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ABSTRACT

Abstract

The goal of most producers is to conduct optimal production, while keeping costs at a minimum.

This work considers the problem of a recirculated gas lift oil production system, where the

source of the gas lift is supplied by a part of the total produced gas. Unlike a variety of previous

studies (Krishnamoorthy et al. (2016)[1] to name a few), where the upstream gas lift pressure is

considered constant, this paper will consider this pressure to be dependent on both the separator

pressure and the performance of the gas lift compressors. The “recirculated” gas system are

found in a large number of oil fields, and is consequently considered to be a more realistic case

study.

This paper will present an integrated model consisting of a gas lift well system, a riser system,

a separator system and a re-injection compressor train. There have previously been developed

various models describing the dynamic behaviour of these systems. This work will consider,

among others, the nonlinear well model of Eikrem et al. (2008)[2], the gravitational separator

model of Backi et al. (2018)[3] and the compressor model of Greitzer (1976)[4].

The presented model was developed systematically from the mass and energy balances for the

different systems. The necessary relations between the entities were also defined. The resulting

differential-algebraic equations were solved in Python with the backward differentiation based

integrator IDAS from the CasADI framework[5]. Furthermore, measures were implemented

to ensure convergence and reasonable dynamic relationships between the model units. The

system was further continuously evaluated for stability and eventual issues were addressed. The

objective of the optimization problem of this case study is to maximize oil production while

minimizing associated costs, such as energy- and treatment costs. The Interior point optimizer

(IPOPT) was implemented to solve the resulting non-linear programming (NLP) problem, and

the model was manipulated to operate closer to the optimal values.

In this study we investigate the possibility of modelling a recirculated gas lift oil production

system for further implementation of control strategies. Based on this study it is possible

to develop the model with manipulated variables that can be used for further implementation.

However, the model is non-linear and depends on well suited initial guesses to solve the system of

equations. The optimal operation conditions will also be sensitive to small deviations in a process

parameter, and the NLP solver will struggle to find the the solution to the optimization problem.

Due to the assumptions and approximations applied in the development of this model, studies

conducting comparisons between this model and real systems are recommended for validation

and improvement of the model.
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1 INTRODUCTION

1 Introduction

Optimal production at the lowest possible cost is the objective for most oil and gas compa-

nies. Usually, mathematical models are used when optimizing production system performance.

The use of mathematical models can cause great uncertainties in the solution, due to the

simplifications of the model, and the lack of reliable data. This is an inherent problem in

production optimization because of the complex nature of the production fluids, and the large

number of processing units[1]. Thus, the construction of realistic models are essential for reliable

optimization results and optimal production.

This work considers the modelling and optimization of a recirculated gas lift oil production

system. The modelling aims to construct an integrated model, based on several separate oil

production systems, including a gas lift well system, a riser system, a separator and a re-injection

compressor train. Furthermore, the model will implement re-circulation of gas for use as gas

lift. This results in a gas lift system that is dependent on the gas pressure in the separator and

the compressor performance. The model is developed for further implementation of different

control strategies, like primal-dual based control and regional based control[6]. These methods

are based on the principle of moving the optimization problem to the control layer proposed by

Moriari et al. (1980)[7]. The methods will then be compared with the NLP solver used in this

paper in the continued work of a mater thesis.

This paper will systematically explain the mathematical background of the different subsystems,

as well as the related assumptions and simplifications. Furthermore, a general method for

the modelling will be described, as well as implementations of the separate subsystems. The

model will be developed from mass and energy balances relating to the different subsystems

and methods developed in previous work. Several dynamic models have been developed for the

subsystems, Eikrem et al.(2008)[2] among others[1], proposed a non-linear dynamic well model for

the control of instabilities in gas lift wells. A dynamic model of the riser system was developed

by Jahanshahi et al.(2011)[8][9], who proposed a dynamical model of multi-phase flow in risers.

For the separator system Backi et al. (2018)[3][10], proposed a gravity based separator for three-

phase separation. The dynamic compressor model derived by Greitzer (1976)[4][11], proposes a

non-linear model for axial-compressor flow.

From this point forward, the paper will be organized as following: Section 2 includes general

theory, Section 3 includes the mathematical background and implementation of the model,

Section 5 includes results and discussion of the simulation and optimization of the model, Section

6 includes the conclusion and Section 7 includes the proposed further work.
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2 THEORY

2 Theory

2.1 Principles of oil production

The most important part of a oil production system is the reservoir. Reservoirs are classified

as either water-drive reservoirs, gas-caped drive reservoirs or dissolved gas drive reservoirs. In

water-drive reservoirs, ground water expands and flows into the reservoirs when pressure is

reduced, which forces oil and gas to the top of the reservoir. If the production production rate

is kept stable, this type of reservoir will maintain its pressure for a longer period of time than

other types of reservoirs. In gas-cap drive reservoirs, the gas escapes the oil/gas solution and

rises to the top of the reservoir. If the gas in the cap(top of the reservoir) is produced to fast, the

reservoir pressure will drop significantly, thus reducing the production potential. For dissolved

gas drive reservoirs, the gas dissolves in the oil and remains in liquid phase. It is often necessary

to perform early pressure maintenance in the reservoir due to the potential of formation of a

two-phase flow resulting from pressure drop[12].

To be able to access the oil and gas inside petroleum reservoirs, wells needs to be drilled to create

extraction passages. These production wells consists of packers, a production pipe (tubing),

casings, and a wellhead containing numerous chokes. The packers isolates the annulus at the

bottom of the tubing, forcing the produced fluid to escape the perforation, and into the bottom of

the well. The tubing transports the oil and gas to the surface. The casings are pipes that support

the structure. The wellhead consists of various chokes, which are implemented to control the

flow of the well. The main choke for flow control is defined as the production choke, which can

be manipulated to alter the flow. By closing down a production choke, the bottom-hole flowing

pressure increases, thus reducing the pressure difference between reservoir and the bottom-hole

of the well. This results in a decrease in production rate. Wells can be classified by their Gas-

oil ratio (GOR), which quantifies the relationship between oil and gas in the production fluid.

Another way to classify wells is to examine their productivity index. This index formulates a

relationship between the flow of the liquid in the well and the pressure difference between the

reservoir and the bottom-hole[12]. Wellheads can be positioned either subsea or at the topside

production facilities. If a wellhead is located at the seabed, a riser, which is a pipe section, can

be used for transportation to the topside production facilities. At the topside, the production

fluid is transported to the the inlet separator.

Normally, the production fluid consists of several different compounds. These compounds are

for the most part hydrocarbons, both in gas- and liquid-phase, as well as water and solids. The

production flow usually has turbulent character, which implies irregular movement of the liquid.

To separate the different compounds in the production fluid for further treatment, separators

are used. The most common separator to use due to its wide range of applications and low cost

is the horizontal separator, which separates the components in the production fluid by exploiting

the density difference between the components and gravity[12].

Artificial lift is a general term for methods that increase oil production from the wells. One

of the most prevalent artificial lift methods is called gas lift. The gas lift method is based on

injection of gas into the annulus of a well. The injected gas flows to an injection valve at the

lower sections of the well, and into the tubing. The gas affects the production fluid by reducing

its density, thus reducing the hydro-static pressure which increases the flow. The injected gas

also affects the production fluid by pushing it towards the surface due the effects of expansion[12].

The gas lift system uses produced gas as injection gas, and is reliant on a compressor system

2



2 THEORY 2.2 CasADI

to re-compress the produced gas before it can be used for injection. The gas lift system is also

dependent on a gas lift manifold with piping and chokes connected to the relevant wells, and an

injection valve at the bottom of the annulus. According to Hu(2004)[13], gas lift will increase

the production of the well to the point where hydrostatic-pressure drop can not compensate for

the increased friction due to the increased mas of gas in the tubing. If more gas is injected at

this point, the production of oil will decrease.

Gas lift is often supplied by a part of the produced gas. The pressure loss from the reservoir

to the production facilities lead to the need for re-compression of the gas. In most production

facilities compressors are chosen for this need. There are several types of compressors available

for this purpose. Centrifugal compressors are often implemented due to the reliable nature

compared to other compressors. The compressor is also known for its great tolerance for process

fluctuations and its ability to operate smoothly. The centrifugal compressor works by forcing

gas through an impeller (inlet), this is achieved by fast rotating blades in the impeller that

creates suction pressure. In the impeller the energy of the velocity of the mass is converted

into pressure, which in turn leads to a pressure rise in the out-flowing gas in a diffuser (outlet).

Therefore, the main function of a centrifugal compressor is to add kinetic energy supplied by the

impeller rotor blades to the production gas. The kinetic energy is then converted into potential

energy represented by an increase in pressure[14].

According to McMillan et al.(2010, p.52)[15], the general pressure ratio a single-step centrifugal

compressor are able to achieve is approximately 3:1. However, this pressure ratio is not sufficient

for a multitude of implementations, which creates the need for introducing compressors in series.

The introduction of compressors in series will increase the total achieved pressure-ratio. At each

compressor stage, heat must be removed from the gas to avert the risk of overheating and loss

of efficiency. The pressure ratio will increase by rotational speed, and decrease with rise in

inlet mass flow. The reason for this being that when the speed increases more kinetic energy

are added to the gas, and more potential energy are converted. When an increase in mass is

introduced to the system, the system must compress more gas with the same amount of energy,

thus resulting in a decrease of pressure ratio[16].

A polytropic process is a thermodynamic process that includes heat transfer for expansion

and compression processes. Polytropic compression considers changes in the gas characteristics

before and after compression. The polytropic efficiency of a centrifugal compressor typically

range between 0.7 - 0.85 %, which is high compared to other types of compressors[17].

2.2 CasADI

CasADI is an open-source software framework for numerical optimization. CasADI was first

implemented as a tool for algorithmic differentiation (AD), with the use of a computer-algebra

system (CAS) syntax. The project was started by Joel Andersson and Joris Gillis in 2018[5].

CasADI is based on a symbolic framework, where variables are defined as symbolic values. The

program consider these values as matrices. CasADI can be used to solve a multitude of different

problems related to optimal control, and supplies the users with a toolkit for implementation of

optimization problems with less effort and no loss of efficiency[5].

3



2 THEORY 2.2 CasADI

2.2.1 Initial value problems

Initial value problems (IVP) can be solved in CasADI for both ordinary-differential equations

(ODE) and differential-algebraic equations (DAE). The general state-space form of a DAE

system are shown in Equation 2.1:

ẋ = f(t, x, z, p) x(0) = x0

0 = g(t, x, z, p),
(2.1)

where x is the differential states, z is the algebraic states and p is the parameters.

CasADI implements the SUNDIALS suite integrator IDAS for integration of DAE systems[18].

The IDAS integrator is based on the backward differentiation formula (BDF), which is linear

multi-step methods for solving stiff IVP’s and DAE’s[19]. The BDF method, defined in Equation

2.2, has high order and good stability, and is defined for k = 1, ..., 6:

k∑
j=0

αjyn+j = hfn+k, (2.2)

where α is the region of A(α) stability, yn+j is the value of y at n + j, h is the step-size, and

fn+k is the function evaluation at n+ k[19].

The implementation of the IDAS integrator in CasADI can be summarized with the following

steps:

1. Defining the differential, algebraic and parameter variables as symbolic.

2. Defining the algebraic and differential equations.

3. Concatenate all the relating variables and equations.

4. Structure the variables and equations into a single variable defining the DAE system.

5. Defining the integrator function with ”IDAS” and the DAE system as input variables.

6. Call the function with initial guesses for the variables.

The time horizon of the integration can be changed by including time in the integrator function[5].

For further information about CasADI integrators and implementation see Welcome to casadi’s

documentation! by Andersson et al[20].

2.2.2 Nonlinear programming

CasADI can be used to solve a number of nonlinear optimization problems. The most prevalent

nonlinear programming (NLP) solver is the Interior Point Optimizer (IPOPT). IPOPT is a

primal-dual interior point algorithm with a filter line-search method for NLP[21]. A generalized

optimization problem can be defined on the form shown in Equation 4.3:
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2 THEORY 2.2 CasADI

min
x

f(x)

s.t. c(x) = 0

g(x) ≤ 0

xL ≤ x ≤ xU

(2.3)

where f(x) is the objective function, c(x) is the equality constraints, g(x) is the inequality

constraints, x is the states and xL and xU are the lower and upper bounds of the states.

IPOPT simplifies this general optimization problem by eliminating the inequality constraints

by introducing slack variables, thus forming an equality constraint and a bounded variable[22].

Applying the assumption that all states are only lower-bounded by 0, IPOPT considers the

optimization problem after simplification shown in Equation 2.4:

min
x

f(x)

s.t. c(x) = 0

x ≥ 0

(2.4)

With the re-formulated optimizing problem, IPOPT as an interior point method, considers the

barrier problem formulated by Fiacco and McCormick[23] in Equation 2.5:

min
x

ϕµ(x) = f(x)− µ

n∑
i=1

ln(xi)

s.t. c(x) = 0

(2.5)

where ϕµ(x) is the barrier objective function, and the logarithmic term replaces the boundary

constraint from Equation 2.4. The method works by starting at an initial point x and a moderate

value of µ. The equation for the barrier objective function is then solved. The next evaluation

starts at the solution of the previous one and the value of µ is decreased. This results in a

more accurate approximation for every iteration. If xi is near its boundary of zero, the barrier

objective function will go towards infinity. Consequently, the optimal solution will be inside

the region determined by the boundaries of the states. The method continues until a point

which satisfies the first-order optimality conditions known as the Karush–Kuhn–Tucker (KKT)

conditions has been identified[22]. The KKT conditions for the barrier problem are presented in

Equation 2.6:

∇f(x) +∇c(x)y − z = 0

c(x) = 0

XZe− µe = 0

x, z ≥ 0

(2.6)

where y and z are the Lagrangian multipliers for the equality and bound constraints respectively.

The matrices X, Z and e are defined as shown in Equation 2.7:
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2 THEORY 2.3 PID controller

X =


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 0 xn

, Z =


z1 0 · · · 0

0 z2 · · · 0
...

...
. . .

...

0 0 0 zn

 , e =


1

1
...

1

 (2.7)

For each evaluation of Equation 2.5, the Newton method is used. The newton step is found by

the use of the KKT equations shown in Equation 2.6, that strictly satisfies x, z > 0. The steps

of x, y and z are computed for each evaluation k:

[
Wk +X−1

k Zk ∇c(xk)

∇c(xk)
T 0

](
∆xk
∆yk

)
= −

(
ϕµ(xk) +∇c(xk)yk

c(xk)

)
, (2.8)

where ∆z = X−1
k µe − zk − X−1

k Zk∆xk and Wk is the Hessian of the Lagrangian function.

Further, a line search is performed until a sufficient step-size is achieved. The next point is

then computed by the step and the step-size. When the Newton method has found a point that

satisfies the KKT conditions, µ is decreased as described above[22].

The implementation of a NLP solver in CasADI consist of the following steps:

1. Defining the differential, algebraic and parameter variables as symbolic.

2. Defining the objective function and the algebraic and differential equations.

3. Concatenate the algebraic and differential equations, thus defining the equality constraints.

4. Structure the variables, equality constraints,inequality constraints and the objective func-

tion into a single variable defining the NLP system.

5. Defining the nlpsolve function with ”ipopt” and the NLP system as input variables.

6. Call the function with initial guesses and upper/lower boundaries for the variables and

constraints.

For further information about CasADI NLP solvers and implementation see Welcome to casadi’s

documentation! by Andersson et al[20].

2.3 PID controller

One of the most prevalent controller-types for industrial purposes is the proportional-integral-

derivative (PID) controller. The proportional (P) part of the controller, the P-controller, is

used when the controller action is proportional to the magnitude of the controller error. The

proportional control output are defined in Equation 2.9:

u(t) = Kpe(t), (2.9)

where Kp is the proportional gain and e(t) is the error, the difference between the measured

controlled variable and the setpoint of the variable. Due to the simplistic nature of the P-

controller, the integral (I) part of the controller, the I-controller, is implemented to reduce

steady-state off-set. The integral control output are defined in Equation 2.10:
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2 THEORY 2.4 SIMC tuning

u(t) = KI

∫ t

0
e(τ)dτ, (2.10)

where KI is the integral gain. The derivative (D) part of the controller, the D-controller, utilizes

the rate of change of previous errors to ”predict” future behaviour. The derivative control output

are defined in Equation 2.11:

u(t) = KD
de

dt
, (2.11)

where KD is the derivative gain. The total PID control output are defined as the combination

of the three control outputs: proportional control, integral control and derivative control. The

PID control output are shown in Equation 2.12:

u(t) = Kpe(t) +KI

∫ t

0
e(τ)dτ +KD

de

dt
(2.12)

The most utilized form of the PID control output equation however, is the time constant form,

presented in Equation 2.13:

u(t) = Kp

(
e(t) +

1

τI

∫ t

0
e(τ)dτ + τD

de

dt

)
, (2.13)

where τI is the integral time and τD is the derivative time. The resulting tuning parameters are

Kp, τI and τD
[24].

