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Defining the optimum
Trade-off between performance and robustness

Performance: 

Robustness: 

weighted IAE  
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where t1 > t2, the original simc rule gives a pid controller with kc and ti as
given in (5) and td = t2. The direct extension of the isimc rule would be to
add another derivative term, ( q

3 s + 1), to the numerator of the pid controller
in (2). First, this would not be a standard industrial controller and, second, it
would give even more aggressive input usage. To get a standard serial pid

controller, the following modified derivative time is recommended

isimc : td = t2 + q/3. (11)

with the controller gain and integral time as given in (5). The benefits of
using derivative action for a second-order process may be significant,
especially if t2 is large. However, we will only for t2 = 0 get the full
additional benefits of isimc as for the first-order plus delay process, and the
benefits are reduced as the value of t2 increases.

3 Quantifying the optimal controller

3.1 Performance

In this paper, we quantify performance in terms of the iae,

iae =
Z •

0

��y(t)� ys(t)
��dt. (12)

To balance the servo/regulatory trade-off we choose a weighted average of
iae for a step input disturbance du (load disturbance) and step output
disturbance dy:

J(p) = 0.5

 
iaedy(p)

iae

�
dy

+
iaedu(p)

iae

�
du

!
(13)

where iae

�
dy and iae

�
du are weighting factors, and p is the controller

parameters.
In this paper, we select the two weighting factors as the optimal iae values

when using pi control, for input and output disturbances, respectively (as
recommended by Boyd and Barratt (1991)). Note that two different reference
controllers are used to obtain the weighting factors (iae

�), whereas a single
controller K(p) (which may be a pi or pid controller depending on the case) is
used to find iaedy(p) and iaedu(p) when evaluating the iae objective J(p). To
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What about PID?
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SMITH PREDICTOR

Pid-ctrl

BORN TO PERFORM

there is no substitute

Smith predictor vs. PID
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GRADIENTS



minimize

p
IAE(p)

subject to |S(j!; p)|  Mub
for all !

|T (j!; p)|  Mub
for all !

SIMPLIFIED PROBLEM



Gradients
of the constraints

r|S(j!)| = 1

|S(j!)|<{S
⇤
(j!)rS(j!)} for all !

r|T (j!)| = 1

|T (j!)|<{T
⇤
(j!)rT (j!)} for all !

|S(j!; p)|  Mub
for all !

|T (j!; p)|  Mub
for all !

rS(j!) = �GS(j!) S(j!) rK(j!)

rT (j!) = r (1� S(j!)) = �rS(j!)

S =
1

1 +GK



Gradient
of the cost function

IAE =

Z
|y � ys|dt

rIAEdu(p) =

Z tf

0
sign{edu(t)}redu(t)dt.

redu = �G(s)2S(s)2rK(s) du

input disturbance 

impulse response


