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Previous work

e First described by Cahn and Di Micelli
(Patent, 1962).

e Petlyuk et al. (1965) presents alternative
schemes for minimizing thermodynamic
loss.

e Glinos and Malone (1988) look at opti-
mal regions for ternary separation, rec-
ommending Petlyuk when zp is small.

e Fidowski and Krolikowski (1986) opti-
mized the energy use w.r.t. one internal
stream distribution.

o Chavez et al. (1986) discussed multiple
steady states in complex columns.

e Lately: University-industry project at
UMIST (Triantafyllou and Smith, 1992).




Example System

Equimolar feed composition is separated to three 99%
pure streams.

Product D
/ 99% comp. 1
33% ethanol (1)
33% propanol 2 Product S
99% comp. 2

33% butanol (3)
\ Product B

99% comp. 3

Relative volatility:
13 ~ 4
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Alternative sequences
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a) Direct sequence. b) Indlrect sequence.
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c) Side stripper. d) Side rectifier.

Figure 1: Standard configurations for ternary separation
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Petlyuk column
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Figure 2: Double-wall implementation




Use of Petlyuk

» Large savings in Capital and Energy
costs possible.

e Average possible savings 30%.

e Maximum savings compared to direct se-
quence; 50 %.

Industry: Only one report from BASFEF in 1988.
= Why not used more?

Here: investigate controllability, limitations.
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Degrees of freedom. Regular column.
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Figure 3: Regular two-product column.

e Control: 5 DOF (L, V, Qp, D, B)
<

e Steady-state with const. pressure and levels: (
(2 DOFJ(e.g., L, V).  "ONE FOR EACH HEATEROER A\D

,7smesre£m“
e Want to control 2 compositions (zp, ) =
System specified.




Degrees of freedom. Petlyuk
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Figure 4: Petlyuk column with valves for each degree of freedom.

o Steady-state: 3 additional DOF’s (S, Rr,
Rv) =DOF =5 S, Rp, Ry, L, V)
e Want to control 3 compositions (zp, TS, TB)

— 2 extra DOF’s (Rr, Ry).

e Use to minimize energy consumption (@B)-




Degrees of freedom, alternative.

‘/0,5% of 1
® Want to control 4 compositions (zp, zs,
0.5% —>T53; zp) = Only one extra DOF

of 3

e Use to minimize energy consumption. Ex-
pect:
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Extra degree of freedom (X)

Figure 5: Using one DOF for optimization

X = Re,Ry, 40, S, compositions { inside).... .




 SPEC. Y (OMPOSITIONS ,

x 10°

1.6

LS

1.4F

| | | ] | | | |
0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5 0.55
R L
-
—p R_L > T

Crefluy to
prefractionator)




SPEC Y4 COMPOSITIONS
Y\Dﬁ'ﬁ%

Xsi = Xs3
x 10° Xg3= 1%

XSQ - (?8 0/0

| | | I |
0.1 0.2 0.3 04 0.5 0.6




1.4 T T T { T T |

XD\ =__c”7°
1.3F Xsl = Xs3 4
Q‘B KB3= 170/0
1.2 .
z
&
211 .
g
1 -
0.9 .

st‘%?’ il

0.8 | 1 | 1 1
0.3 0.35 0.4 0.45 %5 0.6 0.65 0.7 0.75 0.8
Va lik ratio, Rv
— Ry,

Figure 6: Multiple solutions to Qg = f(Ry), 52 = 0.99
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Controllability analysis

-

Variable scalings:
°y: A:c,&-j =0.01
ou: AL =AV =30%
od: AF =10, Azp, =20%

Plant representation:

y(s) = G(s)u(s) + G(s)d(s)

Analysis tools:

e Relative gain array,

A=cxag T
e Closed loop disturbance gain:

A =G la,
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3x3 Controllability

T D1 L Rr
Y= |IXB3| U= Vid= RV
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Figure 8: Analysis results for three point control
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Dynamic simulations (3x3)
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Figure 9: Response to perturbation set, AF, Azp and Azp, ,.
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x4 CONTROL
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Conclusion

e Complicated design and dynamics.

e “Hole” in operating range for Ry = Very
difficult to specify the extra degree of free-
dom.

e 3x3 gives ok control for limited perturba-
tion set.

e 4x4 small improvement over 3x3.

General problem:

e Want to find variable z which gives near optimal
() p over large LANGE Loy = Thighs

e Want good control for remaining 4x4.
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