2.4 SIMC tuning

Parameter tuning is a method for obtaining values for a given parameter. Section 2.3 shows

that the PID-controller has three different tuning parameters: Kp, τI and τD. To be able to

tune these three parameters, a systematic approach is necessary. Several methods for tuning of

the three control tuning parameters have been purposed throughout time. Ziegler and Nichols

(1942)[25] proposed a method that handles disturbance rejection in integrating processes, but

often results in aggressive settings. Another tuning method is the IMC method, proposed by

Riviera et al.(1986)[26]. This paper however, considers the tuning rules of Skogestad Internal

method control (SIMC). These SIMC rules were developed by Sigurd Skogestad, with the goal

of making a set of simple tuning rules that works well for a wide range of processes[27].

For an open-loop step in the manipulated variable (u) and the resulting change in the controlled

variable (y), shown in Figure 2.1, it is possible to estimate the process gain (k), The process

time delay (θ) and the dominant lag time constant (τ1). For a second-order process the second

order lag time(τ2) can also be estimated.
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Figure 2.1: Step response of first-order plus time delay process[27].

The transfer function of a general first-order process with time delay are defined in Equation

2.17:

g(s) =
ke−θs

τ1s+ 1
(2.14)

The SIMC rules can be derived by using the IMC approach, with controller time (τc) as the only

tuning parameter, on the closed-loop setpoint response. Application of the SIMC rules results

in a PI-controller with controller settings presented in Equations 2.15 and 2.16:

Kc =
1

k

τ1
τc + θ

, (2.15)

τI = min{τ1, 4(τc + θ)}, (2.16)

where KC is the controller gain and τI is the integral time.

For integral processes, where τ1 ≫ θ, the process takes a long time to stabilize. The process

gain will in this case be estimated from the slope of the controlled variable described in Figure

2.2.
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Figure 2.2: Open loop step response on integrating process[28].

The first-order process with time delay described in Equation 2.17 can then be approximated

as an integrating process:

g(s) =
k′e−θs

s
(2.17)

Application of the SIMC procedure to the process defined in Equation 2.17 results in a PI-

controller with controller settings presented in Equation 2.18 and 2.19:

Kc =
1

k′
1

τc + θ
(2.18)

τI = 4(τc + θ) (2.19)

Equation 2.18 and 2.19 show that an integral process only has one tuning parameter, τc
[28][27].
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3 MODELLING

3 Modelling

3.1 Model description

The model consists of five main sections: the well system, the riser, the separator, the compressor

train and the gas lift system. Each section was modelled independently, before being integrated

in the total model. The modelling section will describe the dynamics and mathematical back-

ground for each subsystem, and explain how the mathematical relations are derived. The main

assumptions that has been made are also presented in this section. The constant parameters for

each subsystem will be listed, as well as a summary of the equations and the states. The well

system consists of six separate wells with gas lift. The wells are connected through a mutual

manifold, which are located at the seabed. The produced oil and gas from each of the six wells

merges in this manifold, before it is transported to the riser. The riser connects the subsea

facilities with the separator at topside, where the oil and gas are separated. The outlet gas of

thee separator is then either routed to export or to compression. This model only concerns the

gas that are sent to compression, so the process of the gas that are routed to export will not be

described further. From the compressor the gas is routed to the different wells to be used as lift

gas. The outlet oil of the separator is sent to export. A pictorial representation of the entire

model is shown in Figure 3.1.

Figure 3.1: Sketch of the total model flow-sheet.

3.2 Well system

This section will present the mathematical background of the entire well system. All relevant

assumptions that has been made will also be listed.

A simplified version of the gas lift well system are presented in Figure 3.2. This figure shows

how the oil and gas in the reservoir flow into the tubing and up through the production choke.

The lift gas enters the annulus through a gas lift choke and is injected into the tubing through

an injection valve. The part of the tubing that extends from the reservoir to the injection valve

is defined as the bottom hole. The part of the tubing that extends from the injection valve and

10



3 MODELLING 3.2 Well system

up to the wellhead is defined as the well. The main assumptions for the well model is two-phase

flow i.e oil and gas and ideal gas behaviour. Further assumptions will be mentioned during the

section.

Figure 3.2: Sketch of the simplified gas lift well system.

3.2.1 Mass balances

The generalized mass balance equation, assuming no reactions, are defined in Equation 3.1:

ṁ = win − wout, (3.1)

where ṁ is the mass rate in the system, win is the mass flow into the system and wout is the

mass flow out of the system[29].

By assuming that the reservoir contains only oil and gas, the component mass balances in the

tubing and annulus can be derived from Equation 3.1. These mass balances, which are valid for

each of the wells in the system, are presented in Equation 3.2 to 3.4.

ṁgai = wgli − wivi , (3.2)

ṁgti = wivi + wrgi − wpgi , (3.3)

ṁoti = wroi − wpoi , (3.4)
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3 MODELLING 3.2 Well system

where i denotes each well, mga is the mass rate of gas in the annulus, wgl is the gas lift flow, wiv

is the gas flow from annulus to tubing, mgt is the mass rate of gas in the tubing, wrg is the gas

flow from the reservoir, wpg is the produced gas flow, mot is the mass rate of oil in the tubing,

wro is the oil flow from the reservoir and wpo is the produced oil flow.

3.2.2 Pressure

There are four important pressure regions in the well system: the annulus pressure at the

injection point, the bottom hole pressure, the gas injection point pressure and the wellhead

pressure. The reservoir pressure is assumed to be known and can be found in Appendix A. To

formulate the equations we first need to define Bernoulli’s equation. The pressure equations are

derived starting from the Bernoulli’s equation, presented in Equation 3.5:

p1 +
1

2
ρv21 + ρgh1 = p2 +

1

2
ρv22 + ρgh2, (3.5)

where p1 is the initial pressure, ρ is the density of the fluid, v1 is the initial velocity, g is the

gravitational constant, h1 is the initial height , p2 is the final pressure, v2 is the final velocity and

h2 is the final height. By assuming static gas and the relative height of h1 to be zero, Equation

3.5 can be simplified to the form shown in Equation 3.6:

p2 = p1 + ρgh2 (3.6)

By combining Equation 3.6 and the ideal gas law the annulus pressure at the injection point pai
can be formulated as shown in Equation 3.7:

pai =

(
R Tai

VaiMw
+

gHai

Vai

)
mgai , (3.7)

where pa is the annulus pressure, R is the universal gas constant, Ta is the temperature in the

annulus, Va is the volume of the annulus, Mw is the molecular weight of the gas and Ha is the

height of the annulus from the injection point.

The pressure of the gas inside the tubing are found by the ideal gas law. To find the volume of

gas we need to subtract the volume of oil from the total volume of the tubing. For the wellhead

pressure, the pressure of the gas inside the tubing are combined with the the second term in

Equation 3.6, assuming the ideal gas pressure is located at the center of the pipe length. This

yields a more realistic pressure profile for the wellhead pressure, which is located at the top of

the tubing. The equation for the wellhead pressure are presented in Equation 3.8.

pwhi
=

RTwi

Mw

(
mgti

Vwi + Vbhi
− moti

ρo

)
−
(
mgti +moti

Vwi

)
g
Hwi

2
, (3.8)

where pwh is the wellhead pressure, Tw is the well temperature, Vw is the well volume, Vbh is the

bottom hole volume, ρo is the density of the oil and Hw is the height of the well.

By obtaining the equation for the wellhead pressure, the relationship between this variable and

the injection point pressure and the bottom hole pressure that is located further down in the

tubing can be derived. To acquire this relationship, the total pressure drop equation must be
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3 MODELLING 3.2 Well system

evaluated under the assumptions of zero component loss, fittings loss or pump head[30]. This

relationship is shown in Equation 3.9.

P [end] = P [start]− Friction loss + Elevation[start− end] (3.9)

Equation 3.6 gives a relationship for pressure difference related to the static pressure for elevation

differences in the pipe. To obtain the pressure drop related to friction, the Hagen-Poiseuille

equation assuming laminar flow can be used[31]. This equation describes the characteristics of

laminar flow through a tube, and the pressure loss due to viscosity, and are shown in Equation

3.10.

P =
128QLµ

πD4
, (3.10)

where P is the pressure drop in the pipe, Q is the volumetric flow, L is the length of the pipe

segment, µ is the fluid viscosity and D is the diameter of the pipe.

The Hagen-Poiseuille equation, shown in Equation 3.10, provides a relationship for the friction

pressure drop. This makes it possible to derive an equation for the injection point pressure. The

gas lift injection point is located at the bottom of the well, which is the top of the bottom hole.

Therefore, the amount of mass between the wellhead and the injection point will be equal to

the total mass in the tubing, minus the amount that is located in the bottom hole. We also use

the fact that the volumetric flow equals the mass flow divided by the density. By assuming that

the mass of gas in the bottom hole is negligible compared to the mass of oil, the injection point

pressure becomes as shown in Equation 3.11:

pwii = pwhi
+

gHwi

AwiLwi

(moti +mgti − ρoLbhi
Abhi

) +
128µoLwiwpci

πD4
wi

(
(mgti+moti )pwhi

Mwρo
motipwhiMw+ρoRTwimgti

) , (3.11)

where pwi is the gas injection point pressure, Aw is the area of the well, Lw is the length of

the well, Lbh is the length of the bottom hole, Abh is the area of the bottom hole, µo is the

oil viscosity, wpc is the flow through the production choke and Dw is the diameter of the well.

The bottom hole pressure is found by the same principles as in Equation 3.11. In this case the

pressure is calculated relative to the injection point pressure and by assuming that the bottom

hole is filled with oil. The equation for the bottom hole pressure is shown in Equation 3.12:

pbhi
= pwii + ρogHbhi

+
128µoLbhi

wroi

πD4
bhi

ρo
, (3.12)

where pbh is the bottom hole pressure, Hbh is the height of the bottom hole and Dbh is the

diameter of the bottom hole.

3.2.3 Flow

Figure 3.2 shows that there is flow through the injection valve, the production choke and flow

from the reservoir. The flow from the reservoir contains both oil and gas, which flows up through

the tubing and through the production choke. The re-compressed gas from the compressor flows
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3 MODELLING 3.2 Well system

in through the gas lift choke and down the annulus, before it flows through the injection valve

into the well, where it mixes with the reservoir oil and gas flow. The valve equation can be used

to find expressions for the flows[32]. The valve equation for mass flow is shown in Equation 3.13:

w = uCv

√
ρ(P1 − P2), (3.13)

where w is the mass flow, u is the valve opening, Cv is the flow coefficient, ρ is the density of the

fluid, P1 is the inlet pressure and P2 is the outlet pressure. This equation gives a relationship

between flow and pressure difference across a valve. With this, the flow through the injection

valve and production choke can be found as well.

From Figure 3.2, we can observe that the inlet pressure of the injection valve is the same as the

annulus pressure and the outlet is the same as the injection point pressure found in Equation

3.7.

wivi = Civ

√
ρa(pai − pivi), (3.14)

where Civ is the injection valve flow coefficient, ρa is the density of gas in the annulus, and piv is

the injection point pressure. Figure 3.2 shows that the inlet pressure of the production choke is

the same as the wellhead pressure derived in Equation 3.8. The figure also shows that the outlet

pressure of the production choke is equal to the manifold pressure. This gives an equation for

the mass flow through the production choke, which are shown in Equation 3.15.

wpci = upcCpc

√
ρm(pwhi

− pm), (3.15)

where upc is the production choke opening, Cpc is the production choke flow coefficient, ρm is

the density of the mixed fluid in the wellhead, and pm is the manifold pressure.

To find the gas mass flow through the production choke, a relation between the total gas in the

tubing, found in Equation 3.3, and the total oil, found in Equation 3.4, is used. The percentage

of gas in the total flow, found in Equation 3.15 will be equal to the total mass of gas in the

tubing divided by the total mass of oil and gas in the tubing. The equation for the flow of the

produced gas is given in Equation 3.16:

wpgi =
mgti

mgti +moti

wpci (3.16)

When deriving the equation for produced oil the same principles as for the produced gas are

used. The only difference being we are solving for the amount of oil. The equation for the flow

of the produced oil is given in Equation 3.17:

wpoi =
moti

mgti +moti

wpci (3.17)

The reservoir oil flow can be found by utilizing the reservoir productivity index. The productivity

index gives an indication of the wells ability to produce hydrocarbons[33]. The equation for the

productivity index given in kg/s is presented in Equation 3.18:
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PI =
wo

pres − pbh
, (3.18)

where PI is the productivity index, wo is the reservoir oil flow, pbh is the bottom hole pressure

and pres is the reservoir pressure. Rearranging this equation gives the equation for the reservoir

oil flow, shown in Equation 3.19:

wro =
PI

pres − pbh
(3.19)

The gas-oil ratio can be used to find the reservoir gas flow from the reservoir oil flow. GOR is

the volumetric ratio between oil and gas in the crude oil. The equation for the reservoir gas flow

can thus be related to the reservoir oil flow, and is given in Equation 3.20:

wrg = GORwro (3.20)

3.2.4 Density

In the modelling of the density, there are two regions of interest: the density of gas in the annulus

and the density of the fluid mixture in the wellhead. The density of the gas in the annulus can

be derived by assuming that the gas possess ideal behaviour in the annulus. The density of the

gas in the annulus can thus be derived from the ideal gas law, and is presented in Equation 3.21.

ρai =
Mwpai
RTai

(3.21)

The mixed density can be found from assuming that the total density of the mixture equals the

total mass, divided by the total volume. The total volume is represented by the volume of each

component in the mixture, as shown in Equation 3.22:

ρt =
Mt

Ma
ρa

+ Mb
ρb

, (3.22)

where ρt is the total density, Mt is the total mass and a and b represents the density and mass

of the two entities. By multiplying with density of a and b the previous expression can bee

reewritten into the form pressented in Equation 3.23:

ρt =
Mtρaρb

Maρb +Mbρa
(3.23)

Implementing Equation 3.23 and the ideal gas law for the density of gas, the mixed density in

the wellhead can be defined as shown in Equation 3.24:

ρm =
(mgt +mot)pwhMwρo

motpwhMw + ρoRTwmgt
(3.24)
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3.2.5 Equations and states

The well model shows that we have both differential- and algebraic equations in the the well

system. We consider the GOR of each well as a potential disturbance to the overall system. We

assume that we can manipulate the opening of the production chokes. The summarized system

can be described for each well (i) as:

xwell = [mgai ,mgti ,moti ]
T (3.25a)

zwell = [paii , pwhi
, pwii , pbhi

, ρaii , ρmi , wivi , wpci , wpgi , wpoi , wroi , wrgi ]
T (3.25b)

pwell = [GORi, presi ]
T (3.25c)

uwell = [upci ]
T (3.25d)

where xwell represents the differential states of the well system, zwell represents the algebraic

states of the well system, pwell represents the parameters of the well system and uwell represents

the control variables of the well system. The constant values and parameters of the well system

can be found in Appendix A.

3.3 Manifold and Riser

This section will present the mathematical background of the manifold and riser system. All

relevant assumptions that has been made will also be listed.

A simplified version of the well system, manifold and riser are presented in Figure 3.3. The figure

show how the oil and gas flows from the production choke of each well to a mutual manifold.

In the manifold, the production fluids from each well are mixed. From the manifold, the total

flow is transported to the riser, which is assumed to be perfectly vertical and rigid. The riser

transports the flow from the subsea facilities and up to the surface production facilities.
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3 MODELLING 3.3 Manifold and Riser

Figure 3.3: Sketch of the simplified well system with manifold and riser.

3.3.1 Mass balances

Figure 3.3 shows that the inlet flow of the riser is equal to the total flow of the six wells.

Furthermore, the outlet flow of the riser is the same as the the total flow going through the

valve located before the separator. Consequently, the oil and gas mass rate in the riser can be

found by the general mass balance equation derived in Equation 3.1. Here, the inlet flow is the

sum of oil produced from each well, shown in Equation 3.17, and the gas, shown in Equation

3.20. The equations for the mass of oil and gas in the riser as shown in Equation 3.26 and 3.27

respectively.

ṁor =

6∑
i=1

wpo − wto, (3.26)

ṁgr =
6∑

i=1

wpg − wtg, (3.27)

where mro is the mas rate of oil in the riser, wpo is the produced oil from each well and wto is the

total oil flow going to the separator, mrg is the mas rate of gas in the riser, wpg is the produced

gas from each well and wtg is the total gas flow going to the separator.

3.3.2 Pressure

For the modelling of the riser there are two important pressure regions: the pressure at the top

of the riser (riser head pressure), and the manifold pressure. These pressures are derived with

the same logic as the dependent pressures in the well. The riser head pressure is derived from
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the ideal gas law and the static pressure drop from Equation 3.6. The static pressure drop is

added since we assume that the ideal pressure of gas is in the center of the length of the riser.

The equation for the pressure in the riser head is shown in Equation 3.28:

prh =
RTr

Mw

(
mgr

LrAr

)
−
(
mgr +mor

LrAr

)
g
Hr

2
, (3.28)

where prh is the riser head pressure, Lr is the length of the riser, Ar is the area of the riser and

Hr is the height of the riser.

The manifold pressure can be found by using the riser head pressure shown in Equation 3.28,

and the total pressure drop, shown in Equation 3.9. The manifold pressure equation is given in

Equation 3.29:

pm = prh +
gHr

ArLr
(mor +mgr) +

128µoLrwpr

πD4
r

(
(mgr+mor)prhMwρro
morprhMw+ρoRTrmgr

) , (3.29)

where pm is the manifold pressure and Tr is the temperature in the reservoir.

