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Abstract

Fossil fuel consumption and global warming are among the most pressing problems in present times.
These issues have become a focal point for scientific engineering research. In light of this, various
studies are being undertaken to develop solutions to reduce conventional energy consumption
and establish renewable sources as the key to sustainable energy production. This, in turn, has
necessitated the development of advanced technologies to enhance the thermal energy performance
of the buildings. Thermal energy storage, also known as TES, is an example of such technology.

Energy storage problems are highly stochastic in nature. Not only the generation of the energy
from the resources is uncertain, but also the energy prices are not constant. Therefore finding
and implementing true control and optimization policies which can decrease the cost and meet
the demand is essential. In this project, we studied the optimal control of borehole energy storage
system. The idea comes from the fact that due to lower variations of the underground temperature
compared to air, we can use it as a suitable energy storage system. Coupling it with a heat pump,
make it suitable to be used in parallel with a conventional heater and cooler to provide energy for
a typical building.

With the objective of minimizing the annual energy costs, we developed a Certainty Equivalence
Model Predictive Control (CEMPC) algorithm which is suitable for minimization of the total cost
for thermal energy consumption. This algorithm helps us to know that for example how much heat
energy is better to be taken from borehole, heater or both in summer days, or in an inverse route
how much cooling might be provided from borehole and cooler on summer days. We designed
some prediction set variations for CEMPC and calculated the performance of these variations by
applying a large number of simulation sample paths to identify how much we are far from the real
optimal value. The performance of this algorithm can be compared with other control policies in
further stages of the project.
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1 Introduction

1.1 Importance of Renewable Energy and the Storage

In these years of global market uncertainty, an important matter is that the world needs energy and
the global trend shows that demand of energy continuously increasing in order to support economic
and social improvement and build a better life standards, but providing this energy around the
world should be taken with responsibility and commitment to developing and using our resources
more efficiently. Today, all of us are committed to protecting both people and the environment
and making positive economic contributions.

Here the problem is not only that the conventional energy resource such as fossil fuels are depleting
as fast as possible, but also there are increasing concerns about the environmental negative effects
of hydrocarbons as the primary source of energy. It is said that electricity production is our
first source of greenhouse gases, more than all of our driving and flying combined. Electricity
generation has been reported as the second leading cause of industrial air pollution in the U.S.
Most of our electricity comes from coal, nuclear, and other non-renewable power plants. Producing
energy from these resources takes a severe toll on our environment, polluting our air, land, and
water. Using renewable and clean sources of energy is one of the most important measures we
can take to reduce these adverse impacts on our planet. Renewable energy is the energy that is
derived from natural resources that replenish themselves over a period of time without depleting
the Earth’s resources. These resources also have the benefit of being abundant, available in some
capacity nearly everywhere, and they cause little, if any, environmental damage. Energy from
the sun, wind, and thermal energy stored in the Earth’s crust are examples. Clean energy can
reduce harmful smog, toxic buildups in our air and water, and the impacts caused by coal mining
and gas extraction. Renewable energy sources can also be used to produce electricity with fewer
environmental impacts. It is possible to make electricity from renewable energy sources without
producing carbon dioxide (CO2), the leading cause of global climate change.

Alongside with gradual technical improvement in equipment and installation of renewable energy,
the public intention to replacing it with fossil fuels increased within recent years. The strongest
motivation over renewable sources is that renewable energy is nearly free of charge compared to
conventional one. In many cases such as solar cells it is also possible to sell extra amount of
produced electricity to the grid.

On the other hand, replacing fossil-fuel infrastructure or conventional electricity with renewable
sources will take time because applying these energy has always been associated with technical
problems. One of the most important issues with these kinds of energy is unreliability. This comes
from the point that the most renewable resources are out of our control. In case of wind towers or
solar cells, we are uncertain that how we have to manage to use the produced energy, because we
do not know how much energy we are able to produce over the next days. An effective approach
for solving this issue is to use a battery enabling us to store the energy and using it in more
appropriate time later. In energy storage domain, the essence of some optimal control policies that
help us to reduce energy consumption cost is highly needed from economical point of view because
most of the time the prices are fluctuating. Moreover due to uncertain nature of renewable energy
availability at different times, such policies should ensure us that we can always provide required
energy from both conventional energy installation and these renewable resources.

1.2 Contributions of the Project

In this project, we develop a stochastic optimization approach for a specific energy storage problem.
We demonstrate that how it is possible to economically feed a building with required energy
by applying a borehole in parallel with conventional heater and cooler when the energy price
experiences random variation and the storage device is subject to stochastic noise.

We evaluate the performance of Certain Equivalence of Model Predictive Control (CEMPC) by
defining some problem variation and demonstrate under which condition this policy can potentially
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keep the annual cost of a random time-varying energy storage problem near to its real optimized
cost.

1.3 Organization of the Report

We start by defining the base model, and then describe how we can formulate the problem by
manipulating the nature of the underlying data. We then discuss the policy which is used to
minimize annual energy cost for the problem and compare it with the real optimum point with the
perfect forecast.

We start by reviewing the literature in chapter 2 to present other researches about borehole energy
storage systems, uncertainty modeling and Model Predictive Control algorithm. In chapter 3 we
present a base model of the energy storage problem and demonstrate different variables of the
system. Then we provide the formulation of the cost and show how the stochastic variables could
be formulated. The algorithms used in this report and the benchmark policy they are compared
against are presented in Chapter 4. We implement CEMPC policy in the context of problem and
provide performance of these algorithm in terms of numerical results and profiles of energy flow in
Chapter 5. Our findings are analyzed in Chapter 6, and conclusion are presented in Chapter 7.
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2 Literature Review

Optimal Control Energy storage under stochastic condition has been interested over recent years
and different case studies investigated and appropriate control policies developed; however, ac-
cording to author knowledge, few number of research have been carried out on optimal control
of borehole systems. In this chapter, we provide a literature review of borehole energy storage
systems. Afterwards, we continue to review the different studies of Model Predictive Control tech-
niques on optimization of different energy storage problems, and then we explore strategies applied
to model uncertainty which have been implemented in previous works.

2.1 Borehole Energy Storage System

Borehole as an efficient tool for recovery of geothermal energy storage purposes have been in-
creasingly trended over recent years. Welsch et al. 2016 shows that there is an optimal borehole
pipes arrangement where the highest storage efficiencies and the highest heat extraction rates are
achieved. He also demonstrates that under the very simplified operating procedure and subsurface
conditions, storage efficiencies of up to 83 percent are reached and it is also possible to increase
this efficiency even further by adjusting supply temperatures for the heating system or increasing
the loading temperature of the storage. Schulte et al. 2015 designs an approach for the simulation
and optimization of borehole thermal energy storage systems using software tools. His methodo-
logy successfully determines the ideal size of the thermal energy storage and estimates the optimal
number and length of borehole heat exchangers with regard to a specific annual heat demand.
Furthermore, they indicates that borehole thermal energy storage systems only operate efficiently
in large-scale applications. Bär et al. 2015 suggests that coupling of different renewable energy
sources, i.e. solar thermal and geothermal – with already existing district heating systems – e.g.
combined (biofuel-driven) heat and power stations (CHP) is a very promising approach to cover
the heating demand of renovated or old buildings. He justified that how he design, completion and
performance of medium sized borehole systems are strongly depending on the knowledge about
the subsurface and the energy flows between the heat source, the storage system and the building.

Spitler 2005 expresses the importance of a control algorithm that can control the borehole energy
storage system based on a long term,. Cui et al. 2008 and Z. Deng 2005 provides some methods in
modeling for ground-source heat pump, but no model based control algorithms have been presented
in these papers. Rink has provided with some papers about heat pumps control extended with a
battery subjecting to variable energy prices, but his works does not cover long term energy storage
or the coupling of an underground heat storage system to an heat pump system(Rink et al. 1988
and Rink 1994). Zaheeruddin et al. 1988 describes sub-optimal control algorithms of heat-pump
and heat storage systems based on short time term. In his article, energy prices with random
variations are taken into account, too. A control algorithm for hybrid thermal energy storage
combined with a short term weather forecast is proposed in LeBreux et al. 2006. This control
algorithm optimizes the short term policy of the system.

