
TKP4580 - Chemical Engineering, Specialization Project

Optimization of Heat-Exchanger networks using

Gaussian Processs Regression

Written by:

Thomas Edvardsen
thomaedv@stud.ntnu.no

Supervisor: Sigurd Skogestad

Co-Supervisor: Lucas Ferreira Bernardino

Submitted: December 18, 2020

Department of Chemical Engineering

Optimization of Heat-Exchanger networks using Gaussian Processs Regression Thomas Edvardsen
TKP4580

Abstract

Optimal operation of heat exchanger networks can reduce cost and energy use in the industry. In this

project the performance of using Gaussian Processes regression to estimate the optimal valve splits on a

heat exchanger network was evaluated. The network consisted of a single input stream that splits to 3 heat

exchangers in parallel, with the aim to maximise the temperature of the combined stream out of the heat

exchangers by adjust the splits of the stream. Several sets of measurements of a modelled system were

created, and optimal valve splits were calculated. The Gaussian process trained on the measurements with

the optimal valve splits as output. The results of the testing found that a selection of measurements, called

measurement set 2 in this project, provided the best performance with Gaussian Process regression, while also

only relying only on temperature measurements of the system. Testing with measurement set 2 gave valve

splits that resulted in predicted temperatures within 1.6◦C of the real optimal, but almost all the predictions

were under 1◦C away from the optimal, and over half of them under 0.5◦C. The process was trained with

2500 datapoints, but it was shown that 500 training datapoints predictions close to the 2500 samples dataset.

i

Optimization of Heat-Exchanger networks using Gaussian Processs Regression Thomas Edvardsen
TKP4580

Preface

This project was performed as part of specialization project for students in their first semester of their final

year studying for a Masters degree at the Norwegian University of Science and Technology (NTNU). The

course was named TKP4580 - Chemical Engineering, Specialization Project. The project was performed

through Autumn 2020.

The supervisor was Sigurd Skogestad and co-supervisor was Lucas Ferreira Bernardino. I’m especially grateful

to Lucas, as he has given superb guidance and helped provide models and papers to help make this project

possible to complete. I also want to thank Sigurd for the feedback provided during our bi-weekly meetings,

which has helped out with aiming the projects direction and selecting the implementations that have had the

most practical sense.

ii

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
LIST OF FIGURES

Thomas Edvardsen
TKP4580

List of Figures

2.1 Illustration of the Heat Exchanger Network. A input stream is split according to the values

α and β, which are the valve splits. Each stream is heated through a Heat Exchanger before

merged back into a single stream. 2

2.2 The prior distribution show some random functions drawn from it, while the posterior shows

after two datapoints from a dataset D have been introduced. The thick line being the mean

of the dotted ones, and the shaded area twice the standard deviation for each input value. [1] . 6

4.1 Baseline: The plot of the real values over the predicted values. Perfect performance would be

everything aligned on along the dotted diagonal. 12

4.2 Baseline: The plot of the loss of the cost. Since the optimal temperature is the highest,

everything should as close to or below the dotted line shown. 13

4.3 Baseline: Histogram of difference between the real and predicted. It can be seen most of the

errors are very close to zero. 13

4.4 MS1: plot of the real values over the predicted values. 2500 samples used for training. 15

4.5 MS1: plot of loss of the cost. Since the optimal temperature is the highest, everything should

as close to the diagonal. 15

4.6 MS1: Histogram of difference between the real and predicted loss. 15

4.7 MS1: Plot of RMSE loss over each iteration. 16

4.8 MS2: plot of the real values over the predicted values. 2500 samples used for training. 17

4.9 MS2: plot of loss of the cost. Since the optimal temperature is the highest, everything should

as close to the diagonal. 17

4.10 MS2: Histogram of difference between the real and predicted. 17

4.11 MS2: Plot of RMSE loss over each iteration. 18

4.12 MS3: plot of the real values over the predicted values. 2500 samples used for training. 19

4.13 MS3: plot of loss of the cost. Since the optimal temperature is the highest, everything should

as close to the diagonal. 19

4.14 MS3: Histogram of difference between the real and predicted. 19

4.15 MS3: Plot of RMSE loss over each iteration. 20

4.16 MS4: plot of the real values over the predicted values. Iteration 0. 2500 samples used for

training. 21

4.17 MS4: plot of the real values over the predicted values. Iteration 19.2500 samples used for

training. 21

4.18 MS4: plot of loss of the cost. Since the optimal temperature is the highest, everything should

as close to the diagonal. 21

4.19 MS4: Histogram of difference between the real and predicted. 21

4.20 MS4: Plot of RMSE loss over each iteration. 22

iii

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
LIST OF FIGURES

Thomas Edvardsen
TKP4580

4.21 MS4: plot of the real values over the predicted values. Iteration 0. 500 samples used for

training. 25

4.22 MS4: plot of the real values over the predicted values. Iteration 12. 500 samples used for

training. 25

iv

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
LIST OF TABLES

Thomas Edvardsen
TKP4580

List of Tables

0.1 Collection of symbols and their meaning. vi

4.1 Baseline prediction using all disturbances, with different noise cases. Trained on 500 samples. 13

4.2 Closed loop loss (RMSE) prediction for MS2. Measurement errors were enabled on both

training and test data. Did not converge in 20 iterations. 14

4.3 Compact table of loss for each noise case for measurement set 1. Trained on 2500 samples.

Last iterations shown is where convergence was reached. Measurements for all iterations are

shown in Table A.1 . 14

4.4 Compact table of loss for each noise case for measurement set 2. Trained on 2500 samples.

Iteration stopped after not reaching the tolerance for convergence at 20 interactions. Measure-

ments for all iterations are shown in Table A.2 . 16

4.5 Compact table of loss for each noise case for measurement set 3. Trained on 2500 samples.

Missing values means convergence was detected earlier. Iteration stopped after not reaching

the tolerance for convergence after 20 iterations, for the case with only test noise applied.

Measurements for all iterations are shown in Table A.3 . 18

4.6 Compact table of loss for each noise case for measurement set 4. Trained on 2500 samples. Iter-

ation stopped after not reaching the tolerance for convergence at 20 iterations. Measurements

for all iterations are shown in Table A.4 . 20

4.7 Compact table of loss for each noise case for measurement set 1. Trained on 500 samples.

Missing values means convergence was detected earlier. Full table in Appendix A.5 23

4.8 Compact table of loss for each noise case for measurement set 2. Trained on 500 samples.

Empty sections means it converged earlier. Full table in Appendix A.6 23

4.9 Table of loss for each noise case for measurement set 3. Trained on 500 samples. Full table in

Appendix A.7 . 23

4.10 Table of loss for each noise case for measurement set 4. Trained on 500 samples. Full table in

Appendix A.8 . 24

A.1 Table of loss for each noise case for measurement set 1. Trained on 2500 samples. Missing

values means convergence was detected earlier. 29

A.2 Table of loss for each noise case for measurement set 2. Trained on 2500 samples. Iteration

stopped after not reaching the tolerance for convergence. 29

A.3 Table of loss for each noise case for measurement set 3. Trained on 2500 samples. Missing

values means convergence was detected earlier. Case 2 stopped after not reaching the tolerance

for convergence at 20 iterations. 30

A.4 Table of loss for each noise case for measurement set 4. Trained on 2500 samples. Iteration

stopped after not reaching the tolerance for convergence at 20 iterations. 30

v

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
LIST OF TABLES

Thomas Edvardsen
TKP4580

A.5 Table of loss for each noise case for measurement set 1. Trained on 500 samples. Missing

values means convergence was detected earlier. 31

A.6 Table of loss for each noise case for measurement set 2. Trained on 500 samples. Empty

sections means it converged earlier. 31

A.7 Table of loss for each noise case for measurement set 3. Trained on 500 samples. 32

A.8 Table of loss for each noise case for measurement set 4. Trained on 500 samples. 32

List of Symbols

Table 0.1: Collection of symbols and their meaning.

Symbol Meaning Unit

T Temperature [◦C]

J Cost function [◦C]

wh,i Heat capacity of a given stream [kW/K]

dTlm Logarithmic middle temperature [◦C]

α, β, γ Valve splits, gamma depends on the other two [-]

ky Covariance function, also called kernel. [-]

σ Noise paramerter, hyper-parameter of RBF kernel. [-]

` Lenghtscale, hyper-parameter of RBF kernel. [-]

Q Heat transfer [kW]

vi

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
CONTENTS

Thomas Edvardsen
TKP4580

Contents

Abstract i

Preface ii

List of Figures iii

List of Tables v

List of Symbols vi

Table of Contents vii

1 Introduction 1

1.1 Scope of work . 1

2 Theory 2

2.1 Heat-Exchanger Network . 2

2.2 Surrogate optimization . 4

2.3 Machine Learning . 4

2.4 Gaussian Processes . 5

2.4.1 Kernel . 6

2.4.2 Cost and Loss . 7

3 Implementation 8

3.1 The ”Real” Model . 8

3.2 The Gaussian Implementation . 8

3.2.1 Optimal Valve splits . 9

3.2.2 Closed loop . 9

3.2.3 Noise cases . 9

3.2.4 Measurement sets . 10

3.2.5 Normalization . 11

4 Results 12

4.1 Optimal valve prediction . 12

4.1.1 Baseline . 12

4.1.2 Normalization on output . 13

4.1.3 Noise cases . 14

4.1.4 Number of datapoints . 22

vii

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
CONTENTS

Thomas Edvardsen
TKP4580

5 Discussion 25

5.1 Convergence . 25

5.2 Noise . 26

5.3 Further work . 26

6 Conclusions 27

A All Data 29

A.1 Noise cases . 29

A.1.1 2500 Samples . 29

A.1.2 500 Samples . 31

B Code 33

B.1 g process.py . 33

B.2 u optim gp.py . 35

B.3 hex3 gen u optim.py . 41

B.4 hex3 chen old.py . 44

viii

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
1 INTRODUCTION

Thomas Edvardsen
TKP4580

1 Introduction

Optimal operation is critical for both the business and the world. When it comes to heat exchangers, applying

them to transfer as much heat as possible can save both money for the operating company as well as reduce

energy consumption to make the process ever so slightly greener from an energy perspective. Therefore, good

methods to find optimal operating points are important. Over 30% of energy consumption in Norway comes

from manufacturing for example. [2]

Machine learning is growing, and heralded as the future in several fields, and process control is no exception to

that popularity. [3] Machine learning can train on data that may already exist, and does not require complex

modelling and measurements to perform. Ideally one would let the machine learning method figure out

system specifics out for itself. If it’s data based, then updates can come through new data from the process,

without needing to implement changes to a model that governs the optimisation system. One point of note

is that if you let something like a neural network train on the data, how do you know it’s learned the hidden

rules of the process and how well it responds to unexpected outliers? It can be very hard to determine how

the neural network determines the output based on just it’s weights and network setup. Gaussian processes

can help with this, where a co-variance function determines the output based on the training data, as well as

gives the covariance back as a measure of certainty in the prediction. With this prediction method, a higher

level of trust can be placed on Gaussian Processes. This is also one of the reasons Gaussian Processes are

interesting, as they do not suffer from overfitting, and give back interepretable more results. [4]

The aim of the project is to determine if Gaussian Process regression is suitable to be used to control a heat

exchanger network. The focus is on a relatively simple setup with one input and one output stream. The input

stream is split into 3, where the split ratios are the manipulated variable, and each stream passes through a

heat exchangers, before being merged back into the output. The goal is to maximize the temperature of the

output stream, using Gaussian Process regression and various measurement taken from the process during

modelled operation.

1.1 Scope of work

The main focus of the work is to look at how well the optimal stream splits can be directly predicted by

the Gaussian Process. Various measurement sets are tested to see how well it handles the different inputs,

focusing on measurements that are easy to make. A closed-loop approach will be investigated, where it will

be tested for convergence, given the same operating conditions with updated optimized valve predictions

from the Gaussian Process.

1 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
2 THEORY

Thomas Edvardsen
TKP4580

2 Theory

2.1 Heat-Exchanger Network

In this setup, there is a unconstrained optimization with the goal of achieving the highest output temperature

from a Heat Exchanger (HX) Network. In this report, all temperatures mentioned are in ◦C.

Figure 2.1: Illustration of the Heat Exchanger Network. A input stream is split according to the values α and β, which are

the valve splits. Each stream is heated through a Heat Exchanger before merged back into a single stream.

