DYNAMICS AND CONTROL OF INTERGRATED THREE PRODUCT (PETLYUK) DISTILLATION COLUMNS

Erik A. Wolff, Sigurd Skogestad and Kjetil Havre

Chemical Engineering
University of Trondheim - NTH
N-7034 Trondheim, Norway

+ STEADY- STATE BEHAVIOR

ST. LOUIS, USA, NOV.93 Allhe Annual Meeting

OUTLINE

- · PREVIOUS WORK
- · EXAMPLE . ALTERNATIVE SEQUENCES
- · PETLYUK COLUMN
- DEGREES OF FREEDOM = 5
 3 or 4 specs ⇒ 1 extra DOF to minimize energy
- · NON-FEASIBLE OPERATING REGIONS
- · CONTROL, 3+3, 4+4
 - Linear
 - Instability
- · CONCLUSION

Previous work

- First described by Cahn and Di Micelli (Patent, 1962).
- Petlyuk et al. (1965) presents alternative schemes for minimizing thermodynamic loss.
- Glinos and Malone (1988) look at optimal regions for ternary separation, recommending Petlyuk when x_{F2} is small.
- Fidowski and Krolikowski (1986) optimized the energy use w.r.t. one internal stream distribution.
- Chavez et al. (1986) discussed multiple steady states in complex columns.
- Lately: University-industry project at UMIST (Triantafyllou and Smith, 1992).

Example System

Equimolar feed composition is separated to three 99% pure streams.

Relative volatility:

$$\alpha_{13} \approx 4$$

$$\alpha_{23} \approx 2$$

WHY DOES IT WORK?

Alternative sequences

Figure 1: Standard configurations for ternary separation

 \approx 60 stages

Petlyuk column

Figure 2: Double-wall implementation

Use of Petlyuk

- Large savings in Capital and Energy costs possible.
- Average possible savings 30%.
- Maximum savings compared to direct sequence; 50 %.

Industry: Only one report from BASF in 1988.

 \Rightarrow Why not used more?

Here: investigate controllability, limitations.

Degrees of freedom. Regular column.

Figure 3: Regular two-product column.

- Control: 5 DOF (L, V, Q_D, D, B)
- Steady-state with const. pressure and levels: 2 DOF (e.g., L, V). "ONE FOR EACH HEATER/COULR AND SIDESTREAM"
 Want to control 2 compositions $(x_D, x_B) \Rightarrow$
- System specified.

Degrees of freedom. Petlyuk

Figure 4: Petlyuk column with valves for each degree of freedom.

- Steady-state: 3 additional DOF's $(S, R_L, R_V) \Rightarrow DOF = 5(S, R_L, R_V, L, V)$.
- Want to control 3 compositions (x_D, x_S, x_B) $\Rightarrow 2 \text{ extra DOF's } (R_L, R_V).$
- Use to minimize energy consumption (Q_B) .

Degrees of freedom, <u>alternative</u>.

• Want to control 4 compositions $(x_D, x_{S1}, x_{S3}, x_B) \Rightarrow \text{Only one extra DOF}$

• Use to minimize energy consumption. Expect:

ADJUST (SLOWLY)
DURING
OPERATION

Extra degree of freedom (X)

Figure 5: Using one DOF for optimization

 \rightarrow X = RL, Rv, L/D, S, compositions (inside)....

SPEC. 4 COMPOSITIONS

SPEC 4 COMPOSITIONS

Figure 6: Multiple solutions to $Q_B = f(R_V), x_{S2} = 0.99$

- · NO GOOD "K" FOUND
- · DESIGN AND OPERATION DIFFICULT

Controllability analysis

Variable scalings:

• y: $\Delta x_{ij} = 0.01$

• $u: \Delta L = \Delta V = 30\%$

• $d: \Delta F = 10, \Delta x_{Fi} = 20\%$

Plant representation:

$$y(s) = G(s)u(s) + G_d(s)d(s)$$

Analysis tools:

• Relative gain array,

$$\Lambda = G \times G^{-T}$$

• Closed loop disturbance gain:

$$\Delta = \tilde{G}G^{-1}G_d$$

3x3 Controllability

$$y = \begin{pmatrix} x_{D1} \\ x_{B3} \\ x_{S2} \end{pmatrix} u = \begin{pmatrix} L \\ V \\ S \end{pmatrix} d = \begin{pmatrix} R_L \\ R_V \\ \text{Feed} \end{pmatrix}$$

$$G(0) = \begin{pmatrix} 124.67 & -124.48 & 0.11 \\ -118.86 & 119.31 & 20.02 \\ 5.82 & -5.16 & -4.30 \end{pmatrix}$$

$$\Lambda(0) = \begin{pmatrix} 26.19 & -25.19 & 0.00 \\ -32.65 & 32.83 & 0.82 \\ 7.47 & -6.64 & 0.17 \end{pmatrix}$$

(b) Closed loop disturbance gain, δ_{ij} .

Figure 8: Analysis results for three point control

Dynamic simulations (3x3)

Figure 9: Response to perturbation set, ΔF , Δx_F and $\Delta x_{D1,s}$.

WORKS OK!

SETPOINT X52

• R_V IN REGION WHERE Q_{6→∞}.

⇒ INSTABILITY

Conclusion

- Complicated design and dynamics.
- "Hole" in operating range for $R_L \Rightarrow \text{Very}$ difficult to specify the extra degree of freedom.
- 3x3 gives ok control for limited perturbation set.
- 4x4 small improvement over 3x3.

General problem:

• Want to find variable x which gives near optimal Q_B over large range $x_{low} - x_{high}$.

• Want good control for remaining 4x4.

· Explain "hole"