2.2 Model Predictive Control

Model Predictive Control (CEMPC) is one of the solutions that have been studied in in energy stor-
age systems. In particular, Model Predictive Control has been applied to maximize the efficiency
of heating and cooling systems for large buildings as in Ma et al. 2012. Arnold and Andersson 2011
shows that a Model Predictive Control can be used to manage a storage hub with both battery and
hot water storage devices to minimize the cost of satisfying loads from a collection of households
in the presence of unreliable renewable sources, stochastic electricity and natural gas prices.
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2.3 Modelling Uncertainty

Powell 2019 classifies the strategies for developing the policy functions to four different groups to
be applied in sequential decision making problems:

a. Policy function approximations (PFA)

b. Cost function approximations (CFA)

c. Value function approximations (VFA)

d. Direct lookahead policies (DLA)

The first two methods are policies based on policy search, and the 3rd and fourth methods are
policies based on look ahead approximations. In the policy search method strategies, an objective
function is used to search within a family of functions to find the function that works best. Looka-
head approximations are based on approximating the impact of a control action on the future.
Various formulations of the energy storage problem have been previously studied, and policies
from each of the four classes or some hybrid policies have been applied.

PFA and CFA policies have been investigated in several articles in the energy storage domain. In a
short time horizon Warrington et al. 2012 effectively controls storage systems based on predefined
function and wind forecast errors. Han and E 2016 applies the same technique to conduct energy
flows from wind turbines, battery, and the power grid to meet a time-varying demand. H.P.Simão
et al. 2017 uses a deterministic look ahead to control an energy system where battery is managed
to handle the interruptions of renewable energy.

For lookahead approximation policies, it is very important to perform a good uncertainty modelling
to handle stochastic optimization. There are several articles that addressed uncertainty in their
energy storage case studies. Zhou et al. 2018 performed Backward Dynamic Programming (BDP)
to find an optimal policy for managing wind energy storage system in presence of price variation
and wind unreliability. Backward DP was also tested to find near-optimal solution in Durante
et al. 2017, However, with regards to the problems that exact Backward DP have with the large
space state energy storage problems, they has not been widely applied in the energy storage
domain. Another challenge in direct lookahead policies is model simplification which should be
taken carefully. This is essential and have been performed in most of the literature to allow the
controller to solve the problem, but this have to keep the simplified model near the reality. In
most of the literature, simplifications performed in the modelling of the renewable energies and
price processes. For example, Ridder et al. 2011 assumes simple model to describe the dynamics
of the underground storage system to be able to implement dynamic programming. He obtains a
low root-mean-square value of the prediction error showing that his model is sufficiently good in
predicting the temperature calculated with the complex model and have to be used in the controller.
Price changes and production of renewable have also been subject to some simplifications in the
previous works. For example Jiang et al. (2014), Cheng et al. 2018 and Mokrian et al. (2006)
model it as a first order Markov chain in their works.

Deterministic prediction of random exogenous processes have been applied in the energy domain.
Sioshansi et al. 2014 studies the benefits of integrating wind turbines and storage devices by
utilizing a deterministic lookahead which makes decision based on a mixed integer program with
prediction for two-week horizon. Wallace and Fleten 2003 applies deterministic forecasts of wind,
solar and loads to manage energy storage. Most of these models are subject to argument in the
research community that not take uncertainty into account. Model predictive control policies use
rolling forecasts which update at each time step in the base model, but forecast error cannot be
controlled in such models.

In this thesis, we design different predictions on stochastic changes in our borehole energy storage
model and evaluate their performance by Certain Equivalence Model Predictive Control. We also
benchmark these with real optimal value (perfect forecast). Description of our policy is presented
in chapter 4.
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3 Modeling a Borehole Energy Storage Problem

In this chapter, we provide the basic model of the energy storage problem by defining the state
variables, the decision variables, exogenous information, transition function and objective function.
As a case study, we will analyze a combined heating and cooling system with a thermal storage
device. we also describe the strategies applied to our model in order to simulate the variations
entered to the system e.g. random prices.

3.1 Basic Model

In most buildings around 40 percent of the energy consumed to heat and cool the building. One of
the ways to lower the electricity energy consumption, operating cost, and in consequence carbon
dioxide emission is to heat and cool buildings with an underground thermal energy storage system
by applying boreholes. Briefly, such systems consist of a large underground volume, which can be
loaded with heat or cold quantities from the building and can hold this energy for some months.
An underground storage field typically includes several horizontal and vertical pipes, drilled on
the nodes of a square grid and is filled with a water circuit. This construction looks like a big
underground container. Based on the system type, the pipes are allowed to exchange thermal
energy with the underground or have to exchange as minimum heat energy as possible. The idea
of borehole comes from the fact that it is possible to dispatch and store the heat inside the building
to the borehole over summer and use this heat in the winter. In inverse route, consuming this energy
over winter will cause a lower borehole temperature which is suitable for summer cooling.

In our model, we assumed that a primary borehole network as our storage battery device in parallel
with a conventional heater and cooler used to provide thermal energy for the demand. Heater and
cooler function is to supply the shortage of the energy when it is not possible to take all the heat
or cold from borehole. They are working with electricity and their operating cost is subject to
stochastic variations.

The variation in the underground temperature is lower than the air and this make underground
more reliable energy source than outside air in heat pumps, however these variations depend to so
many factors such as geographical location, weather condition, depth and soil type and it is not
possible to derive or predict it directly. Therefore we consider that the underground temperature
variation can act like as a stochastic energy loss in the storage system. We will develop it further
in the formulation of transition function in 3.1.6. We assume that there is no other loss in our
system.

Figure 1: Heating and cooling of a building

We are interested to control the borehole temperature between 0 °C and 12 °C. Within this range
we need a heat pump to be coupled with borehole storage system to provide the energy over winter,
nevertheless, no building can be heated with such low temperatures. If the temperature goes below
0 °C, not only there is the risk of water freezing, but also heat pump do no work efficiently due
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to high temperature difference. According to literature setting 12 °C as higher bound helps us to
use the cold water directly for cooling purpose, therefore there is no need to heat pump and it will
shut down over summer. A typical sketch of our model is presented in Fig. 1.

The objective is to control the flow of energy between borehole, heater and cooler in such a way
that we obtain the minimized energy cost. There are four nodes, three decision variables, and five
exogenous processes in this model. In Fig. 2. We provide a more conceptual sketch of the model.
Demand should be met at any time by the energy flows.

Figure 2: Basic model

3.1.1 Static Parameters

In our model it was assumed that some parameters are constant to allow us better investigate on
this model, therefore some quantities have to be assigned to these parameters. First the geometry of
the borehole is fixed, therefore the number of holes, their diameter and length have to be specified.
Second we supposed that overall heat transfer coefficient from the borehole to the surrounding
underground is not affected by dynamic of the system and are estimated to be constant. Third
due to physical limitation of the system, the maximum flow of the energy from borehole to the
system is limited to a certain value. In addition, our heat pump has a fixed COP. List of the static
parameters is as following:

Qmax: Maximum allowable energy flow between he borehole and the demand in KWh.

n: The number of the pipes in the borehole system

D: Diameter of the pipes in inches

L: Length of the pipes in meter

m: Mass of the water in the borehole in kg

Cp: Water heat capacity in KWh/Deg. C

For our case study, we consider the following numerical values for the above parameters in Table
1.
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Parameter Value Unit

Rmax 30 KWh
n 30 -
D 40 Inches
L 10 meters
m 235619 Kg

Cp 0.001167 KWh/Kg°C

Table 1: Values of the static parameters

3.1.2 State Variables

The state variables include all information we need to know to model the process of the system
over time and is sufficient to decide and take actions and calculate final cost. Initial state variables
(S0) specify initial values of these state and should be specified to obtain system performance.

Our thermal energy storage system has six dynamic states (St), including the demand, prices,
underground temperature and borehole temperature. We assume three prices as Heater Price,
cooler price and heat pump price enabling us to analyze the contribution of each of these sources.
We also assumed that that there is no need to pay for the direct cooling by borehole and it is free
of charge. Therefore the states of the system is given by:

St = (Dt, Tt
b, Tt

inf , Pt
h, Pt

hh, Pt
c) (1)

Dt: Heat demand at day t in KWh.

