SAMMENDRAG

Hydro sin VCM-fabrikk på Rafnes er en del av et større fabrikk-kompleks, og produktet VCM blir benyttet som råstoff i PVC-produksjon. HCl-kolonna i fabrikken som fjerner saltsyra fra VCM og EDC ved destillasjon har hatt en del problemer med temperatureguleringene i topp og bunn på grunn av interaksjoner mellom dem. Målet med denne oppgaven er å se på muligheter for å minimere denne interaksjonen ved å optimalisere tuninger på regulatorene rundt kolonna, og mulig endring av målepunkter. I tillegg er det sett på om dagens fødepunktplassering er den optimale med hensyn på energiforbruk i koker og kondensator.

Simuleringer av kolonna er utført i prosess-simuleringsprogrammet HYSYS.Plant. Dette var ikke et program forfatterene av denne rapporten var kjent med på forhånd, så arbeidet med rapporten har vært preget av mye læring om datasimulering av prosesser underveis.

Mye av arbeidet har bestått i å skape en stabil dynamisk modell, og å gjenskape temperatur- og trykkprofil tilnærmet den reelle kolonna. Dette har vært gjort ved å sammenligne data fra HYSYS med faktiske data fra anlegget på Rafnes. Det har også vært tilgjengelig responser fra ulike steptester utført på kolonna på oppdrag av Hydro.

Det er funnet at en total platevirkningsgrad på 0.67 bestemt av Skogestad i 1981, ikke gir den beste modellen for temperaturprofilen på dagens kolonne. Dette på grunn av at modifikasjoner utført senere har endret profilet. En Murphree virkningsgrad på 0.885 gir en bedre modell av temperaturprofilet av kolonna slik den står i dag, i følge simuleringer i HYSYS.

Det har vært gjort studier på kolonna før, da spesielt rundt fødepunktsplasseringen, og våre data konkluderer med at fødene er tilnærmet optimalt plassert i dag. Det er heller ikke store økonomiske tap på kolonna med hensyn på tapt produkt i topp. 10 ppm med VCM tilsvarer kun et tap på ca. 1500 kroner i året.

Det viste seg at fjerning av mikseren i 1998 har gitte en reell energigevinst, beregnet i HYSYS til å være på ca. 450 000 kroner årlig. I følge beregningene er det potensiale til å spare inn ytterligere ca. 60 000 kroner årlig ved flytting av føde F34 og F20Retur, i tillegg til å fjerne den siste mikseren. Dette vil være en økonomisk vurdering ut i fra kostnader på flytting av fødene. Tallene bør verifiseres med en simulering med mer nøyaktige driftsdata.

Fra en RGA-analyse ble det funnet at kolonnen har store interaksjoner mellom temperaturreguleringene i topp og bunn som gir ustabilitet hvis ikke tuningene på de to regulatorene er tilpasset hverandre. Temperatursløyfen i bunn må tunes noe raskere enn den i topp. Dette ble også vist i simuleringer. Dette er ikke tilfelle i dagens anlegg, og det anbefales å forsøke dette for å få en mer stabil regulering.

Innhold

1.	Innled	ning
••	mmeu	

2.	Teori	5
	2.1 Regulering av destillasjonskolonnen	5
	2.2 Analyser av destillasjonskolonne	5
	2.2.1 Relativ flyktighet og seperasjonsfaktor	5
	2.2.2 Minimum antall trinn, N _{min}	6
	2.2.3 RGA-analyse	6
	2.2.4 Strategi for å redusere interaksjoner mellom reguleringssløyfer	7
	2.3 Skogestads tuningregler	8
	2.3.1 1. ordens prosess med dødtid	8
	2.3.2 Integrerende prosess med dødtid	9
	2.4 Virkningsgrad	9
	2.4.1 Total virkningsgrad	9
	2.4.2 Murphree's platevirkningsgrad	10
	2.4.3 Dynamisk simulering	10
	2.5 Litt om optimal fødeplassering	11
ર	Prosessheskrivelse	13
		10
	3.1 Generell beskrivelse av VCM-fabrikken	13
	3.2 Beskrivelse av HCl-kolonne	14
	3.3 Drift av kolonnen siden 1981	15
	3.4 Problemområde	15
	3.5 Modifikasjoner foreslått av Sauar	15
4.	Eksperimentelt	17
	4.1. Stasionær simulering	17
	4.1.1 Valg av termodynamisk modell med tilhørende parametere	
	4.1.2 Tilpassing av tempprofil	17
	4.2 Optimalisering av kolonnen	20
	4.2.1 Vurdering av modifikasjoner anbefalt av Sauar	20
	4.2.2 Ytterligere optimalisering av kolonnen	20
	4.2.3 Vudering av besparelser ved endring av spesifiksasjoner	21
	4.3 Regulering av kolonnen, dynamisk simulering	21
	4.3.1 Tilpassing av stasjonær modell for dynamisk simulering	21
	4.3.2 Dimensjonering av kolonnen	23
	4.3.3 Valg av reguleringsstruktur.	23
	4.3.4 Tuning av regulatorer.	23
	4.3.5 Raskhet på nedre sløyfe	23
	4.3.6 Måleplassering.	24
	4.3.7 Sammenligning med Hydros tuninger	24
	4.4 Steptester og endringer i føden	24
	4.5 Steptester til RGA-analyser	25
	4.6 Analyse av HCl-kolonnen	25
5.	Resultater	27

3

5.1 Teoretiske beregninger	
5.1.1 Separasjon og minimum antall teoretiske trinn	
5.1.2 Transferfunksjoner til kolonna	
5.1.3 RGA-analyser	

5.2 Stasjonær simulering	
5.2.1 Energibesparelser ved modifikasjoner	
5.2.2 Energi besparelser ved endring av spesifikasjoner	
5.2.3 Sammensetningsprofil	
5.3 Dynamisk simulering	
5.3.1 PI-tuninger	
5.3.2 Holdup	
5.4 Temperaturregulering	
5.4.1 Regulerbarhet	
5.4.2 Simulering av forstyrrelser i fødestrøm F16	
5.4.3 Simuleringer av forstyrrelser i prosesstrøm H1404	
5.4.4 Forandring av målepunkt i topp.	
5.4.5 Temperaturegulering med Hydro sine tuninger	

6. Diskusjon

Bilag

41

55

6.1 Teoretiske beregninger	41
6.1.1 Minimum antall teoretiske trinn	41
6.1.2 RGA-analyse	41
6.2 Simulering av kolonnen	42
6.2.1 Temperaturprofil	42
6.2.2 Spesifikasjoner på renheter i topp og bunn av kolonnen	42
6.3 Optimalisering av kolonnen	43
6.3.1 Simulering 1 utgangspunktet	43
6.3.2 Bytting av F34 og F30, simulering 2	43
6.3.3 Direkte føding av strøm fra V-1402	43
6.3.4 Flytting av føder med eksiterende fødestusser som begrensning	43
6.3.5 Fjerning av den siste mixeren og direkte føding av strøm fra H-1404	43
6.3.6 Optimalisering av anlegget med den siste blandingen, og uten eksisterer	nde
fødestusser som begrensning	44
6.3.7 Optimalisering av anlegget uten den siste blandingen, og uten eskisterer	nde
fødestusser som begrensning	44
6.4 Reguleringsstruktur	44
6.5 Dynamisk simulering	44
6.5.1 Implementering av dynamisk modell i HYSYS	44
6.5.2 Regulerings strategi for lukket sløyfe interaksjoner	45
6.5.3 Tuning	45
6.6 Temperaturreguleringen	45
6.6.1 Tuning	45
6.6.2 Regulerbarhet	46
6.6.3 Forandring av målepunkt	46
6.6.4 Temperaturegulering med Hydro sine tuninger	47
. Konklusjon	49
Symbolliste	51
Litteraturliste	53

1. INNLEDNING

Prosjektet er gjennomført som en del av faget 52073 Kjemiteknikk prosjekt ved Institutt for Kjemisk Prosessteknologi, Fakultet for Kjemi og Biologi, NTNU. Oppgaven innbefatter å se på design og regulering av HCl-kolonna i VCM-fabrikken ved Hydro Rafnes.

I VCM fabrikken ved Hydro Rafnes reagerer etylen og klor til EDC som videre spaltes ved cracking til VCM og HCl. I HCl-kolonna blir saltsyra fjernet fra VCM og uomsatt EDC ved destillasjon. HCl føres til oksykloreringsanlegget hvor HCl sammen med oksygen i tilført luft og etylen reagerer til mer EDC og vann. Etter rensing og utskillingen føres ren EDC sammen med EDC-strømmen fra direkte kloreringsanlegget til crackeravsnittet.

I oppgaven er det spesielt lagt vekt på fødepunktsplasseringen og temperaturreguleringen på kolonna. Fødepunktsplasseringen ble simulert stasjonært, mens reguleringen ble simulert dynamisk. Til simulering av kolonna ble prosess-simuleringsprogrammet HYSYS.Plant benyttet, og mye av arbeidet besto i å få implementert den stasjonære og dynamiske modellen av kolonna. Forfatterene av rapporten hadde lite erfaring med dette simuleringsprogrammet i forkant av prosjektet. Prosjektet er en videreføring av tidligere forskning på kolonna utført av Skogestad i 1981 og Sauar i 1995.

Det ble valgt å kun simulere et utdrag av prosessen. Selve kolonna og noe av prosessen før for å få reelle fødestrømmer.

Det er tatt utgangspunkt i Sauars diplomoppgave fra 1995^[3], som førte til en del ombygginger av anlegget i 1998. Modelleringen av kolonna har tatt utganspunkt i Skogestad sine resultater fra 1981^{[1],[2]}. Data benyttet i simuleringen er hentet fra en tidligere utført simulering i ASPEN, bilag P. Teori er hentet fra Skogestad et al.^{[4],[6],[7]} og Roald^[5]. En del reelle data er også innhentet fra Hydro som sammenligningsgrunnlag for egne resultater.

Det ble valgt å prioritere arbeidet med den dynamiske modellering- og reguleringsbiten da dette var mest interessant med tanke på det ønskede faglige utbyttet for forfatterene.

2. TEORI

2.1 Regulering av destillasjonskolonnen

En standard to-produktsdestillasjon kan stasjonært sees på som et 5x5 reguleringsproblem. I en slik kolonne har man typisk fem frihetsgrader representert ved:

Refluxventil, L.
 Destillatventil, D.
 Kjøling i kondensator, V_T.
 Oppkok i koker, V.
 Bunnproduktsventil, B.

Disse pådragene brukes til å regulere nivå i topp og bunn, sammensetning i topp og bunn og trykket i kolonnen. Antar her fødestrømmen som gitt, denne vil derfor ikke påvirke antall frihetsgrader. I et system som beskrevet har man 5! eller 120 mulige "single input", "singel output" kombinasjoner å regulere kolonnen med. På grunn av ulike begrensninger, står man igjen men noen få reguleringsstrukturer. Eksempler på dette er LV-konfigurasjon, DV-konfigurasjon og $(L/D)^*(V/B)^{[6]}$.

Ved for eksempel å bruke destillatventil, bunnproduktsventil og kjølingen i kondensator til å regulere trykk og nivå i topp og bunn, har man oppkok, V, og refluxventilen, L, som gjenværende pådrag. Disse to pådragene er uavhengige og brukes til sammensetningskontroll, herav navnet LV-konfigurasjon.

Dynamisk vil nivå og trykk variere og en må regulere alle fem pådrag(L,V,V_T,D og B) for å holde de fem målingene nær ønsket verdi(nivå i topp og bunn, trykk, renhet i topp og bunn). Dynamisk har en dermed ingen frihetsgrader, men må derimot tilpasse regulatorinnstillinger for å oppnå ønskede reguleringsmål.

2.2 Analyser av destillasjonskolonne

2.2.1 Relativ flyktighet og seperasjonsfaktor

I kolonna er gass-væske likevekten gitt ved flyktigheten, α , mellom tung og lett komponent:

$$\alpha = \frac{y_L}{x_L} \times \frac{x_H}{y_H} \tag{2.1}$$

I ideelle blandinger er α lik forholdet mellom damptrykkene av de rene komponentene ved en gitt temperatur. Kreftene mellom alle molekylene er her like store. Definisjonsmessig kan ingen blanding være ideell, avviket fra idealitet er imidlertidig mindre jo nærmere beslektet stoffene er.

For a beskrive graden av separasjon mellom to komponenter i kolonna benyttes separasjonsfaktoren, S:

$$S = \frac{(x_L/x_H)_{topp}}{(x_L/x_H)_{bunn}}$$
(2.2)

2.2.2 Minimum antall trinn, N_{min}

Minimum antall teoretiske trinn i kolonna, N_{min} ved å anta uendelig refluks er gitt ved:

$$N_{min} = \frac{\ln S}{\ln \alpha} \tag{2.3}$$

Typisk vil antall teoretiske trinn i kolonna være N=2N_{min}.

2.2.3 RGA-analyse

RGA-analyse(relative gain array) ved stasjonære forhold kan brukes til å analysere ulike reguleringstrukturer i destillasjonskolonnen, dvs de beste parringene mellom pådrag og utganger. En RGA-analyse av de ulike konfigurasjonene kan også gi indikasjon på hvilke interaksjoner man kan få i kolonnen. Analysen kan utføres på ulike metoder, hvorav tre her er nevnt.

Den relative forsterkningen λ_{ij} mellom kontrollert variabel C_i og den manipulerte variablen M_j er definert til å være et dimensjonsløst forhold mellom to stasjonære forsterkninger:

$$\lambda_{ij} = \frac{\left(\frac{\partial C_i}{\partial M_j}\right)_M}{\left(\frac{\partial C_i}{\partial M_j}\right)_C} = \frac{\text{apen sløyfe regulering}}{\text{lukket sløyfe regulering}}$$
(2.4)
i=1,2,...,n og j=1,2,...,n

En RGA-matrise kan også beregnes utfra formelen: $\Lambda(s) = G(s) \times (G^{-1}(s))^T$ (2.5)

hvor G er prosessens transferfunksjoner og x impliserer element til element produkt, s=0 ved stasjonærtilstand.

En LV-konfigurasjon i stasjonær tilstand gir to frihetsgrader, L og V, til å regulere sammensetning i topp (x_D) og i bunn (x_B) . Effekten av små endringer i og L og V på sammensetningen kan uttrykkes lineært:

$$dx_D = g_{11}dL + g_{12}dV (2.6)$$

$$dx_B = g_{21}dL + g_{22}dV (2.7)$$

der f. eks g_{11} er effekten av en liten endring i L på x_D med V konstant. På matriseform kan dette skrives:

$$\begin{bmatrix} dx_D \\ dx_B \end{bmatrix} = G^{LV} \begin{bmatrix} dL \\ dV \end{bmatrix} \qquad G^{LV} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$
(2.8)

RGA inneholder de relative forsterkninger, λ_{ij} som forteller hvordan g_{ij} forandrer seg når de andre sløyfene lukkes. Summen av rader og kolonner i RGA blir alltid 1, og den kan derfor skrives:

$$RGA = \Lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} \lambda_{11} & 1 - \lambda_{11} \\ 1 - \lambda_{11} & \lambda_{11} \end{bmatrix}$$
(2.9)

Det foretrekkes å parre element diagonalt som er nær 1. Negative element bør helst unngås da disse gir inversrespons. Element større enn 10 bør også unngås da disse gir store reguleringsproblemer(interaksjoner). En siste regel er å parre nært for å unngå store tidskonstanter grunnet dynamikk.

Verdier for λ_{11} kan approksimeres stasjonært for alle konfigurasjoner. For LV-konfigurasjon blir tilnærmelsen(her er F satt lik 1 og det antas ren væske i føde):

$$\lambda_{11}(G^{LV}) = \frac{(2/N)L(L+1)}{x_B B + D(1-x_D)}$$
(2.10)

2.2.4 Strategi for å redusere interaksjoner mellom reguleringssløyfer

Seeborg et al^[9] beskriver fire alternative strategier for å redusere interaksjoner mellom reguleringssløyfer:

- 1. "Detune" en eller flere tilbakekoblede regulatorer.
- 2. Velge andre pådrag eller målinger.
- 3. Vurdere bruk av dekobler
- 4. Vurdere å benytte multivariabel regulering.

Å "detune" vil si å bruke et konservativt valg av reguleringsparametere som gir langsommere responser. For de fleste sløyfer vil dette si å redusere K_c og å øke τ_I .

2.3 Skogestads tuningregler

Da det kun er aktuellt med tuningregler for første ordens prosesser og integrerende prosesser er det kun reglene for disse som blir gjennomgått.

2.3.1 1. ordens prosess med dødtid

En 1. ordens prosess kan uttrykkes ved modellen

$$g(s) = \frac{k}{\tau_1 s + 1} e^{-\theta s}$$
 (2.11)

der τ_1 = tidskonstanten til prosessen

k =forsterkningen til prosessen

 $\theta = d \emptyset dt i d$

En PID-regulator kan uttrykkes ved modellen

$$C(s) = K_c \left(1 + \frac{1}{\tau_I} + \tau_D\right)$$
(2.12)

En ser at P- og D-virkningen vil øke med økende verdi av henholdsvis K_c og τ_D , mens I-virkningen øker med avtagende τ_I .

Følgende metode kan benyttes for å beregne PI-tuninger for prosessen(Skogestads tuningsregler):

A. Forsterkning

$$K_c = \frac{1}{k} \cdot \frac{\tau_1}{\tau_c + \theta}$$
(2.13)

der τ_c er det lukkede systemets responstid. Denne blir anbefalt å være større eller lik dødtiden for å få en robust regulering. Settes den lik dødtiden gir det uttrykket,

$$K_c = \frac{0.5}{k} \cdot \frac{\tau_1}{\theta} \tag{2.14}$$

som er benyttet i beregningene i denne oppgaven.

Forsterkningen bør ikke overstige denne verdien noe særlig, men den kan reduseres for å få bedre robusthet eller for å redusere pådragsbruken.

B. Integraltid

Valg av integraltid avhenger av størrelsen på tidskonstanten. Hvis denne blir for stor i forhold til dødtiden kan integraltiden gi langsomme innsvingninger på forstyrrelsene. Integraltiden kan da reduseres til 80. En kan si som hovedregel at integraltiden velges som:

$$\tau_I = \min(\tau_1, 8\theta) \tag{2.15}$$

Dette vil gi en rask og robust regulering.

2.3.2 Integrerende prosess med dødtid

En integrerende prosess med dødtid gir responsen:

$$g(s) = k' \frac{e^{-\theta s}}{s}$$
(2.16)

Dette tilsvarer likning (2.11) med k' = k/τ_1 når k og τ_1 går mot uendelig.

Et step i pådraget på en integrerende prosess vil gi en lineær respons, med k' som stigningstall.

A. Forsterkning

Forsterkningen blir da gitt ved:

$$K_c = \frac{0.5}{k'} \cdot \frac{1}{\theta} \tag{2.17}$$

Der k' blir lest av fra den lineære responsen i et step i pådraget.

B. Integraltid

For å unngå langsomme svingninger bør en velge $\tau_I = 8\theta$.

2.4 Virkningsgrad

Det finnes flere definisjoner for virkningsgraden til en destillasjonskolonne, i dette kapittelet er to muligheter beskrevet. Generelt så avhenger virkningsgradene av bl.a. væskens viskositet, den relative flyktigheten av komponentene, væskehøyden på platene og størrelsen på gassboblene.

2.4.1 Total virkningsgrad

I McCabe Thieles trinnbestemmelses metode antas det likevekt mellom damp og væske som

forlater en plate, og ut ifra dette bestemmer man "antall teoretiske trinn". Den totale virkningsgraden η er her definert som:

$$\eta = \frac{\text{antall teoretiske plater i kolonnen}}{\text{antall reelle plater i kolonnen}}$$
(2.18)

Hvor "antall teoretiske plater i kolonnen" er definert som "antall teoretiske trinn-1", kokeren trekkes fra fordi man her har likevekt mellom væske og damp. Dersom det brukes en partiell kondensator må "antall teoretiske plater i kolonnen" defineres som "antall teoretiske trinn-2"

2.4.2 Murphree's platevirkningsgrad

En annen metode å beregne virkningsgraden på er å bruke Murphree's platevirkningsgrad.

$$\eta_M = \frac{y_n - y_{n+1}}{y_n^* - y_{n+1}} \tag{2.19}$$

I likning (2.19) er y_n sammensetningen av damp som forlater en plate, mens y_n^* er sammensetningen som ville vært i likevekt med plate n. Virkningsgraden η_M blir da et mål på hvor nær man kommer likevekt på de ulike trinnene. Denne virkningsgraden kan være forskjellig fra plate til plate i samme kolonne, avhengig av sammensetningen i væsken og av strømningsforholdet på platen. Det er en modifisert Murphree virkningsgrad som benyttes av HYSYS.Plant. Det er dessverre ikke beskrevet nærmere i brukermanualen^[10] hva denne modifikasjonen innebærer.

I følge litteraturen så ligger platevirkningsgraden i industrielle kolonner i området 0,6 - 0,9 når det gjelder Murphree virkningsgrad.

Det er viktig å merke seg at total virkningsgrad, η , og Murphree's platevirkningsgrad, η_M , ikke nødvendigvis er like for den samme kolonnen.

2.4.3 Dynamisk simulering

Det er også mulig å bruke en virkningsgrad ved dynamiske simuleringer i HYSYS. Ved dynamiske simuleringer bruker HYSYS en annen modell for virkningsgraden^[11]. I denne modellen føres en del av dampen forbi trinnet og er ikke i "kontakt" med væskefasen. Dampfraksjonen som går gjennom trinnet representerer virkningsgraden til trinnet som vist i figur 2.1.

Figur 2.1 Modell for virkningsgrad ved dynamisk simulering i Hysys Plant

2.5 Litt om optimal fødeplassering

Det er vanlig å benytte McThiele diagrammer ved design av kolonner^[5]. McThiele diagrammer konstrueres ved hjelp av likevekts data. Molbrøken til den viktigste komponenten i gass plottes mot molbrøken i væske. Driftslinjene til kolonnen bestemmes ved likning (2.20)^[12].

Topp:
$$y_n = \left(\frac{L}{V}\right)_T (x_{n+1} - x_D) + x_D$$

Bunn: $y_n = \left(\frac{L}{V}\right)_B (x_{n+1} - x_B) + x_B$

$$(2.20)$$

For et binært system vil det optimale fødepunktet ligge i driftslinjens skjæringspunkt. Dette gjelder tilnærmet for multikomponente systemer når det er den viktigste komponenten som betraktes^[2]. Sammensetningen på den optimale fødeplaten vil tilsvare sammensetningen til føden ved flashing.

3. PROSESSBESKRIVELSE

3.1 Generell beskrivelse av VCM-fabrikken

Etylen og klor tilføres direktekloreringsanlegget og reagerer til EDC. Dette føres videre via buffertank til crackeranlegget hvor EDC delvis spaltes til VCM og HCl. Crackingen er ikke fullstendig, og uomsatt EDC (ca.45% av føden) ledes til separasjonsanlegget hvor VCM, HCl og uomsatt EDC blir skilt fra hverandre.