An illustration of the setup is shown in Figure 2.1. The symbols, with the exception of α and β, are all the

disturbances of the process which are required to calculate the output temperature using a numerical model,

denoted as the real model or the plant in this report. α and β are still required to solve the model, but are

considered inputs in this case. More details on that implementation is in Section 3.1. The Ti’s describe the

temperatures of the respective streams they are attached to, and where T is the output temperature and is

considered our cost function that we want to maximize. α and β are the stream splits, where the last stream

is merely the remainder of one minus α and β. The UA is the product of the overall heat transfer coefficient

and the area of one of the sides of the heat exchanger, and the w is the heat capacity of the stream. The

subscript i is use to denote which of the streams the disturbance applies to. That is, i ∈ {0, 1, 2, 3}, where

the 0 indexed stream is the cold input stream before being split. The same applies to the subscript h,i where

the h denotes that it’s for the hot stream going into the HX, and he for the hot stream going out of that HX.

2 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
2 THEORY 2.1 Heat-Exchanger Network

Thomas Edvardsen
TKP4580

Some of the key model equations are:

T = T1 ·α+ T2 ·β + T3 · γ (2.1)

γ−−1− α− β (2.2)

1 = α+ β + γ (2.3)

Where in Equation 2.2 the γ is the remaining valve opening, however since it’s determined by the other two,

it’s not considered worth including outside the numerical model implementation.

dTlm1 =
(

(Th,1 − T∗
1) · (The,1 − T0) · 12((Th,1 − T∗

1) + (The,1 − T0))
) 1

3

(2.4)

dTlm2 =
(

(Th,2 − T∗
2) · (The,2 − T0) · 12((Th,2 − T∗

2) + (The,2 − T0))
) 1

3

(2.5)

dTlm3 =
(

(Th,3 − T∗
3) · (The,3 − T0) · 12((Th,3 − T∗

3) + (The,3 − T0))
) 1

3

(2.6)

Equations 2.4 to 2.6 define the logarithmic middle temperatures for each HX. And the following equations

describe the heat transfer equations. Where Ts is the environment temperature and the hi is the heat loss

coefficients for each stream.

Q1 = w0 ·α · (T∗
1 − T0) (2.7)

Q2 = w0 ·β · (T∗
2 − T0) (2.8)

Q3 = w0 · γ · (T∗
3 − T0) (2.9)

Q1 = wh,1 ·α · (Th,1 − The,1) (2.10)

Q2 = wh,2 ·β · (Th,2 − The,2) (2.11)

Q3 = wh,3 · γ · (Th,3 − The,3) (2.12)

Q1 = UA1 ·dTLm1 (2.13)

Q2 = UA2 ·dTLm2 (2.14)

Q3 = UA3 ·dTLm3 (2.15)

Qloss1 = w0 ·α · (T1 − T∗
1) (2.16)

Qloss2 = w0 ·β · (T2 − T∗
2) (2.17)

Qloss3 = w0 · γ · (T3 − T∗
3) (2.18)

Qloss1 = h1 ·α · (Ts− T1) (2.19)

Qloss2 = h2 ·β · (Ts− T2) (2.20)

Qloss3 = h3 · γ · (Ts− T3) (2.21)

3 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
2 THEORY 2.2 Surrogate optimization

Thomas Edvardsen
TKP4580

It can must noted that heat loss is neglected in this study. Thus Qloss1, Qloss2, and Qloss3 are reduced to

zero through setting Ts, h1, h2and h3 to zero. Note that T∗
i are the temperatures out of each HX, before

heat loss is applied afterwards, which leads to the new temperatures Ti. This means that T∗
i and Ti are

equal when the heat loss is zero, as in this case.

2.2 Surrogate optimization

Surrogate modelling is the way of optimization, by trying to quickly find local or global optima for operation.

This is done through random or controlled sampling of the design space, which in our case would be for the

ranges of expected disturbances and valve openings. Through the use of surrogate modelling, a surrogate or

approximate model is made to predict the optimal faster or more easily compared to an accurate model of

the process that we aim to optimize. They bring the advantage of getting close to the real plant, but not

having to deal with modelling or working with disturbances that are hard to measure. Such as in the case

of the heat exchangers, where the temperatures are much easier to measure than the heat capacities, or the

universal heat transfer coefficients. As long as the approximate model performs well enough, this can remove

the need for complicated measurements and may speed up the optimization implementation.

Compared to data driven methods, a standard model based approach can give much more accurate predic-

tions, even if sometimes costly. The problem is that they require good knowledge of the process and usually

a wide array of measurements to sufficiently know the state of the system and predict the optimal. As men-

tioned, disturbances can be hard to measure, and simplifying the model to not rely on those disturbances

may not give the accuracy that is desired. There is also the potential for numeral issues with models, when

solving complicated system to predict optimal operation, one might run into the risk of non-convergence for

particularly hard systems.

There is the option of using a good accurate model to generate data and then train the approximate model an

that. By picking easily measurable information in a real plant, and training the approximate model on that,

one could sidestep the problems of a model based approach if the resulting approximate model performs.

Since information can be generated beforehand and trained on, time is not a problem. Then, it’s just the

need to put that approximate model into practice and measure the performance in the real plant. If getting

measurements from a model is not feasible, real measurements can be used to train an approximate model

as well.

2.3 Machine Learning

Machine learning is the method of getting machines to improve through experience. [5] Machine learning is

applied everywhere in modern times, from telling which emails that are spam, finding out what advertisements

are most fitting to you, and even learning to drive. Models are created and trained on the experience they

get, which is usually sampled data, which for spam detection would be emails labeled as legitimate or spam.

4 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
2 THEORY 2.4 Gaussian Processes

Thomas Edvardsen
TKP4580

Detecting emails as spam is a classification problem, where it outputs a discrete answer. The other type

of problem is regression, where outputs are not discrete, for example a machine learning model that takes

temperature data and predicts the temperature for tomorrow. The goal of machine learning is that it learns

the nature of the ”process”, the hidden rules, to make good predictions, not only on the information it’s

trained on, but also new data.

It is therefore important to have separate training and test/validation datasets. Because you may run into

the risk of the model learning the specifics of what you are training it on, not the underlying rules, leading to

predictions that are wrong for any new data you test the model with. The test or validation dataset lets one

confirm that the trained model works on information it has not ”seen” before. It stands to reason then that

machine learning can also be applied to optimization, letting it learn the nature of the process and ”getting

a hang off” what changes give an optimal output.

One can also divide machine learning into two categories, parametric and non-parametric. Many think of

machine learning as the Artificial Neural Nets (ANNs), which can have hidden layers and nodes, which

aim to simulate decisions similar to neurons in the human brain. ANNs are parametric, which means they

have weights on these nodes, which influence the prediction. The weights are adjusted through the training

process. Non-parametric machine learning, such as Gaussian Processes, do not learn weights, but work off of

the training data and some hyper-parameters. For the case of ANNs, they hyper-parameters are the selected

network layouts, the method of estimating loss (see section 2.4.2), and how it’s set to optimize the weights.

2.4 Gaussian Processes

For the case of Gaussian Processes (GP), the approach is supervised learning, where a input-output mappings

are established from empirical data. GP uses a form of lazy-learning where the learning from the training

data is done when a test input is given to make a prediction. This is different from ANNs which training

their weights and only rely on the weights and layout of the network, GP requires the training data or a

optimized selection of it, to make test predictions.

The general notation is that x denotes the input, and y denotes output or target from a machine learning

model. Both x and y can be vectors. A dataset of is thus composed of the following ”observations”,

D = {(xi, yi)|i = 1, ..., n}, where n is the number of samples. Now, given the dataset, D, how does one

go from x to y. The approach is to move from D to a function f which makes predictions for all possible

inputs. This require some assumptions on characteristics of the underlying function (our actual model or

optimization case) to work. One way to do so is to give a prior probability to every possible function, where

higher probabilities are given to functions assumed to be more likely to fit the problem. However this isn’t

easy to do as there can be infinite sets of possible functions to use. The Gaussian process is what deals with

this issue. GP makes use of a generalization of the gaussian probability distribution. Simply put, a function

can be considered as an infinitely long vector that defines the solution f(x) for a given x. [1]

5 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
2 THEORY 2.4 Gaussian Processes

Thomas Edvardsen
TKP4580

Figure 2.2: The prior distribution show some random functions drawn from it, while the posterior shows after two datapoints

from a dataset D have been introduced. The thick line being the mean of the dotted ones, and the shaded area

twice the standard deviation for each input value. [1]

For a 1-D regression problem, given a set of sample functions randomly picked from the prior distribution

(Figure 2.2 (a)) and a dataset with points, we only want to consider function which pass through those

datapoints (or close to them). Using this we can find the posterior over the functions, as seen in Figure 2.2

(b). Take note how variance decreases close to the datapoints. Adding more datapoints would adjust the

mean to align with those datapoints as well, as well as decrease the variance around those. Through this we

can find predictions and get the mean and variance back. [1] To be more precise, the goal is to predict the

expectation E
[
y(x∗)|x∗,D

]
and the variance cov

[
y(x∗)|x∗,D

]
for a test input x∗.

2.4.1 Kernel

At the core of the GP is the coveriance functions that describe the correlation between the datapoints, and

thus the choice directly affects the nature of the data you have. The coveriance function is called the kernel.

Within GPy, the python framework used, you can have the kernel be a sum of coveriance functions as well, to

describe more complex relations. However, for this project, only the RBF kernel was used. The RBF kernel

is also known as the squared exponential and is shown in Equation 2.22.

ky(xp, xq) = σ2
f exp

(
− 1

2 ∗ `2 (xp − xq)2)+ σ2
nδpq (2.22)

Where the kernel in this case is referred to as ky, with xp and xq are datapoints and δpq is the Kronecker

delta, which is equal to 1 if p = q and 0 otherwise. The remaining variables σ2
f , σ2

n and ` are hyperparameters

for the RBF kernel. They are described as the signal noise, input noise and the lenghtscale. Varying these

parameters affects the prediction. However, the optimization of these parameters have been left to the GP

framework. Hyperparameters are important parts of the kernel, manually picking the wrong lenghtscale

would cause it to incorrectly take data far away into account, or ignore data it should not.

6 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
2 THEORY 2.4 Gaussian Processes

Thomas Edvardsen
TKP4580

2.4.2 Cost and Loss

As was mentioned, the goal is to maximize the temperature T out of the HX network, which we can put on

the form:

J = T (2.23)

where J is the cost.

Loss is usually the metric which measures the performance of machine learning models, and in traditional

ANNs this loss is used to update the weights that decide the output. The loss would be the on objective

one would try to minimize or maximize through the training process. However in the case of GP, which is

non-parametric and without weights, the loss is just a measure of the error of the cost function. The general

loss is simply defined as the difference between the predicted and optimal cost.

Loss = J∗ − J (2.24)

Where J∗ is the optimal cost found from the accurate model. Traditionally Mean Squared Error (MSE) has

used for loss, but given the low residuals from the optimization, the Root Mean Square Error (RMSE) is

used in this project when comparing the cost of all the samples for a prediction set.

RMSE =

√√√√ 1
n

n∑
i=1

(J∗
i − Ji)2 (2.25)

Where n is the number of samples in the set of predictions.

7 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
3 IMPLEMENTATION

Thomas Edvardsen
TKP4580

3 Implementation

3.1 The ”Real” Model

A python implementation of the heat exchanger network was made using the CasADi package. This was

used to generate the ”real plant” information used to train and test the Gaussian Process implementation.

Multiple datasets were made with different sample counts. The test dataset was made with higher disturbance

variations to test the Gaussian process ability to extrapolate beyond the disturbances of the training dataset.

The code for the real model is shown in appendix B.4, and the script to generate measurement sets is given

in appendix B.3.

3.2 The Gaussian Implementation

The implementation was created in Python using GPy [6], a framework designed to perform Gaussian Process

machine learning algorithms. The core flow for the GP regression is detailed as follows, and the bulk of the

code is within the g_process.py file in appendix B.1.

(i) The test and training data is loaded into the GPModel instance.

(ii) The training input is normalized to between 0 and 1, and the training output can be normalizedd

if selected.

(iii) A RBF kernel is initialized based on the shape of the training input, and an Intrinsic Coregional-

ization Model (ICM) kernel is set up with the RBF kernel as argument. This due to the framework

requiring this setup for multiple output predictions.

(iv) The model for multioutput regression is set up from the training data and the ICM kernel.

(v) The optimization of the model is performed to the best seen solution from the frameworks point of

view. This is run on the training dataset internally, and optimizes the hyperparameters mentioned

in Section 2.4.1.

The following steps can be repeated with new test data, as is the case for the closed loop imple-

mentation.

(vi) Test input is fed to the GPModel instance and normalized.

(vii) A test prediction is made by feeding the model the test data.

(viii) The test prediction is reverse normalized if the training output was normalized, and then returned.

A simple framework was built around this to facilitate testing multiple datasets and options such as output

normalisation and adding noise. It is also what handles some of the processing such as calculating the

model measurements if a measurement set is used for regression. In a baseline approach, disturbances are

8 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
3 IMPLEMENTATION 3.2 The Gaussian Implementation

Thomas Edvardsen
TKP4580

used as input for regression. The simple framework also handles cost and error calculations, closed-loop

implementation, and plotting of various results.