Tt
b: Borehole temperature at day t in °C.

Tt
inf: Underground temperature at day t in °C.

Pt
h: Heating price by heater at day t in NOK/KWh

Pt
hh: Heating price by heat pump at day t in NOK/KWh

Pt
c: Cooling price by cooler at day t in NOK/KWh

We present the values of the initial states in Table 2:

Variable Value Unit

D0 0 KWh
T0

b 11 °C
T0

inf 15 °C
P0

h 0.9 NOK/KWh
P0

hh 0.5 NOK/KWh

P0
c 0.6 NOK/KWh

Table 2: Values of the initial states,S0

3.1.3 Decision Variables

Our decision variables (Qtb,h,c) include all energy flow allocations made every day by controller.
Heating of the building can be taken from both heater and borehole in our model. Also, cold
could be supplied by borehole and installer cooler installed inside the building. Cold is normally
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considered as inverse of the heat. So direction of cooling flow would be from building to both
borehole and cooler. Taking above points to the account, set of decision variables are as following:

Xt = (Qt
b, Qt

h, Qt
c) (2)

Qt
b: The amount of heat and cold which is provided by borehole everyday in KWh/Day

Qt
h: The amount of heat which is provided by heater everyday in KWh/Day.

Qt
c: The amount of cold which is provided by cooler everyday in KWh/Day.

3.1.4 Constraints

In our model, defined variables and inputs which were specified in previous parts are subject to
some constraints as presented here.

Due to maximum amount of water that that can be circulated by a household pump, and assuming
4 °C as approach temperature of inlet and outlet flow of the water to the evaporator of the heat
pump, maximum flow of energy from borehole to building, and inversely from building to borehole,
is limited to a certain value. Due to this limitation, there is a maximum value for the energy which
can be taken from or given to the borehole. Here we assumed that this maximum is 30 KWh.
Therefore:

0 ≤ Qtb ≤ 30KWh (3)

As it was mentioned in basic model, we are interested in controlling the borehole temperature
between 0 12 °C. Therefore the second constraint is:

0◦C ≤ Ttb ≤ 12◦C (4)

As it is clear, we cannot have the negative values for our inputs, therefore next constraint is that
all inputs are positive:

Qt
b, Qt

h, Qt
c ≥ 0 (5)

Above energy allocations should be controlled in such a way that can meet the demand every day.
Here we assumed that we do not heat and cool the building at same time. We can write this
constraint as following formula:

Dt = (
COP

COP − 1
Qt

b +Qt
h) ∗ 1 {Dt ≥ 0}+ (Qt

b +Qt
c) ∗ 1 {Dt ≺ 0} (6)

Which means that our daily heating demand shall be equal to sum of heating flows from both
borehole and heater and our daily cooling demand shall be equal to sum of cooling flows by both
borehole and cooler.

3.1.5 Exogenous Information

We let the ωt be the vector of our exogenous information. These are random variables or disturb-
ances that we do not know anything about them at the decision making time and enter to our
model next day. We consider them as the exogenous change of states and we use ”hats” to indicate
this matter. In our model they are:

D̂t: The amount of demand change between t and t+1 i.e. two consequence days in KWh
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T̂ t
inf: The amount of underground temperature change between t and t+1 i.e. two consequence

days in °C.

P̂ t
h: The amount of heating price change by heater between t and t+1 i.e. two consequence days

in NOK/KWh.

P̂ t
hh: The amount of heaing price change by borehole between t and t+1 i.e. two consequence

days in NOK/KWh.

P̂ t
c: The amount of cooling price change by cooler between t and t+1 i.e. two consequence days

in NOK/KWh.

It is very crucial to obtain a good model for probability distribution of the exogenous variables
which help us to stay near optimal point in Lookahead Approximations or Value Function Approx-
imation. We will discuss it in chapter 6.

3.1.6 State Transition Function

The transition function SM(St, Xt, ωt+1) specifies the transition route of the states from t to t+1
and represents the dynamic of the model. In our model, transition function of the states that are
subject to direct exogenous information are obtained by following equations:

Dt+1 = Dt + D̂t (7)

Pht+1 = Pht + P̂ht (8)

Phht+1 = Phht + P̂hh (9)

P ct+1 = P ct + P̂ ct (10)

T inf
t+1 = Tt

inf + T̂ inf
t (11)

In order to obtain an exogenous information for the borehole temperature, we have to write an
energy balance over the borehole:

mCp
dT b

dt
=λ(Tinf -Tb)±Qb (12)

The sign ± show the direction of the flow as it can be from borehole to demand in case of heating
or inverse in case of cooling. λ represents the heat transfer coefficient of all borehole system with
underground. Based on our model assumption, we need a borehole system with low λ to minimize
the loss, because we are interested that borehole can store the thermal energy in itself. After
discretizing and rearranging above equation we will have the last transition function as:

Tt+1
b = (1− λ

mCp
)Tt

b+
λ

mc
Ttinf ±Qb (13)

3.1.7 Objective Function

Our cost function characterizes our system and helps us to know that how much we are far from
the optimal operation. In our model, we have to pay every time we use heater, cooler and heat
pump due to their energy consumption.
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Therefore our stage can be written as below equation:

C(St, Xt) = Qt
bPt

h +Qt
hhPt

hh +Qt
cPt

c (14)

And the total cost over a year is equal to:

TotalCos t =

365∑
t=1

C(St, Xt) (15)

We are interested to minimize the annual paid energy cost. Therefore, our objective function is as
following formula:

minπE[

365∑
t=1

C(St, Xt)|S0] (16)

Our objective is to apply a policy π that minimizes this cost and we have to choose it from π ∈ Π
which Π is the set of all possible policies that can meet the constraints.

3.2 Exogenous Iinformation

In this section, we present the models of the exogenous information processes. By design, there
are four sources of randomness in our case study: the underground temperature (Tt

inf) which
can impact on our borehole temperature by heat exchange and the heating, cooling and heat
pump prices. In this section, we will provide with the methods used to model the variations of
underground temperature and prices.

3.2.1 Price Model

Electricity prices are stochastic and updated daily, hourly and in some cases even every 5 minutes.
Here, we assume that heater, cooler and heat pump prices follow first order Markov chain model.
we use following formula and represent the randomness by Guassian noise as:

Pt
h,hh,c = max

{
Pavg

h,hh,c + normrnd(0, Pavg
Std)

}
(17)

In the above model, prices fluctuates around an average value every day. These average values are
are presented in Table 3.

Variable Value Unit

Pavg
h 0.9 NOK/KWh

Pavg
hh 0.7 NOK/KWh

Pavg
c 0.6 NOK/KWh

Pavg
std 0.5 NOK/KWh

Table 3: Average operating prices of heat pump, heater and cooler

Fig. 3 provides a typical profile of prices. It can be seen that how the model of stochastic prices
over a year looks like.

10



3.2.2 Demand Model

We assume that control starts from first day of the winter. Based on experience, we can expect
that demand load peaked to a maximum and then decline over the 6 colder months. Alternatively
when summer starts, the demand pass zero and becomes negative which means it is needed to cool
the building. As we go ahead in summer days, the negative demand increases, reaches a minimum
and then returns to its initial value. We characterize this model with a sinusoidal function over
the year, and to inject randomness to daily demand we add a Gaussian noise to demand function
as following:

Dt = −Ad sin(
2πt

365
+ π) + normrnd(0, DStd

avg) (18)

We take 90 KWh for maximum heat and cold which is demanded by the building. Therefore we
set following values to the parameters:

Ad: 90 KWh which is typical for a household demand

Davg
std: 5 KWh

Fig. 3 provides that how the stochastic price model over a year looks like.