HCl føres til oksykloreringsanlegget hvor HCl sammen med oksygen i tilført luft og etylen reagerer til mer EDC og vann. Etter rensing og utskillingen føres ren EDC sammen med EDC-strømmen fra direkte kloreringsanlegget til crackeravsnittet.

Rest-EDC etter crackere kloreres og tilbakeføres til crackeravsnittet via EDC-renseanlegget. Renset VCM fra crackeranlegget er fabrikkens hovedprodukt og føres til lagertanker, se figur 3.1.^[8]

Figur 3.1 Oversikt over VCM fabrikken ved Hydro Rafnes

3.2 Beskrivelse av HCl-kolonne

HCl-kolonnen, figur 3.2, er en del av separasjonsanlegget hvor VCM, EDC og HCl blir skilt fra hverandre. Føden til kolonnen kommer inn på platene 16, 20, 24, 30 og 34.

Figur 3.2 HCl-kolonna med reguleringsstruktur implementert i HYSYS.Plant

Hensikten med kolonnen er å separere ut en toppstrøm med nesten ren HCl, denne strømmen blir delvis kondensert. HCl-gassen sendes videre til oksy-reaktor og kondensert HCl sendes til buffertank V-1501(250m³) hvor refluksstrømmen tas ut. Denne tanken er såpass stor for å kunne virke som en buffer til nedstrøms anlegg. Dette fører til at en slipper å kjøre ned oksyreaktoren ved utfall av crackerne. Bunnstrømmen er en nærmest HCl-fri bunnstrøm med EDC og VCM som sendes til VCM-kolonnen for videre separasjon. Separasjonen i HCl-kolonnen er i hovedsak mellom VCM og HCl, EDC er såpass tung at denne går rett til bunn.

I kondensatoren ligger temperaturen på ca.-24°C på rørsiden og -31°C på skallsiden. Pga kapasitetsbegrensninger på kjøleanlegget blir toppstrømmen fra crackerbråkjølerne splittet opp ved delvis kondensering. Hovedsplitten foregår ved å regulere temperaturen inn på V-1401 til ca 65°C. Væskefasen går til plate 24, mens gassfasen kjøles i varmevekslerne H-1405A/B og separeres i V-1404. Væsken herfra går til plate 30, gassen varmeveksles i H-1403 med HCl-

gass fra kondensatoren til kolonnen. To-fase strøm fra H-1403 går til plate 34. Bunnstrømmen fra cracerbråkjølerne flashes i to trinn. Fra første flasher V-1402 går gassen til plate 16. Gass fra neste flasher V-140 kondenseres og blandes i hovedføden til plate 24, bilag R.

3.3 Drift av kolonnen siden 1981

1981: Omsetning i crackere ca. 52 % [1].

1986: Større kapasitet på nedløpene spesielt, men også noen flere ventiler for å takle større last på platene 1 - 24.

1989: Antall crackere utvidet fra 2 til 3 - tillater høyere omsetning - ca. 55 %.(bilag Q-7)

1998: Varm gass fra V-1402 flyttes fra kombinert føde til plate 34 til egen føde på plate 16 i henhold til Sauar's anbefaling, samt flytte føde F16retur til trinn 20(nå kalt F20retur), bilag B.

Gevinst:

- * mindre damp til koker
- * mindre refluks
- * større kapasitet på kolonna og kjøleanlegg relativt produksjon

3.4 Problemområde

Endringer i føden til plate16 og 24 som følge av varierende flashing i flashtankene V-1402 og V-1403, bilag B, er de to største forstyrrelsene som påvirker kolonnen. Disse variasjonene virker direkte inn på TIC505(plate 38) og TIC504(plate 15), figur 3.2. Dette fører til interaksjoner mellom temperatursløyfene, noe som igjen får temeraturgradienten i kolonnen til å variere. Andre forstyrrelser er variasjoner i trykket pga kjøleanleggets evne til å kjøle i kondensator H-1502, denne forstyrrelsen påvirker TIC505.

3.5 Modifikasjoner foreslått av Sauar

Høsten 1994 ble det i forbindelse med diplomoppgaven til Erik Sauar^[3] gjort et studie av kolonnen og energioptimalisering rundt denne vha ekvipartisjonsprinsippet. Sauar kom med følgende anbefalinger:

- forandre plate design til mere "cross-current" flow ved trinn 4-6 og trinn 15 (30 ideelle trinn koker og kondensatornummerert pluss ovenfra og ned)
- bytte føde F-34 med F-30 eller å føde strøm fra V-1402 til trinn 21
- føde strøm fra H-1404 til trinn 8 eller 12
- introdusere en koker et sted ved trinn 17-20

4. EKSPERIMENTELT

4.1 Stasjonær simulering

Kolonnen med de mest nærliggende prosessenhetene oppstrøms ble implementert i HYSYS. Det ble tatt utgangspunkt i input filer fra simuleringer gjennomført av Hydro, bilag P. Modellen ble i første omgang implementert stasjonært før den deretter ble tilpasset for å kjøres dynamisk.

4.1.1 Valg av termodynamisk modell med tilhørende parametere.

Skogestad^{[1],[2]} benyttet SRK (Souve, Redlich og Kwong) som termodynamisk modell med tilfredstillende resultater. SRK var også benyttet i simuleringen gjennomført av Hydro. Det viste seg at default SRK parametere som fantes i HYSYS divergerte noe fra de som ble benyttet av Skogestad. Dette ga noe forskjellig resultater på splitfaktoren ved simulering av f.eks. en flash. Det ble derfor valgt å benytte SRK parametere som oppgitt i Skogestad.

	Tc (°C)	Pc (atm)	^ω SRK
HCL	51,4	81,5	0,1167
VCM	152,0	50,9	0,1384
EDC	293,0	52,8	0,2425

 Tabell 4.1 Benyttede SRK parametere for komponentene

4.1.2 Tilpassing av tempprofil

Både i Skogestad^{[1],[2]} og i simuleringen fra Hydro er det brukt en total virkningsgrad på 0.67. Det er dermed simulert med 30 ideelle trinn. Da det med tanke på dynamikken i kolonnen er viktig å ha like mange plater i simuleringen som det er i virkeligheten ble det valgt i denne oppgaven å simulere med 45 plater slik det er i den virkelige kolonnen. Det er avgjørende å få en temperatur profil i kolonnen som i størst mulig grad er lik den virkelige. For å verifisere modellen som var implementert i HYSYS ble det i første omgang valgt å benytte de samme driftsdata som er benyttet av Skogestad. Modellen med 30 trinn i HYSYS stemte godt overens med resultatene til Skogestad. Ved implementering av kolonnen med 45 trinn og 0.67 i virkningsgrad stemte ikke resultatene like godt overens. Dette vises tydelig i figur E.1. hvor temperatur profilene til de to modellene er plottet. Skal modellen med total virkningsgrad på 0.67 få riktig profil så må vi redusere renhetene i toppen og bunnen av kolonnen til henholdsvis 35 vol-ppm VCM og 100 vol-ppm HCl.

For simuleringene i figur E.1 er det renheten i toppen og bunnen av kolonnen som er spesifisert til å være henholdsvis 0.9 wt-ppm VCM i toppen og 5-vol-ppm HCl i bunnen. Reflux ratio er beregnet av Skogestad til å være 0.87, men målingene i kolonnen viste 1.07. Skogestad

konkluderte dermed at denne målingen ikke var riktig noe som ble bekreftet ved driftstans da målingen på refluksforholdet ikke sank ned til null. I simulering i HYSYS med 30 trinn beregnes den til å være 0.92 og i simuleringen med 45 trinn og 0.67 i virkningsgrad beregnes den til 0.85.

Hysys benytter en modifisert Murprhee virkningsgrad i statiske simuleringer og det er dermed ikke nødvendigvis den samme platevirkningsgraden som den totale virkningsgraden på 0.67 som skal benyttes, kapittel 2.4. For å tilpasse temperatur profilen til modellen med 45 plater ble det forsøkt å justere virkningsgraden til platene. Det poengteres at dette også er gjordt i Skogestad og den totale virkningsgraden han oppgir hører derfor sammen med SRK parameterene. Ved å justere virkningsgraden på platene til 0.885 ble resultatet bedre i toppen av kolonnen, figur E.2. Refluksen med virkningsgrad 0.885 beregnes til å være 0.78. Det er tydelig at temperatur profilen i øvre del av kolonnen blir bedre, men profilen blir tilsvarende dårlig i bunnen av kolonnen. Hovedføden går inn på plate 24, og det er forskjellige plater over og under hovedføden. Murphree virkningsgraden trenger ikke å være den samme for alle plater, og det ble derfor også prøvd forskjellig virkningsgrad for plate 25-45 og 0.6 for plate 1-24. Refluksen ble der beregnet til å være 0.93.

Det er imidlertid stor forskjell på temperatur profilen fra 1981 og den som er i kolonnen i dag, bilag D. Dette er lettest å se på plate 15 hvor temperaturen tidligere var opp mot 90° og hvor den nå faktisk er ca 75° .

Hverken modellen med 30 ideelle trinn eller modellen med delt virkningsgrad og 45 trinn kunne gi en temperatur profil slik den har vært de siste årene uten å senke spesifikasjonene radikalt. Det viste seg derimot at simuleringen med 0.885 i virkningsgrad gav en temperatur profil langt nærmere den virkelige for modellen før ombyggingene i 1998, figur E.4. Tilsvarende plot for kolonnen slik den er i dag er vist i figur 4.1.

Figur 4.1 Temperaturprofil for kolonnen etter 1989 med 30 trinn og 45 trinn med virkningsgrad lik 0.885.

Reflux ratio er oppgitt av Hydro,mail i bilag Q-6, til å være 0.6 til 0.65 og renheten i toppen ligger i omprådet 5 - 12 vol-ppm VCM. I simuleringene i figur 4.1 er renheten spesifisert til å være 10 vol-ppm for VCM og HCl i henholdsvis toppen og bunnen av kolonnen. I simulering med 30 ideelle trinn beregnes refluks til å være 0.68 og i simulering med 45 plater og virkningsgrad 0.885 berenges den til 0.61. Det ble med grunnlag i dette valgt å gjennomføre de stasjonære simuleringene med 45 trinn og en virkningsgrad på 0.885.

4.2 Optimalisering av kolonnen

4.2.1 Vurdering av modifikasjoner anbefalt av Sauar

Noen av modfikasjonene anbefalt av Sauar, kapittel 3.5, ble vurdert. Først ble gevinsten ved å bytte F34 og F30 vurdert. Deretter ble blandingen av strømmen fra V1402 og F34 fjernet, bilag B, og strømmen fra V1402 ble fødet til plate 16. Det er denne modifiksjonen som ble gjennomført i 1998. Videre ble det vurdert å føde strømmen fra H1404 direkte til kolonnen.

Det ble ikke vurdert å introdusere andre plater eller en sidekoker.

4.2.2 Ytterligere optimalisering av kolonnen

Det ble deretter gjennomført simuleringer for å finne om det var et ytterligere forbedringspotensiale når det gjaldt energi forbruk. Dette ble gjordt ved å flytte fødeplassering til de forskjellige fødene.

Kolonnen har i dag fødestusser ved plate 16, 20, 22, 24, 28, 30, 34. Det ble i første omgang optimalisert med hensyn på energi med eksisterende fødestusser som begrensning. Hovedføden kan per i dag ikke fødes høyere enn plate 24 grunnet hydrauliske begrensinger i kolonnen.

Ved flytting av av føder ble føde sammensetning og føde temperatur vurdert opp mot sammensetning og temperatur på hver plate i kolonnen i hht teori i kapittel 2.5.

Det ble gjennomført totalt 7 statiske simuleringer som vist i tabell 4.2. Flytskjema kan finnes i bilag A, B og C.

1	Før 1998
2	Før 1998 med bytting av F34 og F30
3	Etter Sauar 1998
4	Optimalisert med hensyn på eksisterende fødestusser
5	Siste mixer fjernet
6	Optimalisert uavhengig av eksisterende fødestusser
7	Siste mixer fjernet og optimalsisert uten hensyn til eksisterende fødestusser

Tabell 4.2	Giennomførte	statiske	simul	leringer.
	Ojemionipite	Statistic	Sinu	ici mgen

4.2.3 Vudering av besparelser ved endring av spesifiksasjoner

Videre ble det vurdert hvorvidt det var mulig å spare energi ved å senke spesifikasjonen i toppen av kolonnen. Spesifikasjonen i bunnen av kolonnen anses som den viktigste og den bør derfor ikke redusereres, bilag Q-1. Det ble gjennomført simuleringer med spesifikasjoner fra 10 ppm til $1.0 \cdot 10^5$ ppm.

4.3 Regulering av kolonnen, dynamisk simulering

4.3.1 Tilpassing av stasjonær modell for dynamisk simulering

Den dynamiske modellen av prosessen ble utformet ved å benytte den stasjonære løsningen for kolonnen slik den er i dag, bilag B, som initialisering. HYSYS må kjenne alle trykk-strømnings relasjoner slik at det blant annet er nødvendig å sette inn ventiler med flow kontrollere på alle strømmer inn på flytskjemaet.

HYSYS benytter som tidligere nevnt en annen modell for virkningsgraden ved dynamisk simulering, kapittel 2.4.3. Dette resulterte i at renhetene ble noe høyere ved dynamisk simulering enn ved stasjonære simuleringer. Det ble tidlig besluttet å benytte en virkningsgrad på 0.67 i de dynamiske simuleringene og resultatene fra den stasjonære delen var ennå ikke kjent. Det ble heller ikke oppdaget før sent i prosjektet at HYSYS sannsynligvis benytter en annen modell ved dynamiske simuleringer. Temperaturprofilen blir som vist i figur 4.2.

Figur 4.2 Temperaturprofil ved dynamisk simulering med 0.67 i virkningsgrad

Renheter i topp og bunn er henholdsvis 4.1 ppm HCl og 5.5 ppm VCM. Refluksen beregnes til 0.61.

4.3.2 Dimensjonering av kolonnen.

Dimensjoneringen av kolonnen ble i hovedsak utført av HYSYS. Diameteren ble justert noe manuelt slik at denne stemte bedre overens med den virkelig kolonnen. Diameteren i kolonnen ble justert slik at ønsket trykkfall ble oppnådd.

4.3.3 Valg av reguleringsstruktur.

Reguleringsstrukturen som er satt opp rundt HCl-kolonna i HYSYS er noe forenklet i forhold til den virkelige kolonnen. Kolonnen har fortsatt en LV-konfigurasjon, men med regulering av effekten i koker istedenfor pådrag av dampstrøm. Det vil si at denne reguleringen endres fra en 2. ordens respons til en 1. ordens. For å hindre at denne reguleringen blir for rask er det lagt til en dødtid på 1 min i reguleringssløyfen. Trykkreguleringen av kolonnen er blitt forenklet på samme måte som for kokeren. Det er her egentlig regulering av et kjøleanlegg, som i seg selv er et lite prosessavsnitt, som regulerer trykket. For enkelthetsskyld er det derfor valgt å se bort fra dette, og istedenfor regulere trykket ved hjelp av effekten/kjøling i kondensatoren. Topp produktet i kolonne går til oksyreaktoren. Dette prosessavsnittet er ikke med i simuleringen, og det er derfor valgt å regulere nivået i kondensatoren med denne strømmen.

4.3.4 Tuning av regulatorer.

Regulatorene rundt HCl-kolonnen som regulerer hhv nivå i kondensator, nivå i koker og trykk i kolonne ble tunet i nevnte rekkefølge. I kaskade reguleringen på nivået til kondensatoren ble først den indre sløyfen tunet og deretter den ytre.

Følgende fremgangsmåte ble benyttet: Det ble utført stependringer i regulatorens pådrag og tilhørende prosessutgang ble målt. Parameterene til en 1.ordens prosessrespons ble funnet vha programmet "Control station", og Skogestad's tuningsregler ble benyttet for å beregne forsterkning og integraltid. De enkelte sløyfene ble lukket etterhvert som tuningsparametrene ble funnet. Deretter ble simuleringen startet og kjørt til systemet stabiliserte seg, før neste tuning ble gjennomført.

Temperatursløyfene i HCl-kolonnen har store interaksjoner seg imellom, se resultat RGAanalyser kapittel 5.1.3, noe som vil føre til at kolonnen fort kan bli ustabil.

Nivåreguleringene er rene integrerende prosesser, og har en noe annen fremgangsmåte mhp å bestemme tuningparametere for regulatoren. Denne er beskrevet i teoridelen kapittel 2.3.2.

På noen av responsene ble dødtiden lik null. Den ble i disse tilfellene satt til å være 3 sekunder, som er samplingstiden som ble benyttet.

4.3.5 Raskhet på nedre sløyfe

Temperatursløyfen som regulerer temperaturen på plate 38 bør tunes raskt i forhold til temperatursløyfen på trinn 15. Dette på grunn av at det er viktigere å overholde renheten i bunn. Samtidig bør også holdup i kolonnen være stor nok, slik at ved endring i oppkoket så skal temperaturen på trinn 38 ha stilt seg inn på setpunkt innen den øvre temperatursløyfen rekker å påvirke nedre del av kolonnen. Med det menes at man ikke ønsker en brå endring i væskestrøm nedad i kolonnen/reflux, men heller at temperaturen i topp skal få lov til å variere innenfor akseptable grenser.

På grunnlag av dette ble temperatursløyfen i bunn tunet først og gjort så rask som mulig. Skogestads tuningregler ble benyttet da disse representerer rask regulering. Det ble lagt til en dødtid på ett minutt for å kompensere for dynamikk i koker og regulator i forhold til virkeligheten. Temperatursløyfen i topp ble så tunet, men det viste seg at PI-parameterene for toppsløyfen ble omtrent de samme som for den i bunn etter tuningreglene. Det ble utført en simulering med disse parameterene for å påvise ustabilitet.

Reguleringen i topp ble gjort langsommere ved å ta utganspunkt i de første tuningparameterene, og så halvere forsterkningen og tilordne integraltiden til den største av verdiene av τ_1 og 80 i stedet for den minste. Parameterene i toppsløyfen ble forandret ytterligere ut i fra tolking av responsene.

4.3.6 Måleplassering.

I kolonnen er det to målepunkt som benyttes til regulering, temperatur på plate 15 og 38. Temperaturgradienten fra simuleringene, som forøvrig stemmer bra overens med virkelige målinger, viser at målepunktet på trinn 38 ligger på en "skulder", bilag E. Dette målepunktet er ikke godt egnet for regulering da temperaurgradienten vil kunne flytte seg ca. fire trinn oppover i dette tilfellet, uten at målingen vil kunne registrere dette i større grad. Hvis man da derimot flytter målepunktet noe høyere opp i kolonnen, eks. trinn 40, vil man få en respons som er like følsom for step i begge retninger og dermed bedre regulering/oversikt over kolonnen. Det ble derfor gjennomført en simulering med målepunkt for toppsløyfen på trinn 40, og regulatoren ble tunet på nytt. Setpunktstemperaturen på trinn 40 blir da -10.4°C, se figur 4.2, for å beholde det samme temperaturprofil i kolonna som før. En setpunktsendring ble gjennomført i føde H1404 for å sammenligne reguleringen.

4.3.7 Sammenligning med Hydros tuninger

Det ble også utført en sammenligning med virkning av de reelle regulatorene ved å implementere de oppgitte tuningparameterene på temperaturegulatorene fra anlegget. Forsterkningen måtte korrigeres noe siden enhetene på flowen er ulik i HYSYS og regulatorene benyttet på Rafnes. I tillegg har bunnsløyfen derivatvirkning, som gjør den noe raskere enn det som simuleres i dette tilfellet.

4.4 Steptester og endringer i føden

Etter at temperatursløyfene var tunet, ble det gjennomført steptester i de to forstyrrelsene som Hydro påpekte som de viktigste, nemlig variasjoner i fødene H1404 (som går sammen med LIQ til føde F24) og føde F16. Begge disse er forholdsvis små føder. Det ble simulert et gitt scenario fra fabrikken. Det ble oppgitt av Hydro at en fortetning av føden til oppstrøms flasher kan skape en reduksjon i strøm H1404 på 80% for deretter å øke til 130% av normal strømning når fortetningen åpnes. Dette ble simulert for å gi et reelt bilde av forstyrrelsene som regulatorene må motvirke.

Et lignende scenario ble gjennomført for føde F16.

4.5 Steptester til RGA-analyser

Det ble gjennomført steptester for å finne RGA-matrisene som beskrevet under teoridelen, kapittel 2.2.3. Metoden som baserer seg på definisjonen av den relative forsterkningen, λ_{ij} , ble utført på følgende vis:

Åpen-sløyfe forsterkning ble beregnet ved at temperatursløyfene i topp og bunn ble satt i manuell, resten av reguleringssløyfene rundt kolonnen ble satt i auto, og det ble utført et step i reflux ved å regulere ventilåpningen. Simuleringen pågikk til temperaturen i topp stabiliserte seg. Ved beregning av lukket-sløyfe forsterkning ble temperatursløfen i bunn satt i auto ellers som i åpen-sløyfe forsterkning. Den relative forsterkningen ble også funnet ved å kjøre prosedyren beskrevet over men her med å lukke temperatursløyfen i topp istedenfor.

4.6 Analyse av HCl-kolonnen

Transferfunksjoner for kolonnen ble funnet ved å gjøre stependringer i refluks og damp til koker, og deretter registrere responsen som det gav på temperatur i topp og bunn. I tillegg ble holdup i kolonna funnet. Den ble estimert ved å utføre en step i refluksstrømmen, og måle tiden det tar før en ser en endring i væskestrømmen i bunn.

5. RESULTATER

5.1 Teoretiske beregninger

5.1.1 Separasjon og minimum antall teoretiske trinn

Relativ flyktighet, α , ble beregnet fra likning 2.1. Det ble beregnet en aritmetisk middelverdi av relativ flyktighet i kolonnen ut i fra sammensetningene på platene, bilag G. Tung komponent er VCM, lett er HCl.

Aritmetisk middelverdi ble beregnet til : $\alpha_{middel} = 5.6$

Separasjonsfaktoren, S, ble beregnet fra ligning 2.3:

 $S = 2.45 * 10^7$

Resultatene viser at separasjonen er god gjennom hele kolonna.

Minimum antall trinn blir da fra ligning 2.4:

$$N_{min} = 10$$

Med så god separasjon vil det være tilfredstillende med $2*N_{min} = 20$ trinn i kolonna, så siden det er 30 trinn reelt i kolonna, bør det ikke være problemer med å nå de spesifiserte renheter i topp og bunn på 10 vol. ppm.