Due to some implementation issues the GP regression is performed in a multiprocess instance in Python, as

the GPy framework would not execute properly when multiple models were created.

3.2.1 Optimal Valve splits

The main focus was on the prediction of the optimal valve splits, and the closed-loop implantation was

adopted to this approach. This section details some of the specifics of the implementation.

The datasets contained all the disturbances given for the process (Figure 2.1), as well as a pair of random valve

openings and the optimal valve openings. This allows for consistency between when calculating measurement

sets, as the random valve openings can be used to measure the plant at a non-optimal state to train the GP

model with. There is also implemented a weighting system, such that portions of the random valve openings

can be adjusted closer to the optimal to verify if they affect the performance. The implementation is shown

in the code in appendix B.2.

3.2.2 Closed loop

The closed loop approach is that once a prediction of the optimal valve splits had been done, the predictions

were used to calculate new measurements for those openings, and then fed back into the GP model to give a

new prediction. This is repeated until the change in the predicted values is below a threshold. Once we have

reached the threshold, we consider it converged. Convergence is important given that we would be relying

on it to bring the HX network towards the optimum operating point when disturbances don’t change, and

change it to a new optimum when disturbances change.

For this project the tolerance condition was calculated as the max absolute change in the predicted outputs

since the last iteration. The tolerance was set to 10−8 for all closed loop iterations. Iterations start counting

from zero, and are stopped at the 20th iteration if the tolerance has not been met, due to long a runtime of

the closed loop calculations.

3.2.3 Noise cases

There was tests for how noise affected prediction, and three cases were tested. The noise applied was gaussian

with a range of ±1 ◦C.

Case 1 is that there is no measurement error.

Case 2 is with noise on the test data, signifying the real plants noisy measurements while the training samples

were noise free based on the assumption that training data came from a model prediction without noise on

the measurements.

9 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
3 IMPLEMENTATION 3.2 The Gaussian Implementation

Thomas Edvardsen
TKP4580

Case 3 is where both the training and testing data has introduced noise, a scenario where the training data

either has simulated noise or where noisy training measurements come from a real process.

3.2.4 Measurement sets

Several measurement sets were created, either taken from disturbances, the inputs or the state of the model.

They can be seen below, where n is number of samples for the dataset, and in this case, i is the index of

the sample in the dataset. The datasets are setups as pairs of sets, where the first of the sets is the inputs,

and the second is the output. The star in α∗
i and β∗

i denotes they are the ideal valve splits, which sets them

apart from the αi and βi which are merely the valve opening at the time of ”measurement”. Ideally, with the

closed loop approach, αi and βi would converge to α∗
i and β∗

i .

n = {500, 2500}

DMS1 = {({T0,i, T1,i, T2,i, T3,i, Th1,i, Th2,i, Th3,i}, {α∗
i , β

∗
i })‖i = 1, ..., n}

DMS2 = {({T0,i, Th1,i, Th2,i, Th3,i, The1,i, The2,i, The3,i}, {α∗
i , β

∗
i })‖i = 1, ..., n}

DMS3 = {({T0,i, T, The1,i, The2,i, The3,i, w0, wh1, wh2, wh3}, {α∗
i , β

∗
i })‖i = 1, ..., n}

DMS4 = {({T0,i, T, Th1,i, Th2,i, Th3,i, αi, βi}, {α∗
i , β

∗
i })‖i = 1, ..., n}

Optimization that run close to the optimal should be possible through ordinary optimizations methods such

as controlling a cost gradient, with just temperature measurements. [7] Along with that, temperatures are

easy to measure and would save a lot effort on the measurement side of implementing a control system.

Thus measurement set 1 and 2 (MS1 and MS2) are purely temperature based. On the other hand, from a

regression point of view the correlations between the measurements and the prediction may be worse, so in

measurement set 3 (MS3), the heat capacity of the hot streams are included as part of the measurements.

Finally, one can on the assumption that telling the system the current position, both in terms of what the

controlled variable currently is, and where in terms of ”regression space”, would allow the GP model to more

easily aim for the optimal prediction values. Thus the valve openings are included in measurements set 4.

(MS4)

There was generated two training datasets with 500 and 2500 samples, and one shared test dataset of 2500

samples. The test dataset contains disturbances that were up to 20% larger than those in the training dataset,

to test if the GP model had sufficient capability to extrapolate beyond the training data. During runtime, the

random valve openings were used to generate the measurement sets from the real plant. From then on, in the

closed loop approach, the predictions were used to generate the next set of measurements until convergence.

It’s also during the measurement generation that noise is added, if enabled.

As mentioned in the section 3.2, there was implemented a method of shifting the random valve splits closer

to optimal values. The reasoning being that given most operation being close to the optimal, more points

10 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
3 IMPLEMENTATION 3.2 The Gaussian Implementation

Thomas Edvardsen
TKP4580

would be needed there to have accurate predictions, especially in the case for the close loop where we want

accurate convergence. This metric was tuned empirically to get the most reasonable results, and focus as

many points as possible closer to the optimum, while still retaining convergence.

3.2.5 Normalization

It was looked into if normalizing the output, and applying a reverse transform on the test predictions would

increase the accuracy of the predictions. Normalization of the output was not applied in any other test cases.

The inputs to the GP models were always normalized. Normalization in all cases were to values between 0

and 1.

11 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS

Thomas Edvardsen
TKP4580

4 Results

A selection of key results are provided here, while full iteration results is provided in A. Datasets are provided

in their own files, along with code which is also in appendix B. It is noted that the number of training samples

are shown in the plots for convenience, while the test samples are always kept at 2500.

4.1 Optimal valve prediction

4.1.1 Baseline

To demonstrate that the model works, a baseline noise free case had to be created, where the training

data was all of the disturbances of the model, and the output was the predicted optimal valve splits. This

was generated using only 500 training samples as it proved more than sufficient to demonstrate the GP

performance.

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 0 | Train samples: 500 | Noise: None

Figure 4.1: Baseline: The plot of the real values over the predicted values. Perfect performance would be everything aligned

on along the dotted diagonal.

12 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

90 100 110 120 130 140 150 160
Real cost J

90

100

110

120

130

140

150

160

Pr
ed

ict
ed

 c
os

t J
Loss | uopt | Train samples: 500 | Noise: None

Figure 4.2: Baseline: The plot of the loss of the cost. Since

the optimal temperature is the highest, every-

thing should as close to or below the dotted line

shown.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Loss | Cost Function

0

500

1000

1500

2000

Nu
m

be
r o

f e
rro

r p
oi

nt
s

Histogram loss | uopt | Train samples: 500 | Noise: None

Figure 4.3: Baseline: Histogram of difference between the

real and predicted. It can be seen most of the

errors are very close to zero.

As can be seen in Figures 4.1 and 4.2, almost all of the 2500 test datapoints are closely aligned with the

diagonals. There are a few small outliers at the extremes, but based on the histogram in 4.3 almost all

the predictions are extremely close to the optimal. Given the measurements it can be argued that this

approach would perform within well expectations. However, at that point one might as well use the model

to numerically solve the system and get the optimal configuration that way, with the added benefit of easily

updating the model if major changes happen to the process, unlike the GP approach which would also need

to have new data for training.

Table 4.1: Baseline prediction using all disturbances, with different noise cases. Trained on 500 samples.

Loss (RMSE)

1. No Noise 2. Test Noise 3. Train Noise

0.001 88 0.016 55 0.022 96

The RMSE for the baseline run is detailed in Table 4.1. Runs with some added noise also showed some

degraded performance. However, looking at these cases in more detail not too useful as they are unrealistic

as real world approaches, so they have not been evaluated any further. The RMSE scores for noise cases

were included as to be relative comparison from ideal to real world predictions from measurement sets in the

sections below.

4.1.2 Normalization on output

First off, the RMSE was calculated for two closed-loop runs on measurement set 2, one with output regular-

ization and another without it.

13 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

Table 4.2: Closed loop loss (RMSE) prediction for MS2. Measurement errors were enabled on both training and test data.

Did not converge in 20 iterations.

Iteration Normalized Y Not Normalized Y

0 0.292 213 92 0.291 159 11

1 0.207 649 01 0.206 694 15

2 0.224 236 56 0.223 521 44

3 0.218 748 50 0.217 848 72

16 0.220 025 26 0.219 182 00

17 0.220 025 16 0.219 181 83

18 0.220 025 22 0.219 181 93

19 0.220 025 18 0.219 181 87

From Table 4.2, the iterations show that normalizing input slightly reduces the prediction accuracy, and it’s

thus not advised. Since the output are between 0 and 1 to begin with, normalizing it to the same range was

not expected to provide any significant improvement.

4.1.3 Noise cases

Since both 500 and 2500 samples were tested, the largest dataset was used for the main discussion and noise

comparisons. Extended results are shown in Appendix A, while comparisons of the different dataset sizes

are given in section 4.1.4. Along with the tables provided, graphs like the baseline are provided, with special

focus on results that stood out.

Table 4.3: Compact table of loss for each noise case for measurement set 1. Trained on 2500 samples. Last iterations shown

is where convergence was reached. Measurements for all iterations are shown in Table A.1

MS 1 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.456 699 40 0.458 425 95 0.457 342 56

1 0.465 558 24 0.467 608 42 0.465 708 90

2 0.466 581 35 0.468 651 27 0.466 634 73

6 0.466 646 82 0.468 718 27 0.466 692 36

7 0.466 646 82 0.468 718 27 0.466 692 36

For measurement set 1, convergence is observed after just 8 iterations. Case 2, with only test noise has been

picked for visual comparison, but all behave the same, with just slight changes in the RMSE. There is an

observed and expected trend of lowest error for the noise free case, and worst for the test noise only case.

14 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

We can see that applying the noise on training improved performance. The errors however are relatively the

same for all the cases.

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 7 | Train samples: 2500 | MS: 1 | Noise: Test

Figure 4.4: MS1: plot of the real values over the predicted values. 2500 samples used for training.

90 100 110 120 130 140 150 160
Real cost J

90

100

110

120

130

140

150

160

Pr
ed

ict
ed

 c
os
t J

Loss | uopt | Train samples: 2500 | MS: 1 | Noise: Test

Figure 4.5: MS1: plot of loss of the cost. Since the optimal

temperature is the highest, everything should as

close to the diagonal.

0.0 0.5 1.0 1.5 2.0 2.5
Loss | Cost Function

0

50

100

150

200

Nu
m
be

r o
f e

rro
r p

oi
nt
s

Histogram loss | uopt | Train samples: 2500 | MS: 1 | Noise: Test

Figure 4.6: MS1: Histogram of difference between the real

and predicted loss.

As can be observed for the loss distribution in Figure 4.5, the majority of the points are located close to the

optimal. The errors seen in Figure 4.6 show that most of the datapoints are below 1◦C, but some outliers

stretching as far to as almost 3◦C below the optimum point of operations. Since this is without training

noise, similar but slightly better predictions would apply to Case 1 and 3.

15 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0 1 2 3 4 5 6 7
Iteration

0.458

0.460

0.462

0.464

0.466

0.468

Lo
ss

 -
RM

SE

ML Loss per iter | uopt | Train samples: 2500 | MS: 1 | Noise: Test

Figure 4.7: MS1: Plot of RMSE loss over each iteration.

Finally, a plot is included to show how the predictions converge in the closed loop approach. In Figure 4.7

we see that the convergence is consistent, and relatively fast. However the point of convergence is higher

up than the initial prediction. This is discussed in more detail in section 5.1, but the main assumption is

that near the optimal the sample density is not sufficient to make a more accurate prediction. The trend in

convergence will be looked at for the other measurement sets as well.

Table 4.4: Compact table of loss for each noise case for measurement set 2. Trained on 2500 samples. Iteration stopped after

not reaching the tolerance for convergence at 20 interactions. Measurements for all iterations are shown in Table

A.2

MS 2 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.284 660 44 0.290 504 89 0.291 154 63

1 0.201 940 21 0.205 108 59 0.206 691 28

2 0.219 144 98 0.222 869 11 0.223 518 50

17 0.214 434 29 0.218 080 54 0.219 178 78

18 0.214 434 66 0.218 080 74 0.219 178 88

19 0.214 434 39 0.218 080 62 0.219 178 82

For measurement set 2, none of the cases converged properly, the change in the last iteration is still relatively

low around 10−7. For this set of results, case 3 with measurement noise applied to both the training and

testing has been used for visual representation. The differences between the cases however, are again visually

non-important.

16 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 19 | Train samples: 2500 | MS: 2 | Noise: TrainTest

Figure 4.8: MS2: plot of the real values over the predicted values. 2500 samples used for training.