3.2.3 Underground Temperature Model

Underground temperature and in consequence heat exchange between borehole and underground
depends to different factors such as Geographical location, weather variation, depth of installation,
soil. A number of quantitative models from geothermal low activity areas (i.e. on stable platforms
outside tectonic and volcanically active areas) show that at shallow depths down to a few hundred
meters, mean annual surface temperature is the main factor controlling subsurface temperature.
But most of the resource agree that it fluctuates between 10 °C and 25 °C. In this model we
assumed that this temperature varies in a range between 10-15 °C and in first days of the winter it
is equal to its maximum value. As we go ahead through a year it reaches the minimum and returns
again to this value after 365 days. These variation can be simulated by a sinusoidal function as
following:

Tt
inf = Tmax

inf −Ainf sin(
2πt

365
− π

2
) + normrnd(0, Tinf

Std) (19)

We set following values to the parameters of above equation:

Tmax
inf: 285.5 °K (12.5 °C)

Ainf: 2.5 °K

Tstd
inf: 0.05 °K

Fig. 3 shows that how the variation of underground temperature looks like over a year.
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Figure 3: A sample path of exogenous information

3.3 Prediction Set Variations

We modeled our exogenous information as sinusoidal load, sinusoidal underground temperature
function and first order Markov chain prices in the previous sections. We want to set a Certainty
Equivalence Model Predictive Control algorithm to solve this problem. In order to verify the
performance of our policy, we need a prediction set on our exogenous information. Here we build
3 different sets of prediction on exogenous information enabling us to evaluate the strengths of our
policy with different predictions. These prediction sets are as following:

• Problem 1: We predict the load and underground temperature with sinusoidal functions but
without randomness. Prediction of prices were first order Markov chain which leads to different
values from the real prices but with same average and standard deviation.

• Problem 2: We predict the load and underground temperature with sinusoidal functions but
without randomness. Prices were predicted to be constant same as mean value of the real prices.
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• Problem 3: We predict the load with sinusoidal function but without randomness and under-
ground temperature with constant value of 15 °C. Prediction of prices were first order Markov chain
which leads to different values from the real prices but with same average and standard deviation.

13



4 Designing Policy

In this chapter we present the policies that are designed to allocate energy flows as manipulated
variables in our case study. As mentioned before, Powell 2019 classified four different approaches
for solving the stochastic optimization problem with sequential decision making as: policy function
approximations (PFA), cost function approximations (CFA), value function approximations (VFA),
and direct lookahead policies (DLA). Here we will take the Certain Equivalence Model Predictive
Control policy which is a kind of DLA Policy and describe how we have to design it for our case
study.

In order to test this policy and see how much the obtained cost via this policy is far from our real
optimal value, we have to benchmark it against the perfect forecast. In the perfect forecast, we
assume that we know stochastic changes in the future. Therefore the problem can be addressed as
a deterministic model and obtained cost is the real optimal cost of the problem.

4.1 Direct Lookahead Models (DLA)

Sometimes the approximation of the cost function is very difficult due to large range of possible
values of exogenous information in the model. In such cases we can use a direct lookahead model
(DLA) policy. The DLA optimizes decisions over some pre-defined control horizon using a future
approximation of the cost function. DLAs can be either deterministic or stochastic. Here we use
Deterministic MPC as the Deterministic Direct Lookahead method and Certain Equivalence MPC
as stochastic DLA strategy.

4.1.1 Deterministic MPC

A brief history of industrial MPC can be found at Qin and Badgwell 2002. Fig. 4 shows a diagram
of MPC control and demonstrate how it works.

Figure 4: Model Predictive Control (MPC) Diagram

The principles of a deterministic MPC is as following:

a. At each time step, optimizer computes control actions by solving an open loop optimization
problem for a certain prediction horizon which is 10 days in our case study. The optimizer uses
current states as initial states and the cost function is subjected to main constraints for prediction
horizon as it can be seen in above figure.

b. The first value of the computed control sequence in the horizon, i.e. first day in our model, is
applied to the process.

c. At the next time step, the model update the states and above cycle is repeated.
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The trajectory tracking by above algorithm can be seen in Fig. 5.

Figure 5: MPC trajectory tracking

For more detail explanation, we assume that we are at time k and states St. Knowing the difference
between the reference state and measured state, i.e the state we want to be and the state we
actually are, and considering a control horizon for removing this difference, we can solve an open
loop optimization of cost function subject to defined constraints. Now a set of control actions
over prediction horizon are obtained and the first one is taken and injected to the model. By
implementing this action, we go forward one step time and again we measure the current state and
this cycle continues.

In our case study, we can use the MPC model for the real optimal solution. In this case we assume
that all uncertainty are clear to us when we are on first day of of control horizon. We are interested
in minimizing the cost function subject to predefined constraints which was described in the base
model section, whereas all prices, borehole temperature, demand and underground temperature
over whole next days are clear to us. We will obtain this cost by a MPC algorithm with control
horizon extended from the current day to last day of the year. The cost is the real minimum cost
of the energy storage problem.

4.1.2 Certain Equivalence Model Predictive Control (CEMPC)

In a stochastic model, random values in the form of the exogenous information enter to the model,
causes that the future states be uncertain and different from their deterministic value. It is clear
that MPC solely cannot handle the uncertainty in the model. One of the proposed methods to
handle uncertainty in the energy storage domain is the Uncertainty Equivalence MPC (CEMPC).
This is same as MPC with the difference that uncertainty realized by the controller in form of
the forecast functions. In other words, we estimate the uncertainty by some logical functions. By
this technique, uncertainty is transformed to the values that can be calculated by approximation
functions similar to other certain variables. Fig 6. Shows the flow of data in a CEMPC algorithm.

15



Figure 6: Certainty Equivalence Model Predictive Control(CEMPC) bloack diagram

At time step t, the predicted exogenous information, current states, cost function and constraint
are imported to MPC and a series of actions in the prediction horizon is taken. The first action
injected to the model and next set of states is obtained. These values are return to the MPC
as current state alongside with prediction of exogenous information at time t+1 and the cycle
continues till end of the horizon.

We have five exogenous information presented in our case study as it was stated in basic model
section and we predict these variables as described in section 3.4. Sinusoidal prediction function of
the demand is similar to its real function but without stochastic change. Therefor the prediction
formula can be written as below:

Dt = −Ad sin(
2πt

365
+ π) (20)

Again, for underground temperature we write the prediction equation as sinusoidal with same
parameters of of its real function but without Gaussian noise:

Tt
inf = Tmax

inf −Ainf sin(
2πt

365
− π

2
) (21)

It is clear that both demand and underground temperature prediction equations can estimate the
value of these variables and trend of change is same as main equations. For prices prediction we
consider the same first Markov Chain model with below formulas:

Pt
h,hh,c = max

{
Pavg

h,hh,c + normrnd(0, Pavg
Std)

}
(22)

All parameters in above equation is same as real price equation. In case of constant value pre-
diction, i.e.third prediction variation set in section 3.4, we assume that they are equal to average
values Pavg

h,hh,c. These prediction equations generate a sample path of the prices, demand and
underground temperature over prediction horizon to be applied in CEMPC method.
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Now we can optimize the cost function with above predictions by CEMPC policy over a prediction
horizon of 10 days. The optimization problem between the tk and tk+10 is written as:

minQi

tk+10∑
tk

Qt
bPt

h +Qt
hhPt

hh +Qt
cPt

c (23)

s.t.

Dt = (
COP

COP − 1
Qt

b +Qt
h) ∗ 1 {Dt ≥ 0}+ (Qt

b +Qt
c) ∗ 1 {Dt ≺ 0} (24)

Qt
b, Qt

hh, Qt
c ≥ 0 (25)

0◦C ≤ Ttb ≤ 12◦C (26)

0 ≤ Qtb ≤ 30KWh (27)

Every time this problem is solved, a set of control actions (Qtk
b,h,c, Qtk+1

b,h,c ,. . . , Qtk+10
b,h,c) are

obtained over the control horizon. The first obtained action injected to the model and obtained
states used as initial state of next time step and this procedure continues with prediction horizon
shifted one step time forward.
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5 Evaluating Policy Performance

For each prediction variations described in section 3.4.3, CEMPC policy tested over 30 sample paths
of simulated demand, heat pump price, heater price, cooler price and underground temperature. We
present the performance of the CEMPC with mentioned prediction sets in this chapter. Thermal
Energy flows are controlled over 365 days, i.e. one year. We start the control from first day of the
winter and update energy allocation decisions every day. We present profiles of energy allocation
for each set of prediction and calculate the average cost showing that how much we have to pay as
expected annual cost of the energy consumption over 30 tested trial.

