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new extremum after being disturbed. Thus, a new method is introduced in this project

to estimate the gradient using a local linear dynamic model, which is ARX model.

Hammerstein and Wiener models are used to describe the plant in a simple

way, and plants with different kinds of transfer functions are studied to implement the

dynamic extremum seeking control. Simulation results are tuned by trial and error

method, and several issues of this model are tried to be solved. The best simulation

results are compared to results obtained by the classical extremum seeking control,

validating the performance of the dynamic extremum seeking control.

This project is greatly interesting since not only it is deeply related to the Ad-

vanced process control course but also the implementation of the ARX model for gra-

dient estimation makes a clear improvement on the extremum seeking control. I would

like to appreciate my supervisor, Sigurd Skogestad, and co-supervisor, Dinesh Krish-

namoorthy, for offering me the opportunity to do this project. I am grateful for sharing
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1 Introduction

In oil production, gas lift on oil wells is one of the most popular techniques in

artificial lift methods to improve oil production rate[1]. In specific, gas is compressed

first and injected into the tubing. Due to the fact that gas mixture has a lower density

than the fluid density, this newly formed multi-phase flow by gas lift decreases down-

hole pressure and consequently increases the oil production rate. A simple sketch of a

gas lift oil well is illustrated in Figure 1 [1].

Figure 1: A gas lift oil well

However, excessive gas injection has a counter-active effect on oil production

rate. This is because increasing the gas injection rate produces more frictional pressure

drop[2]. This leads to the relationship between the gas injection rate and the production

rate having a maximum point, so-called an "extremum". Aliev et al.[3] published

their study on mathematical modeling of gas lift process, and the dependence of oil

production rate on the gas injection rate is clearly shown in Figure 2[3].
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Figure 2: The dependence of oil production rate on the gas injection rate

With this background, this kind of problem where the input-to-output relation-

ship has an extremum and keeping the output around the maximum value is the main

issue is called extremum seeking which is a model-free real-time optimization method

firstly developed in 1922[5]. Extremum seeking controller has developed towards faster

and exact convergence with sufficient stability[2][5][6][7].

A classic extremum seeking controller optimizes the steady state gradient in real

time using a locally linear static model. The main drawback is that using transient

measurements for the estimation of steady-state gradient. For accurate steady-state

gradient estimation, the process has to settle down to steady state before it can be

used. Almost all extremum seeking algorithm today assume a local linear static model

to estimate the steady state gradient around the current operating time which makes

the convergence to the optimum very slow. This issue is the motivation to start this

project to figure out a new algorithm to make faster convergence in the extremum

seeking controller.

The main idea to achieve the objective is using a local linear dynamic model to

estimate the steady state gradient providing a faster update of the estimated gradient
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instead of a local linear static model. Among diverse dynamic models, ARX model is

introduced and it is named as a "Dynamic extremum seeking controller".

Plant models with the first-order and second-order transfer functions are used

to see how the implemented ARX model works. For each of them, a large number of

simulations are performed with different tuning parameters such as a controller gain,

a window size of the input and output data vector for the gradient estimation, and a

perturbation wave frequency by the trial and error method.

In the simulation of dynamic extremum seeking algorithm, one problem hap-

pened in the second-order transfer function system that the estimated steady-state

gradient does not follow the true gradient. This is solved by introducing a PRBS per-

turbation wave instead of a sinusoidal wave. The other problem is numerical spikes

problem which is resulted from the ARX model since the change in the output is so

small near the extremum that the ARX model has problems on estimating parameters

making numerical errors. This is solved by combining the ARX model and the least

square method.

Comparing the simulation results of the dynamic extremum seeking controller

obtained after solving the problems with the classic extremum seeking controller vali-

dates the successful performance of the dynamic ESC as expected.

Additionally, several future works are suggested at the end of this project. The

first work is introducing a disturbance on the tuned systems and monitoring the per-

formance of the dynamic extremum seeking controller. The second work is the imple-

mentation of plant system to a more realistic case study. The last try is replacing a

simple integral controller with a model predictive controller(MPC) in a multi-variable

system.
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2 Theory

2.1 Classic extremum seeking controller

The concept of extremum seeking controller(ESC) was emerged in 1922 by

Leblanc who introduced the adaptive control method for the first time[5]. In 2000,

Krstic and Wang[5] well provided "the first rigorous proof of stability for an extremum

seeking feedback scheme" and the ESC obtained a lot of popularity after that[6]. These

days, the ESC using gradient estimation is one of the most popular approaches. In

specific, the classic ESC suggested by Krstic and Wang[5] optimizes the steady state

performance of the output in real time by adding an external dither signal on the input.

Figure 3 shows the basic structure of the classic ESC process which is a gradient-

based model in a discrete time setting with a sampling time Ts[6]. Overall, the process

includes a non-linear plant model, high pass filter(HPF), low pass filter(LPF), gradient

estimation unit, integral controller(C(s)) and a sinusoidal signal(asinωt). The main

procedure to find the extremum is estimating the gradient based on y values for each

step, and using a controller(integral controller in this case) with a set-point of zero.

Figure 3: Classic ESC scheme implemented in discrete time
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In terms of the plant model block, it consists of two parts, yss = f(uk) having a

static non-linearity and a linear dynamic system G(s)[5]. This kind of plant model is

called Hammerstein and Wiener models[4] as shown in Figure 4. The static gain of the

plant( δy
δu
) should be maintained to be constant in one of the two blocks.

Figure 4: Hammerstein and Wiener models

Equation (1) to (3) is provided by Krishnamoorthy et al.[6], explaining the high

pass filter, the low pass filter, and the estimated optimizing variable. When the output

y enters the high pass filter, signals with higher frequency than a cut-off time period

Th can only pass the filter removing a low-frequency part, which can also be explained

as the DC component of y is subtracted and yk is moved to have zero mean[5]. Then

asinωt is multiplied resulting in a signal having two sinusoidals, and it enters the low

pass filter with a cut-off time constant Tl where a DC component of the two sinusoidals

Ju comes out[5] which is an estimated gradient. Finally, the integral controller generates

an estimated input ûk and a new input is updated with sine perturbations.

zk =
Th

Ts + Th
[zk−1 + yk − yk−1] (1)

Ju = (1− Ts
Ts + Tl

)Ju,k−1 +
Ts

Ts + Tl
zkαsin(ωt) (2)
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ûk = uk−1 + TsKiJu (3)

In terms of a relationship between frequencies, the dither frequency ω should

be positioned between the high and low pass filter frequencies. Thus, the dither time

constant(TD) is located between the time constants for the two filters, Th and Tl.