3.3.3 Flow

The total flow through the riser can be found by utilizing the valve equation defined in Equation

3.13. From Figure 3.3 it can be observed that the inlet pressure is the same as the riser head

pressure, and the outlet pressure is the same as the separator pressure. The equation for the

total flow from the riser are presented in Equation 3.30:

wpr = Cpr

√
ρr(prh − pgs), (3.30)

where wpr is the total production mass flow from the riser, Cpr is the valve characteristics, ρr
is the mixed density in the riser and pgs is the pressure of the gas in the separator. From the

equation of total mass flow through the riser valve, the flow of oil and gas can be derived. The

oil flow from the riser will be equal to the mass of oil in the riser divided by the total mass times

the total flow. The equation for total oil flow through the riser are shown in Equation 3.31:

wto =
mor

mgr +mor
wpr, (3.31)

where wto is the total oil flow from the riser. The gas flow from the riser is derived using the

same method as for Equation 3.31. Thus, the equation for total gas flow through the riser are

shown in Equation 3.32:

wtg =
mgr

mgr +mor
wpr, (3.32)
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3.3.4 Density

The density at the riser head can be found by implementing Equation 3.23, and the density of

gas from the ideal gas law. The resulting equation for the density of oil and gas in the riser head

is shown in Equation 3.33:

ρr =
(mgr +mor)prhMwρro
morprhMw + ρroRTrmgr

(3.33)

3.3.5 Equations and states

The riser model includes both differential and algebraic states. We do not consider any potential

disturbances or controlled variables in the riser system. The system model can be described as

shown in Equation 3.34:

xriser = [mor,mgr]
T (3.34a)

zriser = [prh, ρr, pm, wpr, wto, wtg]
T (3.34b)

where xriser are the differential states of the riser system and zriser are the algebraic states of

the riser system. The constant values of the riser system can be found in Appendix A.

3.4 Separator

This section will present the mathematical background of the separator. All relevant assumptions

that has been made will also be listed.

A simplified version of the separator are presented in Figure 3.4. The production fluid enters the

separator where it gets separated into a gaseous phase and a liquid phase due to the difference

in density. We assume perfect separation, no thermodynamic effects between the two phases,no

foaming and no droplet generation. The level in the tank, and subsequently the pressure, is

controlled by a level controller to secure safe operation. The oil level is always assumed to be

below the inlet of the separator. The gas is either routed to export or to the compressor train

to be used as lift gas. Since perfect separation is assumed, no further treatment of the gas is

necessary before compression. The oil is sent to export.

Figure 3.4: Sketch of the simplified Separator.
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3.4.1 Pressure

Figure 3.4 shows that the separator has six pressure regions. The oil and gas export pressures are

assumed to be constant parameters found in Appendix A, the pressure in the riser head is defined

in Equation 3.28 and the suction pressure of the first compressor is derived in the compressor

model Section 3.5. The two remaining pressure regions are the pressure of the gaseous phase

and the liquid phase in the separator. The pressure of the gas in the separator depends on the

inlet flow and the outlet flow of the separator.

Figure 3.4 shows that the separator consist of one inlet flow and three outlet flows. The inlet

flow comes from the riser, and consist of partially gas and partially oil. The outlets are one oil

outlet, and two gas outlets. By assuming constant temperature over the separator and ideal gas

behaviour, Equation 3.1 can be manipulated into the form shown in Equation 3.35:

ṅg =
wgin − wgout

Mw
, (3.35)

where ng is the mole rate of gas in the system, wgin is the mass flow of gas into the system and

wgout is the mass flow of gas out of the system. The molar rate can be related to the pressure by

deriving the time-derivative of the ideal gas law[3]. This time-derivative is shown in Equation

3.36:

ṅgRT = Vgṗg + pgV̇g, (3.36)

where Vg is the volume of the gas in the system and pg is the pressure of the gas in the system.

Based on the dynamics of the system it is assumed that the gas volume rate of change in the

system is equal to the negative of the oil volume rate of change. Thus, when the oil volume

increases, the gas volume will decreasse. The volumetric flow rate of the gas is defined as shown

in Equation 3.37:

V̇o = qoin − qoout , (3.37)

where V̇o is the oil volume rate in the separator and qo is the volumetric flow rate in and out

of the system. By adding Equation 3.35 to Equation 3.36, and introducing the relation given in

Equation 3.37, the resulting equation for the pressure rate in the separator is defined in Equation

3.38:

ṗgs =
RTs

VgsMw
(wtg − wgs − win1) +

pgs
Vgsrhoro

(wto − wos), (3.38)

where pgs is the pressure rate in the separator, Vgs is the volume of gas in the separator, wgs

is the gas to export, win1 is the gas to the compressor train and wos is the oil to export. The

pressure of the liquid phase can be related to the pressure in the gaseous phase by Equation

3.6. Consequently, the equation for the oil pressure in the separator is achieved. This equation

is presented in Equation 3.39.

pos = pgs + rhoroghls, (3.39)

where pos is the pressure of the oil in the separator and hls is the height of the oil in the separator.
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3 MODELLING 3.4 Separator

3.4.2 Flow

Figure 3.4 shows three separate flows out of the separator. These outlet flows are the export

gas, the gas going to the compressors and the export oil. The outlet flows are dependent on the

pressure of gas in the separator and by the pressure of the valves positioned on the outlet flow

lines. The outlet flows can be derived by the use the of the valve equation, given in Equation

3.13. Therefore, the oil flow out of the separator can be obtained by Equation 3.40:

wos = uosCos

√
ρro(poo − pos), (3.40)

where uos is the valve opening, Cos is the valve characteristics and poo is the export pressure of

the oil. The mass flow of the gas that is sent to export are described by Equation 3.41:

wgs = Cgs

√
ρgs(pgo − pgs), (3.41)

where Cgs is the valve characteristics and pgo is the export pressure of the gas. The mass flow

of the gas that is transported to the compressor train are obtained from Equation 3.42:

win1 = uc1Cc1

√
ρgs(ps1 − pgs), (3.42)

where uc1 is the valve opening of the inlet valve of the first compressor, Cc1 is the valve

characteristics and ps1 is the suction pressure of the first compressor.

3.4.3 Level and volume

Due to the risk of overflowing of the separator, the liquid height must be controlled. Since it is

assumed that only gas and oil are present in the model, the separator only contains one single

uniform liquid phase. To derive an expression of how the height of the oil changes with time,

an expression of the total area of the liquid in the cylindrical separator needs to be derived .

Equation 3.43 shows the segment of a circle[34]:

Als =
r2s
2
(θ − sin(θ)), (3.43)

where Als is the area of the liquid phase in the separator, rs is the radius of the separator

and theta is the angle defined by the segment section. To find the area of the segment, the

total area of the section theta spans in the circle is subtracted with the triangle that forms

above the section. The angle can be found from the Pythagorean theorem, using the inverse

of the cosine function. By dividing the isosceles triangle into two right triangles, the angle can

be found with the adjacent side corresponding to the radius, minus the liquid height and the

hypotenuse corresponding to the radius. The area of the segment can thus be formulated as

shown in Equation 3.44:

Als =
r2s
2

(
2cos−1

(
rs − hls

rs

)
− sin

(
2cos−1

(
rs − hls

rs

)))
(3.44)

By differentiating this equation with respect to time, the expression for the area differentiated

with respect to time is given in Equation 3.45:
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3 MODELLING 3.4 Separator

Ȧls = ḣls

r2s

1− cos
(
2cos−1

(
rs−hls

rs

))
√
hls(2rs − hls)

 (3.45)

Based on Equation 3.44 and the relationship between the area and the volume (A = V
L ) an

equation for the liquid height differentiated with time can be derived, with the relation for the

volume differentiated with time found in Equation 3.37 as:

ḣls =
wos − wto

ρro2L
√
hls(2rs − hls)

, (3.46)

where L is the length of the separator. Furthermore, there are two volume regions in the

separator. These regions are the volume of oil and gas. The equation for the area of liquid in

the separator has already been derived. Thus the relationship between volume and the area can

be used to find the volume of oil in the separator, which is shown in Equation 3.47.

Vos =
Lr2s
2

(
2cos−1

(
rs − hls

rs

)
− sin

(
2cos−1

(
rs − hls

rs

)))
(3.47)

The total volume of the separator is constant, and due to the nature of gas, which makes the it

occupy all remaining volume, the gas volume can be related to the volume of oil. The volume

of gas, expressed by the volume of oil is shown in Equation 3.48:

Vgs = Vs − Vos, (3.48)

where Vgs is the volume of gas in the separator and Vs is the separator volume.

3.4.4 Density

There are two density regions in the separator: the density of the oil, and the density of the gas.

The density of the oil in the separator is assumed to be equal to the density of the oil in the

riser, which is defined as the average of the densities of the oil from the wells. The gas density

however, is dependent on the pressure of the gas in the separator. By applying the assumption

of ideal gas behaviour, the density of the gas in the separator can be calculated from the ideal

gas law. The expression for the density of the gas in the separator is presented in Equation 3.49.

ρgs =
Mwpgs
RTs

, (3.49)

where ρgs is the density of the gas in the separator.

3.4.5 Equations and states

The separator system includes both differential and algebraic states and the corresponding

equations to calculate them. By assuming that we can manipulate the opening of the control

valve at the oil outlet and the control valve to the compressor train (The control valve to the

compressor train will be covered later), the summarized system can be described as shown in

Equation 3.50:
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3 MODELLING 3.5 Compressor train

xsep = [pgs, hls]
T (3.50a)

zsep = [wos, wgs, ρgs, pos, Vos, Vgs]
T (3.50b)

psep = [poo, pgo]
T (3.50c)

usep = [uos]
T (3.50d)

where xsep represents the differential states of the separator system, zsep represents the algebraic

states of the separator system, psep represents the parameters of the separator system and usep
represents the control variables of the separator system. The constant values and parameters of

the separator system can be found in Appendix A.

3.5 Compressor train

This section will present the mathematical background of the compressor train system. All

relevant assumptions that has been made will also be listed.

A simplified version of the compressor train system are presented in Figure 3.5. The compressor

train system consists of three compressors in series. Due to the pressure difference between the

gas coming from the separator and the gas used for gas lift, multiple compressors are introduced

to support the necessary pressure rise as described in Section 2.1. As Figure 3.5 shows, the gas

enters the first compressor in the compressor train through the inlet valve and into the impeller

where it is compressed. A recycle line is modelled for each compressor for further implementation

of surge constraints. Each compressor step is modelled equally, and the inlet conditions of a

compressor is dependent on the outlet conditions of the previous compressor. The equations of

the compressor system will be derived for a single compressor, based on the assumption that

each compressor is designed equally. We assume polytropic compression, and to respond to

the temperature rise over the compressors, we assume that the resulting heat added over the

individual compressor stages is removed.

Figure 3.5: Sketch of the simplified Compressor train.

3.5.1 Pressure

Figure 3.5 shows that the compressor train system has two pressure regions for each compressor.

These regions are the suction pressure (ps) and the discharge pressure (pd). To find the

differential change of these pressures with respect to time, a model developed by Greitzer

(1976)[4] and then further developed by Milosavljevic et al. (2020)[11] can be utilized. This

model relates the the time derivative of the pressure to the mass flow in and out of the regions.

When relating this to total model, the suction pressure will be dependent on the incoming

flow, the recycle flow and the flow through the compressor. The suction pressure rate of each

compressor is given in Equation 3.51:
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3 MODELLING 3.5 Compressor train

ṗs = C1(win + wrec − wc), (3.51)

where win is the flow of gas either from the separator or the previous compression stage, wrec is

the recycled gas flow, wc is the flow of gas through the compressor and C1 is a constant parameter

determining system dynamics. The discharge pressure rate of change may be obtained similarly.

From the total model it can be observed that the discharge pressure rate is dependent on the

flow from the compressor, the recycle flow and the flow to the next compressor. The equation

for the discharge pressure is can be defined as shown in Equation 3.52:

ṗd = C2(wc − wout − wrec), (3.52)

where wout is the flow out of the compressor and C2 is a constant determining system dynamics.

3.5.2 Flow

For each of the compressors in the compressor train there are four different relating mass flows.

Due to the serial configuration of the compressors the mass flow out of compressor (i) will equal

to the inflow of compressor (i+1). The mass flows, with exception of the mass flow through the

compressors, can be found using the valve equation shown in Equation 3.13, assuming laminar

flow. The inlet flow of the first compressor will be dependent on the separator gas pressure and

the suction pressure of the first compressor. While for the next two compressors the mass flow

will be dependent on the discharge pressure of the previous compressor, and the compressors

suction pressure. The general equation for the inlet mass flows can be described as presented in

Equation 3.53.

win = uinCin

√
ρin(pin − ps), (3.53)

where uin is the valve opening of the inlet valve to the compressors, Cin is the valve characteristics

of the inlet valve and ρin is the density of the in flowing gas.

The outlet flow of the compressors are dependent on each compressors discharge pressure and

the next compressors suction pressure, with the exception of the third compressor, where the

mass flow out will be dependent on the discharge pressure and the pressure in the gas lift line.

The general equation for the outlet flows of the compressors are shown in Equation 3.54:

wout = uoutCout

√
ρd(pd − ps), (3.54)

where uout is the valve opening of the outlet valve, Cout is the valve characteristics of the outlet

valve and ρd is the density of the discharge gas. The mass flow of the recirculated gas flow are

dependent on each compressors discharge pressure and suction pressure, and can be described

as shown in Equation 3.55.

wrec = urecCrec

√
ρd (pd − ps), (3.55)

where urec is the valve opening of the recycle valve and Crec is the valve characteristics of

the recycle valve. The mass flow rate of change through the compressors can be formulated
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3 MODELLING 3.5 Compressor train

as the difference between the suction pressure times the pressure ratio, which is defined as

Π = Pout/Pin and the discharge pressure[35]. The result of this relationship is that the mass

flow through the compressor will stabilize when the compressor manages to compress the gas

to the desired discharge pressure. The equation for the mass flow rate of change through the

compressor are defined in Equation 3.56.

ẇc = C3(psΠ− pd), (3.56)

where ẇc is the mass flow rate of change through the compressor, C3 is a constant determining

system dynamics and Π is the pressure ratio.

3.5.3 Density

The density of the gas through the compressor train will change as the pressure of the gas

is increasing. To describe the different density regions, the ideal gas law can be utilized at

the different pressure regions of the system. The density relating to the mass flows in of

the compressors can be found by looking at the pressure region before the inlet valve of each

compressor. Thus the inlet density of the first compressor will be dependent on the separator

pressure, while the inlet density of the remaining compressors will depend on the discharge

pressure of the previous compressor. The general equation for the inlet density of the compressors

is given in Equation 3.57.

ρin =

(
Mw

RTin

)
pin, (3.57)

where ρin is the inlet density, Tin is the temperature at the inlet of the compressor. The discharge

density can be found for each compressor by the expression shown in Equation 3.58

ρd =

(
Mw

RTd

)
pd, (3.58)

where ρd is the discharge density and Td is the discharge temperature of the compressor.

3.5.4 Pressure ratio

The pressure ratio, which for the compressors is the relationship between the inlet pressure and

the outlet pressure, can be modelled as a polynomial function of the rotational speed and the

mass flow through the compressor. The compressor maps are normally based on manufacturer

specification or historical data[36]. The polynomial function of the pressure ratio is given by

Equation 3.59.

Π = α1 + α2ω + α3wc + α4ωwc + α5ω
2 + α6w

2
c , (3.59)

where αi are constant values that describes the form of the polynomial function and ω is the

rotational speed of the compressor.
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3 MODELLING 3.5 Compressor train

3.5.5 Polytropic head

The polytropic head is a term that can be defined as how many Joules that is needed to compress

one kg of gas to the required pressure[37]. The polytropic head for the compressors can be

calculated using Equation 3.60:

yp =

(
ZinRTin

Mw

)(
nv

nv−1

)(
Π

(
nv−1
nv

)
− 1

)
, (3.60)

where yp is the polytropic head, Zin is the gas compressibility factor and nv is the polytropic

exponent.

3.5.6 Power and efficiency

The polytropic efficiency, which describes the efficiency of the rotating shaft , can according to

Cortinovis et al. (2012)[36] be modelled as a polynomial function of the pressure ratio and the

rotational speed. The polynomial function for the polytropic efficiency is given in Equation 3.61:

ηp = β1 + β2ω + β3Π+ β4ωΠ+ β5ω
2 + β6Π

2, (3.61)

where βi are constant values that describes the form of the polynomial function. When the

polytropic head and the polytropic efficiency are defined, the shaft power of each compressor

can be found using Equation 3.62:

P =

(
yp
ηp

)
wc, (3.62)

where P is the shaft power of the compressor.

3.5.7 Equations and states

The compressor system includes both differential and algebraic states and the corresponding

equations to calculate them. We assume that we can manipulate the opening of the control

valve at the inlet and outlet of each compressor, and the control valve for the recycle flow. The

control valve at the outlet of the previous compressor equals the inlet control valve of the next.

The summarized system for each compressor(i) can be described as shown in Equation 4.2:

xcomp = [psi , pdi ,mci ]
T (3.63a)

zcomp = [wini , wouti , ρini , ρdi ,Πi, Pci , ypi , ηpi , wrec]
T (3.63b)

ucomp = [uini , uouti , ureci ]
T (3.63c)

where xcomp represents the differential states of the compressor system, zcomp represents the

algebraic states of the compressor system and ucomp represents the control variables of the

compressor system. The constant values and parameters of the compressor system can be found

in Appendix A.
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3 MODELLING 3.6 Gas lift

3.6 Gas lift

This section will present the mathematical background of the gas lift system. All relevant

assumptions that has been made will also be listed.