5.1.2 Transferfunksjoner til kolonna

Fra stependringer utført som beskrevet i kapittel 4.5 ble følgende tilnærmede transferfunksjoner funnet vha programmet Control station.

$$G = \begin{bmatrix} \frac{-47e^{-999s}}{4074s+1} & \frac{-33e^{-207s}}{25686s+1} \\ \frac{9}{7361s+1} & \frac{15e^{-146s}}{2973s+1} \end{bmatrix}$$
(5.1)

 $hvor g_{11} = \Delta T_{topp} / \Delta u_1, \ g_{12} = \Delta T_{bunn} / \Delta u_2, \ g_{21} = \Delta T_{topp} / \Delta u_2, \ g_{22} = \Delta T_{bunn} / \Delta u_2$

 $u_1 = p$ ådrag i reflux, $u_2 = effekt i koker.$

5.1.3 RGA-analyser

For å finne elementene i RGA-matrisa for LV-konfigurasjonen benyttes det tilnærmede utrykket i ligning 2.9. Her er F skalert og satt lik 1. N er antall teoretiske trinn i kolonna + koker og kondensator = 32. I tillegg antas det her at føden er ren væske. Data benyttet for strømmene er gitt i bilag G. Dette gir en verdi på $\lambda_{11}(G^{LV})$ lik 1617. En så høy verdi vil si at det er store interaksjoner mellom sløyfene i topp og bunn i kolonna, og at det kan dermed være svært vanskelig å få en tilfredstillende regulering av temperaturene. En ser at ettersom en senker kravet til renhet i topp vil verdien av λ_{11} synke. I tabell 5.1 er det vist et overslag for hva lavere renheter i topp har å si på forsterkningen:

X _D	$\lambda_{11}(G^{LV})$	
0.9999	388	
0.999	45	
0.99	5	

Tabell 5.1 Endringer i λ_{11} **ved lavere renheter**

En ser at renheten må synke helt til 0.99 for å få en "akseptabel" verdi av λ_{11} , men tap i renhet i topp er tapt produkt(VCM), og bør dermed holdes så lavt som mulig.

Ved å bruke de tilnærmede transferfunksjonene over kolonna ble den stasjonære RGA-matrisa bestemt fra metode beskrevet i kapittel 2.2.3, likning (2.5).

$$G = \begin{bmatrix} 1.73 & -0.73 \\ -0.73 & 1.73 \end{bmatrix}$$
(5.2)

Ved å bruke metoden beskrevet i likning (2.4)ble RGA-matrisa bestemt til:

$$G = \begin{bmatrix} 1.56 & -0.56 \\ -0.56 & 1.56 \end{bmatrix}$$
(5.3)

5.2 Stasjonær simulering

5.2.1 Energibesparelser ved modifikasjoner

Energibesparelsene ved modikasjoner av kolonnen er vist i figur 5.1, tabeller er å finne i bilag F.

Figur 5.1 Energibesparelser i prosent i forhold til de forskjellige simuleringene i tabell 4.2

Simulering 1: Det forbrukes 5072kWh i kokeren og 2453kWh i kondensatoren

Simulering 2: Fødeplasseringen til F34 og F30 er byttet og belastingen på koker og kondensator økte med 8 kWh.

Simulering 3: Belastningen på koker og kondensator reduseres med 370 kWh. Denne besparelsen utgjør 15,2% i kondensator og 7,4% i koker.

Simulering 4: Det oppnås en ytterligere forbedring i forhold til simulering 3, og forbruket i både koker og kondensator reduseres med 19 kWh. Dette gjøres ved å flytte F30 opp til plate 34 og F20Retur ned til plate 16.

Simulering 5: Den siste mixeren er fjernet og det oppnås en ytterligere reduksjon med 18 kWh i både kokeren og kodensatoren. Her fødes da, som i simulering 4, F30 til plate 34 og F20Retur til plate 16. Den nye føden H1404 fødes til plate 34.

Simulering 6: Simulering 4 er utgangspunktet, men det er ikke lenger tatt hensyn til eksisterende fødestusser. F34 og F37 flyttes høyere opp i kolonnen til henholdsvis plate 38 og 37. F24 flyttes to plater opp til plate 26. F20Retur flyttes nesten helt ned til plate 4 og F16 flyttes ned to plater til plate 14. Dette gir ytterligere en innsparing på 15 kWh i både koker og kondensator i forhold til simulering 4.

Simulering 7: Her er simulering 5 utgangspunktet, og det ikke tatt hensyn til fødestusser. F34 flyttes opp til plate 38. F20Retur flyttes ned til plate 4 og F16 til plate 14. Den nye føden går fortsatt inn på plate 34 som i simulering 5. Det spares 12 kWh i koker og kondensator i forhold

til simulering 5.

Totalt er dermed 49 kWh i koker og kondensator den beste besparelsen som er oppnådd utover det som kommer av ombyggingen i 1998 på 370 kWh i koker og kondensator. Basert på 7000 driftstimer gir dette en økonomisk innsparing på totalt 453250kr for ombyggingen i 1998, med potensiale for 60025kr i ytterligere innsparing.

5.2.2 Energi besparelser ved endring av spesifikasjoner

Energibesparelsene ved å redusere spesifikasjon i toppen av kolonnen er vist i figur 5.2. Først når spesifikasjonen er senket til 0.01[volum fraksjon] er det noe særlig endring og energiforbruket reduseres til 2,2% i kondensator og 0,4% i koker. Ved 0.1[volum fraksjon] skjer det en betydelig reduksjon og forbruket reduseres med 22,3% i kondensator og 3,9% i koker. Dette blir 53.2 kr/t i sparte energi kostnader, men i "tapt" produkt utgjør det en kostnad på 13519 kr/t.

Figur 5.2 Energi besparelse ved å redusere spesifikasjon på VCM i toppen av kolonnen.

5.2.3 Sammensetningsprofil

Ved å plotte den naturlige logaritmen til forholdet mellom lett og tung komponent mot platene kan en vurdere om fødepunktsplasseringen er korrekt. Denne profilen for kolonnen slik den er i dag er vist i figur 5.3.

En ser at profilet er veldig bratt i området der fødene kommer inn, noe som er naturlig, men det

som er viktig at profilet hele tiden faller mot venstre. Dette er ikke tilfelle på plate 24 der hovedføden kommer inn. Dette tyder på at plasseringen av denne føden ikke gir optimal sammensetning på platen. Det er også tydelig at kolonnen er overspesifisert når en der det store området mellom plate 15 og 38 der det skjer svært lite separasjon.

5.3 Dynamisk simulering

5.3.1 PI-tuninger

I tabell 5.2 er tuningparameterene for de ulike regulatorene som ble funnet til å være optimale for en stabil kjøring av prosessen gitt. Regulatorene som det henvises til har en plassering som vist i figur 3.2.

Regulator	Forsterkning(K _c)	Integraltid(τ _I) [min]	
FIC-508	0.3	0.05	
TIC505	0.2	45	
TIC504	0.5	17	

 Tabell 5.2
 Optimale PI-parametere fra HYSYS- simulering

Det som er interessant å merke seg er forholdet mellom parameterene i TIC505(topp) og TIC504(bunn). Dette gjør sløyfe TIC504 noe raskere. Tuningsresponsene benyttet for å beregne parameterene er gitt i bilag J. Fullstendig oversikt over tuningsparametere på regulatorene rundt kolonna er gitt i bilag H.

Til sammenligning viser tabell 5.3 tuningparameterene benyttet i reguleringen av den virkelige kolonna. Forsterkningen er ikke helt sammenlignbar, da enhetene benyttet hos Hydro på flow er tonn/h, mens det i HYSYS har blitt benyttet kmol/h. Forholdet mellom forsterkningen i temperatursløyfene vil uansett kunne sammenlignes. Integraltiden er oppgitt i minutt begge steder. Fullstendig oversikt over parametere på regulatorene på det reelle anlegget kan finnes i bilag H.

Regulator	Forsterkning(K _c)	Integraltid(τ_I) [min]	Derivattid(τ _D) [min]
FIC-508	0.15	0.1	
TIC505	0.4	20	
TIC504	0.25	15	2

Tabell 5.3	PI-parametere	fra	Hydro.
------------	----------------------	-----	--------

5.3.2 Holdup

Fra bilag I ble holdup i kolonnen beregnet til å være ca. 2.5 minutter.

5.4 Temperaturregulering

5.4.1 Regulerbarhet

Det ble først utført en kjøring med de beregnede PI-parametere for begge temperatursløyfene. Disse ble som forventet ustabile allerede ved små stependringer. Resultater er vist i figur 5.4 og figur 5.5.

Figur 5.4 Temperatur trinn 15 etter 5% step i strøm H1404. Tuninger beregnet med Skogestads tuningregler.

Figur 5.5 Temperatur trinn 38 etter 5% step i strøm H1404. Tuninger bergnet med Skogestads regler.

Det er tydelig at disse tuningene, som forutsett, gir ustabil temperaturegulering.

5.4.2 Simulering av forstyrrelser i fødestrøm F16

Det ble oppgitt av Hydroi mail, bilag Q, at en fortetning av føden til oppstrøms flasher kan skape en reduksjon i strøm H1404 på 80% for deretter å øke til 130% av normal strømning når fortetningen åpnes.

Dette er simulert ved å endre setpunkt på FICH1404 i to trinn, til hhv 7.7kmol/h og 49.9kmol/ h av en stabil verdi på 38.4kmol/h. Resultatene er vist i figur 5.6 og figur 5.7.
:

Figur 5.6 Temperatur på plate 38 etter step i strøm F16 fra 20% til 130% av normal strømning. Optimale tuningparametre benyttes.

Ved å senke strøm F16 med 80% får man en øyeblikkelig temperatur reduksjon på 0,4°C. Regulatoren bruker ca 80 minutter til å redusere avviket til 0.05°C, før den simulerte forstyrrelsen stiger til 130% av normal strømning. Denne endringen i F16 fører til en økning i temperatur på 0.5°C. Det tar ca 115 minutter før dette avviket reguleres inn.

Figur 5.7 Temperatur på plate 15 etter step i strøm F16 fra 20% til 130% av normal strømning. Optimale tuningparametre benyttes.

Temperaturen på plate 15 synker til 73.5°C ved reduksjon av F16. Regulatoren bruker ca 55 minutter på å ta inn dette avviket. Forstyrrelse nummer to får temperaturen til å stige til 77.1°C, dette avviket reguleres inn på 55 minutter.

Sammensetningen i toppen av kolonna er tilnærmet upåvirket av endringene i F16, og ligger konstant på 4.2 ppm VCM. Sammensetningen i bunn av kolonna derimot, varierer fra 2.5 ppm HCl til 5.7ppm HCl, bilag K.

5.4.3 Simuleringer av forstyrrelser i prosesstrøm H1404

Forstyrrelsene her har et tilsvarende mønster som for fødestrøm F16. Føden ble varieret ved setpunkts endring i FICH1404, til hhv 7.2kmol/h og 46.7kmol/h av en stabil verdi på 35.9kmol/ h. Resultater er vist i figur 5.8 og figur 5.9.

Figur 5.8 Temperatur på plate 38 etter step i prosesstrøm H1404 fra 20% til 130% av normal strømning. Optimale tuningparametre benyttes.

Ved reduksjon i strøm H1404 som oppgitt ovenfor økte temperaturen med 0.3°C. Regulatoren bruker ca 30 minutter for å oppnå nogenlunde konstant temperatur. Når strømmen igjen stiger endres temperaturen til 12.6°C. Det tar også her ca 30 minutter før avviket er tatt inn.

Figur 5.9 Temperatur på plate 15 etter step i prosesstrøm H1404 fra 20% til 130% av normal strømning.

Optimale tuningparametre benyttes.

Temperaturen stiger til 75.7°C ved reduksjon av prosesstrømmen og synker til 73.9°C når strømmen øker. Regulatorene bruker hhv 40 og 45 minutter på å ta inn avviket.

Sammensetningen i topp er tilnærmet konstant lik 4.2ppm VCM. I motsetning til VCM i topp varierer HCl-fraksjonen i bunn øyeblikkelig når H1404 endres. Utslagene her varierer fra 4.15ppm til 5.3 ppm, bilag K.

5.4.4 Forandring av målepunkt i topp.

Det ble utført samme stependringer i strøm H1404 som ved det gamle målepunktet. Først reduksjon til 20% og deretter økning til 130% av en normal strøm på 100%. De nye tuningparameterne for temperaturegulatoren i topp er vist i tabell 5.4.

Tabell 5.4 PI-parametere for TIC505 ved temp. måling på trinn40

Regulator	K _c	$\tau_{I}(min)$
TIC505	0.37	20

Figur 5.10 Temperatur på plate 40 etter step i strøm H1404 fra 20% til 130% av normal strømning. Optimale tuningparametre benyttes.

Figuren viser at reguleringa i topp er noe raskere enn ved regulering av temperaturen på trinn 38(omtrent 5 minutt forskjell på tida det tar fra forstyrrelsen inntreffer til den er tilbake på setpunkt), og at utslaget er noe mindre(ca 0.05° C).

Figur 5.11 Temperatur på plate 15 etter step i strøm H1404 fra 20% til 130% av normal strømning. Optimale tuningparametre benyttes. Målepunkt på plate 40 i topp.

Reguleringa i bunn er omtrent uforandret. Renhetene forandrer seg svært lite(bilag L).

5.4.5 Temperaturegulering med Hydro sine tuninger

Til sammenligning ble det gjennomført en simulering av forstyrrelse i strøm H1404 med tilnærmet de samme tuninger som Hydro har i dagens anlegg på temperatursløyfene. Resultatene er vist i figur 5.12 og figur 5.13.

Figur 5.12 Temperatur på plate 15 etter step i strøm H1404 fra 20% til 130% av normal strømning. Hydro sine tuningparametre benyttes.

Figur 5.13 Temperatur på plate 38 etter step i strøm H1404 fra 20% til 130% av normal strømning. Hydro sine tuningparametre benyttes.

Temperaturegulering i topp er ikke overraskende god. Den regulerer temperaturen tilbake på setpunkt i løpet av ca 25. min. I bunnen derimot tar det ca. 50 minutt å regulere inn på setpunkt etter step i forstyrrelsen. I tillegg er avviket fra setpunkt mye større (mellom 1 og 2°C). Endringene i renhet er omtrent tilsvarende som ved målepunkt på trinn 40(bilag L).

6. DISKUSJON

6.1 Teoretiske beregninger

6.1.1 Minimum antall teoretiske trinn

Kolonna er helt klart overspesifisert når det gjelder antall trinn for å oppnå den ønskede seperasjon i følge de teoretiske beregningene. Dette kan virke unødvendig, men det gjør det billig å overfraksjonere. Det tillater dermed en del variasjoner i temperaturen uten at det fører til at renhetskravene i topp og bunn overskrides. Med interaksjonene mellom temperaturreguleringene i topp og bunn som kan gi svingninger i temperaturen er det gunstig å ha et høyt antall trinn. Dette skaper også en dekobling mellom topp og bunn, og bidrar dermed til å minske interaksjonene mellom temperatursløyfene. Dette dekoblingsområdet, der det skjer svært lite separasjon, sees tydelig ut i fra sammensetningsprofilet i resultatdelen.

6.1.2 RGA-analyse

Det ble gjennomført forskjellige stasjonære RGA-analyser av kolonna. De ulike analysene førte til samme resultat når det gjelder parring av pådrag og utganger, men størrelsen på RGAelementene varierte endel. Transferfunksjonene som ble funnet for temperaturene på plate 15 og 38 i kolonna viser at responsen temperaturene har på endringer i refluks eller effekt i koker er svært langsomme. Disse transferfunksjonene blir benyttet for å beregne elementene i RGAmatrisa(metode 2), men gir mye lavere verdier enn for beregningen som baserer seg på antall teoretiske trinn(metode 1). Metode 1 gir verdier for λ på over 1600 for LV-konfigurasjonen, mens metode 2 gir verdier på 1.73. Ved å benytte en tredje metode, nemlig å kjøre step i pådrag med open loop og closed loop, fås det verdier på ca. 1.5, noe som stemmer godt overens med metode 2. Dette er ikke i overenstemmelse med de observerte interaksjoner ved simulering av temperaturreguleringen på disse platene. Simuleringen viser at interaksjonene mellom reguleringene gir ustabilitet hvis man ikke tuner sløyfene i forhold til hverandre. Det er tydelig at RGA-matrisen funnet fra metode 2 og 3 gir mye lavere verdier enn forventet. En verdi av $\lambda > 1$ vil uansett antyde interaksjoner, men graden er svært ulik for de tre beregningene. Ut fra obsevasjonene er det tydelig at det er metode 1 som gir et mest riktig bilde av de faktiske forholdene for regulering i kolonna.

En forklaring på dette kan være at følsomheten, spesielt i topp, av temperaturmålingen er så stor at det ikke registreres forskjell i stasjonærverdien når det ble simulert step på 1 og 2%. Det er tydelig at temperaturen havner i et nytt stabilt område. Man måtte helt ned i step på 0.02% for å registrere en lavere stasjonærverdi. Forsterkningene i transferfunksjonene benyttet i metode 2 vil derfor være altfor lave, da disse er funnet fra simulering med step på 1%. Et annet problem kan være at HYSYS har en numerisk unøyaktighet for så høye renheter kombinert med følsomme temperaturområder. En annen mulighet kan være at man i metode 1 ser på strømmene i kolonnen og sammensetningene i topp og bunn, til forskjell fra de to andre hvor ventil på refluxstrøm og effekt i koker brukes til å regulere strømmene. Disse forskjellen anses allikevel som neglisjerbar da strømningen er tilnærmet lineært avhengig av ventilåpningen.

6.2 Simulering av kolonnen

6.2.1 Temperaturprofil

Det er tydelig at endringene som har skjedd i driften av kolonnen siden Skogestad gjennomførte sin analyse 1981 har påvirket temperaturprofilen. Den gangen gav modellen, med en totalvirkningsgrad på 0.67, temperaturprofiler som var i god overenstemmelse med driftsdata. Denne modellen var derimot ikke i stand til å gi gode temperaturprofiler for kolonnen slik den er idag. Det bekreftes også av Hydro at de har problemer med temperaturprofilen i simulering av kolonnen. Den simuleres av Hydro med en totalvirkningsgrad på 0.67 slik at de kjører med 30 ideelle trinn pluss en koker og en kondensator slik som Skogestad..

Som nevnt tidligere er det tre modifikasjoner som har skjedd siden 1981: Større kapasitet på nedløpene spesielt, men også noen flere ventiler for å takle større last på platene 1 - 24. Antall crackere utvidet fra 2 til 3 - tillater høyere omsetning - fra ca. 52% til ca. 55%. Varm gass fra V-1402 flyttes fra kombinert føde til plate 34 til egen føde på plate 16 i henhold til Sauar's anbefaling, samt flytting av føde F16retur til trinn 20(nå kalt F20retur).

Videre hadde Skogestad i sin rapport høyere renhet, ned mot 1 ppm, i toppen og bunnen av kolonnen. I dag ligger renheten i 5 - 15 ppm området.

I samtaler med Hydro har det kommet fram at det ikke er skjedd vesentlige endringer i de senere årene når det gjelder måten kolonnen kjøres på. Temperatur profilen var så langt vi vet den samme før ombyggingen i 1989. Det er derfor lite sannsynlig at den endrede temperaturprofilen skyldes denne ombyggingen. Når det gjelder omsetningen i crackeren så medfører mindre EDC en lavere temperatur i bunnen, men dette slår i hovedsak ut i kokeren hvor temperaturen er sterkt avhengig av forholdet mellom EDC og VCM. Dette kommer også tydelig fram i modellen. Det er altså lite trolig at det er omsetningen i crackeren som slår så kraftig ut høyere opp i kolonnen. Da gjenstår ombyggingen på 80 tallet og evt. spesifikasjonene i bunnen. Skal modellen med total virkningsgrad på 0.67 få riktig profil så må renhetene, som tidligere nevnt i eksperimentelldelen, reduseres i toppen og bunnen av kolonnen til henholdsvis 35 vol-ppm VCM og 100 vol-ppm HCl.

Da gjenstår kun ombyggingen på 80 tallet. Når det simuleres med 45 plater og delt Murphree virkningsgrad må det benyttes en lavere virkningsgrad i bunnen (plate 24 og nedover) enn i toppen. Dette er ikke helt usannsynlig da det var nettopp i bunnen de hadde størst problemer med hydraulisk kapasitet. Etter at kolonnen ble modifisert for å øke den hydrauliske kapasiteten ser det ut til at virkningsgraden har økt over hele kolonnen, men klart mest i bunnen. Vi kommer derfor ut med en Murphree virkingsgrad på den stasjonære modellen lik 0.885 i HYSYS.

Det var tydelig at temperaturprofilen var svært følsom for virkningsgraden. Inndata som er brukt i simuleringen er fra ASPEN innfil som er brukt av Hydro. Det har ikke vært mulig å skaffe til veie en temperatur profil med tilhørende driftsdata. Det kan være interessant å følge opp dette, men da trenges langt mere driftsdata enn vi har hatt tilgjengelig.

6.2.2 Spesifikasjoner på renheter i topp og bunn av kolonnen

Renhetskravene er oppgitt fra Hydro til å være 10ppm(vol) av VCM i topp(tapt produkt) og

10ppm(vol) HCl i bunn. Det er spesielt kravet i bunn som må overholdes, da renheten på produktet må være høyt. Da kolonnen er såpass overdimensjonert med antall plater, koster det lite å overfraksjonere. Det er også trolig grunnen til at renheten må senkes helt til 0.01 i volum fraksjon før det slår nevneverdig ut på energi forbruket. Med så lav renhet overgår klart kostnaden i tapt produkt besparelsen på energi forbruket.

6.3 Optimalisering av kolonnen

6.3.1 Simulering 1 utgangspunktet

Simuleringen gir verdier for refluks og duty i koker og kondensator som er i samme størrelses orden som simuleringer gjennonført av Sauar.

6.3.2 Bytting av F34 og F30, simulering 2

Bytting av F34 og F30 gir ingen gevinst, men et lite tap. Dette skyldes her at F34 som er gass føde har en sammensetning og temperatur som stemmer mye bedre med plate 34 enn plate 30. Dette var ikke tilfelle for Sauar hvor F34 hos han er ca. 15°C varmere en temperaturen på plate 34. Hoved forskjellen i simuleringen her og hos Sauar er temperaturen på plate 38, her er den 26,7°C og hos Sauar er den 15.6°C. Temperaturen i kolonnen ligger trolig nærmere 26°C og Sauar har trolig brukt simulerings verdier som ikke stemte særlig godt med den virkelige verden. F30 passer derimot bedre på plate 34 men klarer tydeligvis ikke å oppveie for den ugunstige effekten av å flytte F34.

6.3.3 Direkte føding av strøm fra V-1402

Dette gir åpenbart en stor gevinst. Strømmen fra V-1402 som gikk sammen med F34 har høyt innhold av EDC, 0,66 i molbrøk, og en høy temperatur. Det er klart ugunstig å blande en slik strøm i en strøm som går inn i kolonnen helt oppe på plate 34 hvor molbrøken i både væske og damp fasen er under 0,06. Det har trolig vært andre årsaker, fare for væskeslag, som er grunnen til at det opprinnelig ble designet på denne måten.

6.3.4 Flytting av føder med eksiterende fødestusser som begrensning

Det oppnås her relativt beskjedne innsparinger. F30, væske føde, flyttes opp til plate 34 som både har en temperatur og en sammensetning som i væske fasen som passer bedre sammen en hva det gjør på plate 30. Det samme gjelder F20Retur som er væske med høyt innhold av VCM, 0,9997 i molbrøk, som flyttes fra plate 20 til plate 16.