However, there are some drawbacks in the classic ESC[6]. The first disadvantage

in the classic ESC is its slow transients to the new optimum after being disturbed. This

slow dynamic is due to the fact that the input(uk) and output(yk) data are dynamic

data but the classic ESC uses a local linear static model to estimate a steady state

gradient. Specifically, the local linear static model uses only a part data reached a

steady state and throws others away so that it cannot efficiently estimate a nonlinear

dynamic plant system. As already mentioned in the chapter 1, this is the motivation

to start this project. The second advantage it that the classic ESC loses its robustness

when there are disturbances with large amplitudes which changes frequently, which is

well modified by Krishnamoorthy et al.[6] by introducing a disturbance rejection block.

Even though various kinds of the ESC have been introduced such as using 1st-

order least-square method for gradient estimation[7], all of them has the same disad-

vantage caused from applying a static model to estimate a dynamic system.

Thus, introducing a dynamic model to estimate a nonlinear dynamic system in

the ESC will achieve much faster transients to the new optimum. This new approach

is named as a "Dynamic extremum seeking controller" or simply a dynamic ESC.
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2.2 Dynamic extremum seeking controller

Overall, the dynamic ESC is based on the same idea with the classic ESC that

the gradient is estimated first, and a controller updates a new input value which can

achieve the zero set-point for the gradient.

The main difference of the dynamic ESC from the classic ESC is the gradient

estimation method. In detail, the slow transient to a new optimum in the classic ESC

results from the gradient estimation part. As already mentioned in the chapter 2.1, the

data of uk and yk are dynamic but the classic ESC uses a static model. Based on this

fact, using a dynamic model instead of a static model is considered since it can handle

the input and output data more efficiently for the gradient estimation. To realize this

idea, a local linear time-invariant model is considered in the dynamic ESC which is

expected to achieve faster update of the estimated gradient.

Figure 5 illustrates a schematic control structure for the dynamic ESC. As the

classic ESC suggested by Krstic and Wang[5], Hammerstein and Wiener models are

used to describe a plant in a simple way. In terms of the perturbation, αsinωt is

applied firstly, however, it is replaced with a pseudo-random binary sequence wave in

second order system which will be explained in the chapter 3.2.

Figure 5: Dynamic ESC scheme using ARX method
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Algorithm 1 The dynamic ESC using ARX model
input: yk,uk

1: for k = 1→ n do

2: Low pass filter to remove noise

3: yfk ← GLPF (s)yk

4: ufk ← GLPF (s)uk

5: Moved to have a zero mean

6: y0 ← yfk − avg(yfk)

7: u0 ← ufk − avg(ufk)

8: Gradient estimation with the ARX model using data sets of y0 and u0

9: data← iddata(y0, u0, Ts)

10: [A(q) B(q)]← arx[data, [1, 1, 0]] for 1st-order systems

11: [A(q) B(q)]← arx[data, [2, 2, 0]] for 2nd-order systems

12: [Ad Bd Cd Dd]← idss[A(q) B(q)]

13: [A B C D]← d2c[Ad Bd Cd Dd]

14: Ju ← −CA−1B +D

15: Integral Controller

16: ûk ← uk +KiJu

17: Perturbation

18: uk+1 ← ûk + αsinωt

19: end for

A basic algorithm for the dynamic ESC is displayed in Algorithm 1 which is

describing the dynamic ESC procedures performed in Figure 5. Specifically, the input

and output values in the plant are filtered out by low pass filter and sets of data with

a window size(l) are built up. They pass the zero mean unit where the average value is

subtracted from the data sets and they are moved to have a zero mean. After that, the

ARX model estimates parameters in a dynamic discrete time system, and converting
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it into a dynamic continuous time state-space system gives A, B, C, and D matrices.

Based on the matrices, the steady state gradient is calculated.

Main advantages of the dynamic ESC are (1) it uses all dynamic data for gradient

estimation, (2) it is possible to estimate a controller gain and time constants in transfer

functions, (3) it is possible to obtain true gradient values rather than just the sign of

the gradient, and (4) it converges faster to a new extremum.

A deep understanding of the dynamic ESC requires some knowledge on the ARX

model which is the most important idea and basis for this project, which will be stated

in the chapter 2.3.

2.3 ARX model

Selecting models of dynamical systems is well identified by Ljung[9]. A basic

linear dynamic model with additive disturbance in discrete time system is specified as:

y(t) = G(q)u(t) +H(q)e(t) (4)

where

G(q) =
∞∑
k=1

g(k)q−k, and H(q) = 1 +
∞∑
k=1

h(k)q−k

In Equation (4), G(q) describes a relationship between the input u(t) and the

output y(t), and it is called the transfer function. The other termH(q)e(t) is an additive

term at the output comes from the disturbances where e(t) is white noise.

In a finite number of values, g(k) and h(k) can be considered as coefficients

which should be determined, and they can simply denoted by the vector θ. Thus the

model can be described as:
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y(t) = G(q, θ)u(t) +H(q, θ)e(t) (5)

ARX model is a family of transfer function models which parametrizing G(q, θ)

and H(q, θ). It starts with specifying the input and output relationship as a linear

difference equation:

y(t) + a1y(t− 1) + ...+ anay(t− na) = b1u(t− 1) + ...+ bnb
u(t− nb) + e(t) (6)

where

θ = [a1 a2 ... ana b1 b2 ... bnb
]T

Additionally, by introducing some terms:

A(q) = 1 + a1q
−1 + ...+ anaq

−na , and B(q) = b1q
−1 + ...+ bnb

q−nb

This makes it possible to represent G and H as rational functions:

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
(7)

The polynomial parameter(θ) estimation is performed by a least square method.

When the ARX model is estimated, the dynamic discrete-time system model can be

converted into the dynamic discrete state-space model and dynamic continuous time

state-space system in sequence, which enables to calculate the gradient easily from a

state space representation:

ẋ = Ax+Bu, and y = Cx+Du (8)

Where · is a notation for differentiation with respect to time.

Thus, the estimated gradient(Ĵu) can be calculated by:

dy

du
= −CA−1B +D (9)
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Based on this ARX model structure, how estimated A, B, C and D matrices in

Equation 8 are linked with variables in transfer functions will be explained, both for

the first and second-order transfer functions.

2.3.1 First-order transfer function

First-order ARX model is used for estimating a system containing a first-order

transfer function as Equation (10).