A simplified version of the gas lift system is presented in Figure 3.2. As the figure shows, the

compressed gas enters the gas lift line through the outlet valve of the third compressor. The

gas then flows through the gas lift line where the gas lift chokes routes the gas to the annulus

sections of the wells. The gas lift line is assumed to be a vertical line that stretches from the

surface production facilities to the subsea facilities.

Figure 3.6: Sketch of the simplified gas lift system.

3.6.1 Mass balances

The mass balance of the gas lift line can be found by using the general mass balance shown in

Equation 3.1 and information retrieved from Figure 3.2. From the figure it is apparent that the

only flow into the system is the flow out of the third compressor. Furthermore, the flows out of

this system are defined by the total gas through the gas lift chokes. Therefore, the mass rate of

change in the gas lift line can be defined as shown in Equation 3.64:

ṁgl = wout3 −
6∑

i=1

wgli , (3.64)

where mgl is the mass rate of change in the gas lift line, wout3 is the flow out of the third

compressor and wgl is the mass flow of gas to each well.
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3 MODELLING 3.6 Gas lift

3.6.2 Pressure

To find the pressure in the gas lift line the ideal gas law can be used. The gas lift line is assumed

to be cylindrical. Thus the relation for volume of a cylinder (V = πr2L) and the fact that the

number of moles equal the mass divided by the molar mass, can be used to find:

pout =
RTdmgl

Mwπr2glLgl
, (3.65)

where pout is the pressure in the gas lift line, rgl is the radius of the gas lift line and Lgl is the

length of the gas lift line.

3.6.3 Flow

Due to the assumption of uniform pressure throughout the entire pipe section, the mass flow

of the gas that is going to be used as lift gas for each well, can be calculated using the valve

equation in Equation 3.13. In this equation the outlet pressure of the valve is equal to the

annulus pressure, and the inlet pressure is equal to the gas lift line pressure. The mass flow of

the gas lift can be defined as shown in Equation 3.64:

wgl = cglugl
√

ρout(pout − pai), (3.66)

where ugl is the valve opening of the gas lift choke, Cgl is the valve characteristics of the gas lift

choke and ρout is the density of the gas in the gas lift line.

3.6.4 Density

The density of the gas in the gas lift line can be found from the ideal gas law, and is given in

Equation 3.67.

ρout =

(
Mw

RTd

)
pout (3.67)

3.6.5 Equations and states

The gas lift system includes both differential and algebraic states and the corresponding equa-

tions to calculate them. We assume that we can manipulate the opening of the gas lift choke

valves. The summarized system can be described for each well(i) as shown in Equation 3.68:

xgl = [mgl]
T (3.68a)

zgl = [wgli , pout, ρout]
T (3.68b)

ugl = [ugli ]
T (3.68c)

where xgl are the differential states of the gas lift system, zgl are the algebraic states of the gas

lift system and ugl are the control variables of the gas lift system. The constant values and

parameters of the gas lift system can be found in Appendix A.
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4 Model implementation

4.1 Modelling strategy

In this section the procedure and methods relating to the development of the model will be

described. The first step of modelling the total system consisted of defining the battery limits

of multiple smaller parts of the model. As can be observed in Section 3 the total model was

divided into five subsystems: a well system, a riser system, a separator system, a compressor

system and a gas lift system.

4.1.1 General modelling procedure

The procedure of the modelling consisted of defining the dynamics and the mathematical back-

ground of each subsystem. This was based on previous work and the theoretical background of

the subsystem. The constant parameters of the system, such as height of wells, were defined from

general estimates or previous work and fitted to properly match the model. Furthermore, the

system equations where derived from mass and energy balances with respect to the assumptions

made. As well as the necessary relations between the regions in the system, as described in

Section 3. The model equations were then implemented in Python with the CasADI framework

described in Section 2.2. To ensure stability and convergence of the states, the system was further

divided into smaller systems by defining variables as constant parameters. This resulted in a new

delimited system. The variables and their corresponding equations were then introduced to the

model in bulk i.e pressure of annulus and flow through injection valve, due to the dependence.

For each introduction of a new equation into the model, the expected value of the new variable

was either calculated or estimated. If the necessary data was available, the data were calculated,

and if not, the data were estimated based on expected behaviour.

The resulting equation system and the approximated initial values found in Appendix B, where

solved with the BDF based integrator IDAS described in Section 2.2.1. The iterative behaviour

was then analyzed. If the integration resulted in slower or faster convergence than expected,

the dynamic equations of the system were manipulated by multiplying them with a factor,

representing the different time scales between the systems. If a system variable didn’t converge

during the simulation, the integration time was extended, and the initial guess was updated

accordingly. If a variable diverged, a PID-controller was introduced and tuned with the SIMC

rules described in Section 2.4. The initial guesses were then updated to equal the convergence

value.

When the stability and convergence of the system was ensured, the upper and lower boundaries

of the variables were defined. The boundaries were either defined from physical limitations or

given a arbitrary value that would not affect the solving of the system.

The next step was to define the objective function, relating the oil production to the power

consumption. Then inequality constraints where defined based on total capacity. Furthermore,

the non-linear program solver IPOPT, which is based on the barrier method described in Section

2.2.2, where implemented to find the optimal value of the states. The initial values were then

updated to be equal to the optimal state values. The procedure was repeated until the total

subsystem was defined and converged, and the optimizer managed to find a viable solution.

When a subsystem was connected to another subsystem, the systems were first implemented

separately to verify convergence and expected behaviour. The next step in the merger followed

the method of gradually introducing equations of the second system to the first one.
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4.1.2 Well system

The well system was modelled after the procedure presented in Section 4.1.1. To be able to

define a battery limit for the well system, a temporary compressor was introduced to emulate the

compressor system. In addition, the manifold pressure was introduced as a constant parameter.

When the general procedure was implemented and one well slot was defined, the model was

extended by adding new wells. The model was implemented with a total of six wells to make

more decision variables available for further implementation of control strategies. The constant

parameters and the overall model were inspired by the model presented by Krishnamoorthy et

al. (2016)[1].

4.1.3 Riser system

The riser system was developed by introducing the wellhead pressure of each well as constant

parameters. This decision was based on the knowledge obtained by the well modelling. The

separator pressure was assumed to be around 20 bar, following the specification of a medium

pressure separator[38]. With the data obtained from the wells, the approximated flow of oil and

gas from the wells could be used to scale the valve, which in turn could give useful information

regarding initial values.

4.1.4 Separator system

The separator system was developed by introducing the flow from the integrated well and riser

model as a constant inlet parameter. The export pressure of oil and gas was introduced as

constant parameters. The system was then solved for the gas phase of the separator by using

the general method. Subsequently, the oil phase was introduced and the relations between the

phases in the separator introduced. The integration results showed signs of divergence in the oil

level, resulting in a PID-controller being introduced to control the level at the optimal value.

The controller was tuned with the SIMC rules for integrating processes described in Section 2.4.

The tuning parameters used are presented in Table 4.1.

Table 4.1: Tuning parameters separator level controller.

Variable Value

τc 50

τI 200

k’ 5.173 cot 10−6

θ 0

When the system was stabilized the general procedure was continued, and the separator model

was connected to the main model. The constant parameters and the overall model were inspired

by the model presented by Backi et al. (2018)[3].
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4.1.5 Compressor system

The compressor system was developed by introducing the separator and gas lift line pressure

as constant parameters. The compressors were gradually introduced to the compressor model

by assuming that the surge pressure of the next compressor were a fixed variable. The general

method was then used for each introduction of new variables until the total compressor train

was described. As described in Section 3.5, the pressure ratio and efficiency was found from

a polynomial relationship. Due to the lack of historical data or manufacturer specification,

the polynomial constants were found from trial and error, based on expected behaviour. The

approximated polynomial variables used in Equation 3.59 and 3.61 are presented in Table 4.3.

Table 4.3: polynomial constants representing the pressure ratio and efficiency of a compressor.

α1 α2 α3 α4 α5 α6

1.8 9.8 cot 10−3 -1.35 ·10−3 2.24 ·10−4 2.175 ·10−4 -1.1 ·10−3

β1 β2 β3 β4 β5 β6

74.466 -0.426 0.293 2.97 ·10−3 -2.68 ·10−5 1.32

The dynamic equations of the compressor system relies on dynamic constants to mimic the

dynamic behaviour difference between the different components. The dynamic constants used

are presented in Table 4.5.

Table 4.5: Dynamical coefficients of the compressor system.

C1 C2 C3

104 105 1

The compressor model was then added to the total model. The constant parameters and the

overall model were inspired by the model presented by Milosaljevic et al. (2016)[11].

4.1.6 Gas lift system

The gas lift system was developed by introducing the discharge pressure of the third compressor

as a fixed variable, and the annulus pressures of each well as constant parameters for each gas

lift line. The optimal gas lift injection rates for each well, supplied by the temporary compressor,

were used as initial values for the flows. The valve characteristics of the gas lift chokes were then

sized in such a way that the valve opening did not risk saturating when further implementation

of control methods were implemented. The final connection with the wells were made with great

care, due to the potential issues concerning the integration of recycled systems.

4.2 Integrated model

The final model can be formulated as a semi-explicit DAE on the form displayed in Equation

4.1:
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ẋ = f(x, z, u, p)

0 = g(x, z, u, p),
(4.1)

where the variables ẋ, x, z, u and p can be defined from the states of each individual model in

the Equations 3.25, 3.34, 3.50, 4.2 and 3.68. We can thus define the total system variables as in

Equation 4.2:

ẋ = [ẋwell, ẋriser, ẋsep, ẋcomp, ẋgl]
T (4.2a)

x = [xwell, xriser, xsep, xcomp, xgl]
T (4.2b)

z = [zwell, zriser, zsep, zcomp, zgl]
T (4.2c)

p = [pwell, psep]
T (4.2d)

u = [uwell, usep, ucomp, ugl]
T (4.2e)

The functions f and g from Equation 4.1 represent the differential equations for the ẋ variables

and the algebraic equations for the z variables derived in Section 3 respectively. The DAE system

was solved with the IDAS integrator described in Section 2.2.1.The initial values required by

IDAS can be found in Appendix B. The implementation in python can be found in Appendix

C.

4.3 Optimization

When the total model was developed, the final non-linear optimization problem could be defined.

The objective function was defined with the purpose of maximizing the total oil production,

represented by the oil to export, and minimizing the power consumption of the three compressors.

The factors multiplied with the variables relate to the price of oil ($/kg/s) and the price of power

($/kW). The optimization problem is restricted by the amount of produced gas (10 kg/s), the

total amount of gas used for gas lift (6 kg/s) and total power consumption (19 kW). The

constraints relate to the capacity of the systems. The system is also constrained by the model

equations and upper and lower boundaries of the states and control variables. These are shown

in Equation 4.3.
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4 MODEL IMPLEMENTATION 4.3 Optimization

min
θ

− 0.6wos + 0.1

3∑
i=1

Pci

s.t. g(θ) = 0

f(θ) = 0

wgs − wmax
gs ≤ 0

6∑
i=1

wgli − wmax
gl ≤ 0

3∑
i=1

PCi − Pmax
C ≤ 0

xL ≤ x ≤ xU

uL ≤ u ≤ uU

zL ≤ z ≤ zU

(4.3)

where θ represents the model states and controlled variables. g(θ) are the algebraic equations

of the model, f(θ) are the differential equations of the model, wmax
gs is the maximum produced

gas, wmax
gl is the maximum gas lift, Pmax

C is the maximum power consumption, xL and xU

are the lower and upper bounds of the differential states defined in Equation 4.2b. zL and

zU are the lower and upper bounds of the algebraic states defined in Equation 4.2c, uL and

uU are the lower and upper bounds of the controlled variables defined in Equation 4.2e. The

optimization problem was implemented in CasADI by the use of IPOPT, which is described in

Section 2.2.2. The bounds and initial values required by IPOPT can be found in Appendix B.

The implementation in python can be found in Appendix C.
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5 Results

In this section, all relevant results of the implementation, integration and optimization will be

presented and discussed.

5.1 Implementation

As described in Section 4.1.5, the behaviour of the pressure ratio and efficiency was found

from a polynomial relationship. Furthermore, it was explained that this relationship is in most

cases found either from manufacturer specifications or from historical data. The modelling and

implementation in this project doesn’t consider any of the mentioned sources of information

above. However, it is possible to model this relation by considering general operation limits of

the centrifugal compressor presented in Section 2.1. However, this results in major uncertainty

and may affect the end results. The assumption that the model operates above the surge

constraint will also affect reality of the proposed model. The resulting compressor performance

curves for the pressure ratio, efficiency and power plotted for different rotational speeds are

found below in Figure 5.1

Figure 5.1: Equation 3.59 plotted for different rotational speeds against mass flow through the compressor.

From Figure 5.1 we can observe that the pressure-ratio achieved by the compressor increases

with rotational speed, and decreases with inlet mass flowing through the compressor. This is

expected from the theory, because the compressor needs to compress more gas with the same

speed input, thus resulting in worse performance. The pressure ratio is also located in the

normal operation area of a centrifugal compressor as described in Section 2.1.
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5 RESULTS 5.1 Implementation

Figure 5.2: Equation 3.61 plotted for different rotational speeds against mass flow through the compressor.

From Figure 5.2 we can observe that the efficiency decreases with higher rotational speed and

decreases with input mass flow. For real compressor curves the efficiency would not be this static

between the rotational speeds. Furthermore, the efficiency would be different for the rotational

speeds at different mass flows i.e higher rad/s would probably be more efficient for larger mass

flows than lower rad/S. The optimization problem wants to minimize the power consumption.

A consequence of this, is as long as the lower rotational speed delivers an acceptable pressure

increase, the optimizer will choose this. From the theory in Section 2.1, we can see that the

model operates within the normal efficiency range of centrifugal compressors, which is 0.70 -

0.85.
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Figure 5.3: Equation 3.62 plotted for different rotational speeds against mass flow through the compressor.

From Figure 5.3 we can observe that the usage of power increases with higher rotational speed

and mass flow. This corresponds well with the fact that to achieve higher rotational speeds,

more shaft power needs to be introduced.

5.2 Integration

In this section a selection of the integration results will be presented and discussed. The

integration results for the remaining variables can be found in Appendix D.

5.2.1 Level control

As mentioned in Section 4.1.4, the height of the oil in the separator did not converge. In response

to this, a PID-controller was introduced to control the level at the optimal value. The result of

the implementation are presented in Figure 5.4 and Figure 5.5. The total model was integrated

with IDAS with a simulation time of 10000 seconds.

Figure 5.4: Height of oil in separator(hls). Figure 5.5: Valve opening(uov).
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From Figure 5.4 we can observe that the height of oil in the separator reacts slowly to any

changes in the oil output. This can also be observed by the small size of process gain in Section

4.1.4. The most probable explanation for this is that the separator is oversized. Due to the

nature of the modelling, the most important part is that the system can be stabilized. For

further implementation and comparison with real systems, the model parameters would need

to be changed according to the real scenarios specifications. From Figure 5.5 we can observe

that the controller gradually decreases the opening of the valve from 0 to 1700 seconds. Then

it undershoots slightly before converging to the correct valve opening. From Equation 3.46 we

can observe that the level in the separator is dependent on the oil flow from the riser and the

outflow of the separator. This relationship can be observed from the dynamic behaviour in the

plots, where the oil flow out of the separator is clearly larger than the riser oil flow at the start

of the simulation. Thus the controller decreases the valve opening, and the level drops. From

the plots it is possible to observe that when the valve opening reaches the desired value before

undershooting, the level in the separator starts to increase. This value corresponds to when the

inlet and outlet flow are equal, which is essential for level stability.

In Section 3.2.5 we assumed the gas-oil ratio as a potential disturbance to the overall system.

Changes in the GOR will result in a change in the composition of the reservoir oil flow. Therefore,

if the GOR increases in a reservoir, the amount of gas will increase in relation to the amount of

oil. In Figure 5.6 and 5.7, the system is subjected to a drop in the GOR in well 1 (-0.1) after

5000 seconds, and an increase in the GOR in well 2 (+0.1) after 10000 seconds. The system is

simulated over 18000 seconds.

Figure 5.6: Height of oil in separator(hls). Figure 5.7: Valve opening(uov).

From the resulting plot in Figure 5.6 we can observe that the level starts increasing as the GOR

of well 1 is reduced at t = 5000s. The disturbance results in a increase of oil flow from well 1,

an naturally an increase of oil flow into the separator. In Figure 5.7 we can observe that the

controller counteracts the level change by opening the valve. Furthermore, at t = 10000s, the

GOR of well 2 is increased, and the oil flow from the well is decreased. The level of oil in the

separator drops, and the controller starts closing the valve. The controller manages to stabilize

the system after t = 15000s.