90 100 110 120 130 140 150 160
Real cost J

90

100

110

120

130

140

150

160

Pr
ed

ict
ed

 c
os
t J

Loss | uopt | Train samples: 2500 | MS: 2 | Noise: TrainTest

Figure 4.9: MS2: plot of loss of the cost. Since the optimal

temperature is the highest, everything should as

close to the diagonal.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Loss | Cost Function

0

50

100

150

200

Nu
m

be
r o

f e
rro

r p
oi

nt
s

Histogram loss | uopt | Train samples: 2500 | MS: 2 | Noise: TrainTest

Figure 4.10: MS2: Histogram of difference between the real

and predicted.

17 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.22

0.24

0.26

0.28

Lo
ss
 -
RM

SE

ML Loss per iter | uopt | Train samples: 2500 | MS: 2 | Noise: TrainTest

Figure 4.11: MS2: Plot of RMSE loss over each iteration.

Overall, MS2 is the best performing measurement set. The RMSE is the lowest and from the histogram in

Figure 4.10, we can see that almost all the datapoints are within 1◦C of the optimum, with most below 0.5◦C.

The interesting thing however is how it converges in Figure 4.11, with the second iteration having the highest

accuracy. After that it jumps around and stabilizes around a slightly higher point. This is speculated to be

similar to MS1, except that it now ”circles” the optimal where the prediction shots into a new area, gradually

approaching a steady solution. This could be caused by some points moving further from the optimal after

getting very close to it as in iteration 1. Based on Figure 4.9, the predictions are very close to the optimal,

and looks a fair bit denser than Figure 4.5 from MS1, as expected with the lower RMSE.

Table 4.5: Compact table of loss for each noise case for measurement set 3. Trained on 2500 samples. Missing values means con-

vergence was detected earlier. Iteration stopped after not reaching the tolerance for convergence after 20 iterations,

for the case with only test noise applied. Measurements for all iterations are shown in Table A.3

MS 3 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.290 814 15 0.302 511 04 0.299 119 99

1 0.220 568 12 0.229 063 49 0.227 277 26

2 0.230 636 01 0.239 809 92 0.237 484 31

16 0.228 963 76 0.237 953 16 0.235 784 59

17 - 0.237 953 16 0.235 784 59

18 - 0.237 953 16 -

19 - 0.237 953 16 -

18 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 16 | Train samples: 2500 | MS: 3 | Noise: None

Figure 4.12: MS3: plot of the real values over the predicted values. 2500 samples used for training.

90 100 110 120 130 140 150 160
Real cost J

90

100

110

120

130

140

150

160

Pr
ed

ict
ed

 c
os
t J

Loss | uopt | Train samples: 2500 | MS: 3 | Noise: None

Figure 4.13: MS3: plot of loss of the cost. Since the optimal

temperature is the highest, everything should as

close to the diagonal.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Loss | Cost Function

0

50

100

150

200

250

300

350

Nu
m
be
r o

f e
rro

r p
oi
nt
s

Histogram loss | uopt | Train samples: 2500 | MS: 3 | Noise: None

Figure 4.14: MS3: Histogram of difference between the real

and predicted.

19 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0 2 4 6 8 10 12 14 16
Iteration

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Lo
ss

 -
RM

SE

ML Loss per iter | uopt | Train samples: 2500 | MS: 3 | Noise: None

Figure 4.15: MS3: Plot of RMSE loss over each iteration.

Apart from the test case, MS3 converged at iteration 16, while the one that did not had a highly stable RMSE

at the end which can be seen in Table 4.5, which probably means there is few points that didn’t stabilize

before the iteration limit. From Figure 4.12 we see that there was no points which drastically diverged away

from the rest however. MS3 converged with a RMSE not too far from measurement set 2, and did much

better than MS1. Results are very similar to MS2, with the predicted cost almost entirely under 1◦C from

the optimal, and most of it being below 0.5◦C as seen in Figure 4.14.

Table 4.6: Compact table of loss for each noise case for measurement set 4. Trained on 2500 samples. Iteration stopped after

not reaching the tolerance for convergence at 20 iterations. Measurements for all iterations are shown in Table A.4

MS 4 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.218 891 75 0.220 646 41 0.219 080 34

1 0.370 358 80 0.373 660 98 0.374 139 84

2 0.446 822 09 0.451 062 44 0.455 208 88

17 0.511 000 80 0.516 383 62 0.529 146 53

18 0.511 001 62 0.516 384 52 0.529 149 49

19 0.511 002 05 0.516 384 99 0.529 151 31

20 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 0 | Train samples: 2500 | MS: 4 | Noise: Test

Figure 4.16: MS4: plot of the real values over the predicted

values. Iteration 0. 2500 samples used for train-

ing.

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 19 | Train samples: 2500 | MS: 4 | Noise: Test

Figure 4.17: MS4: plot of the real values over the predicted

values. Iteration 19.2500 samples used for train-

ing.

90 100 110 120 130 140 150 160
Real cost J

90

100

110

120

130

140

150

160

Pr
ed

ict
ed

 c
os
t J

Loss | uopt | Train samples: 2500 | MS: 4 | Noise: Test

Figure 4.18: MS4: plot of loss of the cost. Since the optimal

temperature is the highest, everything should as

close to the diagonal.

0 1 2 3 4
Loss | Cost Function

0

50

100

150

200

250

300

350

Nu
m

be
r o

f e
rro

r p
oi

nt
s

Histogram loss | uopt | Train samples: 2500 | MS: 4 | Noise: Test

Figure 4.19: MS4: Histogram of difference between the real

and predicted.

21 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.25

0.30

0.35

0.40

0.45

0.50

Lo
ss
 -
RM

SE

ML Loss per iter | uopt | Train samples: 2500 | MS: 4 | Noise: Test

Figure 4.20: MS4: Plot of RMSE loss over each iteration.

Measurement set 4 is dataset that shows the most interesting response, as it converges significantly worse

than all the other sets. The first iterations outperforms the following ones, and is close to best results of

MS2 and MS3. However the performance worsens rapidly and in the last iteration as seen in Table 4.6, the

RMSE increases a little every iteration. In terms of running process optimization, this could lead to the

process converging quickly before slowly drifting away from the best state and then eventually making a

jump towards back to the optimal before repeating. The stronger divergence is assumed to be caused by the

inclusion of the valve opening in the prediction. While the focus on more datapoints close to the optimal,

it either was not enough or it was perhaps too focused. A big issues is that MS4 diverged if not enough

datapoints were located far away from the optimal. Thus the divergence could be caused by lack of datapoints

to properly control for the valve openings when the plant is operating with various large disturbances and

very non-optimal valve openings.

In the end though, the convergence ended up at worse performance than the other measurement sets, with

some good amount of points stretching out beyond 1◦C off the optimal, as well as some extremes at above

4◦C off. While the one-shot performance is impressive, it seems dangerous to try to apply for optimization

given that most of the operations is at the optimal, and it’s not desirable to have a convergence around an

optima that is worse than the ones from the other measurement sets.

4.1.4 Number of datapoints

Using the two training datasets consisting of 500 and 2500 datapoints respectively, the change in performance

were tested to make an attempt to establish how much data it would be reasonable to collect, or at the very

least establish an upper limit.

22 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

Table 4.7: Compact table of loss for each noise case for measurement set 1. Trained on 500 samples. Missing values means

convergence was detected earlier. Full table in Appendix A.5

MS 1 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.466 118 29 0.467 188 02 0.467 142 12

1 0.443 171 73 0.444 232 38 0.442 677 02

2 0.444 028 86 0.445 088 99 0.443 552 25

5 0.443 993 77 0.445 053 93 0.443 517 60

6 0.443 993 77 0.445 053 94 0.443 517 61

7 0.443 993 77 - -

Table 4.8: Compact table of loss for each noise case for measurement set 2. Trained on 500 samples. Empty sections means it

converged earlier. Full table in Appendix A.6

MS 2 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.306 645 11 0.309 534 47 0.309 731 25

1 0.220 095 34 0.221 476 21 0.223 449 06

2 0.234 998 85 0.236 758 66 0.238 454 06

16 0.231 988 33 0.233 656 26 0.235 384 19

17 0.231 988 33 0.233 656 26 0.235 384 19

18 - - 0.235 384 19

Table 4.9: Table of loss for each noise case for measurement set 3. Trained on 500 samples. Full table in Appendix A.7

MS 3 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.315 881 16 0.323 639 56 0.321 830 29

1 0.236 753 16 0.242 948 59 0.238 896 90

2 0.248 362 13 0.254 708 36 0.251 202 53

12 0.246 571 44 0.252 907 56 0.249 311 13

13 0.246 571 44 0.252 907 56 0.249 311 12

14 0.246 571 44 0.252 907 56 0.249 311 12

23 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
4 RESULTS 4.1 Optimal valve prediction

Thomas Edvardsen
TKP4580

Table 4.10: Table of loss for each noise case for measurement set 4. Trained on 500 samples. Full table in Appendix A.8

MS 4 Loss (RMSE)

Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.325 895 35 0.328 418 53 0.326 000 07

1 0.431 559 37 0.434 641 19 0.432 815 80

2 0.452 267 95 0.455 418 71 0.454 053 32

9 0.457 144 60 0.460 305 96 0.459 147 87

10 0.457 144 67 0.460 306 03 0.459 147 94

11 0.457 144 68 0.460 306 04 0.459 147 96

On a pure RMSE basis, the errors increase for MS 2 and 3, overall equally so. The change was however low

enough that one could say they compare very close to the 2500 sample trained models. Given the 5 times

lower amount of samples, it could certainly be more feasible from a data collection point of view. MS1 on

the other hand improved a little in all cases, which seems odd. MS4 however is quite different going to 500

samples. The first iteration is notably much worse, with a RMSE of double that of the 2500 model. However,

the point of convergence was lower, like for MS1.

The main assumption why MS1 and MS4 misbehave is in the way that the training data was altered. When

splitting up the dataset to weight some of the random valve splits closer to the optimal, with the lower

amount of samples available, it’s possible that the space far away from optimal grew less dense, leaving larger

uncertainty. On the other hand, the data closer to the optimal may have been better distributed, giving

better convergence. Since random points were generated, the distribution may have affected some of the

result, but the overall difference seems rather large to be caused by only a worse random distribution.

Another interesting observation is how all datasets converged with less samples. This is assumed to be

because of fewer training datapoints, meaning there is less neighbours weighting in on the predictions. With

fewer datapoints, there is larger ”dead zones” which means there is less chance of the next prediction to

change significantly enough to be affected by a new datapoint. In the case of 2500 samples, once a prediction

is made, and a valve input is given, the new measurement have different points nearby to slightly shift the

prediction, which is likely why the convergence is slower with more samples.

Extrapolating from that assumption, it may be that MS2 does provides well correlated measurements, as

there is several datapoints affecting the decision, and also giving the best results. MS 1 performed worse, and

finished earliest with both 500 and 2500 samples, which may mean that fewer of the measurements provide

good information. MS3 converged relatively fast however, and also showed good results. Case 2 with only test

noise took the longest. Possibly caused by the higher uncertainty in the data, leaving less accurate predictions

that shift the predictions more each iteration. However, this is just speculation, as similar behaviours is only

24 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
5 DISCUSSION

Thomas Edvardsen
TKP4580

seen in MS3 with 2500 samples so there is not enough information to be any more certain of that.

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 0 | Train samples: 500 | MS: 4 | Noise: Test

Figure 4.21: MS4: plot of the real values over the predicted

values. Iteration 0. 500 samples used for train-

ing.

0.2 0.3 0.4
Predicted u1

0.20

0.25

0.30

0.35

0.40

0.45

Re
al
 u
1

0.3 0.4 0.5
Predicted u2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
al
 u
2

uopt | Iter: 11 | Train samples: 500 | MS: 4 | Noise: Test

Figure 4.22: MS4: plot of the real values over the predicted

values. Iteration 12. 500 samples used for train-

ing.

Unlike with 2500 samples, as seen in Table 4.10, MS4 converged when there was only 500 samples. The first

iteration was much worse, but the convergence was not as bad compared to the version with more samples.

MS4 was the least ”understandable” set, where the first prediction was much worse, as expected given less

samples, but then the converged RMSE ended up lower than with more samples, similar to MS1. MS4 also

converged relatively fast like MS1. It could be that the GP does not handle the random valve inputs as

intuitively as a person would. With split data, which may act differently between 500 and 2500 samples, the

performance was still odd. When the number of samples far away from the optimal was reduced, it led to

divergence and a subsequent crash of the code in some cases for MS4, leading to having a relatively large

chunk of information far away from the optimal.