G(s) =
k

τs+ 1
(10)

And the corresponding ARX model is

y(t) + a1y(t− 1) = b1u(t− 1) + e(t) (11)

where

θ = [a1 b1]
T

Parameters a1 and b1 are the two estimated variables by the 1st order ARX

model, and it gives A, B, C, and D matrices, which are [1× 1] in this case.

In regards to the plant model structure, the static non-linearity function f(u)

gives an input yss for G(s). Thus, the relationship between y and yss can be stated in

Fourier domain as:

y = G(s) · yss =
1

τs+ 1
yss (12)

By a transformation from Fourier domain to time domain yields:
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τ ẏ + y = yss (13)

By rearrangement,

ẏ =
yss − y
τ

(14)

Put y = x,

ẋ =
yss − x
τ

= −1

τ
x+

k

τ
yss (15)

Equation (8) can be written as a matrix form:

[
ẋ

y

]
=

[
A B

C D

][
x

yss

]
(16)

and comparing Equation (16) with y = x and Equation (15) yields

[
A B

C D

]
=

[
− 1
τ

k
τ

1 0

]
(17)

In conclusion, the first-order ARX model estimates 2 parameters a1 and b1, or

the gain of the system k and time constants τ in its final analysis.

2.3.2 Second-order transfer function

Second-order ARX model is used for estimating a system containing a second-

order transfer function as Equation (18).

G(s) =
τas+ 1

(τ1s+ 1)(τ2s+ 1)
=

γs+ 1

αs2 + βs+ 1
(18)
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And the corresponding second-order ARX model is

y(t) + a1y(t− 1) + a2y(t− 2) = b1u(t− 1) + b2u(t− 2) + e(t) (19)

where

θ = [a1 a2 b1 b2]
T

Parameters a1, a2, b1, and b2 are the four estimated variables by the 2nd order

ARX model, and it gives A,B,C, and D matrices.

Similar with the 1st order transfer function, yss is the input for G(s). In Fourier

domain,

y = G(s) · yss =
γs+ 1

αs2 + βs+ 1
yss (20)

Equation (20) can be rearranged with respect to y
yss

, and z(s) is introduced for

simplifying a conversion to time domain,

y

yss
=

(γs+ 1)z(s)

(αs2 + βs+ 1)z(s)
(21)

Converting Equation (21) to time domain yields:

yss = αz + βż + z (22)

and

y = rż + z (23)

Put

x1 = ż, and x2 = z

where the relationship between ẋ2 and x1 becomes
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ẋ2 = x1 (24)

Then, a set of equations can be obtained by applying x1 and x2 in Equation (22)

and (23) as

yss = αẋ1 + βx1 + x2 (25)

y = γx1 + x2 (26)

Equation (25) can be rearranged in terms of ẋ1 as

ẋ1 = −
β

α
x1 −

1

α
x2 +

u

α
(27)

Meanwhile, Equation (15) can be written in a second-order matrix form as

x =

[
ẋ1

ẋ2

]
= A

[
x1

x2

]
+Byss =

[
a11 a12

a21 a22

][
x1

x2

]
+

[
b1

b2

]
yss (28)

y = C

[
x1

x2

]
+Dyss = c1x1 + c2x2 + dyss (29)

Thus, comparing Equation (24), (26), and (27) with Equation (28) and (29)

provides A,B,C, and D matrices as

A =

[
−β
α
− 1
α

1 0

]
=

[
− τ1+τ2

τ1·τ2 − 1
τ1·τ2

1 0

]
(30)

B =

[
1
α

0

]
=

[
1

τ1·τ2
0

]
(31)

C =
[
γ 1

]
=

[
τa 1

]
(32)
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D = 0 (33)

In conclusion, the second-order ARX model estimates 4 parameters a1, a2, b1,

and b2. At the same time, it can also be explained to estimate the system gain k and

time constants τa, τ1, and τ2 in its last analysis.

Therefore, from the analysis on the linkage between estimated variables and

parameters in transfer functions, the second advantage of the dynamic ESC, "it is

possible to estimate a controller gain and time constants in transfer functions", is well

explained.
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3 Simulation results of the dynamic ESC

As shown in Figure 2, the relationship between the oil production rate and the

gas injection rate can be simplified as a quadratic equation. This relationship represents

a static non-linear part of the plant in Figure 5, yss = f(u). Specifically, Equation (34)

can be used as a simple static non-linear quadratic system with unknown parameters

a, b, and c, which has an extremum at (u, yss) = (a, b) when the c is negative.

f(u) = c(u− a)2 + b = yss (34)

The constants in the Equation (34) are dependent not only on different wells but

also on operation situations and disturbances. In this project, the f(u) is not describing

a real system, and the constants are manually selected to have a clear maximum and

small values for the input and output. This is because when the values for u or y is

large, it requires too much computational time to converge. Using a simple model will

provide a clear and fast result and it will also help to develop the dynamic ESC model

faster. Thus, the a, b, and c are set to be 20, 40, and −0.1 respectively as Equation

(35).

f(u) = −0.1(u− 20)2 + 45 = yss (35)

Matlab is used as a simulation tool, and CasADI is used for differential equation

solver. The initial value for the input and output is set as (u, yss) = (15, 42.5) to obtain

results fast enough, and a sampling time of Ts = 1sec is used for all simulation cases.

Figure 6 shows an example of a simulation result. In y-axis, the output, input,

and gradient are plotted, and x-axis means number of iterations. The green solid lines of

u and y mean the input and output value containing noise. As explained in the chapter
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Figure 6: Schematic explanation for convergence iterations and transient iterations

2.2, the noise is filtered out by the low pass filter, providing uf and yf illustrated with

red dash-dot lines. The uf and yf data are moved to have a zero mean, and the steady-

state gradient is estimated which is plotted by a purple line. The blue dash lines yss

and Ju,ss means a steady state value or a true value of y and Ju calculated from the

Equation (35). The true values make it possible to check if the dynamic ESC algorithm

is working properly as intended or not.

Additionally, the window size or the data vector size for the gradient estimation

is indicated in the Figure 6 with red box meaning that the gradient estimation starts

after building up the data vectors with a chosen size. Since the data will be built

up continuously in real systems, one does not need to wait to build up data like this

situation. Thus, the pure iteration number needed to converge into a new optimum

should subtract the window size from the overall convergence iterations as the blue box

in Figure 6.
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When judging the point where the system converged into its extremum, the noise

filtered output value(yf ) is used. It is performed manually by zooming up the y figure.