5.2.2 Model verification

The importance of verifying the model for expected behaviour is of great importance. In Section

5.2.1 we observed that the level changed insignificantly to the change in oil output. This means

that the total volume of the separator is to large compared to the amount of oil and gas flowing

in. The volume of the separator is about 85 m3 and as can be observed from the total riser oil
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flow in Appendix D, the oil into the separator is approximately 65 kg/s. With the oil density

assumed to be around 800 kg/m3, the resulting volume flow of oil is relatively low compared

to the total separator volume. As previously mentioned, this will not affect the model in a

significant way due to the fact that we are able to control the flow out of the separator at

the optimum in such a way that it equals the flow in. This will be the case for a correctly

sized separator as well. Due to the high non-linearity of the model which can observed from

the integration results in Appendix D, the modelling error of the size of the separator will be

difficult to fix without building the model from the beginning. In a potential comparison study

with a real system, the model parameters would need to be changed, and the issues of the slow

and oversized separator would be fixed. Furthermore, the controller would be tuned for the new

system with the resulting gain. The response to disturbances will be minor, but the relative

effect can be analyzed.

As explained in Section 2.1, oil and gas flows from the reservoir due to the pressure difference

between the reservoir and the wellhead. This applies to all flowing liquid and gas and can

be explained with the second law of thermodynamics, where the system will try to move to

thermodynamic equilibrium. Thus, the oil and gas will flow from a high pressure region to a

lower pressure region. To validate the behaviour, the different pressure regions can be plotted

for one well relating to the total system. The total system was integrated by IDAS with a

simulation time of 3000s.

Figure 5.8: Pressure regions in the total system.

Figure 5.8 shows that the discharge pressure of compressor three (p d3) is the highest pressure

region in the system. This is expected due to the specifications of the compressor train. From

Figure 3.1 we can observe that the flow from the compressor train (w out) flows to the gas lift

system which can be verified due to the pressure difference between (p d3) and the gas lift line

pressure(p out). From the gas lift line the gas flows through the gas lift choke and in to the
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annulus. From the figure we can observe that (p out) is higher than the annulus pressure of

well 1(p ai1). The gas then flows through the injection valve, into the tubing section at the

injection point (p wi1). From the injection point the production fluid and the introduced gas

lift continues to the wellhead (p wh1), and further into the manifold (p m). The oil and gas is

then transported to the production facilities by the riser, and as can be observed, the riser head

pressure (p rh) is lower than the manifold pressure. From the riser head, the production fluid

enters the separator, where the oil and gas is separated. The gas pressure of the separator (p gs)

is lower than p rh, so the fluid will flow in the direction of the separator. From the separator, a

part of the gas is routed to the compressor train depending on the suction pressure of compressor

1 (p s1). We can also observe that the bottom-hole pressure(p bh1) is higher than p iw1, thus

the flow will go in the direction of the injection point. Based on these results, the model possess

the expected behaviour of the flow regimes in a real production system.

The gas lift method as explained in Section 2.1, is used to reduce the density of the fluid in the

tubing an thus reducing the hydro static pressure in the well. The following plot shows how the

flow of oil from well 1 reacts to changes in the valve opening of the corresponding gas lift choke.

Figure 5.9: The mass flow of from well 1 plotted against the gas lift choke valve opening.

Figure 5.9 shows that the oil flow will increase as more lifting gas is injected into the well

tubing. Due to the initial guess of the oil flow not corresponding to a closed valve, the oil flow

will immediately decrease due to less gas lift injected. As the valve gradually opens up, the mass

flow from the well will increase. The reservoir pressure is assumed as a constant parameter, thus

the amount of oil flow from the reservoir will depend on the bottom-hole pressure.
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Figure 5.10: Bottom-hole pressure well 1 plotted against the gas lift choke valve opening.

From Equation 3.12 we can observe that the bottom-hole pressure is dependent on the injection

point pressure in figure. The increase of the pressure up to u = 0.15 is due to the initial guess

of the bottom-hole pressure. Furthermore, we can observe that pressure decreases as the valve

opens up. This effect leads to an increase in the pressure difference between the reservoir pressure

and the bottom-hole pressure, and from Equation 3.19 an increase in the reservoir oil flow.

From the results we can observe that the well produces more oil with increasing gas lift injection.

This effect will continue until the hydro static pressure drop can’t compensate for the increased

friction pressure drop due to increased gas flow in the tubing as explained in Section 2.1. From

the plot we can observe that this effect is not active, but the plot shows signs of reduced growth.

The compressor train is a source of uncertainty due to the approximation of the polynomial curve

of the pressure ratio and efficiency discussed in Section 5.1. The compressor model was presented

in Section 3.5. The assumption made for the compressors, that the compressors operate above

surge limit, will affect the model’s realism. We also assumed that heat was removed between

each compressor stag, which is a normal implementation in real scenarios, due to the risk of

overheating and efficiency loss.

Figure 5.11: Power compressors. Figure 5.12: Polytropic efficiency compressors.
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Figure 5.13: Pressure ratio compressors. Figure 5.14: Polytropic head compressors.

In Figures 5.11, 5.12, 5.13 and 5.14 the effects of differentiating the speed of the three compressors

are presented. The flow through the compressors will be the same due to the serial configuration

(4.1 kg/s). By studying the plots we can observe that the variables converge faster than the

rest of the system. The reason for being that the compressor train is a faster system than the

well and separator systems, and have thus been modelled in that manner. Figure 3.59 shows

that the pressure ratio is larger for larger rotational speeds. This is as expected because more

work is done on the system, and thus the pressure ratio will be higher. The shaft power of the

compressor plotted in Figure 5.11 will also increase for both due to the polytropic head increase

and the efficiency reduction as can be observed in Equation 3.62. In Figure 5.14 we observe that

the polytropic head increases with rotational speed. From Equation 3.5.5 we can observe that

the polytropic head increase with increased pressure ratio. From the equation for shaft power,

Equation 3.62, we can observe that as the power increases the efficiency will go down. This

corresponds well with Figure 5.12.
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5.3 Optimization

When the system was stabilized the system was optimized with the interior point optimizer

described in Section 2.2.2. The optimization problem was solved with 15 iterations, due to the

continuous update of initial values to fit the optimal convergence. During the modelling, the

solver showed signs of high sensitivity to changes in the initial values. Thus, a small change

in the input could lead to the problem becoming infeasible. This is due to the non-linearity

of the system, which can be observed from the non-linear behaviour of the variables in the

integration results Appendix D. The solver is therefore dependent on good quality initial values.

This section will present some of the optimization results, and the implications for the further

work of implementing control strategies.

For further implementation of control methods it is important that we do not risk saturated

valves when controlling the system to optimum. The optimal valve openings are found by solving

the optimization problem. The resulting valve openings of the optimized model can be found in

Table 5.1.

Table 5.1: Optimal valve openings (0-1).

ugl1 ugl2 ugl3 ugl4 ugl5 ugl6

0.46218 0.305298 0.508811 0.356351 0.355219 0.434294

upc1 upc2 upc3 upc4 upc5 upc6

1 1 1 1 1 1

uc1 uc2 uc3 uc4 uos urec1−3

0.739851 0.593998 0.515123 0.500211 0.472841 ≃ 0

From the table we can observe that the gas lift chokes (ugl) optimized values are far from

saturation. Thus, they have the opportunity to close or open on demand. The production

chokes (upc) are saturated at a value of 1. The entirely open valves can be explained by the

objective function. As long as the production choke valves brings benefit to the objective value

they will stay fully open. The compressor valves (uc) as the gas lift chokes have a safety margin

from saturation. The recycle valves(urecl) which are implemented for later implementation of

surge constraints are saturated at approximately 0. This is expected due from the perspective

of power usage. When the gas is recycled, more gas will need to be compressed and thus more

power used.

Another important aspect for further implementation of control strategies, is the active con-

straint regions. To simulate where the different constraints are active, the variables relating

to the inequality constraints were plotted against the potential disturbance (GOR). The GOR

values of the wells where assumed equal to simplify the mapping. However, it should be noted

that the GOR values won’t change simultaneously in a normal scenario. This is because every

well is connected to an individual reservoir. The result of the active constraint mapping can be

observed in Figure5.15.
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Figure 5.15: Constraint regions related to the GOR values of each well. The black lines indicate the region of

feasibility, while the red dotted lines indicate change of region.

From Figure5.15 we can observe that we have a feasible region from GOR(0.01) to GOR(0.20).

Optimizing with values lower or higher than this, resulted in IPOPT converging to a point of

local infeasibility. This is due to the solvers sensitivity regarding the initial values for non-linear

systems. Furthermore, we have three regions of interest relating to changes in active constraints.

As can be observed from the figure, from 0.1 to 0.8 the total power constraint is active. Thus,

a manipulated variable should be dedicated to controlling it at this level. The restriction on

power usage, leads to a constraint on gas through the compressors. This is expected behaviour,

because the compressors can’t compress more gas without the introduction of more energy to

the system. This in turn leads to the constraint on gas lift becoming obsolete. From 0.08 to

0.16 the problem is unconstrained, meaning that non of constraints are active. Thus, all the the

manipulated variables should be used to control the system to optimum. From 0.16 to 0.20 the

constraint on produced gas becomes active. From the figure we can observe that this results in

a restriction on the power and gas lift . The reason for this correlation, is due to the restriction

imposed on the production by the active constraint. The system is therefore not allowed to send

more gas to export. Resulting in that the flow through the compressors have no possibility to

reduce the amount of gas it processes. The amount of gas through the compressor train won’t

increase, due to the cost functions objective to reduce power consumption.

From the figure we can also observe that the need for gas lift is more prevalent when the GOR

is low. When the GOR is increased, the need for gas lift is reduced. This corresponds well with

the notion that the gas lift will be beneficial, until the subsequent friction pressure drop caused

by the increase in mass flow of gas, will counteract the benefits.
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6 Conclusion

This report has shown that it is possible to model and optimize a recirculated gas lift system. The

most important steps for modelling the system are as follows. Assumptions and simplifications

based on the aim of the model need to be introduced to make the modelling manageable.

Mathematical relationships based on mass and energy balances need to be defined to relate the

process variables to each other and simulate expected behaviour. The total system needs to

be divided into smaller parts to make sure that the model is stable, due to the non-linearity

of the system of mathematical equations. Furthermore, the equations and variables should be

introduced gradually to make sure sizing of valves and equipment corresponds to the system

dynamics. If a system shows signs of faster or slower convergence than expected relative to

another, the system dynamics should be manipulated to mimic the difference in dynamics for the

real systems. If the model does not stabilize in a reasonable amount of time, control structures

should be implemented to ensure convergence. Initial values need to be estimated by calculation,

studying of system behaviour or by engineering intuition. This is due to the optimization

problems need for good initial values when solving non-linear problems. When a sub-model is

solved, the results should be analyzed to ensure the accuracy of the model. When two subsystems

are connected, one should make sure that the outlet properties of the initial system correspond

to the inlet conditions of the secondary system.
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7 Further work

From the results we can observe that the compressor model was implemented without any

specifications or historical data, leading to uncertainty regarding the performance. For further

implementation, the compressor curves can be based on the performance of a real compressor to

make the model more realistic. The surge-constraints should be implemented. The comparison

with a real system also applies to the separator and the other parts of the model.

At this point, the model assumes a two phase flow, constant pressure of the exported oil and

gas. To make the model more realistic, three phase flow should be introduced. An oil pump

should be modelled for the oil export, and a compressor should be introduced for the gas export.

Methods for feedback-optimizing control (i.e Regional based and Primal-dual control) should be

tested on the model, and compared with the numerical results obtained from the optimization.

45



REFERENCES REFERENCES

References

[1] D. Krishnamoorthy, B. Foss, S. Skogestad, Processes 2016, 4, DOI 10.3390/pr4040052.

[2] G. O. Eikrem, O. M. Aamo, B. A. Foss, SPE Production Operations 2008, 23, 268–279.

[3] C. J. Backi, B. A. Grimes, S. Skogestad, Industrial & Engineering Chemistry Research

2018, 57, 7201–7217.

[4] E. M. Greitzer, Journal of Engineering for Power 1976, 98, 190–198.

[5] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, Mathematical

Programming Computation 2019, 11, 1–36.

[6] M. Bergounioux, K. Ito, K. Kunisch, SIAM Journal on Control and Optimization 1999,

37, 1176–1194.

[7] M. Morari, Y. Arkun, G. Stephanopoulos, AIChE Journal 1980, 26, 220–232.

[8] E. Jahanshahi, S. Skogestad, IFAC Proceedings Volumes 2011, 44, 1634–1639.

[9] F. Di Meglio, G.-O. Kaasa, N. Petit in Proceedings of the 48h IEEE Conference on

Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference,

2009, pp. 8244–8251.

[10] A. F. Sayda, J. H. Taylor in 2007 American Control Conference, 2007, pp. 4847–4853.

[11] P. Milosavljevic, A. G. Marchetti, A. Cortinovis, T. Faulwasser, M. Mercangöz, D. Bonvin,

Applied Energy 2020, 272, 114883.

[12] B. Gou, W. C. Lyons, A. Ghalambor, Petroleum production engineering, 2007.

[13] B. Hu, Master of Science Thesis NTNU 2004.

[14] M. P. Boyce in Gas Turbine Engineering Handbook (Fourth Edition), (Ed.: M. P. Boyce),

Butterworth-Heinemann, Oxford, 2012, pp. 253–301.

[15] G. K. McMillan, Centrifugal and axial compressor control, eng, New York, N.Y. (222 East

46th Street, New York, NY 10017), 2010.

[16] J. Ling, K. Wong, S. Armfield, 2007.

[17] J. M. Campbell.

[18] D. J. Gardner, D. R. Reynolds, C. S. Woodward, C. J. Balos, ACM Transactions on

Mathematical Software (TOMS) 2022, DOI 10.1145/3539801.

[19] J. R. Cash in Encyclopedia of Applied and Computational Mathematics, (Ed.: B. Engquist),

Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 97–101.

[20] J. Andersson, J. Gillis, M. Diehl, Welcome to casadi’s documentation!¶, 2018.
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A CONSTANT PARAMETERS

A Constant parameters

Table A.1: Constant parameters for the model.

Variable Unit Value

R m3PaK−1mol−1 8.314

Mw kg/mol 0.02

Riser

Lr m 500

Hr m 500

Dr m 0.121

Ar m π ·
(
Dr
2

)2
Tr K 303

Cpr m2 0.003

rhoro kg/m3 802.5

Separator

m Ls 10

rs m 1.65

Ts K 302

Vs m3 85.53

Cgs m2 0.0055

Cos m2 0.0006875

pgo bar 20

poo bar 20

Cgs m2 0.0055

Compressor

nc - 1

Td K 298

Cin m2 0.002637

Tin K 298

Zin - 0.9

nv - 1.27

Cout m2 0.001201

Crec m2 0.0000385

Gas lift
Lgl m 500

rgl m2 0.15
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B Initial Values and Boundary Conditions

B.1 Dynamic states(x)

Table B.1: Initial values, lower and upper boundaries for the differential states(x).

Variable Unit Equipment Initial value Lower boundary Upper boundary

mga ton

Well 1 1.60858 0.01 100000000

Well 2 1.59738 0.01 100000000

Well 3 1.66102 0.01 100000000

Well 4 1.64335 0.01 100000000

Well 5 1.59797 0.01 100000000

Well 6 1.62939 0.01 100000000

mgt ton

Well 1 1.07745 0.01 100000000

Well 2 1.06683 0.01 100000000

Well 3 1.05517 0.01 100000000

Well 4 1.05187 0.01 100000000

Well 5 1.08088 0.01 100000000

Well 6 1.06824 0.01 100000000

mot ton

Well 1 6.06796 0.01 100000000

Well 2 6.31651 0.01 100000000

Well 3 6.38467 0.01 100000000

Well 4 6.62452 0.01 100000000

Well 5 6.31118 0.01 100000000

Well 6 6.34885 0.01 100000000

mgr ton
Riser

0.26819 0.01 100000000

mor ton 1.59629 0.01 100000000

pgs bar
Separator

20.9459 0 100000000

hls m 1.65716 0 3.30000

ps1 bar

Compressor 1

18.716 0.01 100000000

pd1 bar 38.8325 0.01 100000000

wc1 kg/s 4.04456 0.01 100000000

ps2 bar

Compressor 2

36.9852 0.01 100000000

pd2 bar 76.7379 0.01 100000000

wc2 kg/s 4.04456 0.01 100000000

ps3 bar

Compressor 3

75.4106 0.01 100000000

pd3 bar 156.464 0.01 100000000

wc3 kg/s 4.04456 0.01 100000000

mgl ton Gas lift 4.44312 0.01 100000000
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B.2 Controlled variables(u)

Table B.3: Initial values, lower and upper boundaries for the control variables(u).

Variable Unit Equipment Initial value Lower boundary Upper boundary

ugl -

Well 1 0.515567 0 1

Well 2 0.36287 0 1

Well 3 0.570887 0 1

Well 4 0.422087 0 1

Well 5 0.412979 0 1

Well 6 0.494184 0 1

upc -

Well 1 1 0 1

Well 2 1 0 1

Well 3 1 0 1

Well 4 1 0 1

Well 5 1 0 1

Well 6 1 0 1

uov - Separator 0.5 0 1

u1 - Compressor 0.789901 0 1

u2 - Compressor 0.637382 0 1

u3 - Compressor 0.524895 0 1

u4 - Compressor 0.50497 0 1

urec1 - Compressor 0 0 1

urec2 - Compressor 0 0 1

urec3 - Compressor 0 0 1

omega1 rad/s Compressor 20 20 45

omega2 rad/s Compressor 20 20 45

omega3 rad/s Compressor 20 20 45
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B.3 Algebraic states(z)

Table B.5: Initial values, lower and upper boundaries for the algebraic states(z).