5.1 CEMPC prediction set 1: underground temperature: sinusoidal,
prices: constant value

We assume that prices are constant and equal to average prices in Table 3. Profiles of energy
allocation decision are presented in Fig. 7. From the profiles it can be seen that the the priority
of the controller for heating is always heat pump which has lower price. Whenever a constraint
saturates, the controller decides to switch the heating from the borehole to the conventional heater.

Total cost of the energy is calculated 13,285 NOK with this set of prediction.

18



Figure 7: Solution profiles with prediction set 1, CEMPC method, demand and underground
temperature prediction is sinusoidal and price predictions is constant average price
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5.2 CEMPC [prediction set 2: underground temperature: sinusoidal,
Prices: first order Markov chain

Fig. 8 shows the profiles of energy allocation for this set of prediction over one year. AS it is
seen there are sudden switches in the profiles demonstrating that controller try to take the optimal
decision based on the prediction of the price over prediction horizon and will select the cheapest
route based on the prediction.

Total cost of the energy is calculated 13,749 NOK with these prediction.
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Figure 8: Solution profiles with prediction set 2, CEMPC method, demand and underground
temperature prediction is sinusoidal and price prediction is first order Markov chain
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5.3 CEMPC prediction set 3: underground temperature: constant,
Prices: first order Markov chain

Here the prediction is like as previous set with the difference that underground temperature is
predicted constant and equal to 15 °C over a year. The results of this problem can be seen in Fig.
9

Total cost of the energy is calculated 13,770 NOK with this set of prediction.
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Figure 9: Solution profiles with prediction set 3, CEMPC method, demand prediction is sinusoidal,
underground temperature prediction is constant and price prediction is first order Markov chain
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5.4 Real Optimal Policy

In order to evaluate the performance of our CEMPC policy in previous section and to know how
much we are far from real optimal point, we have to benchmark our policies against real optimal
one. In this part we assume that we know the values of exogenous information of all future days over
a year. It means that we are aware of all prices, demand values and underground temperature from
tomorrow to last day of the year. In this case our problem converts from a stochastic problem to a
deterministic problem and we can solve it by a deterministic MPC policy adjusting the prediction
horizon from the current day to the lat day of the year.

The profiles of the real optimal solution are presented in Fig. 10 and the optimal price is calculated
as 10,710 NOK.
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Figure 10: Solution profiles of real optimal solution with the perfect forecast
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5.5 Comparison of the Results

In the previous sections we presented a sample path profile of underground temperature and energy
flow allocations over a year for the different CEMPC prediction set and real optimal solution. We
also calculated expected cost over 30 sample paths for each prediction set. In Table 4 we summarize
the calculated costs of obtained for difwith real optimal cost.

Problem Average cost [NOK] Cost index value

CEMPC Prediction set 1 13,285 1.240
CEMPC Prediction set 2 13,749 1.283
CEMPC Prediction set 3 13,770 1.285

Real optimal cost 10710 1

Table 4: Comparison of the cost for CEMPC policy with different prediction sets

It can be seen that the lowest price after the optimal solution is for the prediction set 1 with
constant average price prediction and is 24 percent higher than the real optimal solution. The cost
for prediction sets 2 and 3 are higher than prediction set 1. In the next chapter, we analyze these
results and provide explanation for the performance of the CEMPC with our defined prediction
sets.

26



6 Discussion

This chapter includes discussion on results of the CEMPC policy. We also provide the difficulties
with the simplification and reality of this model and suggest possible future expansion on this case
study.

6.1 Performance of CEMPC

Comparing the price index of the variation in previous section, we see that the expected cost
with the CEMPC control approach is 24 28 percent higher than real optimal point. It is natural as
CEMPC works based on the forecast of the future changes of the exogenous information. Therefore,
in order to keep the cost of the CEMPC acceptably close to real optimal point, it is very important
to provide good forecast for the model. In our model we assumed three prices experience stochastic
changes and there is one uncertainty present in the problem. In prediction sets 2 and 3 the prices
fluctuate around an average point with first order Markov chain pattern. Results show that the
performance of forecasting an average price is better works than prediction with first order Markov
chain. The justification is that the number of the forecast error are higher in the case that we
predict prices with random values, i.e. prediction sets 2 and 3. The forecast error happens when
for examples heater price are lower than heat pump price and and the prediction shows that it is
higher at discrete sample times. This is also true for inverse case. Although the difference between
the cost with these prediction sets 2 and 3 are not so much higher than set 1 but they show
the importance of the good prediction in a CEMPC policy. The cost of problem 3 do not differ
from problem 2 and it is comply with our model, because in order to provide direct cooling for
the building, we need a borehole system with low amount of thermal energy loss and high energy
storage capacity. Moreover, temperature variation is not so much high that can affect final price
in real systems and in many cases it is assumed that the underground temperature is constant.
Briefly, the results show us that if we can make a detail forecast of the prices by for example taking
peak period into account, we can decrease our costs even more.

6.2 Simplifications and Challenges of the Model

Nearly all stochastic control of energy storage system case studies need assumption to simplify
the model and we did same in the project. Nevertheless, it is not possible to solve these kind
of problems because the energy storage domain is a kind of large state space problem. Here we
assumed that the COP of the system is constant, but in the reality, it might undergo variations
based on the temperature of the hot side and cold side and flow rate of circulation medium. If the
COP variation enter to the model, our linear problem will convert to a non linear one, However
our assumption is not far from a real case as these variations are not huge. We did not entered
more details to our borehole system, for example flowrate variation. These parameters increase
the non-linearity of the problem and make it much more complex and time consuming to solve and
the problem might not be solved with current methods over long periods.

Another assumption which is not true in real problems is zero price for direct cooling. In this case,
a circulation cost of the water can be added to the system. The most important challenge in our
work is to obtaining the true operating price for cooling, heating and heat pump. The resources
just provides the electricity prices and we could not find a certain range for heating, cooling and
heat pump prices. The applied price values were based on our assumption and close to electricity
prices. In case of having real values and patterns of these prices we can set our model like as a
real case and better design the optimization policies.

It is important to note that MPC model cannot check all the constraint till end of horizon when it
the controller is in initial or middle days. We solved this problem by applying constraint handling
method and used this technique for violation of borehole temperature as it is almost always violated
at end of the horizon. That is because in these days, i.e. last days of the summer, it always receive
heat from the underground even if the demands received the cold from the cooler and heat from
the demand not added to the borehole. In our case study we handled it by changing this constraint
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to a soft one and penalize the controller for violating it, but in the case studies that constraints
cannot physically violated, applying the MPC method should be taken carefully.

6.3 Suggestion for Further Studies

In this project, we checked the performance of CEMPC as a subclass of direct lookahead approx-
imation with comparing it to real optimal point and noticed how different prediction can change
the expected cost. Some improvements can be made in terms of both modeling and policies in this
case study:

• Some fixed parameters can be reformulated. For example the heat exchange might not be
constant over a year or COP can be written as formulation.

• The CEMPC performance can be compared and analyzed according to methods such as PFA or
VFA which are outlined in Powell book.

• Different price and demand variation patterns can be applied to this case study or other prediction
can be made in order to study the CEMPC method more deeply.
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7 Conclusion

We present the conclusion of our project in this chapter. We modeled a borehole energy storage
system in parallel to a heater and cooler to provide thermal energy requirement of a building. We
applied some simplification to our model and formulated it and identified constant parameters,
states, transition function and cost function. We also specified the constraint of the optimization
problem in chapter 3. We considered the uncertainty in our problem as heater price, cooler price,
heat pump price, underground temperature and demand. We assumed that demand and under-
ground temperature change with sinusoidal pattern with some noise over a year as formulated with
Eq. 18 and 19. We also used Eq. 17 to show the price variations in our case study.