In this chapter, monitoring if the dynamic ESC algorithm is working well is

the first focus. For this, plant processes with different dynamics are tested, especially

a first-order transfer function, a second-order transfer function without zero, and a

second-order transfer function with zero are applied adding more complexity.

After making the dynamic ESC algorithm in different plant models, controller

tuning is performed by a Trial and Error method. Detailed tuning procedures are

provided in Appendix A, and controller tuning for the classic ESC has also performed

in Appendix B to compare them in the chapter 4. In the main report part, only some

important simulation results are explained to prevent confusion. The tuning parameters

in this dynamic ESC are listed in Table 1 for different transfer function cases which are

tested one by one.

Table 1: Tuning parameters in the dynamic ESC

Tuning parameters

Case 1 · Integral controller gain (Ki)
G(s) = 1

174s+1
· Window size (l)
· Sine wave time constant (TD)

Case 2 · Integral controller gain (Ki)
G(s) = 1

(174s+1)(60s+1)
· Window size (l)

· PRBS calculation step*

Case 3 · Integral controller gain (Ki)
G(s) = 40s+1

(174s+1)(60s+1)
· Window size (l)

· PRBS calaculation step*

*it indicates a length of steps where the next binary sequence is generated.

The integral controller gain has the largest effect on the number of iterations

because larger controller gain gives faster control initially. The window size or data
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vector length has the second largest influence especially on the robustness, and the sine

wave frequency is adjusted lastly. The PRBS wave is applied later instead of the sine

wave in the second-order transfer function system for solving an issue, which will be

explained in the chapter 3.2.

3.1 Plant process with first-order transfer function

In this chapter, a simple first-order transfer function is used to describe the

dynamic of a plant. Equation (36) implies a typical first-order transfer function where

the gain is 1 because the system gain is already provided in the static non-linear part

f(u). For the time constant, it is set to be 174. As already mentioned in section 2.3,

the first-order ARX model is used to estimate parameters. The detailed tuning process

is provided in the Appendix A.1. The amplitude of the sinusoidal wave perturbation(α)

is fixed as 0.1 because it did not have a significant effect on the system.

G(s) =
1

τs+ 1
=

1

174s+ 1
(36)

Table 2 shows the simulation result with different tuning parameters for the

first-order system. One thing to consider in parameter tuning is that the window size

is set to be multiples of the dither time constant.
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Table 2: Simulation result of a dynamic ESC with a plant model containing first-order

transfer function.

Controller Dither time Window Convergence Transient True
No. gain(Ki) constant(TD) size (l) iterations iterations extremum

1 0.001 180 2 ∗ 180 7200 ↑ 7200 ↑ O
2 0.002 180 2 ∗ 180 7200 ↑ 7200 ↑ O
3 0.003 180 2 ∗ 180 4200 3840 O
4 0.004 180 2 ∗ 180 3000 2640 O
5 0.005 180 2 ∗ 180 2500 2140 O
6 0.006 180 2 ∗ 180 2000 1640 offset*
7 0.007 180 2 ∗ 180 1800 1440 offset*
8 0.008 180 2 ∗ 180 1700 1340 offset*
9 0.009 180 2 ∗ 180 1600 1240 offset*
10 0.005 30 1 ∗ 30 2400 2370 O
11 0.005 30 6 ∗ 30 2500 2380 O
12 0.005 30 10 ∗ 30 2800 2500 O
13 0.005 180 1 ∗ 180 2600 2420 O
14 0.005 180 2 ∗ 180 2500 2140 O
15 0.005 180 3 ∗ 180 2600 2060 O
16 0.005 180 4 ∗ 180 3100 2380 O
17 0.005 180 8 ∗ 180 − − X
18 0.005 4 ∗ 180 4 ∗ 180 3000 2280 O
29 0.005 4 ∗ 180 8 ∗ 180 − − X
* It converged to the optimum, but in the control input, there was a small offset

In specific, simulations number 1 − 9 are performed to check the effect of the

integral controller gain. A small controller gain requires a large number of iterations

while a large controller gain needs a small number of iterations. This tendency is

illustrated in Figure 7.

20



Figure 7: Simulation result for first-order system using a dynamic ESC: Ki varies

However, simulations number 6− 9 with controller gains of 0.006− 0.009 have a

small offset in the control input with a small magnitude. In detail, Figure 8 describes

a simulation number 5 when Ki = 0.005. In this case, it takes around 2500 iterations

overall to converge into the true extremum including the window size. Although nu-

merical spikes round 3000 iterations make the result deviate from the optimum, this

problem will be solved in chapter 4 later, and it is enough to focus on if the system

primarily reaches the extremum or not in this stage.

In Figure 9 with Ki = 0.006, the control input slightly passes the extremum

and converges to (20.5, 45). This does not make a serious problem in the estimation

of the output, however, this tendency becomes larger when a larger controller gain is

applied. Based on these observations, the controller gain is chosen to be 0.005 for the

next simulations.
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Figure 8: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 2 ∗ 180.
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Figure 9: Simulation result for first-order system using a dynamic ESC: Ki = 0.006,

TD = 180, and l = 2 ∗ 180.
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The window size can be figured out from simulations number 10 − 20, by com-

paring simulations where all other tuning parameters but the dither time constant are

same. In detail, simulation sets of (10,11,12), (13,14,15,16,17), and (17,18,19) in Table

2 can provide the effect of the window size on the result. From the iteration numbers in

Table 2, it can be concluded that there is no clear tendency depending on the window

size. However, in terms of robustness, small window sizes make noisy behavior trigger-

ing frequent numerical spikes while excessively large window sizes always make serious

deviations. This is well illustrated in Figure 10 and 11 which are the two extreme cases,

a simulation number 13 and 17 respectively.
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Figure 10: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 180.
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Figure 11: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 8 ∗ 180.

The influence of the dither time constant can be obtained by comparing simu-

lations number 11 with 13, or 16 with 18 where all other tuning parameters but the

dither time constant are same. From the transient iteration numbers in Table 2, it is

concluded that the dither time constant does not have a recognizable effect on the sys-

tem since they yield a more or less same number of transient iterations. Additionally,

it does not influence the robustness as well.

Based on the dynamic ESC tuning procedure, the simulation number 16 in Table

2 is concluded to be the best-optimized result, which is also shown in Figure 12.
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Figure 12: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 4 ∗ 180.

In Figure 12, it is clearly indicated that the estimated gradient Ju follows the

true gradient, verifying the fact that the dynamic ESC using ARX model is successfully

implemented as intended in the first-order transfer function system. It converges to the

true optimum around 3100 iterations overall, which means it takes 2380 iterations for

a transition.