Variable Unit Equipment Initial value Lower boundary Upper boundary

pai bar

Well 1 87.4014 0.1 1500000

Well 2 86.7925 0.1 1500000

Well 3 90.2506 0.1 1500000

Well 4 89.2902 0.1 1500000

Well 5 86.825 0.1 1500000

Well 6 88.5319 0.1 1500000

pwh bar

Well 1 68.3118 0.1 700000

Well 2 68.5671 0.1 700000

Well 3 68.5333 0.1 700000

Well 4 68.7875 0.1 700000

Well 5 68.5411 0.1 700000

Well 6 68.5365 0.1 700000

pwi bar

Well 1 82.9172 0.1 1500000

Well 2 84.5356 0.1 1500000

Well 3 85.1482 0.1 1500000

Well 4 86.4296 0.1 1500000

Well 5 83.9043 0.1 1500000

Well 6 84.5319 0.1 1500000

pbh bar

Well 1 122.169 30 1500000

Well 2 123.789 30 1500000

Well 3 123.911 30 1500000

Well 4 125.684 30 1500000

Well 5 124.138 30 1500000

Well 6 124.030 30 1500000

ρai kg10−2/m3

Well 1 0.698509 0.01 9000000

Well 2 0.693642 0.01 9000000

Well 3 0.721280 0.01 9000000

Well 4 0.713604 0.01 9000000

Well 5 0.693902 0.01 9000000

Well 6 0.707544 0.01 9000000

Continues on next page
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Variable Unit Equipment Initial value Lower boundary Upper boundary

ρm kg10−2/m3

Well 1 2.59054 0.01 9000000

Well 2 2.67293 0.01 9000000

Well 3 2.69532 0.01 9000000

Well 4 2.77441 0.01 9000000

Well 5 2.66950 0.01 9000000

Well 6 2.68263 0.01 9000000

wiv kg/s

Well 1 0.7555444 0.01 500000

Well 2 0.534137 0.01 500000

Well 3 0.818986 0.01 500000

Well 4 0.609945 0.01 500000

Well 5 0.607743 0.01 500000

Well 6 0.718193 0.01 500000

wpc kg/s

Well 1 11.47060 0.01 500000

Well 2 12.76900 0.01 500000

Well 3 12.67950 0.01 500000

Well 4 13.9177 0.01 500000

Well 5 12.65170 0.01 500000

Well 6 12.66330 0.01 500000

wpg kg/s

Well 1 1.72964 0.01 500000

Well 2 1.84501 0.01 500000

Well 3 1.79830 0.01 500000

Well 4 1.90709 0.01 500000

Well 5 1.84996 0.01 500000

Well 6 1.82382 0.01 500000

wpo kg/s

Well 1 9.74092 0.01 500000

Well 2 10.924 0.01 500000

Well 3 10.88120 0.01 500000

Well 4 12.0106 0.01 500000

Well 5 10.80180 0.01 500000

Well 6 10.83950 0.01 500000

Continues on next page



B INITIAL VALUES AND BOUNDARY CONDITIONS B.3 Algebraic states(z)

Variable Unit Equipment Initial value Lower boundary Upper boundary

wro kg/s

Well 1 9.74092 0.01 500000

Well 2 10.924 0.01 500000

Well 3 10.88120 0.01 500000

Well 4 12.0106 0.01 500000

Well 5 10.80180 0.01 500000

Well 6 10.83950 0.01 500000

wrg kg/s

Well 1 0.974092 0.01 500000

Well 2 1.31088 0.01 500000

Well 3 0.979311 0.01 500000

Well 4 1.29715 0.01 500000

Well 5 1.24220 0.01 500000

Well 6 1.10563 0.01 500000

prh bar

Riser

50.8006 20 1500000

ρr kg10−2/m3 2.15827 0.01 9000000

pm bar 67.0421 0.1 1500000

wpr kg/s 76.1519 0.01 500000

wto kg/s 65.1981 0.01 500000

wtg kg/s 10.95380 0.01 500000

wos kg/s

Separator

65.19810 0.01 500000

wgs kg/s 6.90926 0.01 500000

ρgs kg10−2/m3 0.166844 0.01 9000000

pos bar 21.0763 0.01 1500000

Vos m3 42.7694 0.0 85

Vgs m3 42.7694 0.0 85

wgl kg/s

Gas lift-Well 1 0.7555444 0.01 500000

Gas lift-Well 2 0.534137 0.01 500000

Gas lift-Well 3 0.818986 0.01 500000

Gas lift-Well 4 0.609945 0.01 500000

Gas lift-Well 5 0.607753 0.01 500000

Gas lift-Well 6 0.718193 0.01 500000

pout bar
Gas lift

155.733 0.01 500000

ρout kg10−2/m3 1.25715 0.01 500000

Continues on next page
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Variable Unit Equipment Initial value Lower boundary Upper boundary

win kg/s

Compressor 1

4.04456 0.01 500000

wout kg/s 4.04456 0.01 500000

ρin kg10−2/m3 0.169084 0.01 9000000

ρd kg10−2/m3 0.313472 0.01 9000000

Π - 2.07483 0 3

Power kW 4.92105 0 100

yp m 0.880277 0 1

np % 0.723489 0 100

wrec kg/s 0.00001 0 500000

win kg/s

Compressor 2

4.04456 0.01 500000

wout kg/s 4.04456 0.01 500000

ρin kg10−2/m3 0.313472 0.01 9000000

ρd kg10−2/m3 0.619461 0.01 9000000

Π - 2.07483 0 3

Power kW 4.92105 0 100

yp m 0.880277 0 1

np % 0.723489 0 100

wrec kg/s 0.00001 0 500000

win kg/s

Compressor 3

4.04456 0.01 500000

wout kg/s 4.04456 0.01 500000

ρin kg10−2/m3 0.619461 0.01 9000000

ρd kg10−2/m3 1.26304 0.01 9000000

Π - 2.07483 0 3

Power kW 4.92105 0 100

yp m 0.880277 0 1

np % 0.723489 0 100

wrec kg/s 0.00001 0 500000
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C Python-code

The python files included in this project consists of the mathematical model presented in Section

3. The code was implemented with the CasADI framework described in Section 2.2.The code

consists of three separate files. The parameter file implements a function returning a dictionary of

all the constant parameters in the model. The simulator file constructs the system of differential-

algebraic equations and initializes the IDAS integrator described in Section 2.2.1. The main file

retrieves inital values, upper bounds and lower bounds from excel files listed in Appendix A and

B. Based on the data and the function returned from the simulation file the code then integrates

the system. The main file also implements the nlp solver IDAS described in Section 2.2.2 and

solves the optimization problem. The code is the modified and improved version of the previous

work done by Risvan Dirza.

C.1 Parameter file

1 #Parameter file
2 #Function returns a dictionary with the models constant parameters
3

4 import numpy as np
5

6 def Params_6wells ():
7 par = {} #Dictionary to store the parameters
8 par[’n_w’] = 6 #Number of wells
9

10 ##### Well Parameters ####
11

12 #Length , height and diameter of wells[m]
13 par[’L_w’] = np.array ([1500 , 1500, 1500, 1500, 1500, 1500])
14 par[’H_w’] = np.array ([1000 ,1000 ,1000 ,1000 ,1000 ,1000])
15 par[’D_w’] = np.array ([0.121 ,0.121 ,0.121 ,0.121 ,0.121 ,0.121])
16

17 #Length , height and diameter of bottom hole[m]
18 par[’L_bh’] = np.array ([500, 500, 500, 500, 500, 500])
19 par[’H_bh’] = np.array ([500, 500, 500, 500, 500, 500])
20 par[’D_bh’] = np.array ([0.121 ,0.121 ,0.121 ,0.121 ,0.121 ,0.121])
21

22 #Length , height and diameter of annuluses[m]
23 par[’L_a’] = par[’L_w’] # Lenght of annuls equals length of well
24 par[’H_a’] = par[’H_w’] # Height of annuls equals length of well
25 par[’D_a’] = np.array ([0.189 , 0.189, 0.189, 0.189, 0.189, 0.189])
26

27 #Density oil , injection valve char and production choke valve char
28 par[’rho_o’] = np.array ([8 ,8 ,7.9 ,8 ,8.2 ,8.05]) *1e2 #[kg/m^3]
29 par[’C_iv’] = np.array ([0.1e-3,0.1e-3,0.1e-3,0.1e-3,0.1e-3,0.1e-3]) #[m^2]
30 par[’C_pc’] = np.array ([2e-3,2e-3,2e-3,2e-3,2e-3,2e-3]) #[m^2]
31

32 #Gas -oil ratio of wells[kg/kg], possible disturbance
33 par[’GOR’] = np.array ([0.1 ,0.12 ,0.09 ,0.108 ,0.115 ,0.102])
34

35 par[’p_res’] = np.array ([150 ,155 ,155 ,160 ,155 ,155]) #Reservoir pressure[bar]
36 par[’PI’] = np.array ([7,7,7,7,7,7])* 0.5 #Productvity index wells[kg s^-1

bar^-1]
37 par[’T_a’] = np.array ([273, 273, 273, 273, 273, 273]) + 28 #Annulus

temperature[K]
38 par[’T_w’] = np.array ([273, 273, 273, 273, 273, 273]) + 32 #Well temperature

[K]
39

40 #Area of well , bottom hole and volume of annulus
41 par[’A_w’] = np.pi*(par[’D_w’]/2) **2 #[m^2]
42 par[’A_bh’] = np.pi*(par[’D_bh’]/2) **2 #[m^2]
43 par[’V_a’] = par[’L_a’]*(np.pi*(par[’D_a’]/2) **2 - np.pi*(par[’D_w’]/2) **2)

#[m^3]
44 #Volume of annulus will equal the area of the total well and annulus minus

the well
45
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46

47 #Constraints
48 par[’wmax_gl ’] = np.array ([5]) #Max gas lift
49 par[’wmax_pg ’] = np.array ([7]) #Max produced gas
50 par[’Powmax_glcom ’] = np.array ([18]) #Max power
51

52 #General parameters
53 par[’R’] = 8.314 #Gas constant [m^3 Pa K^-1 mol^-1]
54 par[’Mw’] = 20e-3 #Molar weighgt kg/mol
55 par[’tf’] = 1 #Simulation time
56 par[’mu_oil ’] = 0.001 #Oil viscosity[kg m^ 1 s^ 1 ]
57

58

59 #### Riser System ####
60 par[’L_r’] = 500 #Length of riser[m]
61 par[’H_r’] = 500 #Height of riser[m]
62 par[’D_r’] = 0.121 #Diameter of riser[m]
63 A_r = np.pi*(par[’D_r’]/2) **2
64 par[’A_r’] = A_r #Area of riser[m^2]
65 par[’T_r’] = 30+273 #Temperature riser[K]
66 par[’C_pr’] = 0.003 #Valve char riser valve[m^2]
67 rho_ro = np.sum(par[’rho_o ’])/6
68 par[’rho_ro ’] = rho_ro #Density of oil in riser[kg/m^3]
69

70

71 #### Separator ####
72 par[’L_s’] = 10 #length Separator[m] #Oversized
73 par[’r_s’] = 1.65 #radius Separator[m] #Oversized
74 par[’T_s’] = 29 + 273 #Temperature Separator[K]
75 V_sep = np.pi * par[’r_s’]**2 * par[’L_s’]
76 par[’V_s’] = V_sep #Volume of Separator[m3]
77 par[’C_gs’] = 5.5*0.001 #Valve char gas outlet[m^2]
78 par[’C_os’] = 5.5*0.001*0.5*0.5 #Valve char oil outlet[m^2]
79 par[’p_go’] = 20 #pressure gas out[bar]
80 par[’p_oo’] = 20 #pressure oil out[bar]
81

82 #### Compressors ####
83 par[’n_c’] = 1 #This parameter is just an early implementation error.
84 par[’T_d’] = 298 #Temperature out of compessor(assume heat is removed)[K]
85 par[’C_in’] = 9e -4*2.93 #Valve char is equal for all in/out valves[m^2]
86 par[’T_in’] = 298 #Temperature inlet compressors[K]
87 par[’Z_in’] = 0.9 #Compression factor(difference from ideal behaviour)[-]
88 par[’n_v’] = 1.27 #Polytropic coefficient [-]
89 par[’C_out’] = 1.201e-3 #Valve char out , not used at this impelementation[m

^2]
90 par[’C_rec’] = 1.1*3.5e-5 #Recycle valve char[m^2]
91

92 #alpha values for the approximation of pressure ratio
93 par[’alpha_1 ’] = 1.05 * 0.745 *2.3
94 par[’alpha_2 ’] = 0.7 * -1.4e-2 *-1
95 par[’alpha_3 ’] = 0.3 * 0.11 * -4.09e-2
96 par[’alpha_4 ’] = 1.75 * 0.13* 9.86e-4
97 par[’alpha_5 ’] = 1.0 * 0.5* -4.25e-4 *-1
98 par[’alpha_6 ’] = 300* ( -0.15)* 2.45e-5 *2
99

100 #beta values for the approximation of efficiency
101 par[’beta_1 ’] = 0.7* 9*5.91e-2 *200
102 par[’beta_2 ’] = -2.13e-1 *2
103 par[’beta_3 ’] = 2.93e-1
104 par[’beta_4 ’] = 2.97e-3
105 par[’beta_5 ’] = -2.68e-5
106 par[’beta_6 ’] = -1.1e1 *( -0.1) *1.2 *2
107

108 #Dynamic coefficients for compressor dynamic equations
109 par[’Coef_1 ’] = 1e4
110 par[’Coef_2 ’] = 1e5
111 par[’Coef_3 ’] = 1
112

113 #gamma values for further implementation of surge and choke constraints
114 par[’gamma_1 ’] = 1
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115 par[’gamma_2 ’] = 1
116 par[’gamma_3 ’] = 1
117

118 #### Gas lift ####
119 par[’L_gl’] = 500 #Length gas lift line[m]
120 par[’r_gl’] = 0.15 #radius gas lift line[m]
121 par[’C_gl’] = np.array ([5e-5,5e-5,5e-5,5e-5,5e-5,5e-5]) #Valve char gas lift

valves[m^2]
122 par[’C_iv’] = np.array ([0.1e-3,0.1e-3,0.1e-3,0.1e-3,0.1e-3,0.1e-3]) * 1.35

#Valve char injection valves[m^2]
123

124 return par
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C.2 Simulator file

1 #Simulation file
2 #Constructs the integrator
3

4

5 import numpy as np
6 from casadi import *
7

8 def CentralizedSimulator_F(par):
9

10 ## Retriving the parameters from Param function ##
11

12 #Wells
13 n_w = par[’n_w’]
14 L_w = par[’L_w’]
15 H_w = par[’H_w’]
16 D_w = par[’D_w’]
17 L_bh = par[’L_bh’]
18 H_bh = par[’H_bh’]
19 D_bh = par[’D_bh’]
20 L_a = par[’L_a’]
21 H_a = par[’H_a’]
22 D_a = par[’D_a’]
23 rho_o = par[’rho_o’]
24 C_iv = par[’C_iv’]
25 C_pc = par[’C_pc’]
26 mu_oil = par[’mu_oil ’]
27 A_w = par[’A_w’]
28 A_bh = par[’A_bh’]
29 V_a = par[’V_a’]
30 p_res = MX.sym(’p_res’,n_w)
31 PI = MX.sym(’PI’,n_w)
32 T_a = MX.sym(’T_a’,n_w)
33 T_w = MX.sym(’T_w’,n_w)
34 R = par[’R’]
35 Mw = par[’Mw’]
36

37 #Riser
38 T_r = par[’T_r’]
39 L_r = par[’L_r’]
40 A_r = par[’A_r’]
41 H_r = par[’H_r’]
42 D_r = par[’D_r’]
43 C_pr = par[’C_pr’]
44 rho_ro = par[’rho_ro ’]
45

46 #Separator
47 L_s = par[’L_s’]
48 r_s = par[’r_s’]
49 T_s = par[’T_s’]
50 C_gs = par[’C_gs’]
51 C_os = par[’C_os’]
52 v_s = par[’V_s’]
53

54

55 #Compressor
56 n_c = par[’n_c’]
57 C_in = par[’C_in’]
58 C_out = par[’C_out’]
59 C_rec = par[’C_rec’]
60 T_in = par[’T_in’]
61 T_d = par[’T_d’]
62 Z_in = par[’Z_in’]
63 n_v = par[’n_v’]
64 #alphas
65 alpha_1 = par[’alpha_1 ’]
66 alpha_2 = par[’alpha_2 ’]
67 alpha_3 = par[’alpha_3 ’]
68 alpha_4 = par[’alpha_4 ’]
69 alpha_5 = par[’alpha_5 ’]
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70 alpha_6 = par[’alpha_6 ’]
71 #beta
72 beta_1 = par[’beta_1 ’]
73 beta_2 = par[’beta_2 ’]
74 beta_3 = par[’beta_3 ’]
75 beta_4 = par[’beta_4 ’]
76 beta_5 = par[’beta_5 ’]
77 beta_6 = par[’beta_6 ’]
78 #gammas(Further implementation)
79 gamma_1 = par[’gamma_1 ’]
80 gamma_2 = par[’gamma_2 ’]
81 gamma_3 = par[’gamma_3 ’]
82 #Dynamic Coefficients for compressor dynamic equations
83 Coef_1 = par[’Coef_1 ’]
84 Coef_2 = par[’Coef_2 ’]
85 Coef_3 = par[’Coef_3 ’]
86