We designed and tested Certainty Equivalence Model Predictive Control (CEMPC) with three
different prediction sets of exogenous information. These set are seen in section 4. Comparing the
results with the real optimal point, we found out that cost of CEMPC method is 24 to 28 percent
higher than the real optimal cost. Also, constant average price yields a lower cost compared to
first order Markov chain prediction due to less forecast error. We concluded that making more
precise prediction is very important to obtain a cost closer to real optimal value. In order to check
performance of the CEMPC against other approaches, it is suggested that different policies such
as modified parametric MPC or PFA could be designed and tested in this case study.
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Appendix

A Static Parameters and Initial Conditions

function S0 = S0()

% Model parameters

S0.Tbmax = 285; % Maximum allowable ground temp [Deg. K]

S0.Tbmin = 273; % Minimum allowable ground temp [Deg. K]

S0.Rmax = 30; % Maximum heating / cooling rate [kwh]

S0.m = 235619; % Water mass in the bore based on:

% 30 pipes

% Dia. = 1 meters

% Length = 10 meters

S0.Cpw = 0.001167% Water Heat Capacity [kwh/kG Deg. K]

S0.lambda= 0.01; % Based on OHTC X Area [kwh/Deg. K]

S0.COP = 3; %COP of heat pump

S0.Pmin = 0 % We do not have negative price

S0.P1std = 0.5 % Price standard deviation [NOK/kwh]

% Initial states

S0.S.Tb = 284; % Borehole temp [Deg. K]

S0.S.Tinf= 288; % Ground temp [Deg. K]

S0.S.D = 0; % Demand energy [kwh]

S0.S.Ph = 0.9; % heater price [NOK/kwh]

S0.S.Phh = 0.7; % Heaatpump Heating price [NOK/kwh]

S0.S.Pc = 0.6; % Electricity-based cooling price[NOK/kwh]

S0.S.s = 30; % Constraint Handling Factor

end
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B Generation of Exogenous Information

close all

clear all

clc

addpath('C:\Users\win\Desktop\Specialization Project')

plot_settings

S0 = S0()

%% Exogenouse information generation

T = 365; % Time horizon [Day]

scenario = 30; % Number of sample paths

%Exogenous information storage.

sample_path.D = [];

sample_path.Ph = [];

sample_path.Phh = [];

sample_path.Pc = [];

sample_path.Tinf= [];

for i = 1:scenario

W = exogenous_information(S0,T);

sample_path.D = [sample_path.D; W.D];

sample_path.Tinf = [sample_path.Tinf; W.Tinf];

sample_path.Ph = [sample_path.Ph; W.Ph];

sample_path.Phh = [sample_path.Phh; W.Phh];

sample_path.Pc = [sample_path.Pc; W.Pc];

end

%% Exogenous Information for a Sample Trial

Trial_plot=20

subplot (5,1,1)

plot(sample_path.D(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('Demand [kwh]')

subplot (5,1,2)

plot(sample_path.Tinf(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('$T_{underground}$, [Deg. C]')

subplot (5,1,3)

plot(sample_path.Phh(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('HP Price [NOK]')

subplot (5,1,4)

plot(sample_path.Ph(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('Heating Price [NOK]')

subplot (5,1,5)

plot(sample_path.Pc(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('Cooling Price [NOK]')

save('sample_path','sample_path');
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save('C:\Users\win\Desktop\Specialization Project\sample_path.mat');

B.1 Exogenous Information Function

function W = exoinfo(S0,T)

%% Ground Temp Model

for N=1:T

muinf=285.5;

Ainf =2.5;

Tinf(N) =muinf-Ainf*sin ((2*pi*N/T)-(pi/2))+normrnd(0,0.05); % [Deg. C]

end

%% Demand model

for N=1:T

Ad = 90; % Domain of demand energy [kwh]

D(N) = -Ad*sin((2*pi*N/T)+pi)+normrnd(0,5);

end

%% Price model

for N=1:T

Pn = normrnd(0,S0.P1std);

Ph(N) = S0.S.Ph + Pn;

Pn = normrnd(0,S0.P1std);

Phh(N)= S0.S.Phh + Pn;

Pn = normrnd(0,S0.P1std);

Pc(N) = S0.S.Pc + Pn;

end

Ph=max(S0.Pmin,Ph);

Phh=max(S0.Pmin,Phh);

Pc=max(S0.Pmin,Pc);

W.D = [S0.S.D]; % Resetting demand at first of each scenario

W.Phh = [S0.S.Phh]; % Resetting heatpump price at first of each scenario

W.Ph = [S0.S.Ph]; % Resetting heating price at first of each scenario

W.Pc = [S0.S.Pc]; % Resetting cooling at first of each scenario

W.Tinf= [S0.S.Tinf]; % Resetting underground temperature at first of each

scenario↪→

W.D = [W.D D];

W.Ph = [W.Ph Ph];

W.Phh = [W.Phh Phh];

W.Pc = [W.Pc Pc];

W.Tinf= [W.Tinf Tinf];

end
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C Code of problem with prediction set 1: sinusoidal prediction of un-
derground temperature and constant prediction of prices

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Specialization Project')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

nd = 10; % Open loop optimization time horizon

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Phh = [sample_path.Phh];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Prediction of demand and ground temp. model without exogenous information

Ad = 90; % Overall domain of Demand energy [kwh]

for i=1:N-1

D(i)=Ad*sin(2*pi*i/N);

end

D = [S.D D D(1,1:nd)];

for j=1:N-1

muinf=285.5;

Ainf=2.5;

Tinf(j)=muinf-Ainf*sin ((2*pi*j/N)-(pi/2));

end

Tinf=[S.Tinf Tinf Tinf(1,1:nd)];

%% Simulation

PathsCost =[];

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Plotting Arrays

xSim = [];

uSim = [];

timeSim = [];

for k = 1:N

% Exogenous information model

% Ground temp horizon

Tinf_horizon = [S.Tinf Tinf(1,k+1:k+nd-1)];

% Demand horizon
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Demand_horizon = [S.D D(1,k+1:k+nd-1)];

nd = length(Demand_horizon);

% Price horizon

%Price_noise1 = normrnd(0,S0.P1std,1,nd);

Ph_horizon=S0.S.Ph*ones(1,nd);

%Ph_horizon=max(S0.Pmin,Price_noise1 + S0.S.Ph);

Phh_horizon=S0.S.Phh*ones(1,nd);

%Price_noise2 = normrnd(0,S0.P1std,1,nd);

%Phh_horizon=max(S0.Pmin,Price_noise2 + S0.S.Phh);

%Price_noise3 = normrnd(0,S0.P1std,1,nd);

Pc_horizon=S0.S.Pc*ones(1,nd);

%Pc_horizon=max(S0.Pmin,Price_noise3 + S0.S.Pc);

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,6*nd);

%D_k = DPredictArray.*(1.5*U_k + Qheat_k) + (1 { DpredictArray).*(-U_k -

Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 6*(ii - 1)) = (S0.COP/(S0.COP-1))*DProductArray(ii) +

(-1)*(1 - DProductArray(ii)); % for U_k↪→

Aeq_D(ii,2 + 6*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % for Qheat_k↪→

Aeq_D(ii,3 + 6*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for Qcool_k↪→

end

Beq_D = Demand_horizon';

%Transition function

Aeq_T = zeros(nd,6*nd);

a=1-(S0.lambda/(S0.m*S0.Cpw));

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+6*(iii-1))= b*((+1)*DProductArray(iii) + (-1)*(1 -

DProductArray(iii)));↪→

Aeq_T(iii:end,5+6*(iii-1))= (a-1);

for jjj=iii:nd

Aeq_T(jjj,1+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,1+6*(iii-1));

Aeq_T(jjj,5+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,5+6*(iii-1));

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a^kkk*S.Tb];

end

% Aeq & Beq integration

Aeq = [Aeq_D;Aeq_T];
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Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb-s <=Tbmax

A = kron(eye(nd), [0 0 0 1 0 -1]);

B = S0.Tbmax*ones(nd,1);

%% Objective function

f = zeros(1,6*nd);

for kk=1:nd

f(1,1 + 6*(kk - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(kk)*Phh_horizon(kk) + (1)*(1 -

DProductArray(kk))*0 ;

↪→

↪→

f(1,2 + 6*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 6*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 6*(kk - 1)) = 30; % Penalizing cost

end

%% Boundaries - lower and upper

lb = zeros(6*nd,1);

lb(4:6:6*nd,1) = S0.Tbmin;

for i=1:nd

lb(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf]',nd,1);

for i=1:nd

ub(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:6:6*nd);

u.qheat = w_opt(2:6:6*nd);

u.qcool = w_opt(3:6:6*nd);

u.Tb = w_opt(4:6:6*nd);

u.Tinf = w_opt(5:6:6*nd);

u.s = w_opt(6:6:6*nd);