However, numerical spikes problem happens occasionally as illustrated in Figure

8, 9, 10 and 11. Since it sometimes makes serious deviations especially when the

controller gain is too large, or when the window size is too small or large. These are

studied more in the Appendix A.1. In conclusion, this problem has to be solved for

providing a robustness on the dynamic ESC process which will be discussed in 4.
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3.2 Plant process with second-order transfer function

In this chapter, plant dynamic models with second-order transfer functions are

applied.

G(s) =
τas+ 1

(τ1s+ 1)(τ2s+ 1)
=

1

(174s+ 1)(60s+ 1)
(37)

G(s) =
τas+ 1

(τ1s+ 1)(τ2s+ 1)
=

40s+ 1

(174s+ 1)(60s+ 1)
(38)

Equation (37) and (38) are the second-order transfer functions used in this

project, which are second-order transfer function without zero(τa = 0) and with zero(τa =

40) respectively. To give a different dynamic from the first time constant of 174, the

second time constant is set to be 60. The two transfer functions be separately ex-

plained in subsection 3.2.1 and 3.2.2. The second-order ARX model is used to estimate

parameters.

In the second-order system, transfer function without zero is simulated first.

However, a problem arouses from the starting point that Ju does not follow the true

gradient. Figure 13 shows a simulation result where the integral controller is not active,

which is performed to check if the gradient estimation part works properly, and it

indicates that Ju is estimated as 0 while the true gradient is 1.
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Figure 13: Simulation result for second-order without zero system(τa = 0) using a dynamic

ESC: Ki = 0.

Based on the fact that there was no such a problem in the first-order system, an

approach for figuring out the cause of this matter comes from the difference between

the first and second-order system. Specifically, when we think of step responses for

different transfer functions, the dynamic in the second-order system has a secondary

time lag response as shown in Figure 14.
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Figure 14: Step responses of first and second-order transfer functions

The red dash-dot line is a step response to the second-order transfer function

without zero(τa = 0). With the figure below with zoomed-in in axis, it is shown that

there is almost no change in the response at the starting point due to the secondary time

lag response. Thus, sine waves with one frequency are discussed not to be sufficient

to obtain full information about y, so that the ARX model could not estimate the

gradient.
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To solve this problem, a pseudo-random binary sequence(PRBS) is introduced

instead of a simple sine wave and it becomes possible to make the estimated gradient

follow the true gradient. The PRBS generates a binary sequence with a length of N ,

which is set to be 1 in this project. Because the PRBS wave has a diverse range of

frequencies, it is more efficient to make the ARX model estimate four parameters in the

second-order system as well. Specifically, lines 17− 19 in Algorithm 1 can be replaced

with Algorithm 2 as stated below.

Algorithm 2 The dynamic ESC using ARX model in second-order system
...

1: Perturbation

2: prbs← idinput(1)

3: uk+1 ← ûk + prbs

Tuning parameters are similar to the first-order transfer function system, how-

ever, the only difference is determining how often to calculate the new PRBS instead

of determining the dither time constant.

3.2.1 The second-order transfer function without zero (τa = 0)

Table 3 shows the simulation results when tuning parameters vary. As almost

of all tendency depending on the tuning parameters are explained with simulation

plots in 3.1, only the best-tuned result will be illustrated. Detailed procedures for

determining the tuning parameters for this second-order transfer function without zero

can be obtained in Appendix A.2
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Table 3: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function without zero(τa = 0)

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.005 30 4 ∗ 180 2500 1780 O
2 0.005 60 4 ∗ 180 3000 2280 O
3 0.005 90 4 ∗ 180 3000 2280 O
4 0.005 180 4 ∗ 180 3000 2280 O
5 0.001 30 4 ∗ 180 10000 9280 O
6 0.002 30 4 ∗ 180 6000 5280 O
7 0.003 30 4 ∗ 180 4000 3280 O
8 0.004 30 4 ∗ 180 3000 2280 O
9 0.005 30 4 ∗ 180 2500 1780 O
10 0.006 30 4 ∗ 180 2400 1680 offset*
11 0.007 30 4 ∗ 180 2300 1580 offset*
12 0.008 30 4 ∗ 180 2200 1480 offset*
13 0.005 30 1 ∗ 180 1100 920 offset*
14 0.005 30 2 ∗ 180 1400 1040 O
15 0.005 30 3 ∗ 180 1600 1060 O
16 0.005 30 4 ∗ 180 2500 1780 O
17 0.005 30 5 ∗ 180 3000 2100 O
* It converged to the optimum, but in the control input, there was a small offset

In detail, simulation 1 − 4 are obtained with different PRBS calculation steps.

Overall, the PRBS tuning parameter does not have a huge influence on the iterations

needed to reach a new optimum. All the results converge to a right extremum at

the first time around 2500 − 3000 iterations, but numerical spikes always happen in

this second-order model making recognizable deviations. Recalculating the PRBS wave

every 30 step is chosen for next simulations.

Simulations number 5− 12 are performed to figure out the controller gain which
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gives fast and smooth convergence. Because the results converge to a point passing the

maximum with larger Ki value than 0.005, it is chosen for the best controller gain.

In terms of the window size, a small window size such as simulations 13,14 could

not properly estimate the gradient making noisy ARX model fitting. The increased

window size provides much better results while some numerical spikes lead them to

deviate later as well.

Based on the dynamic ESC tuning, the best-tuned result is obtained in a sim-

ulation number 9(or 16) when Ki = 0.005, PRBS=30, and l = 4 ∗ 180 which is shown

in Figure 15. Even though numerical spikes deviates the result from the maximum

point, Ju well follows the true gradient, so that fixing the numerical peaks will achieve

well-converging simulation result later in section 4.