6.3.5 Fjerning av den siste mixeren og direkte føding av strøm fra H-1404

Strømmen fra H-1404 er kald, 3°C, og har et høyt innhold av EDC, 0,9028 i molbrøk, og det er dermed ugunstig og blande den sammen med F24 som er 58°C og har 0,4 i molbrøk for EDC.

Besparelsen er riktignok langt mindre enn den som oppnås ved å fjerne den andre blandingen. Dette skyldes at temperatur differansen ikke er så stor og sammensetnings differansen er heller ikke så stor som i det andre tilfellet.

6.3.6 Optimalisering av anlegget med den siste blandingen, og uten eksisterende fødestusser som begrensning

Her oppnås den lille ekstra gevinsten ved at F34 og F30 kan flyttes ennå høyere opp i kolonnen hvor sammensetningene og temperatur passer bedre. F24 flyttes opp to plater til plate 26 da sammensetningsprofilet har skjøvet seg noe i kolonnen. F20Retur og F16 kan flyttes ytterligere nedover der de hører hjemme.

6.3.7 Optimalisering av anlegget uten den siste blandingen, og uten eskisterende fødestusser som begrensning

I hovedsak som for med blander, men F24 flyttes ikke opp i kolonnen, noe som er i samsvar med de hydrauliske begrensningene.

6.4 Reguleringsstruktur

I denne oppgaven er det modellert en destillasjonskolonne som befinner seg på Hydro Rafnes i Porsgrunn. Reguleringsstrukturen var derfor allerede gitt, men det ble allikevel foretatt en del beregninger på regulerbarheten for å få en viss indikasjon på hvorfor denne strukturen ble valgt. Ut fra resultatene er det tydelig at en LV-konfigurasjon er det beste valget selv om den har svært høye verdier i den stasjonære RGA-matrisa. DB og DV- konfigurasjonene er i seg selv uaktuelle å bruke da disse reguleringsstrukturene krever meget god nivåregulering. Dette kan bli meget vanskelig da kondensat tanken er meget stor, og er i grunn uaktuelt da destillat mengden blir bestemt av oksy-reaktoren. (L/D)/(V/B)-konfigurasjonen gitt i litteraturen er heller ikke uaktuell å bruke da nivået også her reguleres av destillatmengden. Høye RGA-elementer i LVkonfigurasjonen vil resultere i store interaksjoner mellom temperaturregulering i topp og bunn, noe som også ble resultatet i de dynamiske simuleringene. Separasjonen i kolonna er derimot så god, at den tåler en del svingninger i temperaturen uten at renhetene i topp og bunn overstiger kravene. Ut i fra sammensetningsprofilet er det tydelig at det er et stort område mellom trinn 15 og 38 der det foregår svært lite separasjon. Området kan allikevel fungere som en dekobler for å minske interaksjonene mellom temperatursløyfene i topp og bunn av kolonna.

6.5 Dynamisk simulering

6.5.1 Implementering av dynamisk modell i HYSYS

Modellen er som tidligere nevnt noe forenklet. Det er i hovedsak benyttet default dimensjonerings verdier fra HYSYS da det er muligheter for å dimensjonere meget detaljert. Da det er lagt mest vekt på å få et realistisk trykkfall antas det at de resterende default verdiene er tilfredstillende.

Trykkreguleringen i toppen av kolonnen er noe av det som er mest forenklet. Den reguleres av kondensatoren som i simuleringene er forenklet, og det er ikke tatt høyde for dette i reguleringen av kondensatoren ved å legge til dødtid, slik som det er gjordt i kokeren. I den virkelige konlonnen har de noe problemer med fluktuasjoner av trykket i toppen som påvirker temperaturen på plate 38. Dette har ikke kommet fram i simuleringene her. Reguleringen av trykket er nok for ideel i våre simuleringer.

Modellen HYSYS bruker for virkningsgraden i dynamiske simuleringer er ikke den samme som i de stasjonære simuleringene. Dette førte til at renhetene i kolonnen ble høyere og det tyder på at den dynamiske virkningsgraden er noe høy. Det burde derfor vært gjennomført nye simuleringer for å bestemme den dynamiske virkningsgraden i HYSYS. Dette er beklageligvis ikke gjennomført da de dynamiske simuleringene er forholdsvis tidkrevende.

6.5.2 Regulerings strategi for lukket sløyfe interaksjoner

På grunn av store interaksjonene som oppsto ved å bruke regulatorer tunet etter Skogestads regler måtte alternative metoder benyttes. Metoden som ble benyttet var å "detune" temperatursløyfen i topp ved å senke forsterkningen og øke integraltiden. Dette er en konservativ bruk av regulator parametre som vil kunne føre til noe slakk regulering i topp, men siden kravet i topp ikke er så strengt ble denne metoden likevel brukt.

Bruk av dekobler i dette tilfelle ble det sammen med veileder avgjort ikke ville fungere tilfredstillende. Parringene som ble gjordt er ut fra RGA-analysene de eneste mulige både fra en stasjonær synsvinkel, da RGA-elementene her var de eneste positive, og fra en dynamisk synsvinkel, da tidskonstantene til transferfunksjonene her er mindre enn for de to andre mulighetene. Parringen stemmer da også bra overens med hva sunn fornuft tilsier. En fjerde mulighet hadde vært å bruke multivariabel prediktiv kontroll(MPC), men dette er vurdert å ligge utenfor denne oppgaven og det er derfor valgt å se bort fra dette alternativet.

6.5.3 Tuning

Alle regulatorene ble implementert som PI-regulatorer da alle responsene i simuleringene ble tilnærmet å være av 1.orden. Som nevnt under resultatdelen ble PI-parameterene funnet ved hjelp av Skogestads tuningregler. Noen av disse ble korrigert noe i forhold til de beregnede verdiene fordi det kreves et visst forhold i raskheten i reguleringa mellom noen av regulatorene. I tillegg ble integralvirkningen på flowregulatorene svært stor, så denne ble redusert noe.

6.6 Temperaturreguleringen

6.6.1 Tuning

I det eksisterende anlegget brukes det en PID-regulatorer på reguleringen av damp til kokeren. Dette kommer av at varmevekslingen mellom væsken og dampen gir to tidskonstanter og dermed en 2. ordens respons, derivattiden tilordnes da til den minste tidskonstanten i følge Skogestads tuningregler. Dette blir ikke benyttet i vår simulering fordi det her blir regulert rett på energitilførselen til kokeren, altså en 1. ordens respons. Det blir på grunn av dette lagt til 1 minutt på dødtiden i kokeren, for å skape en mer realistisk verdi på forsterkningen.

Størst problemer lå det i å finne PI-parameterene for temperaturreguleringssløyfene. Forholdet mellom disse to reguleringene er kritisk for å få stabilitet i kolonna. Det ble benyttet en enkel framgangsmåte for å tune temperatursløyfa i topp. Etter at bunnsløyfa var tunet så rask som mulig, ble den beregnede forsterkning fra Skogestads regler på toppsløyfa korrigert ved å halvere forsterkningen og øke integraltida fra den minste verdien av τ_1 og 80 til den største. Ut i fra dette ble det prøvd å lese ut fra responsene på step i forstyrrelser om det var integraltid eller forsterkning som var for høy/lav. Ved å benytte tuningreglene direkte ville denne normalt hatt omtrent samme parametre som bunnsløyfa. Det ble gjort forsøk med å benytte de beregnede verdiene direkte, men som ventet ga dette ustabilitet ved step i forstyrrelsene.

6.6.2 Regulerbarhet

Det ble gjennomført en del steptester i forstyrrelsene for å kontrollere hvor bra reguleringsløyfene virket. Helt ideell regulering blir umulig i en kolonne der interaksjonene er såpass store, men reguleringen synes å virke tilfredstillende. Pga den nevnte overspesifisering, noe som nok var tatt med i beregningen da kolonnen ble dimensjonert, er renhetene ganske robuste mot temperaturendringer. Det er tydelig av disse resultatene at reguleringen er bedre med de korrigerte PI-parametrene i toppsløyfa, men at det ennå er interaksjoner. Topptemperaturen henter seg inn til setpunkt etter ca 30 minutt, mens bunntemperaturen ikke er tilbake på setpunkt før etter ca. 50 minutt.

Det ble oppgitt fra Hydro at de har problemer med at topptemperaturen driver noe. I våre simuleringer regulerer topptemperaturen svært bra selv om den som nevnt er tunet til å være relativt langsom. Bunnsløyfen bruker noe lenger tid på å regulere inn forstyrrelsene. Det ble gjort forsøk på å øke integralvirkningen, uten at dette ga bedre regulering. En forklaring på dette kan være at det kun er gjennomført stependringer i væskeføder, som vil ha større innvirkning på nedre del av kolonnen. Effekten på endringen vil bli mindre etterhvert som den beveger seg oppover i kolonnen, og slår dermed mindre ut på topptemperaturen.

6.6.3 Forandring av målepunkt

Å flytte målepunktet i topp til plate 40 gir en mer lik følsomhet for målepunktet på endringer i pådraget i begge retninger. Det blir dermed enklere å finne tuningparameter for toppsløyfen. Ut i fra resultatene ser en at reguleringa i topp nå bli raskere. Reguleringa i bunn er omtrent uforandret siden interaksjonene mellom sløyfene fortsatt vil være stor, og forstyrrelsen har like stor effekt som før.

6.6.4 Temperaturegulering med Hydro sine tuninger

Å få sammenlignet raskheten av reguleringen i de to kolonnene blir ikke helt reellt, da bunnsløyfen i det virkelige anlegget er en PID-regulator, mens det her er et noe forenklet oppsett med en PI-regulator. Det som er vanskelig å kvantifisere er effekten som derivatvirkningen har på raskheten av reguleringen i bunn. Det antas at derivatvirkningen kun påvirker de dynamiske effektene den 2. ordens responsen gir, og dermed kun sammenligner P- og I-virkningen på regulatorene.

Det som er en tydelig forskjell er at proposjonalvirkningen er større i toppsløyfen enn i bunnsløyfen hos Hydro. For å å få en raskere regulering i bunn vil det være naturlig at P-virkningen er størst i bunn.

Integralvirkningen er forholdsvis lik i begge sløyfene hos Hydro(15 min. i bunn, 20 min. i topp), mens vi har valgt å ha så stor integralvirkning som mulig ut i fra tuningreglene i bunn(17 min), og redusert den i topp(45 min).

Ut fra at det er reguleringen av temperaturen i bunn som bør være raskest mulig, anbefales det Hydro å prøve å endre parameterene på disse to regulatorene slik at bunnsløyfen blir raskere relativt til toppsløyfen.

7. KONKLUSJON

Denne oppgaven er en studie rundt HCl-kolonnen i VCM-fabrikken ved Hydro Rafnes. Kolonnen er simulert i prosess-simuleringsprogrammet HYSYS. Den ble først simulert stasjonært for å se på muligheter for energibesparelser. Den dynamiske simuleringen ble benyttet for å optimalisere reguleringen på kolonnen, spesielt med tanke på temperatursløyfene i topp og bunn.

Kolonnen som er implementert i HYSYS er dimensjonert for å gi et mest mulig likt temperaturog trykkprofil som den reelle kolonnen. Det er funnet at en total platevirkningsgrad på 0.67 funnet av Skogestad i 1981, ikke gir den beste modellen for temperaturprofilen på dagens kolonne. Dette på grunn av at modifikasjoner utført senere har endret profilet. En Murphree platevirkningsgrad på 0.885 gir en bedre modell av kolonna i HYSYS.

Det viste seg at fjerning av mikseren i 1998 har gitt en reell energigevinst, beregnet i HYSYS til å være på ca. 450 000 kroner årlig. I følge beregningene er det potensiale til å spare inn ytterligere ca. 60 000 kroner årlig ved flytting av føde F34 og F20Retur, i tillegg til å fjerne den siste mikseren. Dette vil være en økonomisk vurdering ut i fra kostnader på flytting av fødene. Tallene bør verifiseres med en simulering med mer nøyaktige driftsdata.

Fra en RGA-analyse ble det funnet at kolonnen har store interaksjoner mellom temperaturreguleringene i topp og bunn som gir ustabilitet hvis ikke tuningene på de to regulatorene er tilpasset hverandre. Temperatursløyfen i bunn må tunes noe raskere enn den i topp. Dette ble også vist i simuleringer. Dette er ikke tilfelle i dagens anlegg, og det anbefales å forsøke dette for å få en mer stabil regulering.

SYMBOLLISTE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbol	Beskrivelse	Enhet
xMolfraksjon i væskefaseyMolfraksjon i gassfaseSSeparasjonsgradNAntall trinn g_{ij} Effekten i måling i ved endringi pådrag jFFFødestrømmol/hLRefluksstrømmol/hVGass-strøm fra kokermol/hDDestillatstrømmol/hBVæskestrøm i bunnmol/hxDMolfraksjon tung komponenti destillatstrømxBMolfraksjon lett komponenti destillatstrøm λ_{ij} relativ forsterkning, gir endring ig _{ij} når de andre sløyfene lukkes τ TidskonstantminkForsterkningmin θ DødtidminKcForsterkning i regulator(P-virkning)min τ_{I} Integralid i regulator (I-virkning)min τ_{c} Lukket systems responstidmin η Platevirkningsgradmin η_{M} Murphree's platevirkningsgradMin M_{j} manipulert variabelMin	α	Relativ flyktighet	
yMolfraksjon i gassfaseSSeparasjonsgradNAntall trinn g_{ij} Effekten i måling i ved endring i pådrag jFFødestrømmol/hLRefluksstrømmol/hVGass-strøm fra kokermol/hDDestillatstrømmol/hBVæskestrøm i bunnmol/hxDMolfraksjon tung komponent i destillatstrømmol/hxBMolfraksjon tung komponent i g _{ij} når de andre sløyfene lukkesmin τ TidskonstantminkForsterkningmin k Forsterkning i regulator (P-virkning)min κ_c Forsterkning i regulator (P-virkning)min τ_1 Integraliti i regulator (I-virkning)min τ_c Lukket systems responstidmin η Platevirkningsgradmin η_M Murphree's platevirkningsgradfor η_j manipulert variabelMij	Х	Molfraksjon i væskefase	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	у	Molfraksjon i gassfase	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	Separasjonsgrad	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν	Antall trinn	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g _{ij}	Effekten i måling i ved endring	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	i pådrag j	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	Fødestrøm	mol/h
$\begin{array}{ccccc} V & Gass-strøm fra koker & mol/h \\ D & Destillatstrøm & mol/h \\ B & Væskestrøm i bunn & mol/h \\ x_D & Molfraksjon tung komponent \\ i destillatstrøm & Molfraksjon lett komponent \\ i destillatstrøm & Molfraksjon lett komponent \\ i bunnstrøm & \\ \lambda_{ij} & relativ forsterkning, gir endring i \\ g_{ij} når de andre sløyfene lukkes \\ \tau & Tidskonstant & min \\ k & Forsterkning & \\ \theta & Dødtid & min \\ K_c & Forsterkning i regulator(P-virkning) \\ \tau_I & Integraltid i regulator (I-virkning) & min \\ \tau_D & Derivattid i regulator(D-virkning) & min \\ \eta & Platevirkningsgrad \\ \eta_M & Murphree's platevirkningsgrad \\ C_i & kontrolert variabel \\ M_j & manipulert variabel \\ \end{array}$	L	Refluksstrøm	mol/h
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	Gass-strøm fra koker	mol/h
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D	Destillatstrøm	mol/h
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	В	Væskestrøm i bunn	mol/h
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	х _D	Molfraksjon tung komponent	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		i destillatstrøm	
$\begin{array}{cccc} i \ \text{bunnstrøm} \\ \lambda_{ij} & \text{relativ forsterkning, gir endring i} \\ g_{ij} \ når \ de \ andre \ sløyfene \ lukkes \\ \hline \tau & Tidskonstant & min \\ k & Forsterkning \\ \theta & Dødtid & min \\ \hline K_c & Forsterkning \ i \ regulator(P-virkning) \\ \hline \tau_I & Integraltid \ i \ regulator(I-virkning) & min \\ \hline \tau_D & Derivattid \ i \ regulator(D-virkning) & min \\ \hline \tau_c & Lukket \ systems \ responstid & min \\ \eta & Platevirkningsgrad \\ \eta_M & Murphree's \ platevirkningsgrad \\ \hline C_i & kontrolert \ variabel \\ \hline M_j & manipulert \ variabel \\ \end{array}$	x _B	Molfraksjon lett komponent	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		i bunnstrøm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	λ_{ij}	relativ forsterkning, gir endring i	
$\begin{array}{ccccc} \tau & Tidskonstant & min \\ k & Forsterkning \\ \theta & Dødtid & min \\ K_c & Forsterkning i regulator(P-virkning) \\ \tau_I & Integraltid i regulator (I-virkning) & min \\ \tau_D & Derivattid i regulator(D-virkning) & min \\ \tau_c & Lukket systems responstid & min \\ \eta & Platevirkningsgrad \\ \eta_M & Murphree's platevirkningsgrad \\ C_i & kontrolert variabel \\ M_j & manipulert variabel \end{array}$	·	g _{ij} når de andre sløyfene lukkes	
$ \begin{array}{cccc} k & & Forsterkning \\ \theta & & Dødtid & min \\ K_c & Forsterkning i regulator(P-virkning) \\ \tau_I & Integraltid i regulator (I-virkning) & min \\ \tau_D & Derivattid i regulator(D-virkning) & min \\ \tau_c & Lukket systems responstid & min \\ \eta & Platevirkningsgrad \\ \eta_M & Murphree's platevirkningsgrad \\ C_i & kontrolert variabel \\ M_j & manipulert variabel \\ \end{array} $	τ	Tidskonstant	min
$\begin{array}{cccc} \theta & & D \not{o} dtid & min \\ K_c & Forsterkning i regulator(P-virkning) \\ \tau_I & Integraltid i regulator (I-virkning) & min \\ \tau_D & Derivattid i regulator(D-virkning) & min \\ \tau_c & Lukket systems responstid & min \\ \eta & Platevirkningsgrad \\ \eta_M & Murphree's platevirkningsgrad \\ C_i & kontrolert variabel \\ M_j & manipulert variabel \end{array}$	k	Forsterkning	
$\begin{array}{cccc} K_c & Forsterkning i regulator(P-virkning) \\ \tau_I & Integraltid i regulator (I-virkning) & min \\ \tau_D & Derivattid i regulator(D-virkning) & min \\ \tau_c & Lukket systems responstid & min \\ \eta & Platevirkningsgrad \\ \eta_M & Murphree's platevirkningsgrad \\ C_i & kontrolert variabel \\ M_j & manipulert variabel \end{array}$	θ	Dødtid	min
$ \begin{array}{cccc} \tau_{I} & & Integraltid i regulator (I-virkning) & min \\ \tau_{D} & & Derivattid i regulator (D-virkning) & min \\ \tau_{c} & & Lukket systems responstid & min \\ \eta & & Platevirkningsgrad \\ \eta_{M} & & Murphree's platevirkningsgrad \\ C_{i} & & kontrolert variabel \\ M_{j} & & manipulert variabel \end{array} $	K _c	Forsterkning i regulator(P-virkning)	
$\begin{array}{cccc} \tau_{D} & Derivattid i regulator(D-virkning) & min \\ \tau_{c} & Lukket systems responstid & min \\ \eta & Platevirkningsgrad \\ \eta_{M} & Murphree's platevirkningsgrad \\ C_{i} & kontrolert variabel \\ M_{j} & manipulert variabel \end{array}$	τ_{I}	Integraltid i regulator (I-virkning)	min
$\begin{array}{lll} \tau_c & \mbox{Lukket systems responstid} & \mbox{min} \\ \eta & \mbox{Platevirkningsgrad} \\ \eta_M & \mbox{Murphree's platevirkningsgrad} \\ C_i & \mbox{kontrolert variabel} \\ M_j & \mbox{manipulert variabel} \end{array}$	$\tau_{\rm D}$	Derivattid i regulator(D-virkning)	min
$\begin{array}{ll} \eta & & Platevirkningsgrad \\ \eta_M & & Murphree's platevirkningsgrad \\ C_i & & kontrolert variabel \\ M_j & & manipulert variabel \end{array}$	τ_{c}	Lukket systems responstid	min
$\begin{array}{ll} \eta_M & Murphree's platevirkningsgrad \\ C_i & kontrolert variabel \\ M_j & manipulert variabel \end{array}$	η	Platevirkningsgrad	
C _i kontrolert variabel M _j manipulert variabel	η_{M}	Murphree's platevirkningsgrad	
M _j manipulert variabel	C _i	kontrolert variabel	
	Mj	manipulert variabel	

LITTERATURLISTE

- [1] Skogestad, S., Rapport 53/81, "Simulering av HCl kolonnen(C1501) og oppstrøms separasjonsanlegg(1400-del), del 1", *Hydro Forskningssenter*, 1981.
- [2] Skogestad, S., Rapport 53/81, "Simulering av HCl kolonnen(C1501) og oppstrøms separasjonsanlegg(1400-del), del 2", *Hydro Forskningssenter*, 1981.
- [3] Sauar, E., " Process Design based on Optimum Entropy Production", Diplomoppgave, *Institutt for Fysikalsk Kjemi, NTNU*, 1995.
- [4] Skogestad, S., "Tillegg til fag 52041 Prosessregulering", Institutt for Kjemisk Prosessteknologi, NTNU,1999.
- [5] Roald, A. S., "Kjemiteknikk II", 1997.
- [6] Skogestad, S., Lundstrøm, P. og Jacobsen, E. W.," Selecting the Best Distillation Control Configuration", *AlChE J.*, **36**, 753 (Mai 1990).
- [7] Skogestad, S., "Dynamics and Control of Distillation Columns: A Tutorial Introduction", *Trans IChemE*, **75**, A539 (September 1997).
- [8] http://www2.hydro.com/petro/no/rafnes/053.html, lastet ned fra nett 20.02.2000.
- [9] Seeborg, D. E, Edgard, T. F og Mellichamp, D. A., "Process dynamics and control", John Wiley & Sons, Inc. New York (1989).
- [10] HYSYS Manual, steady state, http://kikp.chembio.ntnu.no/drift/documentation/ hysys_plant /doc/s_state.pdf.
- [11] HYSYS Manual, dynamisk, http://kikp.chembio.ntnu.no/drift/documentation/ hysys_plant/doc/dynamics.pdf.
- [12] Halvorsen, I. J. og Skogestad, S., "Distillation Theory", *Institutt for kjemiteknikk, NTNU*, September 1999.