%% Take an action

uk = [u.u(1);u.qheat(1);u.qcool(1)];

sample_path.uk(1+5*(w-1):3+5*(w-1),k)=uk; % For visual check

sample_path.uk(5+5*(w-1),k)=w_opt(6); % For visual check

%% Transition during day

S.Tb = S.Tb + [((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0 0]*uk

+ (1-a)*Tinf_horizon(1);↪→

sample_path.uk(4+5*(w-1),k)=S.Tb-273; % For visual check

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Phh = sample_path.Phh(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);
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%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

end

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,:)<0);

% Creating "boolean" array

DemandProductArray = S0.COP/(S0.COP-1)*ones(N+1,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

PathCost_i = sum((DemandProductArray(1:N)'.*sample_path.Phh(w,1:N).*uSim(1,1:N))

+ sample_path.Ph(w,1:N).*uSim(2,1:N) + sample_path.Pc(w,1:N).*uSim(3,1:N));↪→

PathsCost = [PathsCost; PathCost_i];

end

Cost = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

% save

save = ('P02_MPC')

% Modifying values for Plotting the states and inputs for a given scenario

trial = 20;

sample_path.ukplot(1:4,:) = sample_path.uk(1+5*(trial-1):4+5*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b')

xlabel('Time, Day' )

ylabel('$T^{b}$ [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{b}$ [kwh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{h}$ [kwh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')
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ylabel('$Q^{c}$ [kwh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:),'b')

xlabel('Time, Day')

ylabel('Demand [kwh]')
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D Code of problem with prediction set 2: sinusoidal prediction of un-
derground temperature and first order Markov chain prediction of
prices

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Specialization Project')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

nd = 10; % Open loop optimization time horizon

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Phh = [sample_path.Phh];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Prediction of demand and ground temp. model without exogenous information

Ad = 90; % Overall domain of Demand energy [kwh]

for i=1:N-1

D(i)=Ad*sin(2*pi*i/N);

end

D = [S.D D D(1,1:nd)];

for j=1:N-1

muinf=285.5;

Ainf=2.5;

Tinf(j)=muinf-Ainf*sin ((2*pi*j/N)-(pi/2));

end

Tinf=[S.Tinf Tinf Tinf(1,1:nd)];

%% Simulation

PathsCost =[];

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Plotting Arrays

xSim = [];

uSim = [];

timeSim = [];

for k = 1:N

% Exogenous information model

% Ground temp horizon

Tinf_horizon = [S.Tinf Tinf(1,k+1:k+nd-1)];
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% Demand horizon

Demand_horizon = [S.D D(1,k+1:k+nd-1)];

nd = length(Demand_horizon);

% Price horizon

Price_noise1 = normrnd(0,S0.P1std,1,nd);

Ph_horizon=max(S0.Pmin,Price_noise1 + S0.S.Ph);

Price_noise2 = normrnd(0,S0.P1std,1,nd);

Phh_horizon=max(S0.Pmin,Price_noise2 + S0.S.Phh);

Price_noise3 = normrnd(0,S0.P1std,1,nd);

Pc_horizon=max(S0.Pmin,Price_noise3 + S0.S.Pc);

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,6*nd);

%D_k = DPredictArray.*(1.5*U_k + Qheat_k) + (1 { DpredictArray).*(-U_k -

Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 6*(ii - 1)) = (S0.COP/(S0.COP-1))*DProductArray(ii) +

(-1)*(1 - DProductArray(ii)); % for U_k↪→

Aeq_D(ii,2 + 6*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % for Qheat_k↪→

Aeq_D(ii,3 + 6*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for Qcool_k↪→

end

Beq_D = Demand_horizon';

%Transition function

Aeq_T = zeros(nd,6*nd);

a=1-(S0.lambda/(S0.m*S0.Cpw));

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+6*(iii-1))= b*((+1)*DProductArray(iii) + (-1)*(1 -

DProductArray(iii)));↪→

Aeq_T(iii:end,5+6*(iii-1))= (a-1);

for jjj=iii:nd

Aeq_T(jjj,1+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,1+6*(iii-1));

Aeq_T(jjj,5+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,5+6*(iii-1));

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a^kkk*S.Tb];

end

% Aeq & Beq integration

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];
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%% Inequality constraints : Ax<=b

%Constraint handling : Tb-s <=Tbmax

A = kron(eye(nd), [0 0 0 1 0 -1]);

B = S0.Tbmax*ones(nd,1);

%% Objective function

f = zeros(1,6*nd);

for kk=1:nd

f(1,1 + 6*(kk - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(kk)*Phh_horizon(kk) + (1)*(1 -

DProductArray(kk))*0 ;

↪→

↪→

f(1,2 + 6*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 6*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 6*(kk - 1)) = 30; % Penalizing cost

end

%% Boundaries - lower and upper

lb = zeros(6*nd,1);

lb(4:6:6*nd,1) = S0.Tbmin;

for i=1:nd

lb(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf]',nd,1);

for i=1:nd

ub(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:6:6*nd);

u.qheat = w_opt(2:6:6*nd);

u.qcool = w_opt(3:6:6*nd);

u.Tb = w_opt(4:6:6*nd);

u.Tinf = w_opt(5:6:6*nd);

u.s = w_opt(6:6:6*nd);

%% Take an action

uk = [u.u(1);u.qheat(1);u.qcool(1)];

sample_path.uk(1+5*(w-1):3+5*(w-1),k)=uk; % For visual check

sample_path.uk(5+5*(w-1),k)=w_opt(6); % For visual check

%% Transition during day

S.Tb = S.Tb + [((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0 0]*uk

+ (1-a)*Tinf_horizon(1);↪→

sample_path.uk(4+5*(w-1),k)=S.Tb-273; % For visual check

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Phh = sample_path.Phh(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];
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uSim = [uSim, uk];

end

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,:)<0);

% Creating "boolean" array

DemandProductArray = S0.COP/(S0.COP-1)*ones(N+1,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

PathCost_i = sum(DemandProductArray(1:N)' .* sample_path.Phh(w,1:N).*uSim(1,1:N)

+ sample_path.Ph(w,1:N).*uSim(2,1:N) + sample_path.Pc(w,1:N).*uSim(3,1:N));↪→

PathsCost = [PathsCost; PathCost_i];

end

Cost = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

% save

save = ('P02_MPC')

% Modifying values for Plotting the states and inputs for a given scenario

trial = 20;

sample_path.ukplot(1:4,:) = sample_path.uk(1+5*(trial-1):4+5*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b-')

xlabel('Time, Day')

ylabel('$T^{b}$ [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{b}$ [kwh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{h}$ [kwh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{c}$ [kwh]')
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subplot(5,1,5)

plot(sample_path.ukplot(5,:), 'b')

xlabel('Time, Day')

ylabel('Demand [kwh]')
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E Code of problem with prediction set 3: constant prediction of un-
derground temperature and first order Markov chain prediction of
prices

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Specialization Project')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

nd = 10; % Open loop optimization time horizon

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Phh = [sample_path.Phh];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Prediction of demand and ground temp. model without exogenous information

Ad = 90; % Overall domain of Demand energy [kwh]

for i=1:N-1

D(i)=Ad*sin(2*pi*i/N);

end

D = [S.D D D(1,1:nd)];

%% Simulation

PathsCost =[];

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Plotting Arrays

xSim = [];

uSim = [];

timeSim = [];

for k = 1:N

% Exogenous information model

% Ground temp horizon

Tinf_horizon = S0.S.Tinf*ones(1,nd);

%Tinf_horizon = [S.Tinf Tinf(1,k+1:k+nd-1)];

% Demand horizon

Demand_horizon = [S.D D(1,k+1:k+nd-1)];

nd = length(Demand_horizon);

% Price horizon

Price_noise1 = normrnd(0,S0.P1std,1,nd);
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Ph_horizon=max(S0.Pmin,Price_noise1 + S0.S.Ph);

Price_noise2 = normrnd(0,S0.P1std,1,nd);

Phh_horizon=max(S0.Pmin,Price_noise2 + S0.S.Phh);