Figure 15: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720
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3.2.2 Second-order transfer function with zero (τa = 40)

Similarly with the previous result, the simulation results in the second-order

transfer model with zero are suggested in Table 4. Detailed simulation plots and tuning

procedures are suggested in Appendix A.3

Table 4: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function with zero(τa = 40)

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.005 30 4 ∗ 180 3000 2280 O
2 0.005 60 4 ∗ 180 2500 1780 O
3 0.005 90 4 ∗ 180 3000 2280 O
4 0.005 180 4 ∗ 180 2500 1780 X
5 0.001 30 4 ∗ 180 13000 12280 O
6 0.002 30 4 ∗ 180 7500 6780 O
7 0.003 30 4 ∗ 180 6000 5280 O
8 0.004 30 4 ∗ 180 5000 4280 O
9 0.005 30 4 ∗ 180 3500 2780 O
10 0.006 30 4 ∗ 180 2500 1780 offset*
11 0.007 30 4 ∗ 180 2000 1480 offset*
12 0.008 30 4 ∗ 180 1500 780 offset*
13 0.005 30 1 ∗ 180 3000 2820 O
14 0.005 30 2 ∗ 180 3000 2640 O
15 0.005 30 3 ∗ 180 3500 2960 O
16 0.005 30 4 ∗ 180 3500 2780 O
17 0.005 30 5 ∗ 180 3000 2100 O
* It converged to the optimum, but in the control input, there was a small offset

In Table 4, simulations number 1−4 are obtained with different PRBS calculation

steps. There is no increasing or decreasing tendency of the iteration numbers depending
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on the PRBS calculation steps. However, with the PRBS tuning parameters of 90 and

180 have relatively unstable behavior. Thus, the PRBS is set to be calculated every 30

iterations.

Simulations number 5 − 12 show results with different Ki values. When the

controller gain is increased to 0.006, relatively large numerical peaks happen and u and

y pass the extremum having small offsets. This tendency becomes larger in simulations

with larger controller gains. Based on the simulation result, Ki = 0.005 is chosen for

next simulations in this second-order with zero model as well.

Next simulations 13 − 17 are performed to see the effect of the window size

of data sets. It is concluded that moderately large values of the gradient estimation

window sizes give more robust results while too small window sizes make a lot of noise

in the ARX estimation part and too large window size has a disadvantage since it may

have problems on detecting the influence of a disturbance when a disturbance occurs.

Figure 16 shows the best-tuned simulation result, which is the simulation number

9(or 16). In detail, it smoothly converges to its maximum value with 2780 number of

transition iterations. Although there are small numerical peaks around 1800 iterations,

it is not problematic because it does not make a deviation.
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Figure 16: Simulation result for second-order with zero system(τa = 40) using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720

However, in some of the other results, numerical spikes occasionally happen after

convergence as the plant models with other transfer functions.
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3.3 Application of optimal profit

Figure 17: Optimal profit and production rate

There is one important thing which should be considered in the oil production-

gas injection rate dependency as shown in Figure 17[10]. When one considers costs, the

gas compression process requires a lot of energy which relatively costs a lot, however,

there is no huge improvement in the oil production rate near the extremum. This

means that the optimal profit will be obtained at a point somewhere before it reaches

its maximum.

Thus, the dynamic ESC is performed with an assumption that the optimal profit

is earned when the gradient is 0.2. Figure 18 illustrates a result when second-order

transfer function with zero model is applied, and other tuning parameters are same as

the best result previously obtained. It states that this dynamic ESC can also be applied

to find an optimal profit point where the gradient is not zero.
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Figure 18: Simulation result applying an optimal profit point for second-order with

zero(τa = 40) system using a dynamic ESC: Ki = 0.005, PRBS= 30, and l = 720

3.4 Discussion

The simulation results for plants with different transfer functions show that the

dynamic ESC algorithm is successfully implemented, not only in the first-order system

but also in the second-order system. In detail, the estimated gradient Ju follows the true

gradient Ju,ss and correspondingly u and y converges to the true extremum. Different

tuning parameters are applied and the best-tuned results are provided by the Trial and

Error method. The integral controller gain has a large effect on the iteration number

to converge, while the iteration number is almost independent of the dither wave time

constant or the PRBS recalculation steps. The window size has an influence on the

robustness of the system, in specific, a small window size makes noisy ARX estimation

or unstable behavior and a large window size makes huge deviation by numerical spikes.

Both in the first and second-order models, numerical spikes happen and some-

times they make a deviation from the true extremum. After some observations, it
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became clear that the numerical spikes are prone to firstly happen right after the es-

timated steady-state reaches zero, and occasionally even after convergence. Therefore,

the ARX model is discussed as a possible reason to explain such phenomena.

As already mentioned in section 2.3, the first-order ARX model is

y(t) + a1y(t− 1) = b1u(t− 1) + e(t) (39)

where

θ = [a1 b1]
T

As Equation (39), the first-order ARX model estimates two parameters a1 and

b1 using least square method for each of them. When we consider a point near the

extremum where Ju is close to zero, there is a sinusoidal change in the input u, but

almost no change in the output y which makes only one parameter can be estimated as

depicted in Figure 19. However, the ARX model still tries to estimate two parameters,

and this is the cause of numerical peaks.

Figure 19: The input and output relationship when the gradient is close to zero
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In second-order system, the numerical peaks becomes more problematic than the

first-order system. In specific, the second-order ARX model is:

y(t) + a1y(t− 1) + a2y(t− 2) = b1u(t− 1) + b2u(t− 2) + e(t) (40)

where

θ = [a1 a2 b1 b2]
T

Now the second-order ARX model estimates four parameters stated in θ vector. How-

ever, as already issued in the first-order model, change in the input but no change in y

make only one parameter can be estimated as shown in Figure 19 while the second-order

ARX model tries to adjust four parameters causing numerical peaks problem.

Since the reason of the numerical spikes is expected to be the ARX model, a

method suggested solving this issue is combining a simple first-order least square(LS)

method with the ARX model in gradient estimation. In specific, the ARX model can

be switched with the LS method when Ju is close to zero in the region where numerical

peaks may occur. This enables Ju to converge to zero fast enough with the local linear

dynamic model, and when it is sufficiently close to zero, the switched LS method gives

stability on the gradient estimation avoiding numerical peaks. Based on this idea,

simulations with different thresholds of the switching point are performed in section 4.
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4 Numerical spikes modification and validation

A new algorithm to solve the numerical spikes problem in the dynamic ESC is

suggested in Algorithm 3. The ARX model is switched to a first-order Lease Square

method when the estimated steady-state gradient is sufficiently close to zero.

4.1 Plant process with first-order transfer function

The strategy to combining the ARX model and the LS method is first tried in

the first-order system. In detail, the result is illustrated in Figure 20, which is simulated

with the same tuning parameters with Figure 12.