BILAG

Α	Flytskjema for kolonnen før ombygginger i 1998	57	
	A-1 Forklanng ul Flytskjema	38	
B	Flytskjema for kolonnen etter ombygginger i 1998B-1Forklaring til flytskjema	59 60	
С	Flytskjema for kolonnen siste mixer fjernet C-1 Forklaring til flytskjema	61 62	
D	Driftsdata	63	
Е	Temperatur profiler	65	
F	Energibesparelser	69	
G	Føder og sammensetning	72	
Н	Tuningsparametere	84	
Ι	Holdup i kolonna	85	
J	Tuningsresponser 8		
K	Simulering av forstyrrelser 9		
L	Renheter	93	
Μ	Økonomi beregninger	94	
N	RGA-beregninger	95	
0	Transferfunksjoner i kolonna	96	
Р	Inputfil for aspen simuleringer	99	
Q	Korrespondanse med HydroQ-1Mail: Definering av oppgaveQ-2Mail: ProsessforklaringQ-3Mail: Svar på spørsmål rundt energidelenQ-4Mail: Forstyrrelser, data fra HoneywellQ-5Mail: RegulatorparametereQ-6Mail: Svar på spørsmål, renheter, priserQ-7Mail: Modifikasjoner	100 100 102 103 105 107 110 112	

R Flytskjema av det virkelige anlegget

A FLYTSKJEMA FOR KOLONNEN FØR OMBYGGINGER I 1998

A-1 Forklaring til Flytskjema

Strømmene inn på flytskjemaet kommer fra andre deler av anlegget:

Strøm H1402: Gass-strøm fra toppen av bråkjølerne C-1401A/B/C.Strøm H1404: Væske strøm fra tank V-1403.Strøm V1402: Gass-strøm fra tank V-1402.Strøm F16Retur:Væske fra kondensator for HCl-stripper, H-1509.

Det er gjort en del forenklinger/sammenslåinger i flytskjemaet i forhold til det virkelige anlegget:

- 1) Det er to varmevekslere mellom flashtank V-1401 og flashtank V-1404, H-1405A/B. Disse inngår i flashtank V-1404 på flytskjemaet.
- 2) Varmeveksler H-1402 består egentlig av to varmevekslere i parallell, H-1402A og B. TIC-429 styrer dermed splitten over begge disse to, og ikke effekt slik som på flytskjemaet.
- 3) Det er lagt inn FIC'er på strøm på alle strømmer inn på flytskjemaet, for å kunne kontrollere mengden som strømmer inn på prosessen. Disse eksisterer ikke på det reelle anlegget.

B FLYTSKJEMA FOR KOLONNEN ETTER OMBYGGINGER I 1998

B-1 Forklaring til flytskjema

Strømmene inn på flytskjemaet kommer fra andre deler av anlegget:

Strøm H1402:Gass fra toppen av bråkjølerne C-1401A/B/C.Strøm H1404:Væske fra tank V-1403.Strøm F16:Gass fra tank V-1402.Strøm F20Retur:Væske fra kondensator for HCl-stripper, H-1509.

Det er gjort en del forenklinger/sammenslåinger i flytskjemaet i forhold til det virkelige anlegget:

- 4) Det er to varmevekslere mellom flashtank V-1401 og flashtank V-1404, H-1405A/B. Disse inngår i flashtank V-1404 på flytskjemaet.
- 5) Varmeveksler H-1402 består egentlig av to varmevekslere i parallell, H-1402A og B. TIC-429 styrer dermed splitten over begge disse to, og ikke effekt slik som på flytskjemaet.
- 6) Det er lagt inn FIC'er på strøm på alle strømmer inn på flytskjemaet, for å kunne kontrollere mengden som strømmer inn på prosessen. Disse eksisterer ikke på det reelle anlegget.

С FLYTSKJEMA FOR KOLONNEN SISTE MIXER FJERNET

C-1 Forklaring til flytskjema

Strømmene inn på flytskjemaet kommer fra andre deler av anlegget:

Strøm H1402:Gass fra toppen av bråkjølerne C-1401A/B/C.Strøm H1404:Væske fra tank V-1403.Strøm F16:Gass fra tank V-1402.Strøm F20Retur:Væske fra kondensator for HCl-stripper, H-1509.

Det er gjort en del forenklinger/sammenslåinger i flytskjemaet i forhold til det virkelige anlegget:

- 7) Det er to varmevekslere mellom flashtank V-1401 og flashtank V-1404, H-1405A/B. Disse inngår i flashtank V-1404 på flytskjemaet.
- 8) Varmeveksler H-1402 består egentlig av to varmevekslere i parallell, H-1402A og B. TIC-429 styrer dermed splitten over begge disse to, og ikke effekt slik som på flytskjemaet.
- 9) Det er lagt inn FIC'er på strøm på alle strømmer inn på flytskjemaet, for å kunne kontrollere mengden som strømmer inn på prosessen. Disse eksisterer ikke på det reelle anlegget.

D DRIFTSDATA

Tabell D-1	Driftsdata fra 26/8-81 ^[2]	

Målepunkt.	Temperatur [°C]
Bunn	101
Plate 10	88
Plate 15	89
Plate 30	32
Plate 38	14
Topp	-25

Tabell D-2	Driftsdata fra	26/8-81 ^[2]
	DINGUNUN	

Cracker omsetning	51.9%
Trykk i topp	12.1bar
Trykk i bunn	12.4bar
HCl i bunn	0.9ppm.vekt
VCM i topp	5ppm.vol

Driftsdataene fra 1981 er hentet fra et studie utført av Skogestad^[2]. Dataene fra 2/3-2000 er oppgitte data fra Hydro Rafnes.

Tabell D-3Driftsdata fra 2/3-00

Målepunkt	Temperatur [°C]
Bunn	102.6
Plate 10	92.5
Plate 15	71.7
Plate 30	27.7
Plate 38	13.3
Topp	-23.4

Tabell D-4Driftsdata fra 2/3-00

Cracker omsetning	55%
Trykk i topp	12.1bar
Trykk i bunn	12.45bar

Bilag D

E TEMPERATUR PROFILER

Figur E.1 Temperaturprofil for kolonnen før 1998, simulering med 30 trinn og 45 trinn med virkningsgrad lik 0.67. Driftsdata fra 1981, tabell D-2.

Figur E.2 Temperaturprofil for kolonnen før 1998 ved simulering med 30 trinn og 45 trinn med virkningsgrad lik 0.885. Driftsdata fra 1981, tabell D-2.

Figur E.3 Temperaturprofil for kolonnen før 1998 ved simulering med 30 trinn og 45 trinn med virkningsgrad lik 0.81 i toppen og 0.60 i bunnen. Driftsdata fra 1981, tabell D-2.

Figur E.4 Temperaturprofil for kolonnen før 1989 ved simulering med 30 trinn og 45 trinn med virkningsgrad lik 0.81 i toppen og 0.60 i bunnen. Driftsdata fra 2000, tabell D-3.Før Sauar med delt og 0.885.

F ENERGIBESPARELSER

 Tabell F-1
 Anlegget uten modifikasjoner (før 98)

	plate	Energi koker [kJ/h]	Energi kondensator [kJ/h]
F34	34		
F24	24	5072	2453
F30	30	5072	2433
F16RETUR	16		

Tabell F-2Anlegget med F34 og F30 byttet (før 98)

	plate	Energi koker [kJ/h]	Energi kondensator [kJ/h]
F34	34		
F24	24	5090	2461
F30	30	5080	2401
F16RETUR	16		

 Tabell F-3
 Anlegget etter modifikasjoner foreslått av Sauar implementer i 98.

	Trinn (plate)	Energi koker [kW]	Energi kondensator [kW]
F34	34		
F24	24		
F30	30	4699	2079
F20RETUR	20		
F16	16		

	plate	Energi koker [kW]	Energi kondensator [kW]
F34	34		
F24	24		
F30	34	4680	2060
F20RETUR	16		
F16	16		

Tabell F-4Anlegget etter modifikasjoner optimalisert med hensyn på fødepunkts plassering
basert på mulige fødestusser.

Tabell F-5Anlegget etter modifikasjoner optimalisert med hensyn på fødepunkts plassering
basert på mulige fødestusser. Siste mixer er fjernet.

	plate	Energi koker [kW]	Energi kondensator [kW]
F34	34	4662	2042
F24	24		
F30	34		
F20RETUR	16		
F16	16		
H1404	34		

Tabell F-6Anlegget etter modifikasjoner optimalisert med hensyn på fødepunkts plassering uten
å ta hensyn til fødestusser.

	plate	Energi koker [kW]	Energi kondensator [kW]
F34	38		
F24	26		
F30	37	4665	2045
F20RETUR	4		
F16	14		
	plate	Energi koker [kW]	Energi kondensator [kW]
----------	-------	-------------------	-------------------------
F34	38		
F24	24		
F30	34	4650	2020
F20RETUR	4	4030	2050
F16	14		
H1402	34		

Tabell F-7Anlegget etter modifikasjoner optimalisert med hensyn på fødepunkts plassering uten
å ta hensyn til fødestusser. Siste mixer er fjernet.

G FØDER OG SAMMENSETNING

Føde	Temperatur [°C]	Flow [kmol/t]	HCl	VCM	EDC	Damp fraksjon
F34	26.54	599.35	0.7783	0.1779	0.0438	0.9192
F30	19.71	328.83	0.3916	0.5471	0.0613	0.0659
F24	58.07	1557.57	0.1976	0.3960	0.4064	0.0640
F16Retur	35.01	80.02	0.0003	0.9997	0.0000	0.0000

 Tabell G-1
 Føder i anlegget uten modifikasjoner (før 98)

Tabell G-2 Sammensetning og temperatur for kolonnen uten modifikasjoner (før 98), simulering 1

			Γ	Damp		Væske			
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HC1	VCM	EDC	Molar flow
Kondensator	-25.86	1.0000	0.0000	0.0000	902.9995	0.9999	0.0001	0.0000	645.9113
45	-25.07	0.9999	0.0001	0.0000	1548.9107	0.9993	0.0007	0.0000	647.9091
44	-24.95	0.9997	0.0003	0.0000	1550.9085	0.9968	0.0032	0.0000	645.5622
43	-24.48	0.9987	0.0013	0.0000	1548.5617	0.9854	0.0146	0.0000	634.6697
42	-22.41	0.9940	0.0060	0.0000	1537.6691	0.9361	0.0639	0.0000	595.0685
41	-14.84	0.9746	0.0254	0.0000	1498.0680	0.7830	0.2170	0.0000	519.8900
40	-0.13	0.9207	0.0793	0.0000	1422.8895	0.5587	0.4413	0.0000	463.0480
39	12.66	0.8504	0.1496	0.0000	1366.0474	0.4122	0.5878	0.0000	444.2032
38	18.98	0.8062	0.1938	0.0000	1347.2026	0.3519	0.6480	0.0000	440.2400
37	21.40	0.7876	0.2124	0.0000	1343.2394	0.3308	0.6691	0.0001	439.3817
36	22.27	0.7810	0.2190	0.0000	1342.3812	0.3237	0.6758	0.0005	438.4804
35	22.77	0.7789	0.2209	0.0002	1341.4799	0.3208	0.6758	0.0034	425.9220
34	26.66	0.7823	0.2166	0.0011	1328.9215	0.3226	0.6200	0.0573	473.9045
33	27.15	0.7580	0.2408	0.0012	777.5495	0.2964	0.6454	0.0582	467.7834
32	28.54	0.7456	0.2531	0.0013	771.4284	0.2854	0.6563	0.0583	467.9060
31	29.31	0.7388	0.2598	0.0013	771.5509	0.2797	0.6619	0.0584	468.3570
30	29.57	0.7351	0.2635	0.0014	772.0020	0.2800	0.6587	0.0614	776.7173
29	33.11	0.6988	0.2995	0.0017	751.5272	0.2524	0.6862	0.0615	778.2454
28	35.94	0.6695	0.3286	0.0019	753.0553	0.2325	0.7060	0.0615	780.6339
27	37.98	0.6476	0.3503	0.0021	755.4438	0.2188	0.7196	0.0617	782.5201
26	39.45	0.6324	0.3652	0.0024	757.3300	0.2096	0.7273	0.0632	782.1591
25	41.11	0.6231	0.3729	0.0040	756.9690	0.2025	0.7230	0.0745	759.0859
24	52.69	0.6288	0.3574	0.0138	733.8958	0.1790	0.5107	0.3103	2217.9759
23	52.28	0.6249	0.3612	0.0139	635.2192	0.1763	0.5123	0.3114	2209.9421
22	52.49	0.6213	0.3647	0.0140	627.1854	0.1748	0.5139	0.3114	2210.7705

			Γ	Damp		Væske			
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
21	52.95	0.6153	0.3705	0.0143	628.0139	0.1723	0.5166	0.3111	2213.6445
20	53.75	0.6046	0.3807	0.0148	630.8879	0.1680	0.5213	0.3107	2218.6960
19	55.09	0.5862	0.3983	0.0156	635.9393	0.1608	0.5293	0.3099	2227.3858
18	57.25	0.5556	0.4275	0.0169	644.6292	0.1492	0.5422	0.3086	2242.0576
17	60.50	0.5075	0.4735	0.0190	659.3009	0.1322	0.5616	0.3061	2266.7114
16	64.36	0.4382	0.5405	0.0213	683.9548	0.1100	0.5983	0.2917	2391.5581
15	69.29	0.3610	0.6140	0.0250	728.7798	0.0871	0.6246	0.2883	2434.6424
14	74.43	0.2747	0.6961	0.0292	771.8642	0.0637	0.6517	0.2846	2483.0255
13	79.12	0.1928	0.7739	0.0334	820.2472	0.0432	0.6757	0.2810	2531.2173
12	82.86	0.1259	0.8372	0.0369	868.4390	0.0275	0.6944	0.2780	2572.6556
11	85.53	0.0779	0.8827	0.0394	909.8773	0.0168	0.7075	0.2758	2603.9658
10	87.28	0.0463	0.9125	0.0411	941.1875	0.0099	0.7159	0.2742	2625.4085
9	88.36	0.0269	0.9309	0.0422	962.6303	0.0057	0.7210	0.2733	2639.1622
8	89.02	0.0154	0.9418	0.0429	976.3839	0.0033	0.7241	0.2727	2647.6700
7	89.42	0.0087	0.9480	0.0432	984.8917	0.0018	0.7258	0.2723	2652.8742
6	89.66	0.0049	0.9516	0.0435	990.0959	0.0010	0.7269	0.2721	2656.0908
5	89.81	0.0027	0.9537	0.0436	993.3126	0.0006	0.7275	0.2720	2658.1221
4	89.91	0.0015	0.9548	0.0437	995.3439	0.0003	0.7277	0.2720	2659.3428
3	90.02	0.0008	0.9552	0.0440	996.5645	0.0002	0.7275	0.2723	2659.4315
2	90.25	0.0004	0.9545	0.0451	996.6533	0.0001	0.7252	0.2747	2655.1903
1	91.32	0.0002	0.9494	0.0504	992.4120	0.0000	0.7128	0.2871	2621.9488
Koker	99.30	0.0001	0.9234	0.0765	959.1705	0.0000	0.5914	0.4086	1662.7783

Tabell G-2Sammensetning og temperatur for kolonnen uten modifikasjoner (før 98), simulering 1

			Ι	Damp		Væske			
Plate	Temperatur [°C]	HCl	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
Kondensator	-25.8597	1.0000	0.0000	0.0000	902.9995	0.9999	0.0001	0.0000	647.9636
45	-25.0706	0.9999	0.0001	0.0000	1550.9631	0.9993	0.0007	0.0000	649.9681
44	-24.9458	0.9997	0.0003	0.0000	1552.9675	0.9968	0.0032	0.0000	647.6112
43	-24.4750	0.9987	0.0013	0.0000	1550.6106	0.9853	0.0147	0.0000	636.6630
42	-22.4020	0.9939	0.0061	0.0000	1539.6625	0.9359	0.0641	0.0000	596.8505
41	-14.8078	0.9745	0.0255	0.0000	1499.8500	0.7823	0.2177	0.0000	521.3588
40	-0.0535	0.9203	0.0797	0.0000	1424.3582	0.5577	0.4423	0.0000	464.4273
39	12.7457	0.8498	0.1502	0.0000	1367.4268	0.4113	0.5887	0.0000	445.6314
38	19.0637	0.8055	0.1945	0.0000	1348.6309	0.3512	0.6488	0.0000	441.7174
37	21.4829	0.7869	0.2131	0.0000	1344.7169	0.3301	0.6699	0.0000	440.9220
36	22.3441	0.7802	0.2198	0.0000	1343.9215	0.3230	0.6767	0.0003	440.4934
35	22.7138	0.7780	0.2219	0.0001	1343.4929	0.3205	0.6779	0.0016	437.3476
34	23.7040	0.7783	0.2212	0.0005	1340.3470	0.3188	0.6532	0.0280	744.3969
33	24.9618	0.7671	0.2323	0.0005	1318.5614	0.3077	0.6641	0.0281	743.9116
32	25.6983	0.7611	0.2384	0.0006	1318.0760	0.3020	0.6696	0.0283	743.5116
31	26.2165	0.7580	0.2413	0.0007	1317.6760	0.2988	0.6714	0.0298	734.1390
30	29.3516	0.7594	0.2393	0.0013	1308.3035	0.3027	0.6368	0.0604	787.5431
29	31.4214	0.7164	0.2820	0.0015	762.3530	0.2654	0.6732	0.0613	778.9516
28	34.6904	0.6826	0.3156	0.0018	753.7616	0.2413	0.6974	0.0614	781.0629
27	37.1670	0.6564	0.3416	0.0020	755.8728	0.2243	0.7142	0.0616	783.1982
26	38.9693	0.6377	0.3599	0.0024	758.0081	0.2128	0.7242	0.0631	783.1341
25	40.8507	0.6258	0.3702	0.0039	757.9440	0.2042	0.7215	0.0743	760.2754
24	52.5962	0.6298	0.3565	0.0137	735.0853	0.1795	0.5104	0.3101	2218.9074
23	52.1776	0.6260	0.3602	0.0138	636.1508	0.1769	0.5119	0.3113	2210.8607
22	52.3818	0.6225	0.3636	0.0139	628.1040	0.1753	0.5135	0.3112	2211.7086
21	52.8329	0.6165	0.3693	0.0142	628.9519	0.1729	0.5161	0.3110	2214.6340
20	53.6189	0.6060	0.3793	0.0147	631.8773	0.1687	0.5208	0.3105	2219.7593
19	54.9462	0.5878	0.3967	0.0155	637.0027	0.1615	0.5287	0.3097	2228.4905
18	57.0986	0.5575	0.4257	0.0168	645.7339	0.1500	0.5415	0.3084	2243.1400
17	60.3353	0.5096	0.4715	0.0189	660.3834	0.1330	0.5610	0.3060	2267.6834
16	64.2079	0.4404	0.5384	0.0212	684.9268	0.1108	0.5977	0.2915	2392.3782
15	69.1395	0.3633	0.6119	0.0248	729.5999	0.0878	0.6240	0.2882	2435.3527
14	74.3026	0.2767	0.6942	0.0291	772.5744	0.0642	0.6513	0.2845	2483.7398
13	79.0290	0.1943	0.7725	0.0333	820.9615	0.0436	0.6755	0.2809	2532.0640
12	82.7997	0.1269	0.8363	0.0368	869.2857	0.0278	0.6943	0.2779	2573.7037
11	85.4859	0.0785	0.8822	0.0394	910.9254	0.0169	0.7075	0.2756	2605.2085
10	87.2483	0.0467	0.9122	0.0411	942.4302	0.0100	0.7159	0.2741	2626.7974

Tabell G-3Sammensetning og temperatur for kolonnen med F34 og F30 byttet (før 98), simulering 2

			Γ	Damp		Væske			
Plate	Temperatur	HCl	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
	[]								
9	88.3449	0.0271	0.9307	0.0422	964.0192	0.0057	0.7211	0.2731	2640.6450
8	89.0078	0.0155	0.9417	0.0428	977.8667	0.0033	0.7242	0.2725	2649.2073
7	89.4053	0.0088	0.9480	0.0432	986.4290	0.0018	0.7260	0.2722	2654.4411
6	89.6463	0.0049	0.9516	0.0434	991.6628	0.0010	0.7270	0.2719	2657.6730
5	89.7980	0.0027	0.9537	0.0436	994.8948	0.0006	0.7276	0.2718	2659.7120
4	89.9037	0.0015	0.9548	0.0437	996.9337	0.0003	0.7279	0.2718	2660.9358
3	90.0086	0.0008	0.9552	0.0440	998.1576	0.0002	0.7276	0.2722	2661.0233
2	90.2449	0.0004	0.9545	0.0450	998.2450	0.0001	0.7254	0.2746	2656.7671
1	91.3145	0.0002	0.9494	0.0504	993.9888	0.0000	0.7130	0.2870	2623.4356
Koker	99.3046	0.0001	0.9234	0.0765	960.6573	0.0000	0.5914	0.4086	1662.7783

Tabell G-3Sammensetning og temperatur for kolonnen med F34 og F30 byttet (før 98), simulering 2

 Tabell G-4
 Føder i anlegget etter modifikasjoner i 1998

Føde	Temperatur [°C]	Flow [kmol/t]	HCL	VCM	EDC	Damp fraksjon
F34	10.16	560.98	0.8233	0.1756	0.0011	0.8802
F30	19.71	328.83	0.3916	0.5471	0.0613	0.0659
F24	58.07	1557.57	0.1976	0.3960	0.4064	0.0640
F20Retur	35.01	80.02	0.0003	0.9997	0.0000	0.0000
F16	173.91	38.36	0.1205	0.2120	0.6675	1.0000