Price_noise3 = normrnd(0,S0.P1std,1,nd);

Pc_horizon=max(S0.Pmin,Price_noise3 + S0.S.Pc);

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,6*nd);

%D_k = DPredictArray.*(1.5*U_k + Qheat_k) + (1 { DpredictArray).*(-U_k -

Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 6*(ii - 1)) = (S0.COP/(S0.COP-1))*DProductArray(ii) +

(-1)*(1 - DProductArray(ii)); % for U_k↪→

Aeq_D(ii,2 + 6*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % for Qheat_k↪→

Aeq_D(ii,3 + 6*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for Qcool_k↪→

end

Beq_D = Demand_horizon';

%Transition function

Aeq_T = zeros(nd,6*nd);

a=1-(S0.lambda/(S0.m*S0.Cpw));

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+6*(iii-1))= b*((+1)*DProductArray(iii) + (-1)*(1 -

DProductArray(iii)));↪→

Aeq_T(iii:end,5+6*(iii-1))= (a-1);

for jjj=iii:nd

Aeq_T(jjj,1+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,1+6*(iii-1));

Aeq_T(jjj,5+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,5+6*(iii-1));

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a^kkk*S.Tb];

end

% Aeq & Beq integration

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb-s <=Tbmax

A = kron(eye(nd), [0 0 0 1 0 -1]);

B = S0.Tbmax*ones(nd,1);

%% Objective function
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f = zeros(1,6*nd);

for kk=1:nd

f(1,1 + 6*(kk - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(kk)*Phh_horizon(kk) + (1)*(1 -

DProductArray(kk))*0 ;

↪→

↪→

f(1,2 + 6*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 6*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 6*(kk - 1)) = 30; % Penalizing cost

end

%% Boundaries - lower and upper

lb = zeros(6*nd,1);

lb(4:6:6*nd,1) = S0.Tbmin;

for i=1:nd

lb(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf]',nd,1);

for i=1:nd

ub(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:6:6*nd);

u.qheat = w_opt(2:6:6*nd);

u.qcool = w_opt(3:6:6*nd);

u.Tb = w_opt(4:6:6*nd);

u.Tinf = w_opt(5:6:6*nd);

u.s = w_opt(6:6:6*nd);

%% Take an action

uk = [u.u(1);u.qheat(1);u.qcool(1)];

sample_path.uk(1+5*(w-1):3+5*(w-1),k)=uk; % For visual check

sample_path.uk(5+5*(w-1),k)=w_opt(6); % For visual check

%% Transition during day

S.Tb = S.Tb + [((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0 0]*uk

+ (1-a)*Tinf_horizon(1);↪→

sample_path.uk(4+5*(w-1),k)=S.Tb-273; % For visual check

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Phh = sample_path.Phh(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

end

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,:)<0);

% Creating "boolean" array
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DemandProductArray = S0.COP/(S0.COP-1)*ones(N+1,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

PathCost_i = sum(DemandProductArray(1:N)'.* sample_path.Phh(w,1:N).*uSim(1,1:N) +

sample_path.Ph(w,1:N).*uSim(2,1:N) + sample_path.Pc(w,1:N).*uSim(3,1:N));↪→

PathsCost = [PathsCost; PathCost_i];

end

Cost = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

% save

save = ('P02_MPC')

% Modifying values for Plotting the states and inputs for a given scenario

trial = 20;

sample_path.ukplot(1:4,:) = sample_path.uk(1+5*(trial-1):4+5*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b')

xlabel('Time, Day')

ylabel('$T^{b}$ [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{b}$ [kwh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{h}$ [kwh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{c}$ [kwh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:), 'b')

xlabel('Time, Day')

ylabel('Demand [kwh]')
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F Code of optimal solution with perfect forecast

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Specialization Project')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

n_scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon= Control Horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Phh = [sample_path.Phh];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

P_Cost =[];

for w = 1:n_scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Choosing the price policy

Ph_horizon = sample_path.Ph(w,1:N);

Phh_horizon = sample_path.Phh(w,1:N);

Pc_horizon = sample_path.Pc(w,1:N);

Demand_horizon = sample_path.D(w,1:N);

Tinf_horizon = sample_path.Tinf(w,1:N);

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(N,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(N,6*N);

%D_k = DPredictArray.*(1.5*U_k + Qheat_k) + (1 { DpredictArray).*(-U_k -

Qcool_k)↪→

for ii = 1:N

Aeq_D(ii,1 + 6*(ii - 1)) = (S0.COP/(S0.COP-1))*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for U_k↪→

Aeq_D(ii,2 + 6*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % for Qheat_k↪→
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Aeq_D(ii,3 + 6*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for Qcool_k↪→

end

Beq_D = Demand_horizon';

%Transition function

Aeq_T = zeros(N,6*N);

a=1-(S0.lambda/(S0.m*S0.Cpw));

b=1/(S0.m*S0.Cpw);

for iii=1:N

Aeq_T(iii:end,1+6*(iii-1))= b*((+1)*DProductArray(iii) + (-1)*(1 -

DProductArray(iii)));↪→

Aeq_T(iii:end,5+6*(iii-1))= (a-1);

for jjj=iii:N

Aeq_T(jjj,1+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,1+6*(iii-1));

Aeq_T(jjj,5+6*(iii-1))=a^(jjj-iii)* Aeq_T(jjj,5+6*(iii-1));

end

end

Aeq_T=Aeq_T + kron(eye(N),[0 0 0 1 0 0]);

Beq_T=zeros(N,1);

for kkk=1:N

Beq_T(kkk,1) = [a^kkk*S.Tb];

end

% Aeq & Beq integration

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

% Constraint handling : Tb-s <=Tbmax

A = kron(eye(N), [0 0 0 1 0 -1]);

B = S0.Tbmax*ones(N,1);

%% Objective function

f = zeros(1,6*N);

for kk=1:N

f(1,1 + 6*(kk - 1)) = (S0.COP/(S0.COP-1))*DProductArray(kk)*Phh_horizon(kk)

+ (1)*(1 - DProductArray(kk))*0 ;↪→

f(1,2 + 6*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 6*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 6*(kk - 1)) = 30; % Penalizing cost

end

%% Boundaries - lower and upper

lb = zeros(6*N,1);

lb(4:6:6*N,1) = S0.Tbmin;

lb(6:6:6*N,1) = 0;

for i=1:N

lb(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf]',N,1);

for i=1:N

ub(5 + 6*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
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% Data store from openloop optimization

u.u = w_opt(1:6:6*N)';

u.qheat = w_opt(2:6:6*N)';

u.qcool = w_opt(3:6:6*N)';

u.Tb = w_opt(4:6:6*N)';

u.Tinf = w_opt(5:6:6*N)';

u.s = w_opt(6:6:6*N)';

%% Take all action

uk = [u.u;u.qheat;u.qcool];

sample_path.uk(1+5*(w-1):3+5*(w-1),:)=uk; % For visual check

sample_path.uk(5+5*(w-1),:)=w_opt(6); % For visual check

%% Transition over a year

S.Tb = u.Tb %S.Tb + [((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0

0]*uk + (1-a)*Tinf_horizon(1);↪→

sample_path.uk(4+5*(w-1),:)=S.Tb-273; % For visual check

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,:)<0);

% Creating "boolean" array

DemandProductArray = S0.COP/(S0.COP-1)*ones(N+1,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

PCost_i = sum(DemandProductArray(1:N)' .* Phh_horizon .* u.u + Ph_horizon .*

u.qheat + Pc_horizon .* u.qcool);↪→

P_Cost = [P_Cost; PCost_i];

end

Avg_Cost = mean(P_Cost);

for i = 1:size(P_Cost,1)

Avg_cost_cum(i) = mean(P_Cost(1:i));

end

% save

save = ('POPMPC')

% Modifying values for Plotting the states and inputs for a given scenario

trial = 20;

sample_path.ukplot(1:4,:) = sample_path.uk(1+5*(trial-1):4+5*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b-')

xlabel('Time, Day')

ylabel('$T^{b}$ [Deg. C]')

50



subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{b}$ [kwh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{h}$ [kwh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('$Q^{c}$ [kwh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:),'b-')

xlabel('Time, Day')

ylabel('Demand [kwh]')
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