Figure 20: Modified dynamic ESC simulation result for first-order system: Ki = 0.005,

TD = 180, and l = 360 with a tolerance of 0.010

Figure 20 shows that the strategy of switching the ARX model to the LS method

is well implemented and the numerical spikes are removed. The last subplot is providing
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Algorithm 3 The dynamic ESC combining ARX model and LS method
input: yk,uk

1: for k = 1→ n do

2: Low pass filter to remove noise

3: yfk ← GLPF (s)yk

4: ufk ← GLPF (s)uk

5: Moved to have a zero mean

6: y0 ← yfk − avg(yfk)

7: u0 ← ufk − avg(ufk)

8: if Ju,k−1 > Threshold then

9: Gradient estimation with the ARX model using data sets of y0 and u0

10: data← iddata(y0, u0, Ts)

11: [A(q) B(q)]← arx[data, [1, 1, 0]] for 1st-order systems

12: [A(q) B(q)]← arx[data, [2, 2, 0]] for 2nd-order systems

13: [Ad Bd Cd Dd]← idss[A(q) B(q)]

14: [A B C D]← d2c[Ad Bd Cd Dd]

15: Ju ← −CA−1B +D

16: else

17: Gradient estimation with the LS method using data sets of yfk and ufk

18: X ← [ufk ones(size(ufk))]

19: b← (X ′X)−1X ′yfk

20: Ju ← b(1, 1)

21: end if

22: Integral Controller

23: ûk ← uk +KiJu

24: Perturbation

25: prbs← idinput(1)

26: uk+1 ← ûk + prbs

27: end for
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information of which of the two methods is used for gradient estimation in each step,

specifically, the flag equals to 1 when the ARX model is used and 0 when the LS method

is used. The gradient is estimated by the ARX model at the first time, and when Ju

becomes close to the threshold of 0.010, the ARX model and LS method conflict and

then the gradient is mostly estimated by the LS method later. The procedure to find

a proper threshold is provided in Appendix A.1.3.

Figure 21 is comparing simulation results for the first-order system obtained by

the dynamic and classic ESC. The blue solid lines illustrate the simulation with classic

ESC model, and the tuning process is provided in Appendix B.1. For the dynamic

ESC, yf and uf are stated with red dash-dot lines and Ju with a purple line. While

the classic ESC converges to the extremum around 5 · 104 iterations, the dynamic ESC

only requires 3100 iterations, and when the window size is subtracted, it only takes

2380 iterations to the new extremum. This is meaningful because only around 4% of

the transient iteration steps are needed for convergence with the application of the

dynamic ESC compared to the classic ESC.
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Figure 21: Simulation result comparison of a dynamic and classic ESC for first-order system
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4.2 Plant process with second-order transfer function

4.2.1 Second-order transfer function without zero (τa = 0)

In the plant model with second-order transfer function without zero system, the

numerical spikes problem was the most problematic making all simulation results devi-

ate from its extremum after convergence. However, as shown in Figure 22, combining

the ARX model with LS method can solve the problem in this second-order system as

well with the threshold of 0.03. The tuning parameters are the same as the simulation

case in Figure 15, and detailed modifying steps are suggested in Appendix A.2.4

Figure 22: Modified dynamic ESC simulation result for second-order without zero(τa = 0)

system: Ki = 0.005, PRBS= 30, and l = 720 with a tolerance of 0.03

However, it sometimes gives worse results then Figure 22 when simulating the

same conditions multiple times. It may be because the PRBS is different in different

simulations since it is random, and sometimes the calculation step is too small and

gives some noise like behavior. Thus, increasing the PRBS recalculation step can be

considered in a future work.
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It is possible to compare the dynamic ESC with the classic ESC in Figure 23,

and the tuning for the classic ESC is provided in Appendix B.1. In short, the classic

ESC requires 5 · 104 iterations while the dynamic ESC needs only 2500 iterations or

1780 transient iterations which are 3.6% of the classic ESC for a transition to a new

extremum.
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Figure 23: Simulation result comparison of a dynamic and classic ESC for second-order

without zero(τa = 0) system

4.2.2 Second-order transfer function with zero (τa = 40)

In the second-order transfer function with zero system, the numerical spikes

were not a huge issue compared to other systems, but the same method is applied as

illustrated in Figure 24. Because the peaks were not serious, it was possible to fix it

with only with a small threshold of 0.001, which can be compared with Figure 16.
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Figure 24: Modified dynamic ESC simulation result for second-order with zero(τa = 40)

system: Ki = 0.005, PRBS= 30, and l = 720 with a tolerance of 0.001

In Figure 25, the classic ESC takes around 5 · 104 iterations as well, while the

dynamic ESC requires 3500 iterations or 2780 transient iterations(5.6% of the classic

ESC).
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Figure 25: Simulation result comparison of a dynamic and classic ESC for second-order with

zero(τa = 40) system
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Overall, the classic ESC requires a significant number of iterations compared to

the dynamic ESC, verifying the superior ability of the dynamic ESC developed in this

project.
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5 Discussion

With the motivation of figuring out a dynamic ESC algorithm which is expected

to achieve a faster convergence to a new extremum, the ARX model is introduced

to estimate the steady-state gradient which is a local linear dynamic model. In this

discussion section, the problem-solving processes of the dynamic ESC will be focused

and summarized.

First of all, a problem caused when the second-order transfer function without

zero is applied. Specifically, the estimated steady-state gradient could not follow the

true gradient during simulations.

The approach to explain this behavior comes from the step responses of different

transfer functions since there was no such a problem in the first-order system. In

detail, the step response of the second-order system has a secondary time lag, and the

sinusoidal wave is not enough to obtain the full information of the output. With this

approach, the PRBS wave is introduced instead of a simple sinusoidal perturbation to

provide multiple frequencies, and it could solve the problem.

The second problem is detected in all of the three transfer function systems

that numerical spikes happen and sometimes they make deviations. The ARX model

accounts for this problem with the observation that the spikes are prone to firstly happen

right after the estimated steady-state gradient becomes close to zero. In specific, when

there is a change in the input near the extremum, the output almost does not change

making the estimation of only one parameter possible while the ARX model still tries to

estimate two parameters in the first-order system or four parameters in the second-order

system.

To fix this phenomenon, the combination of the ARX model with the LS method

is introduced with the idea that the ARX model estimates gradient faster in the early
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stages, and it is switched to the LS method when the estimated gradient is close enough

to zero. Although the LS method is a kind of a local linear static model, it could not

affect the iteration numbers to converge since most of the important part is estimated

by the ARX model. This implementation is concluded to work efficiently making the

dynamic ESC more robust.
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6 Conclusion

In this project, the slow control performance of the classic ESC provided the

biggest motivation to develop the dynamic ESC. The main idea of this algorithm is

introducing a local linear dynamic model for the gradient estimation in place of a local

linear static model. One of the simple time-variant models is the ARX model, and it is

implemented in this project.

