC problem, it is preferable to have future control
inputs formulated as functions of future measured states.
This is because in the future the disturbance realization and
the system state will be known and, thus, in the future the
controller will have this information available while making
a decision on the control action. Having future control inputs
formulated as functions of future measured states is usually
called closed-loop prediction MPC.

A. Closed-loop prediction MPC
In so-called open-loop prediction MPC the control action

that is predicted to be taken in the future is only a function
of the current state, and not of future disturbance and
state realizations. This is computationally very attractive.
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The disadvantage is that this very often results in highly
conservative control behavior and infeasibility and instability
problems can occur [11]. The reason for this is that a set
of control actions over the entire horizon is chosen such
that the constraints are satisfied for all possible disturbance
realizations. The controller does not take into account that
in the future it will have knowledge about the disturbance
realizations that already happened up to that point and the
prediction effectively assumes that the system will run in
open-loop over the future horizon. In closed-loop prediction
MPC the future control inputs are functions of future mea-
sured states and the decision variables in the resulting MPC
optimization problem are exactly these functions. Optimizing
over arbitrary functions is however in general not tractable. A
popular approximation to this is “prestabilization”, where a
stabilizing linear state feedback is computed off-line and the
online computation is restricted to a sequence of admissible
offsets to the selected control law [2], [3], [12]. Since this
can be quite conservative, an improvement to this approach
would be to optimize over both the linear feedback con-
trol law and the offset sequence online. Unfortunately, this
parametrization leads to a non-convex set of feasible decision
variables. There are recent results given in [1], [10], [19] that
describe one approach to address this problem. The authors
propose to have the control policy parameterized as an affine
function of the disturbances, which leads to a convex set of
feasible decision variables. This affine disturbance feedback
parametrization is shown to be equivalent to the affine state
feedback parametrization in [8] in the sense that it leads to
the same control inputs. In [1], [10] and [8] bounded distur-
bances are assumed, whereas in [19] stochastic disturbances
are considered. Unfortunately, with the method in [19] the
problem that was originally an LP is turned into a second
order cone problem. Consequently, it is not applicable to
large-scale problems, which are our primary interest here.

B. Chance constraints

An example of a control problem, which naturally leads
to a chance constraint of the form given in (1) and which is
the primary motivation for the work, originates from building
climate control. The European standards state that the room
temperature must be kept within a certain range with a
certain probability. The control problem is then to satisfy this
chance constraint while using a minimum amount of energy.
Problems of uncertain linear systems with chance constraints
are very common and can also be found for example in
finance, physics, aeronautics etc. [15].

In general, chance constraints are hard to deal with and
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Fig. 3. Tradeoff curve for energy consumption and constraint violation.
The curve depicts the tradeoff between a low energy consumption and a high
degree of constraint satisfaction.

V. CONCLUSIONS
We have shown a new method for solving a model

predictive control (MPC) problem for the class of discrete-
time linear systems subject to polytopic input constraints and
chance constraints on the states in the presence of stochastic
disturbances. This method combines an approximation for
closed-loop prediction MPC, the affine disturbance feedback,
and an approximation of the chance constraints. We have
shown that by using this method the conservativeness of a
solution can be significantly reduced. This improvement is
due on the one hand to the closed-loop prediction formulation
and on the other to the flexibility given by the chance
constraints.
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VII. APPENDIX

A :=

⎡

⎢⎣

A
A2

A3

...
AN

⎤

⎥⎦ H :=

⎡

⎣
B 0 ... ... 0

AB B 0 ... 0
A2B AB B 0 ...

...
...

...
...

. . .

⎤

⎦

L :=

⎡

⎣
0 0 ... ... 0
0 B 0 ... 0
0 AB B 0 ...
...

...
...

...
. . .

⎤

⎦ E :=

⎡

⎣
E 0 ... 0

AE E 0 ...
A2E AE E ...

...
...

...
. . .

⎤

⎦

F = I ⊗ F f := [ fT ...fT ]T

Let FkLMv = gT Mv, where Fk is the k-th row of
F. In order to apply Theorem 5, we need to have gT Mv,

where v is uncertain and M is the decision variable, in the
form (∆Aw)T z, where w is uncertain and z is the decision
variable. Let us show that gT Mv = mGkv: With gT =
[g1 . . . gN ], we have that glMi,j = [mT

∗0 . . .mT
∗p]T (I ⊗ gl),

where m∗j is the j-th column of Mi,j . Then the multiplica-
tion of each column of M is

MT
∗j

[
I⊗g0
I⊗g1

...