5 Discussion

5.1 Convergence

Something that is seen throughout the measurement sets is that convergence is consistent, but it does not

behave as ideally as one would wish. After the second iteration, the loss goes back up a little, This is non-

ideal, despite the overall RMSE. The main assumption to this is that either there is not enough datapoints

close to the optimum, or that that perhaps prediction is as good as it can be when receiving near the same

inputs. The next prediction moves the system such that the new measurements are in a new ”area” closer

to another point around the optimal. So both cycling convergence and gradual convergence were observed.

With 2500 points and 7 measurements as in the input, (MS4 for example) there is still a relatively low amount

of points to chart out the space of the process. This was why there was implemented a shifting of the random

25 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
5 DISCUSSION 5.2 Noise

Thomas Edvardsen
TKP4580

valve openings, such that that much data as possible could be concentrated closer to the optimum, where the

main area of operation usually is. However it may not be proper enough. To improve on this, using Design

of Experiments (DoE) to provide a controlled sampling of the working space of the process may perhaps help

remedy this issue or just increase the performance for a fixed sample count.

5.2 Noise

Overall the performance seems good for all measurement sets, but measurement set 1 and 4 were the worse

of the bunch. While MS1 converged fast, it’s results were less accurate than MS2 and MS3. The fact that

MS2 didn’t converge is not expected to be much of an issue, given the stability of the RMSE. In a real world

case, the noisy measurements and potential disturbances from moment to moment may be larger than those

small fluctuations, so a convergence to this accuracy is probably not a requirement. Since MS3 uses heat

capacity, then it might be more practical to make use of MS2 in a real plant, since that relied only on the

temperatures, and still has the best performance.

Case 1, without noise, demonstrated it worked well and it was further observed that performance did not

significantly degrade with noisy measurements on the test dataset in Case 2. If there exists a proper model

of a HX network to generate data, even without noise, GP may prove sufficient to optimize the operation

of it. It is however observed that in Case 3, noisy training measurements reduced the RMSE and improved

performance a little. As such, if available, real world data or noisy model data would be better to train the

GP.

5.3 Further work

Due to the nature of the system being an unconstrained optimum, the ideal method of control is controlling the

gradient to zero. [7] Gradient prediction was out of scope for this project, as predicting gradients is one thing,

but showing how it performs in a real world is much harder to do without implementing an optimization

system that simulates and optimizes according to this method. However, predicting the gradients with

respects to the output may be more of interest given the non-ideal convergence observed in the closed-loop

approaches. Future work could be implementing both gradient prediction and valve opening prediction and

comparing the performance of the methods.

Heat loss was also neglected, and may prove to an issue in real world applications, especially if the training

data does not take heat loss into account. It’s suggested to test for that as well.

26 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
6 CONCLUSIONS

Thomas Edvardsen
TKP4580

6 Conclusions

Based on the results, measurement set 2 seems the most ideal dataset to use for predicting the optimum

valve split, providing the most accurate results. Measurement set 3 did an acceptable job as well, but relies

on the heat capacity of the flows, which may be harder to know. The performance of the other datasets were

not way off but risk having some outliers at up to 2◦C away from the optimum for MS1, and up to 5◦C for

MS4.

However for MS2 and MS3, almost all measurements were below 1◦C from their optimum, with over half

there again being under 0.5◦C. Which makes them interesting candidates for optimization. It was observed

that noise on test and training data affected performance a little, but still keep results very close to the noise

free case.

For number of samples, it was observed that measurement sets seemed to converge faster with less samples,

at the cost of performance for MS2 and MS3, while MS1 and MS4 converged to a lower RMSE value, which

seemed counter-logical, but is assumed to be caused by the way the random valve positions that defined the

first measurements were weighted towards the optimal.

With the two sample sizes, a rough idea of maximum sample count can be estimated for the measurement

sets that worked well. For the other two, the inconsistency in convergence accuracy makes them harder to

predict. The worse RMSE scores however, means that it’s probably easier to focus on MS2 and MS3. And

given that MS2 works only off of temperature measurements, it would be the simplest and best set to apply

in practice.

27 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
REFERENCES REFERENCES

Thomas Edvardsen
TKP4580

References
[1] Carl Edward Rasmussen Ounpraseuth, Songthip and Christopher K. I. Williams. Gaussian processes for

machine learning. Journal of the American Statistical Association, 103, 03 2008. doi: 10.2307/27640057.

[2] ENERGY FACTS NORWAY. Energy by sector. https://energifaktanorge.no/en/

norsk-energibruk/energibruken-i-ulike-sektorer, 2020.

[3] Google Trends. Trends on machine learning. https://trends.google.com/trends/explore?date=all&

q=machine%20learning, 16.12.2020.

[4] Carl Edward Rasmussen. Evaluation of Gaussian Processes and Other Methods for Non-Linear Regres-

sion. PhD thesis, University of Toronto, CAN, 1997. AAINQ28300.

[5] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-Hill, 1997. ISBN

9780071154673. URL https://books.google.no/books?id=EoYBngEACAAJ.

[6] GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy, since

2012.

[7] Sigurd Skogestad Johannes Jschke. Optimal operation of heat exchanger networks with stream

split: Only temperature measurements are required. Computers & Chemical Engineering, 70:35 –

49, 2014. ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2014.03.020. URL http:

//www.sciencedirect.com/science/article/pii/S009813541400101X. Manfred Morari Special Issue.

28 of 46

https://energifaktanorge.no/en/norsk-energibruk/energibruken-i-ulike-sektorer
https://energifaktanorge.no/en/norsk-energibruk/energibruken-i-ulike-sektorer
https://trends.google.com/trends/explore?date=all&q=machine%20learning
https://trends.google.com/trends/explore?date=all&q=machine%20learning
https://books.google.no/books?id=EoYBngEACAAJ
http://github.com/SheffieldML/GPy
http://www.sciencedirect.com/science/article/pii/S009813541400101X
http://www.sciencedirect.com/science/article/pii/S009813541400101X

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
A ALL DATA

Thomas Edvardsen
TKP4580

A All Data

A.1 Noise cases

A.1.1 2500 Samples

Trained on 2500 samples, and prediction done on 2500 samples.

Table A.1: Table of loss for each noise case for measurement set 1. Trained on 2500 samples. Missing values means convergence

was detected earlier.

MS 1 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.456 699 40 0.458 425 95 0.457 342 56
1 0.465 558 24 0.467 608 42 0.465 708 90
2 0.466 581 35 0.468 651 27 0.466 634 73
3 0.466 641 79 0.468 713 14 0.466 688 30
4 0.466 646 47 0.468 717 91 0.466 692 09
5 0.466 646 80 0.468 718 25 0.466 692 34
6 0.466 646 82 0.468 718 27 0.466 692 36
7 0.466 646 82 0.468 718 27 0.466 692 36

Table A.2: Table of loss for each noise case for measurement set 2. Trained on 2500 samples. Iteration stopped after not

reaching the tolerance for convergence.

MS 2 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.284 660 44 0.290 504 89 0.291 154 63
1 0.201 940 21 0.205 108 59 0.206 691 28
2 0.219 144 98 0.222 869 11 0.223 518 50
3 0.212 930 96 0.216 549 85 0.217 845 62
4 0.215 061 83 0.218 706 36 0.219 695 48
5 0.214 187 07 0.217 833 19 0.218 981 96
6 0.214 549 41 0.218 192 73 0.219 263 96
7 0.214 383 08 0.218 029 93 0.219 141 58
8 0.214 460 92 0.218 105 65 0.219 196 46
9 0.214 421 71 0.218 068 25 0.219 170 37
10 0.214 441 71 0.218 087 18 0.219 183 12
11 0.214 430 83 0.218 077 21 0.219 176 65
12 0.214 436 77 0.218 082 56 0.219 180 00
13 0.214 433 29 0.218 079 60 0.219 178 22
14 0.214 435 32 0.218 081 27 0.219 179 18
15 0.214 434 04 0.218 080 31 0.219 178 66
16 0.214 434 84 0.218 080 87 0.219 178 95
17 0.214 434 29 0.218 080 54 0.219 178 78
18 0.214 434 66 0.218 080 74 0.219 178 88
19 0.214 434 39 0.218 080 62 0.219 178 82

29 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
A ALL DATA A.1 Noise cases

Thomas Edvardsen
TKP4580

Table A.3: Table of loss for each noise case for measurement set 3. Trained on 2500 samples. Missing values means convergence

was detected earlier. Case 2 stopped after not reaching the tolerance for convergence at 20 iterations.

MS 3 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.290 814 15 0.302 511 04 0.299 119 99
1 0.220 568 12 0.229 063 49 0.227 277 26
2 0.230 636 01 0.239 809 92 0.237 484 31
3 0.228 610 82 0.237 538 40 0.235 421 18
4 0.229 046 61 0.238 058 08 0.235 871 55
5 0.228 943 39 0.237 925 20 0.235 762 71
6 0.228 968 99 0.237 960 99 0.235 790 34
7 0.228 962 39 0.237 950 89 0.235 783 02
8 0.228 964 14 0.237 953 84 0.235 785 03
9 0.228 963 66 0.237 952 95 0.235 784 46
10 0.228 963 79 0.237 953 23 0.235 784 63
11 0.228 963 76 0.237 953 14 0.235 784 58
12 0.228 963 77 0.237 953 17 0.235 784 59
13 0.228 963 76 0.237 953 16 0.235 784 59
14 0.228 963 76 0.237 953 16 0.235 784 59
15 0.228 963 76 0.237 953 16 0.235 784 59
16 0.228 963 76 0.237 953 16 0.235 784 59
17 - 0.237 953 16 0.235 784 59
18 - 0.237 953 16 -
19 - 0.237 953 16 -

Table A.4: Table of loss for each noise case for measurement set 4. Trained on 2500 samples. Iteration stopped after not

reaching the tolerance for convergence at 20 iterations.

MS 4 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.218 891 75 0.220 646 41 0.219 080 34
1 0.370 358 80 0.373 660 98 0.374 139 84
2 0.446 822 09 0.451 062 44 0.455 208 88
3 0.481 877 19 0.486 633 39 0.493 870 22
4 0.497 642 77 0.502 674 28 0.512 052 35
5 0.504 776 51 0.509 959 26 0.520 697 53
6 0.508 051 94 0.513 320 05 0.524 885 03
7 0.509 581 56 0.514 898 56 0.526 955 11
8 0.510 308 03 0.515 653 21 0.527 999 38
9 0.510 658 55 0.516 019 98 0.528 536 51
10 0.510 830 12 0.516 200 91 0.528 817 89
11 0.510 915 19 0.516 291 34 0.528 967 88
12 0.510 957 87 0.516 337 06 0.529 049 17
13 0.510 979 50 0.516 360 40 0.529 093 96
14 0.510 990 56 0.516 372 43 0.529 119 04
15 0.510 996 27 0.516 378 66 0.529 133 34
16 0.510 999 24 0.516 381 91 0.529 141 63
17 0.511 000 80 0.516 383 62 0.529 146 53
18 0.511 001 62 0.516 384 52 0.529 149 49
19 0.511 002 05 0.516 384 99 0.529 151 31

30 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
A ALL DATA A.1 Noise cases

Thomas Edvardsen
TKP4580

A.1.2 500 Samples

Trained on 500 samples, and prediction done on 2500 samples.

Table A.5: Table of loss for each noise case for measurement set 1. Trained on 500 samples. Missing values means convergence

was detected earlier.

MS 1 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.466 118 29 0.467 188 02 0.467 142 12
1 0.443 171 73 0.444 232 38 0.442 677 02
2 0.444 028 86 0.445 088 99 0.443 552 25
3 0.443 992 05 0.445 052 21 0.443 515 98
4 0.443 993 86 0.445 054 02 0.443 517 69
5 0.443 993 77 0.445 053 93 0.443 517 60
6 0.443 993 77 0.445 053 94 0.443 517 61
7 0.443 993 77 - -

Table A.6: Table of loss for each noise case for measurement set 2. Trained on 500 samples. Empty sections means it converged

earlier.

MS 2 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.306 645 11 0.309 534 47 0.309 731 25
1 0.220 095 34 0.221 476 21 0.223 449 06
2 0.234 998 85 0.236 758 66 0.238 454 06
3 0.231 233 45 0.232 874 97 0.234 606 49
4 0.232 194 18 0.233 870 21 0.235 598 18
5 0.231 930 96 0.233 596 41 0.235 324 08
6 0.232 004 82 0.233 673 53 0.235 401 60
7 0.231 983 49 0.233 651 17 0.235 379 04
8 0.231 989 79 0.233 657 80 0.235 385 75
9 0.231 987 89 0.233 655 79 0.235 383 71
10 0.231 988 47 0.233 656 41 0.235 384 34
11 0.231 988 29 0.233 656 22 0.235 384 14
12 0.231 988 35 0.233 656 28 0.235 384 20
13 0.231 988 33 0.233 656 26 0.235 384 18
14 0.231 988 33 0.233 656 27 0.235 384 19
15 0.231 988 33 0.233 656 26 0.235 384 19
16 0.231 988 33 0.233 656 26 0.235 384 19
17 0.231 988 33 0.233 656 26 0.235 384 19
18 - - 0.235 384 19

31 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
A ALL DATA A.1 Noise cases

Thomas Edvardsen
TKP4580

Table A.7: Table of loss for each noise case for measurement set 3. Trained on 500 samples.