87 #Gaslift
88 C_iv = par[’C_iv’]
89 C_gl = par[’C_gl’]
90 L_gl = par[’L_gl’]
91 r_gl = par[’r_gl’]
92

93

94 #Differential states
95 #Well system
96 m_ga = MX.sym(’m_ga’,n_w) #Mass gas in annulus[ton]
97 m_gt = MX.sym(’m_gt’,n_w) #Mass gas in tubing[ton]
98 m_ot = MX.sym(’m_ot’,n_w) #Mass oil in tubing[ton]
99 #Riser

100 m_gr = MX.sym(’m_gr’ ,1) #Mass gas in riser[ton]
101 m_or = MX.sym(’m_or’ ,1) #Mass oil in riser[ton]
102 #Separator
103 p_gs = MX.sym(’p_gs’ ,1) #Pressure of gas in separator[bar]
104 h_ls = MX.sym(’h_ls’ ,1) #Height of oil in separator[bar]
105 #Compressor 1
106 p_s1 = MX.sym(’p_s1’,n_c) #Suction Pressure Gas lift Compressor 1[bar]
107 p_d1 = MX.sym(’p_d1’,n_c) #Discharge Pressure Gaslift Compressor 1[bar]
108 w_c1 = MX.sym(’w_c1’,n_c) #Gas massflow rate Gas -lift Compressor 1[kg/s]
109 #Compressor 2
110 p_s2 = MX.sym(’p_s2’,n_c) #Suction Pressure Gas lift Compressor 2[bar]
111 p_d2 = MX.sym(’p_d2’,n_c) #Discharge Pressure Gas lift Compressor 2[bar]
112 w_c2 = MX.sym(’w_c2’,n_c) #Gas massflow rate Gas lift Compressor 2[kg/s]
113 #Compressor 3
114 p_s3 = MX.sym(’p_s3’,n_c) #Suction Pressure Gas lift Compressor 3[bar]
115 p_d3 = MX.sym(’p_d3’,n_c) #Discharge Pressure of Gas lift Compressor 3[bar]
116 w_c3 = MX.sym(’w_c3’,n_c) #Gas massflow rate in Gas -lift Compressor 3[kg/s]
117 #Gas Lift
118 m_gl = MX.sym(’m_gl’ ,1) #Mas gas in gas line[ton]
119

120

121 #Algebraic states
122 #Well
123 p_ai = MX.sym(’p_ai’,n_w) #Annulus pressure at injection[bar]
124 p_wh = MX.sym(’p_wh’,n_w) #Wellhead pressure[bar]
125 p_wi = MX.sym(’p_wi’,n_w) #Injection point pressure in tubing[bar]
126 p_bh = MX.sym(’p_bh’,n_w) #Bottom -hole pressure[bar]
127 rho_ai = MX.sym(’rho_ai ’,n_w) #Density of gas annulus injection point[bar]
128 rho_m = MX.sym(’rho_m’,n_w) #Density mixed oil/gas in tubing[kg/m^3]
129 w_iv = MX.sym(’w_iv’,n_w) #Flow gas through injection valve[kg/s]
130 w_pc = MX.sym(’w_pc’,n_w) #Flow through production choke[kg/s]
131 w_pg = MX.sym(’w_pg’,n_w) #Flow gas through production choke[kg/s]
132 w_po = MX.sym(’w_po’,n_w) #Flow oil through production choke[kg/s]
133 w_ro = MX.sym(’w_ro’,n_w) #Flow oil from reservoir[kg/s]
134 w_rg = MX.sym(’w_rg’,n_w) ##Flow gas from reservoir[kg/s]
135 #Riser
136 p_rh = MX.sym(’p_rh’, 1) #Pressure riser head[bar]
137 rho_r = MX.sym(’rho_r’ ,1) #density oil/gas riser[kg/m^3]
138 p_m = MX.sym(’p_m’, 1) #Manifold pressure[bar]
139 w_pr = MX.sym(’w_pr’, 1) #Flow through riser valve[kg/s]
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140 w_to = MX.sym(’w_to’, 1) #Flow oil through riser valve[kg/s]
141 w_tg = MX.sym(’w_tg’, 1) #Flow gas through riser valve[kg/s]
142 #Separator
143 w_os = MX.sym(’w_os’ ,1) #Produced oil out of separator[kg/s]
144 w_gs = MX.sym(’w_gs’ ,1) #Produced gas out of separator[kg/s]
145 rho_gs = MX.sym(’rho_gs ’, 1) #Gas density in separator[kg/m^3]
146 p_os = MX.sym(’p_os’, 1) #Separator oil pressure[bar]
147 v_os = MX.sym(’v_os’, 1) #Volume of oil in separator[m^3]
148 v_gs = MX.sym(’v_gs’ ,1) #Volume of gas in separator[m^3]
149 #Compressor 1
150 w_in1 = MX.sym(’w_in1’,n_c) #Flow gas in compressor 1[kg/s]
151 w_out1 = MX.sym(’w_out1 ’,n_c) #Flow gas out compressor 1[kg/s]
152 rho_in1 = MX.sym(’rho_in1 ’,n_c) #Density gas in compressor 1[kg/m^3]
153 rho_d1 = MX.sym(’rho_d1 ’,n_c) #Density gas out compressor 1[kg/m^3]
154 Phi1 = MX.sym(’Phi1’,n_c) #Pressure Ratio compresor 1[-]
155 Pow1 = MX.sym(’Pow1’,n_c) #Power con sum ption compressor 1[kW]
156 y_p1 = MX.sym(’y_p1’,n_c) #Polytropic Head compressor 1[m]
157 n_p1 = MX.sym(’n_p1’,n_c) #Polytropic Efficiency 1[%]
158 w_rec1 = MX.sym(’w_rec1 ’, n_c) #Recycle mass flow[kg/s]
159 #Further implementation
160 Phi_max1 = MX.sym(’Phi_max1 ’,n_c) #Max Pressure ratio
161 gamma_2_dummy1 = MX.sym(’gamma_2_dummy1 ’,n_c) #constraint
162 #Compressor 2
163 w_in2 = MX.sym(’w_in2’,n_c) #Flow gas in compressor 2[kg/s]
164 w_out2 = MX.sym(’w_out2 ’,n_c) #Flow gas out compressor 2[kg/s]
165 rho_in2 = MX.sym(’rho_in2 ’,n_c) #Density gas in compressor 2[kg/m^3]
166 rho_d2 = MX.sym(’rho_d2 ’,n_c) #Density gas out compressor 2[kg/m^3]
167 Phi2 = MX.sym(’Phi2’,n_c) #Pressure Ratio compresor 2[-]
168 Pow2 = MX.sym(’Pow2’,n_c) #Power con sum ption compressor 2[kW]
169 y_p2 = MX.sym(’y_p2’,n_c) #Polytropic Head compressor 2[m]
170 n_p2 = MX.sym(’n_p2’,n_c) #Polytropic Efficiency 2[%]
171 w_rec2 = MX.sym(’w_rec2 ’, n_c) #Recycle mass flow 2[kg/s]
172 #Further implementation
173 Phi_max2 = MX.sym(’Phi_max2 ’,n_c) #Max pressure ratio
174 gamma_2_dummy2 = MX.sym(’gamma_2_dummy2 ’,n_c) #constraint
175 #Compressor 3
176 w_in3 = MX.sym(’w_in3’,n_c) #Flow gas in compressor 2[kg/s]
177 w_out3 = MX.sym(’w_out3 ’,n_c) #Flow gas out compressor 2[kg/s]
178 rho_in3 = MX.sym(’rho_in3 ’,n_c) #Density gas in compressor 2[kg/m^3]
179 rho_d3 = MX.sym(’rho_d3 ’,n_c) #Density gas out compressor 2[kg/m^3]
180 Phi3 = MX.sym(’Phi3’,n_c) #Pressure Ratio compresor 2[-]
181 Pow3 = MX.sym(’Pow3’,n_c) #Power con sum ption compressor 2[kW]
182 y_p3 = MX.sym(’y_p3’,n_c) #Polytropic Head compressor 2[m]
183 n_p3 = MX.sym(’n_p3’,n_c) #Polytropic Efficiency 2[%]
184 w_rec3 = MX.sym(’w_rec3 ’, n_c) #Recycle mass flow 2[kg/s]
185 #Further implementation
186 Phi_max3 = MX.sym(’Phi_max3 ’,n_c) #Max pressure ratio
187 gamma_2_dummy3 = MX.sym(’gamma_2_dummy3 ’,n_c) #constraint
188 #Gl system
189 w_gl = MX.sym(’w_gl’,n_w) #Flow through gas lift choke[kg/s]
190 p_out = MX.sym(’p_out’ ,1) #Pressure in gas lift line[bar]
191 rho_out = MX.sym(’rho_out ’ ,1) #density of gas in gas lift line[kg/m^3]
192

193

194 #Control input
195 #Wells
196 u_pc = MX.sym(’u_pc’, n_w) #Valve opening production chokes [0-1]
197 #Gas lift
198 u_gl = MX.sym(’u_gl’, n_w) #Valve opening gas lift chokes [0-1]
199 #Separator
200 z_ov = MX.sym(’z_ov’, 1) #Valve opening separator oil out[0-1]
201 #Compressor
202 u_1 = MX.sym(’u_1’,n_c) #Valve opening inlet compressor 1[0 -1]
203 u_2 = MX.sym(’u_2’,n_c) #Valve opening inlet compressor 2, outlet 1[0 -1]
204 u_3 = MX.sym(’u_3’,n_c) #Valve opening inlet compressor 3, outlet 2[0 -1]
205 u_4 = MX.sym(’u_4’,n_c) #Valve opening outlet compressor 3[0 -1]
206 u_rec1 = MX.sym(’u_rec1 ’,n_c) #Valve opening recycle compressor 1[0 -1]
207 u_rec2 = MX.sym(’u_rec2 ’,n_c) #Valve opening recycle compressor 2[0 -1]
208 u_rec3 = MX.sym(’u_rec3 ’,n_c) #Valve opening recycle compressor 3[0 -1]
209 omega1 =MX.sym(’omega1 ’,n_c) #Speed of compressor 1[rad/s]
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210 omega2 = MX.sym(’omega2 ’,n_c) #Speed of compressor 2[rad/s]
211 omega3 = MX.sym(’omega2 ’,n_c) #Speed of compressor 3[rad/s]
212

213 #Parameters(Possible to introduce more)
214 #Wells
215 GOR = MX.sym(’GOR’,n_w)
216 #Separator
217 p_go = MX.sym(’p_go’ ,1)
218 p_oo = MX.sym(’p_oo’, 1)
219

220 #Constraints
221 wmax_gl = MX.sym(’wmax_gl ’ ,1)
222 wmax_pg = MX.sym(’wmax_pg ’ ,1)
223 Powmax_glcom = MX.sym(’Powmax_glcom ’ ,1)
224

225

226

227 #Algebraic equations
228 #Wells
229 f1 = -p_ai*1e5 + ((R*T_a/(V_a*Mw) + 9.81* H_a/V_a)*m_ga*1e3) #Bernoulli
230 f2 = -p_wh*1e5 + ((R*T_w/Mw)*(m_gt*1e3/(L_w*A_w + L_bh*A_bh - m_ot*1e3/rho_o

))) - ((m_gt*1e3+m_ot*1e3 )/(L_w*A_w))*9.81* H_w/2 #Bernoulli
231 f3 = -p_wi*1e5 + (p_wh*1e5 + 9.81/( A_w*L_w)*fmax(0,(m_ot*1e3+m_gt*1e3-rho_o*

L_bh*A_bh))*H_w + 128* mu_oil*L_w*w_pc /(3.14* D_w **4*(( m_gt*1e3 + m_ot*1e3)*
p_wh*1e5*Mw*rho_o)/(m_ot*1e3*p_wh*1e5*Mw + rho_o*R*T_w*m_gt*1e3))) #
Bernoulli/Hagen -Poiseuille

232 f4 = -p_bh*1e5 + (p_wi*1e5 + rho_o *9.81* H_bh + 128* mu_oil*L_bh*w_ro /(3.14*
D_bh **4* rho_o)) #Bernoulli/Hagen -Poiseuille

233 f5 = -rho_ai *1e2 +(Mw/(R*T_a)*p_ai*1e5) #Ideal gas law
234 f6 = -rho_m *1e2 + ((m_gt*1e3 + m_ot*1e3)*p_wh*1e5*Mw*rho_o)/(m_ot*1e3*p_wh*1

e5*Mw + rho_o*R*T_w*m_gt*1e3)#Relationship oil/gas
235 f7 = -w_iv + C_iv*sqrt(rho_ai *1e2*fmax (0.001 ,( p_ai*1e5 - p_wi*1e5)))#Valve

equation
236 f8 = -w_pc + u_pc*C_pc*sqrt(rho_m *1e2*fmax (0.001 ,( p_wh*1e5 - p_m*1e5)))#

Valve equation
237 f9 = -w_pg + (m_gt*1e3/fmax(1e-3,(m_gt*1e3+m_ot*1e3)))*w_pc #massfraction of

gas
238 f10 = -w_po + (m_ot*1e3/fmax(1e-3,(m_gt*1e3+m_ot*1e3)))*w_pc #massfraction

oil
239 f11 = -w_ro + PI*1e-6*( p_res*1e5 - p_bh*1e5)#From definition of Productivity

index
240 f12 = -w_rg + GOR*w_ro #From definition of Gas -oil ratio
241 #Riser system
242 f15 = -p_rh*1e5 + ((R*T_r/Mw))*(m_gr*1e3/(L_r*A_r)) - ((m_gr*1e3+m_or*1e3)/(

L_r*A_r))*9.81* H_r/2 #Bernoulli
243 f16 = -rho_r*1e2 + ((m_gr*1e3 + m_or*1e3)*p_rh*1e5*Mw*rho_ro)/(m_or*1e3*p_rh

*1e5*Mw +rho_ro*R*T_r*m_gr*1e3)
244 f17 = -p_m*1e5 + (p_rh*1e5 + 9.81/( A_r*L_r)*(m_or*1e3+m_gr*1e3)*H_r + 128*

mu_oil*L_r*w_pr/(np.pi*D_r **4*(( m_gr*1e3+m_or*1e3) * p_rh*1e5*Mw*rho_ro) / (
m_or*1e3*p_rh*1e5*Mw+rho_ro*R*T_r*m_gr*1e3))) #Realationship oil/gas

245 f18 = -w_pr + 1*C_pr * np.sqrt(rho_r*1e2*fmax (0.001 ,( p_rh*1e5 -p_gs*1e5))) #
Valve equation

246 f19 = -w_to + (m_or*1e3/(m_gr*1e3 + m_or*1e3))*w_pr #massfraction oil
247 f20 = -w_tg + (m_gr*1e3/(m_gr*1e3 + m_or*1e3))*w_pr #massfraction gas
248 #Separator system
249 f21 = -w_os + z_ov*C_os*sqrt(rho_ro *1e2*fmax (0.001 ,( p_os*1e5 - p_oo*1e5))) #

Valve equation
250 f22 = -w_gs + C_gs*np.sqrt(rho_gs *1e2 *fmax (0.001 ,( p_gs*1e5 - p_go*1e5))) #

Valve equation
251 f23 = -rho_gs *1e2 + (Mw/(T_s * R) * p_gs*1e5) #Ideal gas law
252 f24 = -p_os*1e5 + p_gs*1e5 + rho_ro * 9.81 * h_ls #Bernoulli equation
253 f25 = -v_os + ((0.5* r_s **2) *((2*np.arccos(fmax(0,(r_s -h_ls)/r_s)))-np.sin

((2*np.arccos(fmax(0,(r_s -h_ls)/r_s))))))*L_s #Based on equation of segment/
circle , derivative of the Area

254 f26 = -v_gs + fmax(0,(v_s - v_os)) #Based on relation volume of gas/oil in
separator

255 #Compressor 1
256 f27 = -w_in1 + C_in*u_1*np.sqrt(rho_in1 *1e2*fmax (0.001 ,( p_gs*1e5 - p_s1*1e5)

))#Valve equation
257 f28 = -w_out1 + C_in*u_2*np.sqrt(rho_d1 *1e2*fmax (0.001 ,( p_d1*1e5 -p_s2*1e5)))
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#Valve equation
258 f29 = -rho_in1 *1e2 + (Mw/(R*T_in)*p_gs*1e5)#Ideal gas law
259 f30 = -rho_d1 *1e2 + (Mw/(R*T_d)*p_d1*1e5)#Ideal gas law
260 f31 = -Phi1 + alpha_1 + alpha_2*omega1 + alpha_3*w_c1 + alpha_4*omega1*w_c1

+ alpha_5*omega1*omega1 + alpha_6*w_c1*w_c1#Polynomial realationship/
approximation

261 f32 = -Pow1 + (y_p1/(n_p1))*w_c1#Based on how much of the potential power
that can be utilized

262 f33 = -y_p1*1e5 + (Z_in *R *T_in/(Mw))*(n_v/(n_v -1)) *(( Phi1 **((n_v -1)/n_v))
-1)#Equation for polytropic head

263 f34 = -n_p1*1e2 + beta_1 + beta_2*omega1 + beta_3*Phi1 + beta_4*omega1*Phi1
+ beta_5*omega1*omega1 + beta_6*Phi1*Phi1#Polynomial realationship/
approximation