]
= MT

∗jĜ
k

and we can write [MT
∗0 . . . MT

N ]T (I ⊗ Ĝ) =: mGk.

REFERENCES

[1] A. Ben-Tal, A. Goryashko, E. Guslitzer, A. Nemirovski, “Adjustable
robust solutions of uncertain linear programs”, Math. Program., vol.
99(2), 2004, pp. 351-376.

[2] A. Bemporad, “Reducing conservatism in predictive control of con-
strained systems with disturbances”, Proc. IEEE Conference on Deci-
sion and Control, vol. 37, 1998, pp. 1384-1389.

[3] A. Bemporad, M. Morari, “Robust model predictive control: A sur-
vey”, Robustness in identification and control, Ed: Garulli, A., Tesi,
A., Vicino, A., 1999, pp. 207-226.

[4] D. Bertsimas, M. Sim, “Tractable Approximations to Robust Conic
Optimization Problems”, Math. Program., ser. B 107, 2006, pp. 5-36.

[5] D. Bertsimas, D. B. Brown, “Constrained Stochastic LQC: A tractable
approach”, IEEE Transactions on automatic control, vol. 52(10), 2007,
pp. 1826-1841.

[6] G. C. Calafiore, L. El Ghaoui, “Linear Programming with Probability
Constraints - Part 1”, Proc. of the American Control Conference, 2007,
pp. 2636-2641.

[7] W. Chen, M. Sim, J. Sun, C.-P. Teo, “From CVaR to Uncertainty
Set: Implications to Joint Chance Constrained Optimization”, Working
paper, NUS Business School, 2007.

[8] P. J. Goulart, E. C. Kerrigan, J. M. Maciejowski, “Optimization
over state feedback policies for robust control with constraints”,
Automatica, vol. 42, 2006, pp. 523-533.

[9] M. Gwerder, J. Toedtli, “Predictive control for integrated room au-
tomation”, CLIMA 2005 , Lausanne, 2005.
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Idea: Get rid of “Modeling” …
…in Model-Based-Design
• Kalman (1958): Design of a self-optimizing control system. Trans. ASME
• Bellman (1961): Adaptive Control Processes 
• Åström & Wittenmark (1973): On Self-Tuning Regulators. Automatica
• Landau (1974): A survey of model reference adaptive techniques, 

Automatica
• Narendra & Valavani (1976): Stable adaptive observers and controllers. 

Proc IEEE
• Åström, Borisson, Ljung, Wittenmark (1977): Theory and applications of 

self-tuning regulators. Automatica
• …..



ASEA Novatune introduced in 1982…



…and mostly abandoned by 1995

“Even if Novatune in many cases provides very good control, the 
experience is that the effort it takes, to make it work that well, is 
discouraging. It is worth the effort in some cases, but not as a general 
tool. What is needed is a tool that is much easier to use. You shouldn’t 
be required to set any parameters, except to state what kind of result 
you desire.”

Per Erik Maden (1995) Experiences with Adaptive Control since 1982. CDC Proc.



Embracing the Machine Learning and 
Artificial Intelligence Contributions





Why did Adaptive Control “fail”?
--- It was not appropriate

Anything works

• no specs
• model simple 
• general solution

Nothing works

• tight specs
• model complex 
• specific solution

Learning Control



Why did Adaptive Control “fail”?
--- tuning all the time not needed

• Åström & Hägglund (2000). Supervision of adaptive 
control algorithms
• PID Autotuner: Tune on demand only

Thanks: Karl Aström



Learning Controllers

• Model-based vs. model-free
• If you do not have a model, how can you verify the performance of the 

closed-loop control system?
• If you do have a model, why would you use a model-free learning method?

• Policy learning based on reward function
• Curse of dimensionality
• Specification guarantees via definition of reward function



Learning Controllers

• Model-based vs. model-free
• If you do not have a model, how can you verify the performance of the 

closed-loop control system?
• If you do have a model, why would you use a model-free learning method?