MS 3 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.315 881 16 0.323 639 56 0.321 830 29
1 0.236 753 16 0.242 948 59 0.238 896 90
2 0.248 362 13 0.254 708 36 0.251 202 53
3 0.246 226 99 0.252 563 71 0.248 952 21
4 0.246 644 07 0.252 979 50 0.249 385 22
5 0.246 555 21 0.252 891 60 0.249 294 94
6 0.246 575 26 0.252 911 29 0.249 314 85
7 0.246 570 51 0.252 906 66 0.249 310 23
8 0.246 571 68 0.252 907 79 0.249 311 35
9 0.246 571 38 0.252 907 51 0.249 311 07
10 0.246 571 46 0.252 907 58 0.249 311 14
11 0.246 571 44 0.252 907 56 0.249 311 12
12 0.246 571 44 0.252 907 56 0.249 311 13
13 0.246 571 44 0.252 907 56 0.249 311 12
14 0.246 571 44 0.252 907 56 0.249 311 12

Table A.8: Table of loss for each noise case for measurement set 4. Trained on 500 samples.

MS 4 Loss (RMSE)
Iteration 1. No Noise 2. Test Noise 3. Train&Test

0 0.325 895 35 0.328 418 53 0.326 000 07
1 0.431 559 37 0.434 641 19 0.432 815 80
2 0.452 267 95 0.455 418 71 0.454 053 32
3 0.456 193 95 0.459 353 59 0.458 139 62
4 0.456 954 16 0.460 115 16 0.458 942 83
5 0.457 105 53 0.460 266 79 0.459 105 17
6 0.457 136 46 0.460 297 80 0.459 138 84
7 0.457 142 93 0.460 304 28 0.459 145 99
8 0.457 144 31 0.460 305 66 0.459 147 53
9 0.457 144 60 0.460 305 96 0.459 147 87
10 0.457 144 67 0.460 306 03 0.459 147 94
11 0.457 144 68 0.460 306 04 0.459 147 96

32 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE

Thomas Edvardsen
TKP4580

B Code

This part is divided into several files, and for practical purposed, it may be more convenient to have a look

at the files directly.

B.1 g process.py

This is the main GPy implementation, which deals with training and prediction.
import time
from multiprocessing import Process, Queue

import GPy
from sklearn.preprocessing import MinMaxScaler
import numpy as np

def predict all(m: GPy.models.GPCoregionalizedRegression, X):
ny = len(np.unique(m.output index))
y = []
covy = []
Xaug = np.hstack((X, 0.0 ∗ np.ones like(X[:, 0:1])))
for iy in range(ny):

Xaug[:, −1:] = iy
y i, covy i = m.predict(Xaug, Y metadata={’output index’: Xaug[:, −1:].astype(int)})
y.append(y i)
covy.append(covy i)

return np.hstack(y), np.hstack(covy)

class GPModel(Process):
def init (self):

super(GPModel, self). init ()
self.train queue = Queue()
self.test queue = Queue()
self.output = Queue()

self.norm x = None
self.norm y = None
self.normalize y = False
self.m = None

def run(self) −> None:

X train, Y train, num restarts, normalize y = self.train queue.get()

self.norm x = MinMaxScaler((0, 1))
X train = self.norm x.fit transform(X train)

self.normalize y = normalize y
if self.normalize y:

self.norm y = MinMaxScaler((0, 1))
Y train = self.norm y.fit transform(Y train)
print(norm y.min)
print(norm y.scale)
print(norm y.feature range)

Y train = np.array(list(zip(∗Y train)))
Y train = np.array([i[:, None] for i in Y train])

K = GPy.kern.RBF(input dim=X train.shape[1])
icm = GPy.util.multioutput.ICM(input dim=X train.shape[1], num outputs=Y train.shape[1], kernel=K)
np.random.seed(2311)
self.m = GPy.models.GPCoregionalizedRegression([X train, X train], Y train, kernel=icm)

33 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.1 g process.py

Thomas Edvardsen
TKP4580

if num restarts:
self.m.optimize restarts(messages=True, num restarts=num restarts)

self.output.put(None)
while True:

X test = self.test queue.get()

if X test is None:
return

X test = self.norm x.transform(X test)

u predicted, u covariance = predict all(self.m, X test)

if self.normalize y:
u predicted = self.norm y.inverse transform(u predicted)
u covariance /= self.norm y.scale ∗∗ 2

self.output.put((u predicted, u covariance, str(self.m)))

def train(self, X train, Y train, num restarts=0, normalize y=False):
self.train queue.put((X train, Y train, num restarts, normalize y))
return self.output.get()

def test(self, X test):
self.test queue.put(X test)
return self.output.get()

def exit(self):
self.test queue.put(None)

34 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.2 u optim gp.py

Thomas Edvardsen
TKP4580

B.2 u optim gp.py
import pprint
from copy import deepcopy

from optimal u.hex3 gen u optim import load data
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import hex3 chen old as hex3 chen
from g process import GPModel

meas sets = {
1: [’T0’, ’T1’, ’T2’, ’T3’, ’Th1’, ’Th2’, ’Th3’],
2: [’T0’, ’Th1’, ’Th2’, ’Th3’, ’The1’, ’The2’, ’The3’],
3: [’T0’, ’T’, ’The1’, ’The2’, ’The3’, ’w0’, ’wh1’, ’wh2’, ’wh3’],
4: [’T0’, ’T’, ’Th1’, ’Th2’, ’Th3’, ’alpha1’, ’alpha2’]

}

def generate meas set data(mset, u, d):
global meas sets

d = d.to dict(’records’)

if isinstance(u, pd.DataFrame):
u = np.array(list(zip(u[’ur0’], u[’ur1’])))

results = []

for idx, (u , d) in enumerate(zip(u, d)):
print(u)
print(d)
result = hex3 chen.output meas(mset, u , d)
if not result[’success’]:

print(’Failed, small step in u’)
print(u)

res dict = {}
for idx, key in enumerate(meas sets[mset]):

res dict[key] = result[’y’][idx]
results.append(res dict)

return np.array(results, dtype=dict)

def preprocess(u: pd.DataFrame, d: [pd.DataFrame, np.ndarray], d order=None, u input=None, add noise=False):
Distubances
if isinstance(d, pd.DataFrame):

d = d.to dict(’records’)

Optimal u values

This is u chen
if isinstance(u, pd.DataFrame):

u u0 = u[’uc0’]
u u1 = u[’uc1’]

else:
u u0 = u[:, 0]
u u1 = u[:, 1]

X = []

Ensure keys keep order
if d order is None:

d order = list(d[0].keys())
Remove the heat loss. Otherwise, random noise will be applied to 0 values, degrades performance.
d order.remove(’h1’)
d order.remove(’h2’)

35 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.2 u optim gp.py

Thomas Edvardsen
TKP4580

d order.remove(’h3’)
d order.remove(’Ts’)

Random valve inputs
if isinstance(u input, pd.DataFrame):

u in0 = u input[’ur0’]
u in1 = u input[’ur1’]

elif isinstance(u input, np.ndarray):
u in0 = u input[:, 0]
u in1 = u input[:, 1]

else:
raise Exception(’This should not be reached’)
u in0 = u u0
u in1 = u u1

d keys = d order.copy()
toggle = ’alpha1’ in d keys

if toggle:
d keys.remove(’alpha1’)
d keys.remove(’alpha2’)

Inputs

np.random.seed(1)
for idx, (u0, u1, d row) in enumerate(zip(u in0, u in1, d)):

x = [∗([u0, u1] ∗ toggle), ∗[d row[k] + add noise ∗ np.random.normal(0, 1) for k in d keys]]
X.append(x)

X = np.array(X)
Optimal u values
Y = np.array(list(zip(u u0, u u1)))

return X, Y, d order

def plot prediction(output, target, train samples, noise, iters=0, MS=None):
Plotting

fig, ax = plt.subplots(ncols=2)
fig.suptitle(f”$u {{opt}}$ | Iter: {iters} | ”

f”Train samples: {train samples} {(’| MS: ’ + str(MS)) ∗ bool(MS)} | Noise: {noise}”)

ax[0].plot(output[:, 0], target[:, 0], ’b.’)
ax[0].plot([min(target[:, 0]), max(target[:, 0])], [min(target[:, 0]), max(target[:, 0])], ’k−−’)
ax[0].set xlabel(’Predicted u1’)
ax[0].set ylabel(’Real u1’)

ax[0].set xlim([np.min(U predicted−0.1), np.max(U predicted)])
ax[0].set ylim([np.min(U test−0.1), np.max(U test)])

ax[1].plot(output[:, 1], target[:, 1], ’b.’)
ax[1].plot([min(target[:, 1]), max(target[:, 1])], [min(target[:, 1]), max(target[:, 1])], ’k−−’)
ax[1].set xlabel(’Predicted u2’)
ax[1].set ylabel(’Real u2’)
ax[1].set xlim([np.min(U predicted−0.1), np.max(U predicted)])
ax[1].set ylim([np.min(U test−0.1), np.max(U test)])
plt.savefig(f’figs\\pred u {train samples} iter{iters}{(” MS” + str(MS)) ∗ bool(MS)} {noise}.eps’)
plt.close()

def get cost(output, target, params):
predicted cost = np.zeros(output.shape[0])
real cost = np.zeros(output.shape[0])

params d = params[’d’].to dict(’records’)
params J = params[’J chen’]
neg u = 0
large u = 0

36 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.2 u optim gp.py

Thomas Edvardsen
TKP4580

for idx, (u p, u real, param) in enumerate(zip(output, target, params d)):
print(params)
if (u p < 0).any():

neg u += 1

if (np.sum(u p) > 1).any():
large u += 1

try:
r = hex3 chen.cost(u p, deepcopy(param))
cost p = − r[’J’]

assert r[’success’]

cost r = params J.iloc[idx][’J chen’]

assert cost p > 0
assert cost r > 0

except AssertionError:
return predicted cost, real cost

predicted cost[idx] = cost p
real cost[idx] = cost r

print(’Negative u count’, neg u)
print(’sum U over 1:’, large u)

return predicted cost, real cost

def plot loss(predicted, target, title, fp):
real cost = test data[’J chen’].values
plt.plot(target, predicted, ’b.’)
plt.title(title)
plt.ylabel(’Predicted cost J’)
plt.xlabel(’Real cost J’)
plt.plot([min(target), max(target)], [min(target), max(target)], ’k−−’)
plt.savefig(f’figs\\{fp}.eps’)
plt.close()

def plot hist(predicted, target, title, fp):
histogram
abs value error = np.abs(predicted − target)
print(min(abs value error))
print(max(abs value error))
plt.title(title)
plt.hist(abs value error, bins=100)
plt.ylabel(’Number of error points’)
plt.xlabel(’Loss | Cost Function’)
plt.savefig(f’figs\\{fp}.eps’)
plt.close()

def load train test(train, test, meas set=None, closed loop=False, train noise=False, test noise=False, norm y=False):
if train noise and test noise:

noise = ’TrainTest’
elif test noise:

noise = ’Test’
elif train noise:

noise = ’Train’ # Not tested for
else:

noise = ’None’

test data = load data(test)
train data = load data(train)

if meas set is not None:

37 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.2 u optim gp.py

Thomas Edvardsen
TKP4580

global meas sets
d keys = meas sets[meas set]
print(’Solving measurment set data...’)
ur = train data[’u rand’]
uc = train data[’u chen’]
u1 = np.array(list(zip(ur[’ur0’], ur[’ur1’])))
u2 = np.array(list(zip(uc[’uc0’], uc[’uc1’])))
diff = u2 − u1
split = int(0.70 ∗ len(u1))
u3 = np.concatenate((u1[:split] + diff[:split] ∗ 0.98, u1[split:] + diff[split:] ∗ 0.5))
u3 = u1 + diff ∗ 0.95

tur = test data[’u rand’]
tuc = test data[’u chen’]
tu1 = np.array(list(zip(tur[’ur0’], tur[’ur1’])))
tu2 = np.array(list(zip(tuc[’uc0’], tuc[’uc1’])))
diff = tu2 − tu1
tu3 = tu1 + diff ∗ 0.95
u = np.concatenate([u1[:−(len(u1)∗40) // 100], u2[−(len(u1)∗40) // 100:]])
test u input = tu3

disturbances train = generate meas set data(meas set, u3, train data[’d’])
disturbances test = generate meas set data(meas set, test u input, test data[’d’])

else:
d keys = None
disturbances train = train data[’d’]
disturbances test = test data[’d’]
Not used, dummy variable
test u input = test data[’u rand’]
u3 = train data[’u rand’]