264 f35 = -Phi_max1 + gamma_1 *(w_c1 -gamma_2) + gamma_3 #Further work
265 f36 = - gamma_2_dummy1 + w_c1 - ((Phi1 - gamma_3)/gamma_1) #Further work
266 f37 = -w_rec1 + C_rec*u_rec1*np.sqrt(rho_d1 *1e2*fmax (0.0001 ,( p_d1*1e5 - p_s1

*1e5)))#Valve equation
267 #Compressor 2
268 f38 = -w_in2 + C_in*u_2*np.sqrt(rho_in2 *1e2*fmax (0.001 ,( p_d1*1e5 - p_s2*1e5)

))#Valve equation
269 f39 = -w_out2 + C_in*u_3*np.sqrt(rho_d2 *1e2*fmax (0.001 ,( p_d2*1e5 -p_s3*1e5)))

#Valve equation
270 f40 = -rho_in2 *1e2 + (Mw/(R*T_in)*p_d1*1e5)#Ideal gas law
271 f41 = -rho_d2 *1e2 + (Mw/(R*T_d)*p_d2*1e5)#Ideal gas law
272 f42 = -Phi2 + alpha_1 + alpha_2*omega2 + alpha_3*w_c2 + alpha_4*omega2*w_c2

+ alpha_5*omega2*omega2 + alpha_6*w_c2*w_c2#Polynomial realationship/
approximation

273 f43 = -Pow2 + (y_p2/n_p2)*w_c2#Based on how much of the potential power that
can be utilized

274 f44 = -y_p2*1e5 + (Z_in *R *T_in/(Mw))*(n_v/(n_v -1)) *(( Phi2 **((n_v -1)/n_v))
-1)#Equation for polytropic head

275 f45 = -n_p2*1e2 + beta_1 + beta_2*omega2 + beta_3*Phi2 + beta_4*omega2*Phi2
+ beta_5*omega2*omega2 + beta_6*Phi2*Phi2#Polynomial realationship/
approximation

276 f46 = -Phi_max2 + gamma_1 *(w_c2 -gamma_2) + gamma_3 #Further work
277 f47 = - gamma_2_dummy2 + w_c2 - ((Phi2 - gamma_3)/gamma_1) #Further work
278 f48 = -w_rec2 + C_rec*u_rec2*np.sqrt(rho_d2 *1e2*fmax (0.0001 ,( p_d2*1e5 - p_s2

*1e5)))#Valve equation
279 #Compressor 3
280 f49 = -w_in3 + C_in*u_3*np.sqrt(rho_in3 *1e2*fmax (0.001 ,( p_d2*1e5 - p_s3*1e5)

))#Valve equation
281 f50 = -w_out3 + C_in*u_4*np.sqrt(rho_d3 *1e2*fmax (0.001 ,( p_d3*1e5 -p_out*1e5))

)#Valve equation
282 f51 = -rho_in3 *1e2 + (Mw/(R*T_in)*p_d2*1e5)#Ideal gas law
283 f52 = -rho_d3 *1e2 + (Mw/(R*T_d)*p_d3*1e5)#Ideal gas law
284 f53 = -Phi3 + alpha_1 + alpha_2*omega3 + alpha_3*w_c3 + alpha_4*omega3*w_c3

+ alpha_5*omega3*omega3 + alpha_6*w_c3*w_c3#Polynomial realationship/
approximation

285 f54 = -Pow3 + (y_p3/n_p3)*w_c3#Based on how much of the potential power that
can be utilized

286 f55 = -y_p3*1e5 + (Z_in *R *T_in/(Mw))*(n_v/(n_v -1)) *(( Phi3 **((n_v -1)/n_v))
-1)#Equation for polytropic head

287 f56 = -n_p3*1e2 + beta_1 + beta_2*omega3 + beta_3*Phi3 + beta_4*omega3*Phi3
+ beta_5*omega3*omega3 + beta_6*Phi3*Phi3#Polynomial realationship/
approximation

288 f57 = -Phi_max3 + gamma_1 *(w_c3 -gamma_2) + gamma_3 #Further work
289 f58 = - gamma_2_dummy3 + w_c3 - ((Phi3 - gamma_3)/gamma_1) #Further work
290 f59 = -w_rec3 + C_rec*u_rec3*np.sqrt(rho_d3 *1e2*fmax (0.001 ,( p_d3*1e5 - p_s3

*1e5)))#Valve equation
291 #Gas Lift
292 f60 = -w_gl + C_gl*u_gl*np.sqrt(rho_out *1e2*fmax (0.001 ,( p_out*1e5 - p_ai*1e5

)))#Valve equation
293 f61 = -p_out*1e5 + R*T_d*m_gl*1e3/(Mw*np.pi*r_gl*r_gl*L_gl)#Ideal gas law
294 f62 = -rho_out *1e2 + (Mw/(R*T_d)*p_out*1e5)#Ideal gas law
295

296 #Differential equations
297 #Wells
298 df1 = (w_gl - w_iv)*1e-3 #m_ga , massbalance of gas annulus
299 df2 = (w_iv + w_rg - w_pg)*1e-3 #m_tg , massbalance of gas tubing
300 df3 = (w_ro - w_po)*1e-3 #m_to , massbalance of oil tubing
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301 #Riser
302 df4 = (sum(w_pg.nz) - w_tg)*1e-3 #m_gt , massbalance gas riser
303 df5 = (sum(w_po.nz) - w_to)*1e-3 #m_ot , massbalance oil riser
304 #Separator
305 df6 = ((R*T_s/(v_gs*Mw))*(w_tg - w_gs - w_in1)*1e-4) + (p_gs/(v_gs*rho_ro))

*(( w_to - w_os)*1e-4)# p_gs , based on derivative of ideal gas law
306 df7 = ((( w_to - w_os)*1e-3)/rho_ro)/(2* L_s * np.sqrt(h_ls* fmax (0,((2 *r_s)-

h_ls))))#h_ls , based on equation of segment/circle , derivative of the Area
307 #Compressor system(diff equations)
308 #Compressor 1
309 df8 = (w_in1 - w_c1 + w_rec1) * Coef_1 #p_s1 , based on gas in/out of system
310 df9 = (w_c1 - w_out1 - w_rec1) *Coef_2 #p_d1 , based on gas in/out of system
311 df10 = (p_s1*Phi1 - p_d1) * Coef_3 #w_c1 , based on pressure difference

between in/out
312 # Define variables for combined systems (needed only for decomposition case)
313 #Compressor 2
314 df11 = (w_in2 - w_c2 + w_rec2) * Coef_1 #p_s2 , based on gas in/out of

system
315 df12 = (w_c2 - w_out2 - w_rec2) *Coef_2 #p_d2 , based on gas in/out of system
316 df13 = (p_s2*Phi2 - p_d2) * Coef_3 #w_c2 , based on pressure difference

between in/out
317 #Compressor 3
318 df14 = (w_in3 - w_c3 + w_rec3) * Coef_1#p_s3 , based on gas in/out of system
319 df15 = (w_c3 - w_out3 - w_rec3) *Coef_2#p_d3 , based on gas in/out of system
320 df16 = (p_s3*Phi3 - p_d3) * Coef_3#w_c3 , based on pressure difference

between in/out
321 #Gas lift(diff equations)
322 df17 = (w_out3 - sum(w_gl.nz))*1e-3 #m_gl , based on massbalance
323

324 #Form the DAE system
325 dif = vertcat(df1 ,df2 ,df3 ,df4 , df5 ,df6 ,df7 ,df8 ,df9 ,df10 ,df11 ,df12 ,df13 ,df14 ,

df15 ,df16 ,df17) #Differential equations
326 alg = vertcat(f1 ,f2 ,f3 ,f4 ,f5 ,f6 ,f7 ,f8 ,f9 ,f10 ,f11 ,f12 ,f15 ,f16 ,f17 ,f18 ,f19 ,f20

,f21 ,f22 ,f23 ,f24 ,f25 ,f26 ,f27 ,f28 ,f29 ,f30 ,f31 ,f32 ,f33 ,f34 ,f35 ,f36 ,f37 ,f38 ,f39
,f40 ,f41 ,f42 ,f43 ,f44 ,f45 ,f46 ,f47 ,f48 ,f49 ,f50 ,f51 ,f52 ,f53 ,f54 ,f55 ,f56 ,f57 ,f58
,f59 ,f60 ,f61 ,f62) #Algebraic equations

327 x_var = vertcat(m_ga ,m_gt ,m_ot ,m_gr , m_or ,p_gs ,h_ls ,p_s1 ,p_d1 , w_c1 , p_s2 ,
p_d2 ,w_c2 ,p_s3 ,p_d3 ,w_c3 ,m_gl) #Differential states

328 z_var = vertcat(p_ai ,p_wh ,p_wi ,p_bh ,rho_ai ,rho_m ,w_iv ,w_pc ,w_pg ,w_po ,w_ro ,
w_rg , p_rh ,rho_r ,p_m ,w_pr ,w_to ,w_tg ,w_os ,w_gs ,rho_gs ,p_os ,v_os ,v_gs ,w_in1 ,
w_out1 ,rho_in1 ,rho_d1 , Phi1 ,Pow1 ,y_p1 ,n_p1 ,Phi_max1 ,gamma_2_dummy1 ,w_rec1 ,
w_in2 ,w_out2 ,rho_in2 ,rho_d2 , Phi2 ,Pow2 ,y_p2 ,n_p2 ,Phi_max2 ,gamma_2_dummy2 ,
w_rec2 ,w_in3 ,w_out3 ,rho_in3 ,rho_d3 ,Phi3 ,Pow3 ,y_p3 ,n_p3 ,Phi_max3 ,
gamma_2_dummy3 ,w_rec3 ,w_gl ,p_out ,rho_out)#Algebraic states

329 u_var = vertcat(u_gl ,z_ov ,u_1 ,u_pc ,u_2 ,u_3 ,u_4 ,u_rec1 ,u_rec2 ,u_rec3 ,omega1 ,
omega2 ,omega3)#Control variables

330 p_var = vertcat(GOR ,wmax_gl ,wmax_pg ,Powmax_glcom ,p_go ,p_oo)#Parameters/
constraints

331

332 #Inequality constraints
333 g_var = vertcat ((w_gs -wmax_pg) ,((Pow1 + Pow2 + Pow3)-Powmax_glcom),(sum(w_gl

.nz)- wmax_gl))
334

335 #Objective function(Whant to maximize oil pruduction and minimize power con
sum ption)

336 L = -0.6* w_os + 0.1* Pow1 + 0.1* Pow2 + 0.1* Pow3
337

338 #Free variables need to be added
339 alg = substitute(alg ,p_res ,par[’p_res’])
340 alg = substitute(alg ,PI ,par[’PI’])
341 alg = substitute(alg ,T_a ,par[’T_a’])
342 alg = substitute(alg ,T_w ,par[’T_w’])
343

344 #Constructing the total DEA system , into CasADI framework
345 dae = {’x’: x_var ,’z’: z_var ,’p’: vertcat(u_var ,p_var),’ode’: dif ,’alg’: alg

,’quad’: L}
346

347 #Define integration time
348 opts = {’tf’: par[’tf’]}
349
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350 #Create IDAS integrator for the DAE system
351 F = integrator(’F’,’idas’,dae ,opts)
352

353 #Returns values
354 return F,x_var , z_var , u_var , p_var , alg , dif , L, g_var
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C.3 Main file

1 #Main file
2 #Coding based on and inspired by model made by Risvan Dirza(NTNU).
3 #Integrates the system of equations with the use of the CasADI framework IDAS

integrator.
4 #Optimize the system of equations with the use of the CasADI framework IPOPT nlp

solver.
5

6

7 import numpy as np
8 from sys import path
9 path.append(r"C:/Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3

.5.5 -64 bit")
10 from casadi import *
11 import casadi as ca
12

13 # Call the parameters
14 import ParamFordelivery
15

16 #par now represents the dictionary defined in parameter function
17 par = ParamFordelivery.Params_6wells ()
18

19

20

21

22 import pandas as pd
23 #Retrieve initial guesses for the differential states(x0), algebraic states(z0)

and
24 #controlled variables(u0). Data listed in excel , comma separated files.
25 x0 = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/x06Sep.csv’,header=None).

values.reshape (-1)
26 z0 = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/z06Sep.csv’,header=None).

values.reshape (-1)
27 u0 = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/u06Sep.csv’,header=None).

values.reshape (-1)
28

29 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

30 #controlled variables(u). Data listed in excel , comma separated files.
31 lbx = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/lbx6Sep.csv’,header=None).

values.reshape (-1)
32 lbz = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/lbz6Sep.csv’,header=None).

values.reshape (-1)
33 lbu = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/lbu6Sep.csv’,header=None).

values.reshape (-1)
34 ubx = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/ubx6Sep.csv’,header=None).

values.reshape (-1)
35 ubz = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/ubz6Sep.csv’,header=None).

values.reshape (-1)
36 ubu = pd.read_csv(’Data Folder 6wellsSeptestCompGL32/ubu6Sep.csv’,header=None).

values.reshape (-1)
37

38 #Define the parameter intial values(constant , if not manually changed)
39 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],par

[’p_go’],par[’p_oo’])
40

41 #Call the simulator
42 import SimulatorFordelivery
43

44 #Retrieve return variables of the integrator function
45 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorFordelivery.

CentralizedSimulator_F(par)
46 """
47 #Define time span of simulation
48 t_span = np.arange (10)
49

50 #Initialize initial values
51 uk = u0
52 xf = x0
53 zk = z0
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54

55 #Make containers for storing integrator/control output
56 x_store =[]
57 z_store = []
58 u_store = []
59 p_store = []
60 error_store = [0]
61

62 ################### Integrator ###################
63

64 for k in t_span:
65 #Change to simulate disturbance in GOR(Possible to implement disturbance in

more variables)
66 #if k == 2000:
67 #p0[0] -= 0.1
68 #p0[1] += 0.1
69 #p0[2] += 0.1
70 #p0[3] += 0.1
71 #p0[4] += 0.1
72 #p0[5] += 0.1
73

74 #Simulate step change in the gas lift valves(u_gl)
75 #if k == 1000:
76 #uk[0] += 0.2
77 #uk[1] += 0.1
78 #uk[2] += 0.4
79 #uk[3] += 0.2
80 #uk[4] += 0.2
81 #uk[5] += 0.2
82

83 #Solving the initial value problem
84 inputs = ca.vertcat(uk, p0)
85 Fk = F(x0 = xf, z0 = zk, p = inputs)
86 #Retrieving the differential states
87 xf = (Fk[’xf ’]).full()
88 #Retrieving the algebraic states
89 zk = (Fk[’zf ’]).full()
90

91 #Append results
92 x_store.append(xf)
93 u_store.append(uk)
94

95 #PID controller , tuned with SIMC rules(integration process)
96 h = x_store[k][21] #Value of height og oil at current iteration
97 h_sp = 1.65716 #Optimal height , thus used as setpoint
98 tauC = 50 #Controller time , can be changed up or down depending on needs for

fast control or smooth control
99 tauI = 4*tauC #Integral time , corresponding to SIMC rules for integration

processes.
100 Kp1 = 1/(5.1732222222222735e-06* tauC)#Proportional gain
101 Ki1 = Kp1/tauI #Integral gain
102 error = (h_sp - h) #Difference between setpoint and measured height
103 #Calculate new controller output
104 u = ca.fmax(0, ca.fmin(1, (u_store[k -1][6] - (Kp1*error + Ki1*error - Kp1*

error_store[k-1] ))))
105 #Update the controller output for z_ov(oil valve separator)
106 uk[6] = u
107 #Store all errors , to be used for previous errors
108 error_store.append(error)
109

110

111 """
112 ################### Optimizer ###################
113

114 #Get shape of controlled , and differential states
115 nu = u_var.shape [0]
116 nx = x_var.shape [0]
117

118 #Define equality constraints of nlp , equals the model equations
119 eqcon = ca.vertcat(alg , dif)
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120

121 #Define the optimization problem(x = states , L= objective function , g =
inequality constraints , p = parameters)

122 nlp = {
123 ’x’: ca.vertcat(u_var , x_var , z_var),
124 ’f’: L,
125 ’g’: ca.vertcat(eqcon , g_var),
126 ’p’: p_var ,
127 }
128

129 #Define upper/lower bounds for the inequality constraints
130 lbg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , -ca.inf))
131 ubg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , 0))
132

133 #Use IPOPT(interior point optimizer) fromt the CasADI framework to solve the nlp
134 opt_inst = ca.nlpsol(’opt_inst ’, ’ipopt ’, nlp)
135

136 #Extract the solution of the optimization , feed ipopt initial values , lower and
upper bounds

137 opt_res = (opt_inst(p=p0 ,x0 = ca.vertcat(u0 ,x0 ,z0), lbx = ca.vertcat(lbu ,lbx ,lbz
), ubx = ca.vertcat(ubu ,ubx ,ubz), lbg=lbg , ubg=ubg))

138

139 states = opt_res[’x’] #Optimal controlled variables(u), differential states(x)
and algebraic states(z)

140 cost = opt_res[’f’] #Value of objective function at optimal point
141

142 print(states)
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D Integration results

Figure D.1: In Appendix D the integration results for the system states and the controlled valve opening at
the oil outlet of the separator are presented. The system is solved with IDAS explained in Section 2.2.1, with a
simulation time of t = 10000s.
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