			Γ	Damp		Væske			
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
Kondesator	-25.85969764	1.0000	0.0000	0.0000	902.9933	0.9999	0.0001	0.0000	547.3329
45	-25.07083372	0.9999	0.0001	0.0000	1450.3262	0.9994	0.0006	0.0000	549.0095
44	-24.95605681	0.9998	0.0002	0.0000	1452.0028	0.9971	0.0029	0.0000	547.1365
43	-24.54823593	0.9989	0.0011	0.0000	1450.1298	0.9871	0.0129	0.0000	538.8348
42	-22.84705189	0.9952	0.0048	0.0000	1441.8281	0.9460	0.0540	0.0000	509.0741
41	-16.72769889	0.9805	0.0195	0.0000	1412.0674	0.8174	0.1826	0.0000	448.9717
40	-4.127089432	0.9394	0.0606	0.0000	1351.9650	0.6121	0.3879	0.0000	397.0875
39	7.90703203	0.8815	0.1185	0.0000	1300.0808	0.4621	0.5379	0.0000	376.2449
38	14.34422629	0.8418	0.1582	0.0000	1279.2382	0.3952	0.6048	0.0000	370.6617
37	16.93549788	0.8240	0.1760	0.0000	1273.6550	0.3707	0.6293	0.0000	369.2184
36	17.87910775	0.8174	0.1826	0.0000	1272.2117	0.3623	0.6377	0.0000	368.7000
35	18.25685681	0.8151	0.1849	0.0000	1271.6933	0.3593	0.6406	0.0001	364.3242
34	19.83936145	0.8158	0.1842	0.0000	1267.3175	0.3684	0.6301	0.0015	441.6877
33	23.25579692	0.7705	0.2295	0.0000	783.7037	0.3168	0.6816	0.0016	435.0686
32	26.1500291	0.7451	0.2549	0.0000	777.0845	0.2930	0.7053	0.0017	434.7650
31	27.67582885	0.7319	0.2680	0.0001	776.7810	0.2814	0.7159	0.0027	433.3913
30	29.06852595	0.7262	0.2731	0.0007	775.4073	0.2775	0.6936	0.0289	741.9896
29	32.89000395	0.6863	0.3129	0.0008	755.1705	0.2477	0.7234	0.0289	743.4647
28	35.72200638	0.6562	0.3428	0.0009	756.6457	0.2277	0.7433	0.0290	745.6668
27	37.6272303	0.6354	0.3636	0.0010	758.8478	0.2149	0.7559	0.0292	747.2405
26	38.92763866	0.6220	0.3767	0.0013	760.4215	0.2068	0.7623	0.0309	746.3963
25	40.45936624	0.6145	0.3826	0.0029	759.5773	0.2009	0.7564	0.0428	720.7096
24	52.80561643	0.6229	0.3635	0.0137	733.8905	0.1773	0.5188	0.3039	2180.3246
23	52.67281709	0.6150	0.3711	0.0139	635.9390	0.1730	0.5222	0.3049	2174.1268
22	53.37153601	0.6046	0.3811	0.0143	629.7412	0.1687	0.5268	0.3045	2178.1057
21	54.60656133	0.5871	0.3979	0.0150	633.7201	0.1618	0.5347	0.3035	2187.1873
20	56.08761803	0.5579	0.4266	0.0155	642.8017	0.1512	0.5585	0.2903	2290.2359
19	58.35103191	0.5268	0.4563	0.0168	665.8287	0.1400	0.5710	0.2890	2307.0602
18	61.50949826	0.4799	0.5012	0.0189	682.6530	0.1239	0.5889	0.2872	2330.3011
17	65.72387836	0.4154	0.5625	0.0221	705.8939	0.1033	0.6113	0.2854	2360.2073
16	71.84012206	0.3375	0.6354	0.0271	735.8001	0.0796	0.6262	0.2941	2385.6065
15	75.73373371	0.2628	0.7063	0.0308	722.8343	0.0600	0.6485	0.2916	2419.6629
14	79.70128469	0.1916	0.7738	0.0346	756.8907	0.0425	0.6690	0.2885	2459.4350
13	83.04890232	0.1312	0.8310	0.0378	796.6628	0.0285	0.6858	0.2857	2495.5223
12	85.57244676	0.0853	0.8744	0.0403	832.7501	0.0182	0.6983	0.2835	2524.2640
11	87.32693233	0.0534	0.9045	0.0421	861.4918	0.0113	0.7067	0.2819	2545.0876
10	88.48134452	0.0326	0.9241	0.0433	882.3154	0.0069	0.7123	0.2809	2559.2083

Tabell G-5Sammensetning og temperatur for kolonnen etter modifikasjoner i 1998, simulering 3

		Damp				Væske			
Plate	Temperatur	HCl	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
	[°C]								
9	89.21613402	0.0196	0.9364	0.0440	896.4361	0.0041	0.7157	0.2802	2568.4021
8	89.67697477	0.0116	0.9439	0.0445	905.6299	0.0024	0.7178	0.2798	2574.2788
7	89.96647126	0.0068	0.9484	0.0448	911.5066	0.0014	0.7191	0.2795	2578.0404
6	90.15170985	0.0040	0.9510	0.0450	915.2682	0.0008	0.7199	0.2793	2580.4940
5	90.27526045	0.0023	0.9526	0.0451	917.7218	0.0005	0.7203	0.2792	2582.1366
4	90.36655817	0.0013	0.9535	0.0452	919.3645	0.0003	0.7205	0.2792	2583.1878
3	90.46154755	0.0008	0.9538	0.0454	920.4156	0.0002	0.7203	0.2795	2583.3257
2	90.67873275	0.0004	0.9531	0.0464	920.5535	0.0001	0.7183	0.2816	2579.7741
1	91.67375749	0.0002	0.9483	0.0515	917.0019	0.0000	0.7070	0.2930	2550.7383
Koker	99.30466393	0.0001	0.9234	0.0765	887.9661	0.0000	0.5914	0.4086	1662.7722

Tabell G-5Sammensetning og temperatur for kolonnen etter modifikasjoner i 1998, simulering 3

Tabell G-6	Sammensetning og temperatur for kolonnen optimalisert med hesyn på mulige fødestusser,
	simulering 4

			Γ	Damp			Væske			
Plate	Temperatur	HC1	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow	
	[°C]									
Kondensator	-25.8597	1.0000	0.0000	0.0000	902.9933	0.9999	0.0001	0.0000	542.2926	
45	-25.0709	0.9999	0.0001	0.0000	1445.2859	0.9994	0.0006	0.0000	543.9527	
44	-24.9567	0.9998	0.0002	0.0000	1446.9460	0.9971	0.0029	0.0000	542.1030	
43	-24.5524	0.9989	0.0011	0.0000	1445.0963	0.9872	0.0128	0.0000	533.9271	
42	-22.8714	0.9953	0.0047	0.0000	1436.9204	0.9466	0.0534	0.0000	504.6446	
41	-16.8314	0.9808	0.0192	0.0000	1407.6379	0.8194	0.1806	0.0000	445.2931	
40	-4.3538	0.9403	0.0597	0.0000	1348.2864	0.6153	0.3847	0.0000	393.6638	
39	7.6301	0.8832	0.1168	0.0000	1296.6571	0.4651	0.5349	0.0000	372.7219	
38	14.0731	0.8437	0.1563	0.0000	1275.7153	0.3979	0.6021	0.0000	367.0678	
37	16.6781	0.8260	0.1740	0.0000	1270.0611	0.3731	0.6268	0.0000	365.5859	
36	17.6385	0.8193	0.1806	0.0000	1268.5792	0.3645	0.6352	0.0002	364.8392	
35	18.0869	0.8171	0.1828	0.0001	1267.8326	0.3613	0.6372	0.0015	357.4634	
34	20.6216	0.8189	0.1807	0.0004	1260.4567	0.3679	0.6037	0.0284	747.3399	
33	23.9468	0.7722	0.2272	0.0005	760.5208	0.3170	0.6540	0.0289	736.7914	
32	28.6996	0.7280	0.2714	0.0007	749.9724	0.2784	0.6925	0.0290	737.3407	
31	32.5364	0.6897	0.3094	0.0008	750.5217	0.2498	0.7211	0.0291	739.3365	
30	35.3068	0.6605	0.3386	0.0009	752.5175	0.2302	0.7407	0.0291	741.4784	
29	37.1747	0.6401	0.3589	0.0010	754.6593	0.2175	0.7534	0.0290	743.2423	
28	38.3830	0.6267	0.3723	0.0010	756.4233	0.2096	0.7614	0.0291	744.4925	
27	39.1566	0.6182	0.3807	0.0011	757.6735	0.2047	0.7660	0.0293	745.1022	
26	39.7220	0.6131	0.3856	0.0014	758.2832	0.2016	0.7674	0.0310	743.5146	

			Γ	Damp		Væske			
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HC1	VCM	EDC	Molar flow
25	40.7952	0.6109	0.3861	0.0030	756.6956	0.1987	0.7583	0.0429	717.4117
24	52.8681	0.6227	0.3636	0.0137	730.5927	0.1770	0.5186	0.3043	2176.9783
23	52.6134	0.6165	0.3696	0.0139	632.5927	0.1735	0.5212	0.3054	2170.0390
22	53.1060	0.6090	0.3768	0.0142	625.6534	0.1703	0.5245	0.3052	2172.6390
21	54.0336	0.5964	0.3889	0.0147	628.2534	0.1653	0.5301	0.3047	2178.5019
20	55.5695	0.5751	0.4093	0.0157	634.1163	0.1570	0.5392	0.3038	2188.4302
19	57.9840	0.5407	0.4421	0.0172	644.0446	0.1442	0.5534	0.3024	2204.5686
18	61.5100	0.4886	0.4918	0.0196	660.1830	0.1261	0.5736	0.3003	2229.4017
17	66.1621	0.4171	0.5599	0.0230	685.0161	0.1032	0.5992	0.2976	2263.3885
16	72.0849	0.3314	0.6411	0.0274	719.0029	0.0779	0.6276	0.2945	2383.0291
15	76.0345	0.2577	0.7111	0.0312	720.2569	0.0586	0.6496	0.2918	2418.4996
14	79.9504	0.1876	0.7776	0.0348	755.7274	0.0415	0.6698	0.2887	2457.9821
13	83.2315	0.1283	0.8337	0.0380	795.2099	0.0278	0.6862	0.2860	2493.4547
12	85.6980	0.0834	0.8761	0.0405	830.6826	0.0178	0.6984	0.2838	2521.5915
11	87.4114	0.0523	0.9055	0.0422	858.8193	0.0111	0.7067	0.2823	2541.9431
10	88.5394	0.0320	0.9246	0.0434	879.1709	0.0067	0.7120	0.2812	2555.7434
9	89.2585	0.0192	0.9367	0.0441	892.9712	0.0040	0.7154	0.2806	2564.7392
8	89.7104	0.0114	0.9440	0.0446	901.9670	0.0024	0.7175	0.2801	2570.5011
7	89.9951	0.0067	0.9484	0.0449	907.7289	0.0014	0.7187	0.2799	2574.1987
6	90.1777	0.0040	0.9510	0.0450	911.4265	0.0008	0.7195	0.2797	2576.6178
5	90.2999	0.0023	0.9525	0.0452	913.8456	0.0005	0.7199	0.2796	2578.2425
4	90.3905	0.0013	0.9534	0.0453	915.4703	0.0003	0.7202	0.2796	2579.2856
3	90.4850	0.0007	0.9537	0.0455	916.5134	0.0002	0.7199	0.2799	2579.4260
2	90.7012	0.0004	0.9531	0.0465	916.6538	0.0001	0.7179	0.2820	2575.9087
1	91.6924	0.0002	0.9483	0.0515	913.1365	0.0000	0.7067	0.2933	2547.0848
Koker	99.3047	0.0001	0.9234	0.0765	884.3126	0.0000	0.5914	0.4086	1662.7722

Tabell G-6Sammensetning og temperatur for kolonnen optimalisert med hesyn på mulige fødestusser,
simulering 4

Føde	Temperatur [°C]	Flow [kmol/t]	HCL	VCM	EDC	Damp fraksjon
F34	10.16	560.98	0.8233	0.1756	0.0011	0.8802
F30	19.71	328.83	0.3916	0.5471	0.0613	0.0659
F24	58.11	1521.62	0.2015	0.4024	0.3960	0.0756
F20Retur	35.01	80.02	0.0003	0.9997	0.0000	0.0000
F16	173.91	38.36	0.1205	0.2120	0.6675	1.0000
H1404	3.00	35.94	0.0118	0.0854	0.9028	0.0000

Tabell G-7Siste mixer fjernet

 Tabell G-8
 Sammensetning og temperatur for kolonnen med den siste mixeren fjernet, simulering 5

		Damp			Væske				
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HC1	VCM	EDC	Molar flow
Kondensator	-25.85969769	1.0000	0.0000	0.0000	902.9933	0.9999	0.0001	0.0000	534.3700
45	-25.07087487	0.9999	0.0001	0.0000	1437.3632	0.9994	0.0006	0.0000	536.0044
44	-24.95753551	0.9998	0.0002	0.0000	1438.9976	0.9971	0.0029	0.0000	534.1930
43	-24.55848402	0.9989	0.0011	0.0000	1437.1863	0.9874	0.0126	0.0000	526.2213
42	-22.9074636	0.9954	0.0046	0.0000	1429.2146	0.9474	0.0526	0.0000	497.7161
41	-16.98720511	0.9813	0.0187	0.0000	1400.7094	0.8223	0.1777	0.0000	439.6328
40	-4.694206164	0.9418	0.0582	0.0000	1342.6261	0.6200	0.3800	0.0000	388.3770
39	7.264657593	0.8857	0.1143	0.0000	1291.3703	0.4694	0.5305	0.0001	362.6431
38	15.33674482	0.8480	0.1520	0.0000	1265.6364	0.4101	0.5883	0.0015	434.3233
37	19.93030955	0.7977	0.2023	0.0000	776.3392	0.3445	0.6538	0.0016	426.0053
36	23.82791765	0.7655	0.2344	0.0001	768.0212	0.3110	0.6871	0.0020	424.8766
35	26.04867329	0.7475	0.2522	0.0003	766.8925	0.2939	0.7019	0.0043	420.6743
34	29.06421354	0.7405	0.2580	0.0015	762.6902	0.2831	0.6494	0.0675	777.8648
33	32.77483813	0.7039	0.2943	0.0018	755.1029	0.2550	0.6774	0.0675	779.8059
32	35.69776051	0.6739	0.3241	0.0020	757.0441	0.2344	0.6981	0.0675	782.2955
31	37.80829276	0.6513	0.3465	0.0022	759.5337	0.2202	0.7124	0.0675	784.5053
30	39.25733783	0.6354	0.3623	0.0024	761.7435	0.2107	0.7219	0.0674	786.2234
29	40.2216869	0.6247	0.3729	0.0024	763.4616	0.2046	0.7281	0.0674	787.4621
28	40.85396714	0.6177	0.3798	0.0025	764.7003	0.2007	0.7320	0.0674	788.2934
27	41.27581474	0.6133	0.3842	0.0026	765.5315	0.1982	0.7342	0.0676	788.6367
26	41.6273788	0.6105	0.3866	0.0028	765.8749	0.1966	0.7343	0.0691	787.0404
25	42.52270147	0.6097	0.3860	0.0043	764.2786	0.1945	0.7251	0.0804	763.6531
24	53.19116057	0.6206	0.3655	0.0138	740.8912	0.1761	0.5192	0.3048	2173.8218
23	52.78588928	0.6154	0.3707	0.0140	629.4362	0.1727	0.5213	0.3060	2165.3501
22	53.12662911	0.6098	0.3760	0.0142	620.9645	0.1704	0.5237	0.3059	2166.9707
21	53.81182475	0.6005	0.3849	0.0146	622.5851	0.1667	0.5278	0.3055	2171.3237

			Damp			Væske			
Plate	Temperatur [°C]	HCl	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
20	54.96449948	0.5847	0.4000	0.0153	626.9381	0.1605	0.5346	0.3049	2178.7574
19	56.8237504	0.5585	0.4250	0.0165	634.3718	0.1506	0.5456	0.3038	2191.0000
18	59.65664669	0.5174	0.4643	0.0183	646.6144	0.1358	0.5621	0.3021	2210.4256
17	63.61614032	0.4576	0.5213	0.0211	666.0400	0.1158	0.5845	0.2997	2239.2905
16	68.53735993	0.3799	0.5952	0.0249	694.9049	0.0921	0.6113	0.2965	2277.9080
15	73.90244919	0.2924	0.6780	0.0296	733.5224	0.0679	0.6384	0.2937	2320.3769
14	80.02169199	0.2089	0.7553	0.0358	775.9913	0.0463	0.6518	0.3019	2351.1855
13	83.31152487	0.1417	0.8188	0.0395	768.4349	0.0306	0.6700	0.2994	2382.7030
12	86.03800507	0.0913	0.8664	0.0424	799.9525	0.0194	0.6837	0.2969	2412.1462
11	87.95178757	0.0564	0.8992	0.0444	829.3956	0.0119	0.6930	0.2951	2433.9365
10	89.20016705	0.0339	0.9203	0.0458	851.1859	0.0071	0.6990	0.2939	2448.6393
9	89.98327498	0.0201	0.9334	0.0466	865.8887	0.0042	0.7027	0.2932	2458.0877
8	90.46577074	0.0117	0.9412	0.0471	875.3371	0.0024	0.7049	0.2927	2464.0385
7	90.76119087	0.0068	0.9458	0.0474	881.2879	0.0014	0.7063	0.2923	2467.8377
6	90.93432116	0.0039	0.9486	0.0475	885.0871	0.0008	0.7072	0.2919	2470.5951
5	90.97238777	0.0023	0.9505	0.0472	887.8445	0.0005	0.7087	0.2908	2474.9934
4	90.29747657	0.0013	0.9533	0.0454	892.2429	0.0003	0.7193	0.2804	2570.7864
3	90.50415296	0.0007	0.9536	0.0456	908.0142	0.0002	0.7193	0.2805	2572.9807
2	90.73427728	0.0004	0.9530	0.0466	910.2085	0.0001	0.7173	0.2826	2569.7973
1	91.72153836	0.0002	0.9482	0.0516	907.0251	0.0000	0.7062	0.2938	2541.3421
Koker	99.30466311	0.0001	0.9234	0.0765	878.5699	0.0000	0.5914	0.4086	1662.7722

Tabell G-8Sammensetning og temperatur for kolonnen med den siste mixeren fjernet, simulering 5

Tabell G-9	Sammensetning og temperatur for kolonnen	optimalisert uten eksisterende fødestusser
	som begrensning, simulering 6	

	Damp				Væske				
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HC1	VCM	EDC	Molar flow
Kondensator	-25.8597	1.0000	0.0000	0.0000	902.9933	0.9999	0.0001	0.0000	538.3624
45	-25.0709	0.9999	0.0001	0.0000	1441.3557	0.9994	0.0006	0.0000	540.0098
44	-24.9571	0.9998	0.0002	0.0000	1443.0031	0.9971	0.0029	0.0000	538.1795
43	-24.5553	0.9989	0.0011	0.0000	1441.1728	0.9873	0.0127	0.0000	530.1066
42	-22.8887	0.9953	0.0047	0.0000	1433.0999	0.9470	0.0530	0.0000	501.2163
41	-16.9067	0.9811	0.0189	0.0000	1404.2096	0.8208	0.1792	0.0000	442.5109
40	-4.5165	0.9411	0.0589	0.0000	1345.5042	0.6175	0.3824	0.0000	391.0025
39	7.4865	0.8844	0.1156	0.0000	1293.9958	0.4670	0.5328	0.0002	365.2199
38	15.5832	0.8465	0.1534	0.0001	1268.2132	0.4079	0.5897	0.0023	435.1072
37	21.2231	0.7961	0.2035	0.0005	777.1231	0.3405	0.6305	0.0289	734.6146

		Damp			Væske				
Plate	Temperatur [°C]	HCl	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
36	26.0572	0.7522	0.2471	0.0006	747.7956	0.2984	0.6725	0.0291	733.5585
35	30.3360	0.7114	0.2878	0.0007	746.7394	0.2652	0.7056	0.0292	735.0059
34	33.6031	0.6780	0.3211	0.0009	748.1868	0.2414	0.7294	0.0292	737.0908
33	35.8959	0.6535	0.3455	0.0009	750.2718	0.2255	0.7454	0.0292	739.0302
32	37.4187	0.6368	0.3622	0.0010	752.2112	0.2153	0.7556	0.0291	740.5126
31	38.3953	0.6259	0.3730	0.0010	753.6935	0.2089	0.7620	0.0291	741.5607
30	39.0127	0.6191	0.3798	0.0011	754.7417	0.2050	0.7658	0.0292	742.1976
29	39.4103	0.6149	0.3839	0.0011	755.3785	0.2026	0.7680	0.0294	742.3691
28	39.7416	0.6125	0.3861	0.0014	755.5500	0.2011	0.7678	0.0311	740.5158
27	40.6696	0.6120	0.3850	0.0030	753.6968	0.1991	0.7579	0.0430	714.3342
26	52.6957	0.6249	0.3615	0.0136	727.5151	0.1778	0.5174	0.3048	2172.7180
25	52.2007	0.6220	0.3644	0.0136	628.3324	0.1755	0.5185	0.3060	2164.3256
24	52.2804	0.6202	0.3661	0.0137	619.9400	0.1747	0.5193	0.3060	2164.4120
23	52.5099	0.6173	0.3689	0.0138	620.0264	0.1735	0.5206	0.3059	2165.9328
22	52.9086	0.6121	0.3738	0.0141	621.5472	0.1715	0.5229	0.3056	2168.5475
21	53.5849	0.6031	0.3824	0.0145	624.1619	0.1679	0.5269	0.3053	2172.9010
20	54.7147	0.5877	0.3972	0.0151	628.5153	0.1618	0.5336	0.3046	2180.1721
19	56.5432	0.5620	0.4217	0.0163	635.7865	0.1520	0.5444	0.3036	2192.1687
18	59.3433	0.5216	0.4603	0.0181	647.7831	0.1373	0.5607	0.3019	2211.2876
17	63.2807	0.4623	0.5168	0.0209	666.9019	0.1174	0.5831	0.2995	2239.8571
16	68.2076	0.3848	0.5906	0.0246	695.4715	0.0936	0.6100	0.2964	2278.3333
15	73.6134	0.2968	0.6738	0.0294	733.9477	0.0691	0.6373	0.2936	2320.9586
14	79.7976	0.2125	0.7520	0.0355	776.5729	0.0472	0.6511	0.3017	2352.1821
13	83.1481	0.1443	0.8165	0.0393	769.4315	0.0312	0.6696	0.2991	2384.2347
12	85.9262	0.0929	0.8649	0.0422	801.4841	0.0198	0.6836	0.2967	2414.1920
11	87.8772	0.0574	0.8983	0.0443	831.4414	0.0121	0.6931	0.2948	2436.3839
10	89.1494	0.0345	0.9199	0.0457	853.6333	0.0072	0.6992	0.2936	2451.3566
9	89.9465	0.0203	0.9331	0.0465	868.6060	0.0042	0.7029	0.2928	2460.9707
8	90.4368	0.0119	0.9411	0.0470	878.2201	0.0025	0.7052	0.2923	2467.0171
7	90.7364	0.0069	0.9458	0.0473	884.2665	0.0014	0.7066	0.2920	2470.8691
6	90.9117	0.0040	0.9486	0.0474	888.1185	0.0008	0.7076	0.2916	2473.6552
5	90.9510	0.0023	0.9506	0.0471	890.9046	0.0005	0.7090	0.2905	2478.0711
4	90.2788	0.0013	0.9534	0.0453	895.3206	0.0003	0.7196	0.2801	2573.8801
3	90.4856	0.0007	0.9537	0.0456	911.1079	0.0002	0.7196	0.2802	2576.0694
2	90.7164	0.0004	0.9530	0.0466	913.2972	0.0001	0.7176	0.2823	2572.8578
1	91.7067	0.0002	0.9482	0.0516	910.0856	0.0000	0.7064	0.2935	2544.2354
Koker	99.3047	0.0001	0.9234	0.0765	881.4632	0.0000	0.5914	0.4086	1662.7722

Tabell G-9Sammensetning og temperatur for kolonnen optimalisert uten eksisterende fødestusser
som begrensning, simulering 6