X train, U train, key order = preprocess(train data[’u chen’], disturbances train, d order=d keys,
u input=u3, add noise=train noise)

X test, U test, = preprocess(test data[’u chen’], disturbances test, key order, u input=test u input,
add noise=test noise)

Hyperparameter
num restarts = 1

mpr = GPModel()
mpr.start()
mpr.train(X train, U train, num restarts, norm y)
result = mpr.test(X test)

U predicted, U covariance, m = result

target = U test

plot prediction(U predicted, U test, len(X train), noise, iters=0, MS=meas set)

iter u = [U predicted]

predicted cost, real cost = get cost(U predicted, target, test data)

losses = get errors(predicted cost, real cost)
pred error = [get errors(U predicted, target)[’RMSE’]]
RMSE loss iter = [losses[’RMSE’]]

if closed loop and meas set is not None:
i = 1
while True:

disturbances test = generate meas set data(meas set, U predicted, test data[’d’])

X test, , = preprocess(test data[’u chen’], disturbances test, key order, U predicted,
add noise=test noise)

U predicted, U covariance, regression info = mpr.test(X test)

predicted cost, real cost = get cost(U predicted, target, test data)

38 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.2 u optim gp.py

Thomas Edvardsen
TKP4580

pred error.append(get errors(U predicted, target)[’RMSE’])
losses = get errors(predicted cost, real cost)
RMSE loss iter.append(losses[’RMSE’])

iter u.append(U predicted)
print(RMSE loss iter)
if (np.abs(iter u[−1] − iter u[−2]) < 1e−8).all():

break
elif i == 19:

print(’Failed to converge’)
break

i += 1

plot prediction(U predicted, U test, len(X train), iters=i, MS=meas set)
plot prediction(U predicted, U test, len(X train), noise, iters=i, MS=meas set)

losses = get errors(U predicted, target, U covariance)

MS = meas set
if MS is not None:

plt.plot(list(range(len(iter u))), RMSE loss iter)
plt.title(f”ML Loss per iter | $u {{opt}}$ | ”

f”Train samples: {len(X train)} {(’| MS: ’ + str(meas set)) ∗ bool(meas set)} | Noise: {noise}”)
plt.ylabel(’Loss − RMSE’)
plt.xlabel(’Iteration’)
plt.savefig(f’figs\\iter loss {len(X train)} {(”MS” + str(MS)) ∗ bool(MS)} {noise}.eps’)
plt.close()

print(∗[u[0] for u in iter u])
for i in [∗[u[:5] for u in iter u]]:
print(i)
print(U test[:5])
print(’−’ ∗ 20)
title = f”Loss | $u {{opt}}$ | Train samples: {len(X train)} ” \

f”{(’| MS: ’ + str(meas set)) ∗ bool(meas set)} | Noise: {noise}”
fp = f’loss {len(X train)}{(” MS” + str(MS)) ∗ bool(MS)} {noise}’
plot loss(predicted cost, real cost, title, fp)

title = f”Histogram loss | $u {{opt}}$ | Train samples: {len(X train)} ” \
f”{(’| MS: ’ + str(meas set)) ∗ bool(meas set)} | Noise: {noise}”

fp = f’histloss {len(X train)}{(” MS” + str(MS)) ∗ bool(MS)} {noise}’
plot hist(predicted cost, real cost, title, fp)
print(’Pred max’, np.max(U predicted))
print(’Pred min’, np.min(U predicted))

fp = f’data\\uopt {len(X train)}{(” MS” + str(MS)) ∗ bool(MS)} {noise}.csv’
np.savetxt(fp, np.array(iter u)[−1], delimiter=”,”)

fp = f’data\\loss {len(X train)}{(” MS” + str(MS)) ∗ bool(MS)} {noise}.csv’
np.savetxt(fp, np.array(RMSE loss iter), delimiter=”,”)

mpr.exit()
return losses, RMSE loss iter

def get errors(predicted, target, cov=None):
Errors
avg dev = np.sum((predicted − target) ∗∗ 2) / len(target)
avg dev norm = np.sum(((predicted − target) / target) ∗∗ 2) / len(target)

errors = {’MSE’: avg dev, ’WMSE’: avg dev norm, ’RMSE’: np.sqrt(avg dev)}

if cov is not None:
avg dev cov = np.sum((predicted − target) ∗∗ 2 / cov) / len(target)
errors[’CMSE’] = avg dev cov

return errors

39 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.2 u optim gp.py

Thomas Edvardsen
TKP4580

if name == ’ main ’:
samples = [500, 2500]

Uncomment this to show plots
plt.savefig = lambda x: plt.show()

uncommenth these two lines to save images as png
savefig = plt.savefig
plt.savefig = lambda x: savefig(x.replace(’figs’, ’imgs’).replace(’eps’, ’png’))

Default saves as .eps files.

test = ’.\\datasets\\test u prediction2500.csv’
import os

if not os.path.isdir(’results’):
os.mkdir(’results’)

Black box
pp = pprint.PrettyPrinter(indent=4)
RESULTS = {}
for MS in [1, 2, 3, 4]:

RESULTS[MS] = {}
for sample in samples:

RESULTS[MS][sample] = {}
train = f’.\\datasets\\train u prediction{sample}.csv’

noise label = ’No measurment noise’
error, loss = load train test(train, test, meas set=MS, closed loop=True, train noise=False,

test noise=False)
RESULTS[MS][sample][noise label] = {’errors’: error, ’RMSE Loss’: loss}

for train noise, noise label in zip([True, False], [’With train noise’, ’without train noise’]):
error, loss = load train test(train, test, meas set=MS, closed loop=True, train noise=train noise,

test noise=True)
RESULTS[MS][sample][noise label] = {’errors’: error, ’RMSE Loss’: loss,

}
pp.pprint(RESULTS)

pp.pprint(RESULTS)

train = f’.\\datasets\\train u prediction{500}.csv’
error, loss = load train test(train, test, meas set=None, closed loop=False, train noise=False,

test noise=False)
RESULTS[0] = {}
RESULTS[0][500] = {}

RESULTS[0][500][’No measurment noise’] = {’errors’: error, ’RMSE Loss’: loss}

for train noise, noise label in zip([True, False], [’With train noise’, ’without train noise’]):
error, loss = load train test(train, test, meas set=None, closed loop=False, train noise=train noise,

test noise=True)
RESULTS[0][500][noise label] = {’errors’: error, ’RMSE Loss’: loss}

pp.pprint(RESULTS)

Code for comparing normalization on output.
RESULTS[2] = {}
RESULTS[2][2500] = {}
train = f’.\\datasets\\train u prediction{2500}.csv’
for train noise, noise label in zip([True, False], [’normed y’, ’not normed y’]):
error, loss, other = load train test(train, test, meas set=2, closed loop=True, train noise=True,
test noise=True, norm y=train noise)
RESULTS[2][2500][noise label] = {’errors’: error, ’MSE Loss’: loss}
pp.pprint(RESULTS)

40 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.3 hex3 gen u optim.py

Thomas Edvardsen
TKP4580

B.3 hex3 gen u optim.py
import numpy as np
import hex3 old as hex3
import hex3 chen old as hex3 chen
import copy
import pandas as pd

def gen dataset(N, ttratio=1.0):
Smith, Noah A., and Roy W. Tromble. ”Sampling uniformly from the unit simplex.” Johns Hopkins University, Tech.

↪→ Rep 29 (2004).
dim = 3
x = np.sort(np.random.rand(dim − 1, N ∗ 10), axis=0)
x = np.concatenate([np.zeros((1, N ∗ 10)), x, np.ones((1, N ∗ 10))], axis=0)
alpha = x[1:] − x[:−1]

Checking uniformity
ax = plt.axes(projection=’3d’)
ax.plot(alpha[0], alpha[1], alpha[2] ,’b.’)
plt.show()

alpha = alpha[:−1]

parspan = {}
Defining disturbance box [center, variability]
parspan[’T0’] = [60, 10] # C
parspan[’w0’] = [105, 25] # kW/K
parspan[’wh1’] = [40, 10] # kW/K
parspan[’wh2’] = [50, 10] # kW/K
parspan[’wh3’] = [30, 10] # kW/K
parspan[’Th1’] = [150, 30] # C
parspan[’Th2’] = [150, 30] # C
parspan[’Th3’] = [150, 30] # C
parspan[’UA1’] = [65, 15] # kW/K
parspan[’UA2’] = [80, 10] # kW/K
parspan[’UA3’] = [95, 15] # kW/K

Copied from transfer learning
parspan[’Ts’] = [0, 0] # C
parspan[’h1’] = [0, 0] # kW/K
parspan[’h2’] = [0, 0] # kW/K
parspan[’h3’] = [0, 0] # kW/K

randmatrix = np.random.rand(len(parspan), N ∗ 10)
parvec = {}
for i, parname in enumerate(parspan.keys()):

parvec[parname] = parspan[parname][0] + ttratio ∗ (2 ∗ randmatrix[i] − 1) ∗ (parspan[parname][−1])

par0 = [{key: value[i] for key, value in parvec.items()} for i in range(N ∗ 10)]

Generating measurements, priors and targets
u span = []
u rand span = []
u span chen = []
d span = []
J span = []
J span chen = []

errors = 0
finished = 0
i = 0
while finished < N:

params = par0[i]

if any(alpha[:, i] < 0.08) or sum(alpha[:, i] > 0.92):
errors += 1
i += 1

41 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.3 hex3 gen u optim.py

Thomas Edvardsen
TKP4580

print(’Too low or high alphas: ’, errors)
continue

u chen = hex3 chen.optim(copy.deepcopy(params))
u = hex3.optim(copy.deepcopy(params))
Calculate optimal output temp from optimal u
if not u chen[’success’] or not u[’success’]:

errors += 1
i += 1
print(’Bad u opt, errors: ’, errors)
continue

cost = hex3.cost(u[’u’], copy.deepcopy(params))
cost chen = hex3 chen.cost(u chen[’u’], copy.deepcopy(params))

if not cost[’success’] or not cost chen[’success’]:
errors += 1
i += 1
print(’Bad hex cost solved, errors: ’, errors)
continue

else:
print(’Success solutions: ’, finished + 1)
i += 1
finished += 1

print(cost)
Save values
u span.append(np.array(u[’u’]))
u rand span.append(alpha[:, i])
u span chen.append(np.array(u chen[’u’]))
d span.append(params)
J span.append(−cost[’J’][0])
J span chen.append(−cost chen[’J’][0])

For Scipy Implemntation (NOT USED)
params = par0[i]
#
u = hex3 chen.optim(copy.deepcopy(params))
Calculate optimal output temp from optimal u
if not u[’success’]:
errors += 1
i+=1
print(’Bad u opt, errors: ’, errors)
continue
cost = hex3.cost(u[’u’], copy.deepcopy(params))
cost chen = hex3 chen.cost(u[’u’], copy.deepcopy(params))
gradient chen = hex3 chen.grad(u, copy.deepcopy(params))
grad = hex3.grad(u, copy.deepcopy(params))[’grad’]
#
if not cost[’success’]:
errors += 1
i+=1
print(’Bad hex cost solved, errors: ’, errors)
continue
elif not cost chen[’success’]:
errors += 1
i += 1
print(’Bad hex chen cost solved, errors: ’, errors)
continue
else:
print(’Success solutions: ’, finished)
i += 1
finished += 1

Save values
u span.append(np.array(u[’u’]))
d span.append(params)
J span.append(−cost[’J’])

42 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.3 hex3 gen u optim.py

Thomas Edvardsen
TKP4580

J span chen.append(−cost chen[’J’])

u span = np.array(u span)
u rand span = np.array(u rand span)
u span chen = np.array(u span chen)
d span = np.array(d span, dtype=dict)
J span = np.array(J span)
J span chen = np.array(J span chen)

return u span, u span chen, u rand span, d span, J span, J span chen

def save data(name, u span, u span chen, u rand span, d span, J span, J span chen):
u headers = [f’u{i}’ for i in range(u span.shape[1])]
u chen headers = [f’uc{i}’ for i in range(u span chen.shape[1])]
u rand headers = [f’ur{i}’ for i in range(u rand span.shape[1])]
J header = ’J’
J chen header = ’J chen’

u span pd = pd.DataFrame.from dict({key: val for key, val in zip(u headers, u span.T)})
u span chen pd = pd.DataFrame.from dict({key: val for key, val in zip(u chen headers, u span chen.T)})
u rand span pd = pd.DataFrame.from dict({key: val for key, val in zip(u rand headers, u rand span.T)})
J span pd = pd.DataFrame.from dict({J header: J span})
print(J span)
print(J span chen)
J span chen pd = pd.DataFrame.from dict({J chen header: J span chen})
d span pd = pd.DataFrame.from records(d span)

frames = pd.concat([u span pd, u span chen pd, u rand span pd, d span pd, J span pd, J span chen pd], axis=1)

frames.to csv(name, index=False)

def load data(name):
frames = pd.read csv(name)
data = dict(u=frames.iloc[:, :2],

u chen=frames.iloc[:, 2:4],
u rand=frames.iloc[:, 4:6],
d=frames.iloc[:, 6:−2],
J=frames.iloc[:, −2:−1],
J chen=frames.iloc[:, −1:])

return data

if name == ’ main ’:

training sets
for samples in [100, 500, 1000, 2500, 6000]:

print(’Generating training data....’)