• Policy learning based on reward function
• Curse of dimensionality
• Specification guarantees via definition of reward function



Design ≠ Optimization
Design ≈ Constraint Satisfaction
Propositional Logic Control Specifications for Refrigeration Cycle
Manipulated Inputs  ui,min ≤ ui ≤ ui,max i=1,2,3
Controlled / Monitored Outputs yi = yi,set i=1,2,3 / zi = zi,set i=1,..4
Prioritized Objectives
z1 > z1,min z3 < z3,max z3 < z3,max y3 = y3,set

z2 < z2,max z4 < z4,max z4 < z4,max y2 = y2,set

y1 = y1,set z4 > z4,min z2 > z2,min

y2 = y2,set y3 = y3,set

Specification guarantees via definition of reward function?



“…In some ways, deep reinforcement learning is a 
kind of turbocharged memorization; systems that 
use it are capable of awesome feats, but they have 
only a shallow understanding of what they are 
doing. As a consequence, current systems lack 
flexibility, and thus are unable to compensate if the 
world changes, sometimes even in tiny ways.”











Some Research Directions

• MPC Approximation via Neural Networks

• Robustness Analysis of Learning Enabled Components 

• Gaussian-Process based Model Predictive Control



Example: Oscillating Masses
18 oscillating masses [1]
State dim: 36
Action dim: 9
Horizon: 50 

[1] Y. Wang and S. Boyd. Fast Model Predictive Control Using Online Optimization. IEEE Transactions on Control Systems Technology. Vol 18, No. 2, 2010.

Training Parameter Value

Training Set Size 2,500,000

Testing Set Size 250,000

# Training Epochs 200 Epochs (~40 hour)

Neural Network Depth 7 layers

Neural Network Hidden Width 128-512

# Neural Network Parameters 1,668,554

6 mass version



DARPA Project: Assured Autonomy
Unmanned Underwater Vehicle (UUV)

OceanServer

Iver is the first commercially developed family 
of low-cost Autonomous Underwater Vehicles 
(AUVs). They are ideal for coastal applications 
such as sensor development, general survey 
work, sub-surface security, research and 
environmental monitoring. These modern AUVs 
are single man-portable and feature simple 
point-and-click mission planning.

IVER3

Affordable Work Class Autonomous Underwater Vehicle (AUV)

Extended Operation Time. Wide Variety of High-Resolution Sonar Options.
Intuitive Mission Planner.

KEY BENEFITS

• State-of-the-art open system

• Reliable, efficient, simple to operate

• Launch and operate from shore, single person 
operation

• Affordable systems

• Mission planning in minutes, field rugged, 
compact design

STANDARD FEATURES

Dimensions Standard Length: 60 to 85 in.

Tube diameter 5.8 in.

Weight 59 to 85 lb. (standard vehicle)

Depth rating 100 meters

Endurance 8 to 14 hrs. at speed of 2.5 knots; confi guration dependent

Speed range 1 to 4 knots (0.5 to 2.0 m/s)

Communications Wireless 802.11n Ethernet standard (Iridium and Acomms optional)

Antenna mast Navigation lights with IR and visible LEDs (programmable strobe)

Tracking internal data log Programmable resolution

Navigation Surface: GPS (WAAS corrected)

Subsurface: RDI Doppler Velocity Log (DVL), 81 m range, depth sensor and corrected compass

Software Vector Map: Mission planning and data viewing 

Sonarmosaic: Creates GeoTIFF images of side-scan records and KMZ fi les for Google Earth™

Bathymosaic: Creates GeoTIFF images for bathymetry data

Underwater Vehicle Console (UVC): Operation, run mission, remote control

Energy 800 W hrs. of rechargeable Lithium-Ion batteries (Swappable section)

Onboard electronics Intel® Dual-Core 1.6 GHz N2600 processor with MS Windows® embedded; Up to 512 GB solid-
state drive for data storage

Propulsion system 48 V Servo Controlled DC Motor with three-blade cast bronze propeller

Control Four independent control planes (Pitch/Yaw Fins)

Charging 24 V External Connector with USB 2.0 Support

• Sonar data
• NN to locate pipeline on sea floor
• Steering control loop

Kothare, Morari, Automatica (1999)

Linear System

Neural 
Network

General Interconnection of Linear System and 
Quadratically-Constrained Nonlinearity