		Damp			Væske				
Plate	Temperatur [°C]	HC1	VCM	EDC	Molar flow	HC1	VCM	EDC	Molar flow
Kondensator	-25.8597	0.9999	0.0001	0.0000	902.9933	0.9999	0.0001	0.0000	534.3700
45	-25.0709	0.9998	0.0002	0.0000	1437.3632	0.9994	0.0006	0.0000	536.0044
44	-24.9575	0.9989	0.0011	0.0000	1438.9976	0.9971	0.0029	0.0000	534.1930
43	-24.5585	0.9954	0.0046	0.0000	1437.1863	0.9874	0.0126	0.0000	526.2213
42	-22.9075	0.9813	0.0187	0.0000	1429.2146	0.9474	0.0526	0.0000	497.7161
41	-16.9872	0.9418	0.0582	0.0000	1400.7094	0.8223	0.1777	0.0000	439.6328
40	-4.6942	0.8857	0.1143	0.0000	1342.6261	0.6200	0.3800	0.0000	388.3770
39	7.2647	0.8480	0.1520	0.0000	1291.3703	0.4694	0.5305	0.0001	362.6431
38	15.3367	0.7977	0.2023	0.0000	1265.6364	0.4101	0.5883	0.0015	434.3233
37	19.9303	0.7655	0.2344	0.0001	776.3392	0.3445	0.6538	0.0016	426.0053
36	23.8279	0.7475	0.2522	0.0003	768.0212	0.3110	0.6871	0.0020	424.8766
35	26.0487	0.7405	0.2580	0.0015	766.8925	0.2939	0.7019	0.0043	420.6743
34	29.0642	0.7039	0.2943	0.0018	762.6902	0.2831	0.6494	0.0675	777.8648
33	32.7748	0.6739	0.3241	0.0020	755.1029	0.2550	0.6774	0.0675	779.8059
32	35.6978	0.6513	0.3465	0.0022	757.0441	0.2344	0.6981	0.0675	782.2955
31	37.8083	0.6354	0.3623	0.0024	759.5337	0.2202	0.7124	0.0675	784.5053
30	39.2573	0.6247	0.3729	0.0024	761.7435	0.2107	0.7219	0.0674	786.2234
29	40.2217	0.6177	0.3798	0.0025	763.4616	0.2046	0.7281	0.0674	787.4621
28	40.8540	0.6133	0.3842	0.0026	764.7003	0.2007	0.7320	0.0674	788.2934
27	41.2758	0.6105	0.3866	0.0028	765.5315	0.1982	0.7342	0.0676	788.6367
26	41.6274	0.6097	0.3860	0.0043	765.8749	0.1966	0.7343	0.0691	787.0404
25	42.5227	0.6206	0.3655	0.0138	764.2786	0.1945	0.7251	0.0804	763.6531
24	53.1912	0.6154	0.3707	0.0140	740.8912	0.1761	0.5192	0.3048	2173.8218
23	52.7859	0.6098	0.3760	0.0142	629.4362	0.1727	0.5213	0.3060	2165.3501
22	53.1266	0.6005	0.3849	0.0146	620.9645	0.1704	0.5237	0.3059	2166.9707
21	53.8118	0.5847	0.4000	0.0153	622.5851	0.1667	0.5278	0.3055	2171.3237
20	54.9645	0.5585	0.4250	0.0165	626.9381	0.1605	0.5346	0.3049	2178.7574
19	56.8238	0.5174	0.4643	0.0183	634.3718	0.1506	0.5456	0.3038	2191.0000
18	59.6566	0.4576	0.5213	0.0211	646.6144	0.1358	0.5621	0.3021	2210.4256
17	63.6161	0.3799	0.5952	0.0249	666.0400	0.1158	0.5845	0.2997	2239.2905
16	68.5374	0.2924	0.6780	0.0296	694.9049	0.0921	0.6113	0.2965	2277.9080
15	73.9024	0.2089	0.7553	0.0358	733.5224	0.0679	0.6384	0.2937	2320.3769
14	80.0217	0.1417	0.8188	0.0395	775.9913	0.0463	0.6518	0.3019	2351.1855
13	83.3115	0.0913	0.8664	0.0424	768.4349	0.0306	0.6700	0.2994	2382.7030
12	86.0380	0.0564	0.8992	0.0444	799.9525	0.0194	0.6837	0.2969	2412.1462
11	87.9518	0.0339	0.9203	0.0458	829.3956	0.0119	0.6930	0.2951	2433.9365
10	89.2002	0.0201	0.9334	0.0466	851.1859	0.0071	0.6990	0.2939	2448.6393

Tabell G-10Sammensetning og temperatur for kolonnen optimalisert uten eksisterende fødestusser
som begrensning og siste mixer fjernet, simulering 7

		Damp			Væske				
Plate	Temperatur	HCl	VCM	EDC	Molar flow	HCl	VCM	EDC	Molar flow
	[°C]								
9	89.9833	0.0117	0.9412	0.0471	865.8887	0.0042	0.7027	0.2932	2458.0877
8	90.4658	0.0068	0.9458	0.0474	875.3371	0.0024	0.7049	0.2927	2464.0385
7	90.7612	0.0039	0.9486	0.0475	881.2879	0.0014	0.7063	0.2923	2467.8377
6	90.9343	0.0023	0.9505	0.0472	885.0871	0.0008	0.7072	0.2919	2470.5951
5	90.9724	0.0013	0.9533	0.0454	887.8445	0.0005	0.7087	0.2908	2474.9934
4	90.2975	0.0007	0.9536	0.0456	892.2429	0.0003	0.7193	0.2804	2570.7864
3	90.5042	0.0004	0.9530	0.0466	908.0142	0.0002	0.7193	0.2805	2572.9807
2	90.7343	0.0002	0.9482	0.0516	910.2085	0.0001	0.7173	0.2826	2569.7973
1	91.7215	0.0001	0.9234	0.0765	907.0251	0.0000	0.7062	0.2938	2541.3421
Koker	99.3047	0.0001	0.9234	0.0765	878.5699	0.0000	0.5914	0.4086	1662.7722

 Tabell G-10
 Sammensetning og temperatur for kolonnen optimalisert uten eksisterende fødestusser som begrensning og siste mixer fjernet, simulering 7

H TUNINGSPARAMETERE

I tabell H-1 er det vist tuningsparametere som ble funnet for regulatorene rundt kolonna.Plassering er vist i figur 3.2.

Regulator	K _c	$\tau_{I}(min)$
TIC505	0.2	45
FIC508	0.3	0.05
TIC504	0.5	17
LIC576	0.5	5
FIC503	0.01	0.05
LIC100	33	6.7
PIC100	8.5	4.9

 Tabell H-1
 PI-parametere funnet for regulatorer i HYSYS

I tabell H-2 er det gitt de tuningparameterene som blir benyttet av Hydro i tilsvarende regulatorer

Regulator	K _c	$\tau_{I}(min)$	$\tau_{\rm D}({\rm min})$
TIC505	0.4	20	
FIC508	0.15	0.1	
TIC504	0.25	0.15	2
LIC576	1.66	8.66	
FIC503	0.3	0.3	

Tabell H-2PID-parametere benyttet av Hydro

Nivå- og trykkregulering på kondensator er implementert noe annerledes enn i anlegget hos Hydro, og parameterene er ikke sammenlignbare.

I HOLDUP I KOLONNA

Figur I.1 Måler endring i strøm "To condenser" ved 0.1% step i FIC508 (reflux)

Holdup tiden måles her til å være ca. 2.5 minutter. Fra Hydro er det oppgitt at det tar 3 minutter fra det gjøres step i refluks til det registreres ved pådrag i kokeren.

J TUNINGSRESPONSER

Figur J.1 Respons ved tuning av TIC505. Pådrag er refluks gjennom indre sløyfe i kaskade, FIC508.

SSE: 116424

Figur J.2 Respons ved tuning av FIC508. Pådrag er refluks.

Control Station: Design Tools

Gein (K) = 14.64. Time Constant (T1) = 2708. Dead Time (TD) = 128.46

SSE: 37.13

Gain (K) = 30.8. Time Constant (T1) = 0.10. Dead Time (TD) = 0.9992

SSE:1197

Figur J.4 Respons ved tuning av FIC503. Pådrag er bunnstrøm.

Gein (K) = -0.6084. Time Constant (T1) = 9651. Dead Time (TD) = 49.48

SSE: 0.3403

Figur J.6 Respons ved tuning av LIC100, Pådrag er toppstrøm.

Gain (K) = -1.15. Time Constant (T1) = 293.36. Dead Time (TD) = 0.0

SSE: 6.45

Figur J.7 Respons ved tuning av PIC100. Pådrag er kjøling til kondensator.

K SIMULERING AV FORSTYRRELSER

Figur K.1 Simulering av forstyrrelse i fødestrøm F16

Figur K.2 Simulering av forstyrrelse i H-1404

L **Renheter**

I figur L.1 vises hvordan renheten endrer seg ved simuleringen gjennomført med målepunkt på plate 40.(Simulering i kapittel 5.4.4).

Figur L.1 Endringer i renhet i topp og bunn ved simulering i kapittel 5.4.4.

I figur L.2 vises hvordan renhetene endrer seg ved simuleringene gjennomført med Hydro sine tuninger.(Simulering i kapittel 5.4.5)

Figur L.2 Endringer i renhet i topp og bunn ved simulering i kapittel 5.4.5.

M ØKONOMI BEREGNINGER

I kokeren benyttes 8 bar mettet damp som tas ut som kondensat ved 3.5 bar. Dette gir følgende beregninger:

8 bar mettet damp - 1190.46 Btu/lb 3.5 bar kondensat - 251.14 Btu/lb

Verdier er hentet fra Operations of Chemical Engineering, McCabe et.al. ved interpolarisjon

Dette gir 939.32 Btu/lb damp

Det er 2.2 lb/kg og 3412.14 Btu/kWh som tilslutt gir 605.6 kWh/tonn damp. internprisen for damp er oppgitt av Hydro til å være 60 kr/tonn og dett gir da ca. 0.10 kr/kWh i kokeren. Det regnes med tilnærmet 100% virkningsgrad i kokeren.

Det er oppgitt av Hydro at temperaturen i kondensatoren er ca. -24 °C på rørsiden og -31 °C på skallsiden og kjølemediet er R134a. det anslås en kuldefaktor i kondensatorer på 2. Med strøm pris på 15 øre/kWh blir dette 7.5 øre/kWh varme som fjernes i kondensatoren.

Ved ombygging i 1998 er det beregnet at det spares 370 kWh i både kondensator og koker. Dette gir for 7000 driftstimer en innsparing på 259 000 kr i koker og 194 250 kr i kondensator. Totalt 453250kr i året.

Den totale innsparing på 49 kWh utover dette gir med 7000 driftstimer en ekstra innsparing på 34300kr i koker og 25725kr i kondensator. Totalt 60025kr i året.

Salgsprisen på VCM varierer mye men er typisk 3500 kr/tonn. Topp strømmen blir 36789 kg/t med volum fraksjon lik 0.1 for VCM i toppen. Massefraksjonen for VCM er da 0.105. Ved 10 ppm i topp er strømmen på 32924 kg/t og massefraksjon er 11ppm.

Dette gir 13519 kr/t i topp ved 0.1 volumfraksjon og 1.3 kr/t ved 11 ppm. Besparelsen på å redusere til 0.1 i topp er 464kWh i kondensator og184kWh i koker. Dette blir 53.2 kr/t i sparte energi kostnader.

N **RGA-BEREGNINGER**

Data er hente	et fra "Sau	uar etter"			
Føde strømmer					
			totalflow/h	totalflow/min	Total føde, F
F34			560.98	9.349666667	42.76266667
F30			328.83	5.4805	
F24			1557.57	25.9595	
F20retur			80.02	1.333666667	
F16			38.36	0.639333333	
Dummente du let - D			4000 77	07 74000000	
Bunnprodukt, B	•		1662.77	27.71283333	
Destilat, D			903	15.05	
Reflux, L			547	9.116666667	
bunnfraksion	1.00E-05				
toppfraksjon	0.99999	(blir variert i analysen)			
antall trinn	31				
Skalorto vo	rdier som h	rukas i RGA			
B' (B/F)	0 6480614				
D', (D/F)	0.3519425				
L', L/D)	0.2131922				
, ,					
RGA-element	1668.6587				

Tabell N-1RGA-analyse ved bruk av likning (2.10) , data er hentet fra bilag G

O TRANSFERFUNKSJONER I KOLONNA

SSE:6221

Gain (K) = -32.85. Time Constant (T1) = 25685. Dead Time (TD) = 206.58

SSE: 3.13

Figur O.2 Respons i temperatur på plate 15 ved stependring i refluks.

Control Station: Design Tools Model: First Order Plus Dead Time (FOPDT) File Name: RGA2_Tburn.txt Process Variable 85 80 75 Manipulated Variable 52.0 51.5 1000 7000 8000 0 2000 3000 4000 6000 9000 5000 Time

Gain (K) = 14.67. Time Constant (T1) = 2973. Dead Time (TD) = 146.17

SSE: 42.06

Figur O.4 Respons i temperatur på plate 38 ved step i duty til koker.

P INPUTFIL FOR ASPEN SIMULERINGER

Q KORRESPONDANSE MED HYDRO

Q-1 Mail: Definering av oppgave

From Tor.Ausen@hydro.com Sun Feb 6 15:28:01 2000 Date: Wed, 26 Jan 2000 10:22:27 +0100 From: Tor.Ausen@hydro.com To: hanssu@stud.ntnu.no Cc: skoge@chembio.ntnu.no Subject: Re: Prosjekt med Skogestad om HCl- kolonnen

Hei

Det dreier seg om en kolonne i VCM-fabrikken på Rafnes, C-1501, som vi kaller HCl-kolonna. Den ble tidligere bearbeidet av Erik Sauar i diplom (1995?). Den ble også bearbeidet av Skogestad i 1981.

På 80-tallet ble det gjort ombygginger innvendig for å bedre hydraulisk kapasitet i nedre del. Hovedføden går inn på plate 24 (Nr. nedenfra), og plate 1 - 24 har større nedløp og er tilpasset større væskemengder. Disse platene har bevegelige ventiler (Koch).

I revisjonsstansen våren 2000, planlegger vi renovering av platene 25 - 45 for å fjerne asbestpakninger (fra 70-åra). Dagens plater blir da byttet ut med nye av type faste ventiler (Koch - Glitsch) og tilpasset større kapasitet.

Ellers har vi byttet kjølemedium på kjøleanlegget som betjener kondensatoren til kolonna, fra R500 til R134a. Kapasiteten ble øket litt, men ikke vesentlig.

Det er trolig bare modifikasjonen i rev.stansen våren 1998 som har betydning for energioptimaliseringen dere skal se på.

I starten kan det trolig være greit å gi en kort oversikt over kolonna:

Hovedkomponenter: HCl, VCM og EDC (EDC = Ethylene-Di-Chloride, korrekt nomenklatur - 1,2 dikloretan). Separasjon mellom HCl (topp) og VCM + EDC (bunn). Krav til renhet - VCM i HCl < 10 ppm (vol) - HCl i (VCM + EDC) < 10 ppm (vol). Kravet i bunnen er viktigst. Vær oppmerksom på at vann < 10 ppm (utstyr i karbonstål).

Trykk i toppen av kolonna er 12 barg (OBS alle trykkmålinger i overtrykk). Trykk i reflukstanken er 11.7 barg og dette trykket styrer kapasitetsreguleringen på kjølekompressoren. Kondensatoren er partiell og kondenserer ut det vi trenger som refluks. Destillatet er HCl-gass (11,7 barg) som går til vår oksy-reaktor. På veien varmeveksles det i H-1403 med føde til plate 34. Temperaturen i kondensatoren er ca. -24 oC på rørsiden og -31 oC på skallsiden (R134a).

Kolonna har en meget stor temperaturgradient med - 24 °C i toppen og +99 °C i bunnen.

Reguleringen av kolonna benytter nettopp denne gradienten. Plate 38 holdes på ca. 13 oC og plate 15 på ca. 75 oC. Det er en del forstyrrelser i fødene som gjør at kolonna er meget vanskelig å regulere.

For å unngå for mye last på kjøleanlegget (kapasitetsbegrensning), er føden splittet opp ved trinnvis kondensering av toppstrømmen fra cracker bråkjølere (kondensering med kjølevann er billigere). Hovedsplitten foregår ved å regulere temperaturen inn på V-1401 (fra H-1402). Denne temperaturen ligger på ca. 65 oC og væske fra V-1401 går til plate 24. Gassen fra V-1401 går til H-1405A/B (kjølevann) og gass/væske separeres i V-1404. Væske går til plate 30 og gass til H-1403 hvor den varmeveksles med HCl-gass fra kondensatoren til kolonna. Fra H-1403 går to-fase til plate 34.

Bunnstrømmen fra nevnte bråkjølere (ca. 185 oC) er på ca. 12 t/h og går gjennom to flashtanker hvor trykket tas ned trinnvis og gass flasher av. Fra første flashtank går varm gass til plate 16. Det var denne gassen som ble lagt om fra å gå sammen med to-fase til plate 34, til å gå inn som sagt på plate 16 (kfr. diplom Erik Sauar). (Trolig har Badger i 70-åra vært redd for væskeslag i den vertikale ledningen til plate 34.) Flashgass fra andre trinn kondenseres og væsken pumpes til innblanding i hovedføden til plate 24.

Returstrøm fra nedstrømsanlegg, væske på ca. 5 t/h, går som føde til plate 20.

Koker, H-1501, bruker normalt ca. 8 t/h damp med trykk 7 barg. Kondensator, H-1502, leverer inntil 23 t/h refluks til kolonna.

Energi som damp til koker, slår sterkere ut økonomisk enn strøm til kjølekompressor (varmepumpe). Vi forsøker derfor å la kjøleanlegget gå nær kapasitetsbegrensningen. Justeres av temp. i V-1401 (gass/væske splitt).

Fysikalske data i simulering i Aspen Plus: Anbefaler Soave Redlich Kwong med binærkoeff:

EDC/VCM: 0,02

EDC/HCl: -0,05

VCM/HCl: -0,03

I modellen er brukt 30 teor. trinn for simulering av 45 reelle plater. I tillegg ett trinn hver for henholdsvis kondensator og koker. Temp. på plater stemmer bedre i nedre del av kolonna enn i øvre del.

Med hilsen

Tor Ausen

From: hanssu@stud.ntnu.no on 2000-01-25 12:13 GMT To: Tor Ausen/HRA/NHP/Hydro@Hydro cc:

Subject: Prosekt med Skogestad om VCM kolonnen

Hei,

Vi jobber på prosjektet for Skogestad om VCM kolonnen. I den forbindelse har vi fått utskrift fra Skogestad av to Aspen kjøringer som er oversendt i en mail fra Knut Wiig Mathisen. Vi lurer på følgende:

Har det blitt gjennomført andre ombygginger før den i høsten 1998 som omtales i denne mailen. Vi bruker en rapport som Skogestad lagde i 1981 og forsøker å finne ut om det er det samme anlegget han så på som var operativ fram til 98.

Simuleringene vi har fått utskrift fra er utført i Aspen. Vi lurer på hvilken termodynamikk som er brukt og evt. hvilke termodynamikse parametere som ligger inn i Apsen.

Med vennlig hilsen

Hans Kristian Sundt og Thomas Realfsen

Hans Kristian Sundt Institutt for Kjemisk prosessteknologi Tlf.arb: 73 59 07 29

Q-2 Mail: Prosessforklaring

From Tor.Ausen@hydro.com Sun Feb 6 15:20:43 2000 Date: Thu, 3 Feb 2000 08:18:45 +0100 From: Tor.Ausen@hydro.com To: thomare@stud.ntnu.no Cc: skoge@chembio.ntnu.no Subject: Re: Prosjekt, HCl-kolonne

Hei

Jeg vet ikke hva Erik Sauar har brukt av data, se hans diplom. Når vi benytter Aspen Plus, hentes de nødvendige data fra innebygd databank. Data for HCl, VCM og EDC er godt kjent og fins sikkert også i Hysys.

Spesifikasjonene på 10 ppm av VCM i HCl er basert på at VCM som går til oksyreaktor, tapes. (Tapt produkt)

10 ppm HCl i (VCM + EDC) har til grunn at HCl vil gå sammen med VCM til siste kolonne som er en stripper for HCl. Kundespesifikasjon i bunnen krever HCl i VCM-prod. < 1 ppm.

To flytskjema ble sendt til prof. Skogestad på tirsdag. Behandles konfidensielt. De endringer som er planlagt fremover går bare på innvendige detaljer i kolonna, og endrer ikke flytskjema.

Vær imidlertid klar over at før 1998 var flytskjemaet til kolonna annerledes på følgende punkter:

Gass fra V-1402 gikk sammen med føde fra H-1403 til plate 34. (I dag til plate 16 - laveste fødestuss.)

Resirkulasjon fra C-1504 (HCl stripper) gikk til plate 16. (I dag flyttet til plate 20 - ledig fødestuss.)

Fødestusser fins på følgende plater: 16, 20, 22, 24, 28, 30, 34. I dag brukes ikke 22 og 28. Hovedføden kan ikke gå inn høyere enn plate 24 p.gr.a. tilstrekkelig hydraulisk kapasitet bare fins på plate 1 - 24.

Med hilsen

Tor Ausen

From: thomare@stud.ntnu.no on 2000-01-31 13:59 GMT To: Tor Ausen/HRA/NHP/Hydro@Hydro cc:

Subject: Prosjekt, HCl-kolonne

Hei

Vi har nå startet litt med simulering (i Hysys) av det anlegget Erik Sauer forbedret i sin diplom. I forbindelse med dette lurte vi på hva slags termodynamiske data han har brukt(kritisk trykk/temperatur og acentricity). Lurte også på hva som ligger til grunn for spesifikasjonene i topp/bunn av HCl-kolonnen (prod.spesifikasjon etc.??). Til slutt ønsker vi hvis det er mulig å få flytskjema (forenklet +TFS m/reg.sløyfer) over HCl-kolonna med 1400 anlegget slik det er nå, og i tillegg et som inneholder eventuelle forbedringer som skal gjøres.

Vennlig hilsen Thomas Realfsen

Q-3 Mail: Svar på spørsmål rundt energidelen

Date: Thu, 10 Feb 2000 13:20:55 +0100 From: Tor.Ausen@hydro.com To: thomare@stud.ntnu.no Cc: skoge@chembio.ntnu.no Subject: Re: Prosjekt, HCl-kolonne

Hei

Først praktisk - vår Acrobat Reader (3.01) nekter å skrive ut tilsendt fil - det er noe med farger den ikke forstår. Tilgjengelig programvare for tekst er: Lotus Word Pro og MS Word + Windows 95 utstyr.

Så til spørsmål:

Trykk:

Reguleres fra trykkmåling på reflukstanken som holdes på 11.7 barg (12.7 bara). Trykkfall til kolonna normalt 0.3 bar. Kolonna vil normalt ha 12.0 i toppen og 12.4 barg i bunnen. Det gir tilsvarende -24 og +99 oC i topp og bunn.

Temp.:

Det er noen temp.målinger på plater i kolonna, men på grunn av forstyrrelser så vandrer de - vi klarer ikke å låse den store gradienten slik at måledata kan verifisere beregninger. Det som holder gradienten fast, er TIC på plate 15 og 38. Normalt blir disse låst til henholdsvis 75 og 13 oC. (Simulering av plate 38 blir godt under null på Aspen.) I våre simuleringer har vi avvik på beregnede temp. i øvre del av kolonna, mens de stemmer bedre på og under plate 15. Topp og bunn samsvarer bra.

Gevinst av modifikasjon:

Vi har ikke gjort noe forsøk på å måle dette, vesentlig pgra. problemer med referanse som ikke ble målt på forhånd. Antar derfor at simulerte verdier er beste svar. Vi har skjøvet gevinsten mot damp ved å legge temp. i V-1401 så høyt som mulig - dvs. la kjølekretsen lage så mye refluks som den kan (strøm billigere enn damp).