np.random.seed(2030)
u span, u span chen, u rand span, d span, J span, J span chen = gen dataset(samples, 1)
save data(f’.\\datasets\\train u prediction{samples}.csv’, u span, u span chen, u rand span, d span, J span,

↪→ J span chen)
print(’Done’)

Test set
print(’Generating test data....’)
np.random.seed(2028)
samples = 2500
u span, u span chen, u rand span, d span, J span, J span chen = gen dataset(samples, 1.2)
save data(f’.\\datasets\\test u prediction{samples}.csv’, u span, u span chen, u rand span, d span, J span, J span chen)
print(’Done’)

43 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.4 hex3 chen old.py

Thomas Edvardsen
TKP4580

B.4 hex3 chen old.py
from casadi import ∗
import numpy as np

nlpopts = {’ipopt’: {’print level’:0}, ’print time’:False};
x vars = [’alpha3’,’T’,’Tstar1’,’Tstar2’,’Tstar3’,’The1’,’The2’,’The3’,’Q1’,’Q2’,’Q3’,’Qloss1’,’Qloss2’,’Qloss3’,’T1’,’T2’,’T3’];
u vars = [’alpha1’,’alpha2’]

meas sets = {
1: [’T0’, ’T1’, ’T2’, ’T3’, ’Th1’, ’Th2’, ’Th3’],
2: [’T0’, ’Th1’, ’Th2’, ’Th3’, ’The1’, ’The2’, ’The3’],
3: [’T0’, ’T’, ’The1’, ’The2’, ’The3’, ’w0’, ’wh1’, ’wh2’, ’wh3’],
4: [’T0’, ’T’, ’Th1’, ’Th2’, ’Th3’, ’alpha1’, ’alpha2’]

}

Ti max = 1500

def model(par):
T = SX.sym(’T’);
Tstar1 = SX.sym(’Tstar1’);
Tstar2 = SX.sym(’Tstar2’);
Tstar3 = SX.sym(’Tstar3’);
The1 = SX.sym(’The1’);
The2 = SX.sym(’The2’);
The3 = SX.sym(’The3’);
Q1 = SX.sym(’Q1’);
Q2 = SX.sym(’Q2’);
Q3 = SX.sym(’Q3’);
Qloss1 = SX.sym(’Qloss1’);
Qloss2 = SX.sym(’Qloss2’);
Qloss3 = SX.sym(’Qloss3’);
T1 = SX.sym(’T1’);
T2 = SX.sym(’T2’);
T3 = SX.sym(’T3’);
alpha1 = SX.sym(’alpha1’);
alpha2 = SX.sym(’alpha2’);
alpha3 = SX.sym(’alpha3’);

T0 = par[’T0’];
w0 = par[’w0’];
Th1 = par[’Th1’];
Th2 = par[’Th2’];
Th3 = par[’Th3’];
wh1 = par[’wh1’];
wh2 = par[’wh2’];
wh3 = par[’wh3’];
UA1 = par[’UA1’];
UA2 = par[’UA2’];
UA3 = par[’UA3’];

Ts = par[’Ts’];
h1 = par[’h1’];
h2 = par[’h2’];
h3 = par[’h3’];

dTlm1 = ((Th1 − Tstar1) ∗ (The1 − T0) ∗ ((Th1 − Tstar1) + (The1 − T0))/2)∗∗(1/3);
dTlm2 = ((Th2 − Tstar2) ∗ (The2 − T0) ∗ ((Th2 − Tstar2) + (The2 − T0))/2)∗∗(1/3);
dTlm3 = ((Th3 − Tstar3) ∗ (The3 − T0) ∗ ((Th3 − Tstar3) + (The3 − T0))/2)∗∗(1/3);

f0 = − T + alpha1∗T1 + alpha2∗T2 + alpha3∗T3;
f01 = alpha1 + alpha2 + alpha3 − 1;
f11 = − Q1 + w0∗alpha1∗(Tstar1 − T0);
f12 = − Q2 + w0∗alpha2∗(Tstar2 − T0);
f13 = − Q3 + w0∗alpha3∗(Tstar3 − T0);
f21 = − Q1 + UA1∗dTlm1;
f22 = − Q2 + UA2∗dTlm2;
f23 = − Q3 + UA3∗dTlm3;

44 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.4 hex3 chen old.py

Thomas Edvardsen
TKP4580

f31 = − Q1 + wh1∗(Th1 − The1);
f32 = − Q2 + wh2∗(Th2 − The2);
f33 = − Q3 + wh3∗(Th3 − The3);
f41 = − Qloss1 + w0∗alpha1∗(T1 − Tstar1);
f42 = − Qloss2 + w0∗alpha2∗(T2 − Tstar2);
f43 = − Qloss3 + w0∗alpha3∗(T3 − Tstar3);
f51 = − Qloss1 + h1∗(Ts − T1);
f52 = − Qloss2 + h2∗(Ts − T2);
f53 = − Qloss3 + h3∗(Ts − T3);

x = vertcat(alpha3,T,Tstar1,Tstar2,Tstar3,The1,The2,The3,Q1,Q2,Q3,Qloss1,Qloss2,Qloss3,T1,T2,T3);
f = vertcat(f0,f01,f11,f12,f13,f21,f22,f23,f31,f32,f33,f41,f42,f43,f51,f52,f53);
u = vertcat(alpha1,alpha2);
J = −T;

return {’x’: x, ’u’: u, ’f’: f, ’J’: J}

def output(u, par, x0=None):

m = model(par);
nx = np.prod(m[’x’].shape);
nu = np.prod(m[’u’].shape);
nf = np.prod(m[’f’].shape);

if x0 is None:
x0 = np.array([0.33]∗(nu+1) + [(par[’T0’]+par[’Th1’])/2, (par[’T0’]+par[’Th2’])/2, (par[’T0’]+par[’Th3’])/2]∗2 + [

↪→ par[’T0’]] ∗ (nx − 2∗(nu+1) − 1))

nlp = {} # NLP declaration
nlp[’x’] = vertcat(m[’u’],m[’x’]) # decision vars
nlp[’f’] = m[’J’] # objective
nlp[’g’] = m[’f’] # constraints

Create solver instance
F = nlpsol(’F’,’ipopt’,nlp,nlpopts);

Solve the problem using a guess
lbx = np.array([∗u]+[0]∗(1)+[−inf]∗(nx−1)); # constraint on inputs and first state (last flow split)
ubx = np.array([∗u]+[1]∗(1)+[+inf]∗(nx−1)); # upper limit on splits is not necessary, but will automatically be satisfied

lbx[(nu+2):(nu+2+3∗2)] = par[’T0’]; # constraint on temperatures
ubx[(nu+2):(nu+2+3∗2)] = np.array([par[’Th1’], par[’Th2’], par[’Th3’], par[’Th1’], par[’Th2’], par[’Th3’]]); # constraint

↪→ on temperatures

r = F(x0=x0, lbg=np.zeros(nf), ubg=np.zeros(nf), lbx=lbx, ubx=ubx);

sol = r[’x’].full().reshape(−1)

return {’x’: sol[−nx:], ’success’: F.stats()[’success’]}

def cost(u,par):
m = model(par);
F = Function(’F’,[m[’x’], m[’u’]],[m[’J’]], [’x’,’u’], [’J’]);
out = output(u,par); #np.zeros(nx);
J = F(out[’x’], u);
return {’J’: J.full().reshape(−1), ’success’: out[’success’]};

def grad(u,par):
m = model(par);

F = Function(’F’,[m[’x’], m[’u’]],[m[’f’], m[’J’]], [’x’,’u’], [’f’,’J’]);
G = rootfinder(’G’,’newton’,F)
out = output(u,par); #np.zeros(nx);
Jufun = G.factory(’Ju’, [’x’,’u’], [’jac:J:u’]);

delta = 0;
Ju = Jufun(out[’x’]+delta, u).full().reshape(−1)

45 of 46

Optimization of Heat-Exchanger networks using Gaussian Processs Regression
B CODE B.4 hex3 chen old.py

Thomas Edvardsen
TKP4580

while not G.stats()[’success’]:
delta = delta∗10;
Ju = Jufun(xguess+delta, u).full().reshape(−1)
return {’grad’: Ju, ’success’: True};

def output meas(meas set, u, par):
meas vars = meas sets[meas set];
y = np.zeros((len(meas vars),));
out = output(u, par);
x = out[’x’];
for i, var in enumerate(meas vars):

if var in par:
y[i] = par[var];

elif var in u vars:
y[i] = u[u vars.index(var)];

elif var in x vars:
y[i] = x[x vars.index(var)];

else:
y[i] = np.nan;

return {’y’: y, ’success’: out[’success’]}

def optim(par, x0=None):

m = model(par);
nx = np.prod(m[’x’].shape);
nu = np.prod(m[’u’].shape);
nf = np.prod(m[’f’].shape);

nlp = {} # NLP declaration
nlp[’x’] = vertcat(m[’u’],m[’x’]) # decision vars
nlp[’f’] = m[’J’] # objective
nlp[’g’] = m[’f’] # constraints

Create solver instance
F = nlpsol(’F’,’ipopt’,nlp,nlpopts);

Tbackoff = 1;
Trand = 1;
alphabackoff = 1e−3;

if x0 is None:
x0 = np.zeros(nx+nu);
x0[:nu+1] = 1/(nu+1);
x0[(nu+2):(nu+2+3∗2)] = par[’T0’] + Tbackoff #+ Trand∗np.random.rand(3∗2); # [Tstar1,Tstar2,Tstar3,The1,

↪→ The2,The3]
x0 = np.array([0.33]∗(nu+1) + [(par[’T0’]+par[’Th1’])/2, (par[’T0’]+par[’Th2’])/2, (par[’T0’]+par[’Th3’])/2]∗2 + [

↪→ par[’T0’]] ∗ (nx − 2∗(nu+1) − 1))

Solve the problem using first guess

lbx = np.array([alphabackoff]∗(nu+1)+[−inf]∗(nx−1)); # constraint on inputs and first state (last flow split)
ubx = np.array([1]∗(nu+1)+[+inf]∗(nx−1)); # upper limit on splits is not necessary, but will automatically be satisfied

lbx[(nu+2):(nu+2+3∗2)] = par[’T0’]; # constraint on temperatures
ubx[(nu + 2):(nu + 2 + 3)] = np.array([min(Ti max, t) for t in [par[’Th1’], par[’Th2’], par[’Th3’]]]); # constraint on

↪→ temperatures
ubx[(nu + 2 + 3):(nu + 2 + 3 ∗ 2)] = np.array([par[’Th1’], par[’Th2’], par[’Th3’]]); # constraint on temperatures

r = F(x0=x0, lbg=np.zeros(nf), ubg=np.zeros(nf), lbx=lbx, ubx=ubx);

while not F.stats()[’success’]:
Trand = Trand + 1;
x0[(nu+2):(nu+2+3∗2)] = par[’T0’] + Tbackoff + Trand∗np.random.rand(3∗2);
r = F(x0=x0, lbg=np.zeros(nf), ubg=np.zeros(nf), lbx=lbx, ubx=ubx);

sol = r[’x’].full().reshape(−1)

return {’u’: sol[:nu], ’x’: sol[−nx:], ’success’: F.stats()[’success’]}

46 of 46

	Abstract
	Preface
	List of Figures
	List of Tables
	List of Symbols
	Table of Contents
	Introduction
	Scope of work

	Theory
	Heat-Exchanger Network
	Surrogate optimization
	Machine Learning
	Gaussian Processes
	Kernel
	Cost and Loss

	Implementation
	The "Real" Model
	The Gaussian Implementation
	Optimal Valve splits
	Closed loop
	Noise cases
	Measurement sets
	Normalization

	Results
	Optimal valve prediction
	Baseline
	Normalization on output
	Noise cases
	Number of datapoints

	Discussion
	Convergence
	Noise
	Further work

	Conclusions
	All Data
	Noise cases
	2500 Samples
	500 Samples

	Code
	g_process.py
	u_optim_gp.py
	hex3_gen_u_optim.py
	hex3_chen_old.py