Den viktigste gevinsten for fremtiden er imidlertid at flaskehals (hydraulisk kapasitet og kjølekapasitet) har blitt utvidet. For tiden ligger imidlertid fabrikkens flaskehals et annet sted.

Hovedføde:

Kan ikke flyttes høyere enn plate 24 uten ny modifikasjon. (Rev.stans 2000 vil ikke endre dette.) Som nevnt justerer vi temp. i V-1401 for optimalisering.

Nye plater 25 - 45: Forventes ikke å endre platevirkningsgrad. (Fra bevegelige til faste ventiler - gevinst på vedlikehold.)

Retur fra C-1504: Det er ingen stuss under plate 16. Valgte plate 20 for å ungå å blande dem. Returstrøm er liten (ca. 5 t/h).

Dynamisk:

Forstyrrelser kommer stort sett fra gasstrømmer fra flashtankene V-1402 (175 oC) og V-1403 (kondenseres). Det skyldes at føden til begge flashtankene inneholder koks som setter seg i

reg.ventil og plugger igjen ventilene.

Dessuten har TIC på plate 15 og 38 en tendens til å sloss (innbyrdes påvirkning).

Vi har i 1999 i samarbeid med Honeywell HiSpec installert deres RMPCT-produkt for avansert regulering av kolonna. Det har vist seg å være meget vanskelig. Pr. idag har vi ikke overbevisende bedring i stabilitet. Det er imidlertid visse indikasjoner på at vi vil lykkes bedre i nær fremtid.

Mvh

Tor Ausen

From: thomare@stud.ntnu.no on 2000-02-09 10:17 GMT To: Tor Ausen/HRA/NHP/Hydro@Hydro cc: skoge@chembio.ntnu.no

Subject: Prosjekt, HCl-kolonne

Hei

Vi sender deg en foreløpig oppsummering av vårt arbeide, samt noen spørsmål. Ringer deg i morgen for å høre dine synspunkter. Har du eventuelle spørsmål til notatet, kan vi nåes på tlf:73590729 eller pr mail.

mvh

Arild, Hans Kristian og Thomas

Q-4 Mail: Forstyrrelser, data fra Honeywell

Date: Wed, 16 Feb 2000 10:05:48 +0100 From: Tor.Ausen@hydro.com To: arildgr@stud.ntnu.no Cc: skoge@chembio.ntnu.no Subject: Re: Regulering av HCl-kolonne

Hei

Som nevnt tidligere så er det variasjoner i føden til plate 16 og 24 som følge av varierende avflashing i flashtankene V-1402 og V-1403 som gir mest forstyrrelser. Ellers er det også variasjoner i topptrykket som henger sammen med kjøleanleggets evne til å kjøle i kondensator

H-1502 (temp. skallside avhengig av sugetrykk på kompressor). Trykkvariasjoner slår direkte inn på TIC505 på plate 38. Fødevariasjoner virker både inn på TIC504 (pl. 15) og TIC505. Dessuten virker TIC504 og TIC505 inn på hverandre (mer damp til koker skyver T-gradienten oppover - først på pl. 15, men litt senere også på pl. 38. TIC505 svarer med mer refluks - som også berører pl. 15.).

Jeg har bedt Magne Mogård om å hente ut data for regulatorene fra Honeywell. De kommer i egen e-mail med vedlagte filer. For å kunne finne de spesifikke sløyfene dere trenger, så gir jeg her de aktuelle tag-numre:

C-1501:

Damp til koker:Kaskade FIC501 - TIC504(master) (pl. 15)Refluks:Kaskade FIC508 - TIC505 (master) (pl. 38)Bunnstrøm:Kaskade FIC503 - LIC504 (master) (sump)Toppstrøm:Gass fra V-1501 reguleres av fødebehov på Oksy-reaktor -
mengderegulert. Ikke i liste.

V-1501:

Trykk: Kaskade PIC514Y - PISC5300 (kompressorstyring - komplisert) (Y = York kompr. - Carrier ute av drift)

H-1403 (nedstrøms):

Trykk oppstrøms reg.ventil - styrer trykket helt tilbake til crackerne: PIC4102 - leverer føde til pl. 34. - vesentlig gass.

V-1404: Nivå: LIC411 - leverer føde til plate 30.

H-1405A/B: Kjølevann til kondensatorene: TIC441/TIC443 (står stort sett 100% åpne - Kond. leverer kondensert væske til V-1404)

V-1401: Nivå: LIC450 - leverer føde til plate 24. Nedstrøms ventil kommer tilførsel fra kondensert flashgass fra V-1403. Temp.: TIC429 - bestemmer temp. i V-1401 ved å regulere kondensering i oppstrøms kond. H-1402A (B ute av drift)

Føde til plate 16: Gass fra V-1402 går i åpent rør rett inn i C-1501 - ingen regulering untatt på føde til V-1402 (OBS - koks)

Føde til plate 20: Væske fra FIC550 - står på konstant mengde.

Mvh

Tor Ausen
Q-5 Mail: Regulatorparametere

------ Forwarded message -----Date: Wed, 16 Feb 2000 10:08:37 +0100 From: Tor.Ausen@hydro.com To: arildgr@stud.ntnu.no Cc: skoge@chembio.ntnu.no Subject: Regulatorer C-1501 ++

----- Forwarded by Tor Ausen/HRA/NHP/Hydro on 2000-02-16 10:06 From: Magne Vidar Mogard/HRA/NHP/Hydro on 2000-02-16 08:04

To: Tor Ausen/HRA/NHP/Hydro@Hydro cc:

Subject: Regulatorer C-1501 ++

Hei.

Vedlagt er det noen filer med konfigureringsparameter for regulatorer tilhørende OperasjonsUnit 4E, 5A og 5D. K=forsterkning, T1=integraltid i min. og T2=derivattid i min. Dette er 3 tekstfiler som enklest lar seg lese av f.eks. NotePad. De kan også hentes inn i Excel.

(See attached file: Reg3ntnu.xx)(See attached file: Reg2ntnu.xx)(See attached file: Reg1ntnu.xx)

Studentene kan hente ut den informasjonen de måtte trenge.

Jeg har også klippet ut noe fra Honeywells dokumentasjon av regulatorer. Dette kan leses med acrobat reader. De 2 filene er "Zipet". Denne dokumentasjonen må slettes, når studentene er ferdig med den.

(See attached file: AP09500.zip)(See attached file: 01README.zip)

LIC425	2.0000000	000 0.10000	00000 0.0000	000000 REFLUX-TANK V-140)6 PID	4E	
PIC4102	0.800000	0000 3.00000	00000 0.0000	0000000 GASSF0DE TIL C-150	1 PID	4E	
PIC465	1.0000000	000 1.000000	00000 0.0000	000000 LPS FRA H-1401	PID 4	E	
TIC429	1.3000000	0000 8.00000	00000 0.0000	000000 TEMPERATUR V-140	1 PID	4E	
TIC441	1.2500000	000 6.67000	00000 0.0000	000000 GASSF0DE TIL C-150	1 PID	4E	
TIC443	1.2500000	000 6.67000	00000 0.0000	000000 GASSF0DE TIL C-150	1 PID	4E	
TY429A	@@@	@@@	@@@	MELLOMLEDD REG/UTC	. AUTO	OMAN 4	E
TY429B	@@@	@@@	@@@	MELLOMLEDD REG/UTG	. AUTO	OMAN 4	Е
FIC501	0.3000000	000 0.300000	00000 0.0000	000000 DAMP TIL H-1501	PID :	5A	
FIC503	0.3000000	000 0.300000	00000 0.0000	000000 BUNNSTROM C-1501	PID	5A	
FIC508	0.1500000	000 0.100000	00000 0.0000	000000 REFLUX C-1501	PID 5	A	
LIC509	0.8000000	0000 3.000000	00000 0.0000	000000 KJOLEMEDIUM H-150)2 PID	5A	
LIC575	0.6600000	000 0.50000	00000 0.0000	000000 KONDENSAT POTTE	Z-1501 P	D 5A	
LIC576	1.6600000	000 8.66000	00000 0.0000	000000 NIVA C-1501 F	D 5A		
PIC512	1.0000000	000 1.000000	00000 0.0000	000000 M KONDENS. KJOLEN	<i>MEDIUM</i>	PID 5	iΑ
PIC514C	1.000000	0000 8.00000	00000 0.000	0000000 TRYKK V-1501	PID :	5A	
PIC514Y	1.400000	0000 20.0000	00000 0.000	0000000 TRYKK V-1501	PID :	5A	
TIC504	0.2500000	000 15.0000	00000 2.0000	000000 TEMP. PL. 15 C-1501	PID	5A	
TIC505	0.4000000	000 20.0000	00000 0.0000	000000 TEMP. PL. 38 C-1501	PID	5A	
FIC5102	0.3000000	000 0.40000	0000.0 00000	000000 CWR MINIMUM KON	D.X1501/7	7 PID 5	5D
HIC5300	@@@	@@@	@@@	PRV LEDESKOVLER X-15	01Y AUT	OMAN 5	5D
IIC501	3.00000000	00 1.000000	0000.00000	00000 M STROM KJOLEKOMP	R.MOTOF	R PID 5	5D
IIC503	0.8000000	000 0.250000	0000 0.0000	000000 STR0M KJ0LEKOMPR	. X1501Y	PID 5I	С
IIC5176	2.0000000	000 3.00000	00000 0.0000	000000 M MIN STROM KJOLE	KOMPR.	PID 5	D
LIC562	2.0000000	000 20.0000	00000 0.0000	000000 DRAPEUTSKILLER X	-1501/6 P	ID 5D	
LIC568	1.7000000	000 2.00000	00000 0.0000	000000 1.UNDERKJOLER X-1:	501/9 PIE) 5D	
LIC571	1.2000000	000 2.00000	00000 0.0000	000000 2.UNDERKJOLER X-1:	501/10 PII	D 5D	
LIC606	1.0000000	000 1.50000	00000 0.0000	000000 AVGASSKOND. H-160)2 PID	5D	
PIC5300	0.400000	0000 0.40000	00000 0.0000	0000000 SUGETRYKK KJOL.K	X-1501Y	PID 5	D
PIC5352	1.000000	0000 5.00000	00000 0.0000	0000000 TRYKK KONDENS. X	K-1501/7 F	PID 5D)
PX5300	@@@	@@@	@@@	PRV MAKS.VELGER X-15	01 ORSE	L 5D	
PY512	@@@	@@@	@@@	M STR0MBEGRENSNING	ORSEL	5D	
PY5352	@@@	@@@	@@@	MAX.SEL MIN.KJ0L X150	1/7 ORSEI	_ 5D	
PZ5300	@@@	@@@	@@@	STR0MBEGRENSNING X-2	1501 ORS	EL 5D	
PZ5302	@@@	@@@	@@@	VARMGASS TIL X-1501-Y	/C SWITC	CH 5D	

Vedlegg 2 Reg2ntnu.xx

.DEFINE_FIEL	D ENTITY 20 STRING SHOW 2
.DEFINE_FIEL	D PVEUHI 13 NUMBER SHOW 3
.DEFINE_FIEL	D PVEULO 13 NUMBER SHOW 4
.DEFINE_FIEL	D SPHILM 13 NUMBER SHOW 5
.DEFINE_FIEL	D SPLOLM 13 NUMBER SHOW 6
.DEFINE_FIEL	D OPHILM 13 NUMBER SHOW 7
.DEFINE_FIEL	D OPLOLM 13 NUMBER SHOW 8
.DEFINE_FIEL	D UNIT 10 STRING SHOW 9
.END	
FIC423	35.00000000 0.00000000 35.00000000 0.00000000 100.0000000 0.00000000
FIC450	150.0000000 0.000000000 150.0000000 0.00000000 100.0000000 0.00000000
LIC408	100.0000000 0.000000000 100.0000000 0.00000000
LIC411	100.0000000 0.000000000 100.0000000 0.00000000
LIC422	100.0000000 0.000000000 100.0000000 0.00000000
LIC425	100.0000000 0.000000000 100.0000000 0.00000000
PIC4102	20.00000000 0.000000000 20.0000000 0.00000000
PIC465	6.000000000 0.000000000 6.00000000 0.00000000
TIC429	100.0000000 0.000000000 100.0000000 0.00000000
TIC441	50.00000000 0.000000000 50.00000000 0.00000000
TIC443	50.00000000 0.000000000 50.00000000 0.00000000

TY429A	@@@	@@@	@@@	@@@	105.00000000 -5.000000000 4E
TY429B	@@@	@@@	@@@	@@@	105.00000000 -5.000000000 4E
FIC501	15.00000	0000 0.000000	0000 11.000	00000 0.0000	0000000 100.0000000 0.000000000 5A
FIC503	200.0000	0000 0.000000	0000 200.00	00000 0.0000	0000000 100.0000000 0.000000000 5A
FIC508	30.60000	0000 0.000000	0000 30.000	000000 11.000	0000000 100.0000000 0.000000000 5A
LIC509	100.0000	0000 0.000000	0000 60.000	000000 10.000	0000000 100.0000000 0.000000000 5A
LIC575	100.0000	0000 0.000000	0000 100.00	00000 0.0000	0000000 100.0000000 0.000000000 5A
LIC576	100.0000	0000 0.000000	0000 100.00	00000 0.0000	0000000 100.0000000 0.000000000 5A
PIC512	0.600000	0000 -1.00000	0000 0.0000	000000 -0.400	0000000 100.00000000 15.00000000 5A
PIC514C	16.00000	00000.000000	00000 16.000	000000 8.000	0000000 100.0000000 0.000000000 5A
PIC514Y	16.00000	00000.000000	00000 16.000	00000 0.000	0000000 101.0000000 0.000000000 5A
TIC504	150.0000	0000 0.000000	0000 150.00	00000 0.0000	0000000 100.0000000 0.000000000 5A
TIC505	25.00000	0000 -25.0000	0000 25.000	000000 -25.00	0000000 100.0000000 0.000000000 5A
FIC5102	500.0000	00000.000000	00000 200.00	000000 40.00	0000000 100.0000000 -2.00000000 5D
HIC5300	@@@	@@@	@@@	@@@	100.00000000 20.00000000 5D
IIC501	200.00000	00000.0 0000	0000 126.000	000000 126.00	0000000 100.0000000 0.000000000 5D
IIC503	200.00000	00000.0 0000	0000 155.000	000000 155.00	0000000 102.0000000 0.000000000 5D
IIC5176	200.0000	0000 0.000000	0000 120.00	000000 60.000	0000000 106.0000000 0.000000000 5D
LIC562	100.0000	0000 0.00000	00000 15.000	00000 0.000	0000000 10.00000000 -2.00000000 5D
LIC568	100.0000	0000 0.00000	00000 40.000	000000 15.00	0000000 105.0000000 -5.00000000 5D
LIC571	100.0000	0000 0.00000	00000 40.000	000000 15.00	0000000 105.0000000 -5.00000000 5D
LIC606	100.0000	0000 0.00000	00000 100.00	00000 0.000	0000000 105.0000000 -5.00000000 5D
PIC5300	1.000000	00000 -1.00000	00000 -0.150	000000 -0.400	0000000 100.0000000 0.000000000 5D
PIC5352	10.00000	0000 0.00000	00000 5.5000	000000 2.500	0000000 102.0000000 0.000000000 5D
PX5300	@@@	@@@	@@@	@@@	105.00000000 -2.000000000 5D
PY512	@@@	@@@	@@@	@@@	100.0000000 0.000000000 5D
PY5352	@@@	@@@	@@@	@@@	102.00000000 -2.000000000 5D
PZ5300	@@@	@@@	@@@	@@@	100.00000000 0.0000000000 5D
PZ5302	@@@	@@@	@@@	@@@	102.00000000 -2.000000000 5D

Vedlegg 3 Reg3ntnu.xx

.DEFINE_FIELD ENTITY 20 STRING SHOW 2 .DEFINE_FIELD CTLALGID 10 STRING SHOW 3 .DEFINE_FIELD CTLEQN 10 STRING SHOW 4 .DEFINE_FIELD CTLACTN 10 STRING SHOW 5 .DEFINE_FIELD OPROCLM 13 NUMBER SHOW 6 .DEFINE_FIELD UNIT 10 STRING SHOW 7 .END FIC423 PID EQA REVERSE ----- 4E REVERSE ----- 4E PID FIC450 EQB LIC408 PID EQB DIRECT ----- 4E PID DIRECT ----- 4E LIC411 EQA LIC422 PIDFF EQA REVERSE -----4E DIRECT ----- 4E LIC425 PID EQA PIC4102 PID EQA DIRECT ----- 4E DIRECT ----- 4E PIC465 PID EQA REVERSE ----- 4E **TIC429** PID EQB **TIC441** PID EQA DIRECT ----- 4E ----- 4E TIC443 PID EQA DIRECT ----- 4E @@@ TY429A AUTOMAN EQA TY429B AUTOMAN EQA @@@----- 4E FIC501 PID EQB REVERSE ----- 5A FIC503 PID EQB REVERSE ----- 5A REVERSE ----- 5A FIC508 PID EQA REVERSE ----- 5A LIC509 PID EQB LIC575 PID EQC DIRECT ----- 5A LIC576 PID EQC DIRECT ----- 5A

PIC512	PID	EQB	DIRECT	5A
PIC514C	PID	EQC	REVERSE	E 5A
PIC514Y	PID	EQC	REVERSE	E 20.00000000 5A
TIC504	PID	EQB	REVERSE	50.00000000 5A
TIC505	PID	EQB	DIRECT	50.000000000 5A
FIC5102	PID	EQB	REVERSE	5D
HIC5300	AUTC	MAN E	QA @@	@ 5D
IIC501	PID	EQB	REVERSE	5D
IIC503	PID	EQB	REVERSE	600.00000000 5D
IIC5176	PID	EQB	REVERSE	5D
LIC562	PID	EQB	DIRECT	5D
LIC568	PID	EQB	REVERSE	5D
LIC571	PID	EQB	REVERSE	5D
LIC606	PID	EQC	REVERSE	5D
PIC5300	PID	EQB	DIRECT	20.00000000 5D
PIC5352	PID	EQB	DIRECT	600.00000000 5D
PX5300	ORSE	l eqa	@@@	5D
PY512	ORSEL	EQB	@@@	5D
PY5352	ORSE	l eqa	@@@	5D
PZ5300	ORSEI	E EQB	@@@	5D
PZ5302	SWITC	CH EQE	8 @@@	5D

Q-6 Mail: Svar på spørsmål, renheter, priser.

From: Tor.Ausen@hydro.com Sent: Wednesday, March 22, 2000 10:26 AM To: hanssu@stud.ntnu.no Subject: Re: Prosjekt, regulering av HCl kollonne.

Hei

Svar på spørsmål:

1) Refluks/(HCl - gass til oksy) er normalt = 0.6 til 0.65

2) Føde til plate 16: Hvis 100 % er normalen - varierer mellom 20 % og 130 %. Typisk faller når tilførselen til flashtanken går tett. Skyter over 100% når åpnet igjen.

Føde fra 2. flashtank, væske som blandes inn i hovedstrøm til plate 24, har et tilsvarende mønster. Innblanding jevner ut, men temp. i varierende strøm fra 2. flashtank er ca. 0 oC. Dette slår ut på temp. i strøm til plate 24.

3) I HCl-gass til oksy er vanligvis VCM innenfor 5 - 12 ppm(vol). I bunnen tar vi ikke prøver.

4) Damp = 60 kr/tonn, Strøm = 150 kr/MWh (15 øre/kWh) VCM = varierer mye, men sett som typisk 3500 kr/tonn (salgspris ut).

Kostnader forbundet med krav til HCl i bunnen er ikke beregnet. Det vil typisk være slik at en liten overskridelse gir større returstrøm fra stripper til plate 20 (normalt ca. 5 t/h). Større

overskridelse vil føre til "off spec VCM" fra stripper og "rework strøm" tilbake fra produkt småkule (i tillegg til returstrøm til HCl-kolonna). Vi har tre småkuler som fylles opp og prøvetas før vi pumper den over på en storkule (spec. < 1 ppm HCl).

Vi regner kravet i bunnen av HCl-kolonna som viktigere enn kravet i toppen, men det er sjelden vi har problemer med det.

5) Ja, det er måling på plate 10.

Mvh

Tor Ausen

From: hanssu@stud.ntnu.no on 2000-03-21 08:56 GMT

To: Tor Ausen/HRA/NHP/Hydro@Hydro cc:

Subject: Prosjekt, regulering av HCl kollonne.

Hei,

Nå er vi kommet et godt stykke på vei og nærmer oss slutten av prosjektet. Vi har noen spørsmål som vi håper vi kan få litt hjelp med.

1. Hva er vanligvis reflux ratio?

2. Hvor mye varierer de to fødene som du sier er de viktigste forstyrrelsene?

3. Kan du si noe om hva renhetene i topp og bunn faktisk er, tar dere noen gang prøver?

4. Kan vi få internpriser på damp, strøm, VCM og eventuellt noen kostnadsberegninger knyttet til for lav renhet i bunnen av kolonnen hvis de finnes?

5. På utskriften vi fikk fra kontroll rommet har vi en temperatur måling på 92.5°, vi er noe usikre på hvilken plate dette er (10)?

På forhånd takk

Med vennlig hilsen

Aril, Hans Kristian og Thomas

Q-7 Mail: Modifikasjoner

From: Tor.Ausen@hydro.com Sent: Wednesday, March 29, 2000 9:22 AM To: hanssu@stud.ntnu.no Subject: Re: HCl kolonnen

Hei

Bare noen få kommentarer:

1981: Omsetning i crackere ca. 52 % (Skogestad)

1986: Større kapasitet på nedløpene spesielt, men også noen flere ventiler for å takle større last på platene 1 - 24.

1989: Antall crackere utvidet fra 2 til 3 - tillater høyere omsetning - ca. 55 %.

1998: Varm gass fra V-1402 flyttes fra kombinert føde til plate 34 til egen føde på plate 16. Gevinst:

- * mindre damp til koker
- * mindre refluks
- * større kapasitet på kolonna og kjøleanlegg relativt produksjon

Med hensyn til renhet i bunnen:

Vi tar ingen analyser her fordi C-1504 (nedstrøms stripper) ordner HCl-nivået i det ferdige produktet (< 1 ppm)

Vår Aspenmodell gir rimelige temperaturer fra bunnen og opp til plate 15 (nedre regulering av T-profil). Øvre regulering av T-profil (plate 38) stemmer dårlig, men topptemp. blir riktig (gode data for ren HCl).

Aspen-modellen gir 1 ekstra trinn for koker og for kondensator + 30 trinn for kolonna = 32 teoretiske trinn.

Aspen-modellen justerer damp og refluks inntil renhet i topp og bunn (10 ppm) er oppfylt. Dampmengde og refluks mengde stemmer rimelig godt med målinger.

Temp. i bunnen gjenspeiler omsetning i crackere (brukes i praksis for egenkontroll).

Kondensator: Vi har ikke målt virkningsgrad. Antar 1 trinn.

Mvh

Tor Ausen

R FLYTSKJEMA AV DET VIRKELIGE ANLEGGET

Konfidensiellt