There were two main problems solved in this project. The first problem hap-

pened when the second-order transfer function is applied. In detail, the sinusoidal

wave perturbation could not obtain the full information of y. In other words, a si-

nusoidal wave with only one frequency is not sufficient to make the ARX model to

estimate four parameters requiring diverse frequencies in the Fourier domain. Thus,

PRBS(pseudo-random binary sequence) with an amplitude of 1 is applied instead of it

in the second-order system.

The second problem happened in the ARX model. In specific, it is possible to

estimate only one parameter near the extremum since there is almost no change in the

output. However, the ARX model estimates multiple parameters altogether and this

makes numerical problems. This problem is solved by switching the ARX model to LS

method when the gradient is sufficiently close to zero.

The dynamic ESC has tuning parameters which are the controller gain, pertur-

bation time constant(or PRBS calculation steps), and a window size of data sets for

estimating the gradient using the ARX model. Different sets of tuning parameters are

tested in all of the three transfer function cases and obtained the best-tuned results.

This is an important step because wrong tuning parameters give unwanted behaviors

such as having small offsets in the input from the true extremum, causing frequent

numerical spikes, deviating from the true optimum, and making the ARX estimation
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noisy which are well described in the appendix A.

In the comparison with the simulation results of the classic ESC, it was shown

that the iteration step was hugely reduced in the dynamic ESC, especially only 3.6 −

5.6% of iterations were needed for the dynamic ESC. It verifies that the dynamic ESC

is more efficient and faster control strategy than the classic ESC.

Overall, it is concluded that the dynamic ESC is successfully implemented in

the first- and second-order systems. The estimated steady-state gradient follows the

true gradient, and the system converged into the true extremum. Based on this study,

several future works are suggested which will be done in Spring 2018.

First of all, since this project is aiming to find an algorithm for the dynamic

ESC using the ARX model, the initial point is set to be (15, 42.5) and make it converge

to (20.45). Thus, the next step is adding a disturbance on the system which makes the

relationship of the input and output changes, and monitoring if the (u,y) converges to

a new optimal point.

Moreover, in this project, the Hammerstein and Wiener models are used to

describe the plant process as suggested in the classic ESC modeling[2] where a static

non-linearity(f(u)) and a linear dynamic system(G(s)) are divided. However, in reality,

a process where the non-linearity and the dynamic parts are combined together is more

general. An example of this process which can be used in ESC is a parallel heat

exchangers with stream split provided by Jaschke and Skogestad (2014). In the process,

the objective is maximizing the output temperature and it has a quadratic relationship

with the split, which is similar to the relationship of the gas injection rate and the oil

production rate. This heat exchangers process will be used to implement the dynamic

ESC to check its real application in the future. This process has an advantage that

there are dynamic changes in the output even near the extremum so that the numerical

spikes problem are expected not to happen.
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Finally, the model predictive controller can be applied replacing a simple integral

controller when the process is a multi-variable system. Because a better controller gives

a better control, it is expected to improve the dynamic ESC algorithm.
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Appendix

Appendix A Dynamic ESC tuning and numerical spikes

modification

A.1 Plant process with first-order transfer function

A.1.1 Changes in controller gain

Table A5: Simulation result of a dynamic ESC with a plant model containing

first-order transfer function when Ki varies.

Controller Dither time Window Convergence Transient True
No. gain(Ki) constant(TD) size (l) iterations iterations extremum

1 0.001 180 2 ∗ 180 7200 ↑ 7200 ↑ O
2 0.002 180 2 ∗ 180 7200 ↑ 7200 ↑ O
3 0.003 180 2 ∗ 180 4200 3840 O
4 0.004 180 2 ∗ 180 3000 2640 O
5 0.005 180 2 ∗ 180 2500 2140 O
6 0.006 180 2 ∗ 180 2000 1640 offset*
7 0.007 180 2 ∗ 180 1800 1440 offset*
8 0.008 180 2 ∗ 180 1700 1340 offset*
9 0.009 180 2 ∗ 180 1600 1240 offset*
* It converged to the optimum, but in the control input, there was a small offset

Table A5 shows the simulation result with various controller gains while other

tuning parameters are fixed. Overall, with the increase in Ki value, the transient to

reach a new extremum tents to significantly decrease. Results of simulations 1, 5, 6,

and 9 are listed below.
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Figure A26: Simulation result for first-order system using a dynamic ESC: Ki = 0.001,

TD = 180, and l = 2 ∗ 180.
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Figure A28: Simulation result for first-order system using a dynamic ESC: Ki = 0.006,

TD = 180, and l = 2 ∗ 180.
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Figure A27: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 2 ∗ 180.

0 1000 2000 3000 4000 5000 6000 7000
42

45

y

y

yf

yss

0 1000 2000 3000 4000 5000 6000 7000

15

20

u

u

uf

0 1000 2000 3000 4000 5000 6000 7000

Number of Iterations

-2

0

2

J
u Ju,ss

Ju

Figure A29: Simulation result for first-order system using a dynamic ESC: Ki = 0.009,

TD = 180, and l = 2 ∗ 180.

55



Figure A26 is obtained when Ki = 0.001. It is clearly indicated that the esti-

mated gradient Ju follows the true gradient, saying that the ARX model is working as

intended. The dynamic with this small integral controller is so slow that it needs more

iteration to converge to the maximum where the gradient becomes zero.

Figure A27 is obtained when Ki = 0.005. Around 2400 number of iterations, it

converges to the true extremum at (20, 45). However, there is an issue on this Figure

A27 that the result slightly deviates from its maximum around 3100 iterations caused

by aggressive peaks in Ju. This problem is well modified in section 4, and the process

to fix it will be shown at the end of this section.

For Ki = 0.006, the result converges around 2000 iterations to a point slightly

passing the extremum as illustrated in Figure A28. Moreover, in Figure A29 obtained

whenKi = 0.009, it also converges to point having a small offset from the true extremum

with 1500 iterations as the case with Ki = 0.006. However, the situation is much worse

with Ki = 0.009 and the numerical peaks in Ju make a serious deviation around 4800

iterations.

Since the simulation results from Ki = 0.006 to Ki = 0.009 pass the extremum,

Ki = 0.005 is chosen for next simulations to see how other tuning parameters effect on

the number of iterations.

A.1.2 Changes in dither time constant and window size

Table A6 shows simulation results when Ki is fixed as 0.005 and only various

sets of TD and l are tested.
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Table A6: Simulation result of a dynamic ESC with a plant model containing

first-order transfer function when dither time constant and window size vary.

Controller Dither time Window Convergence Transient True
No. gain(Ki) constant(TD) size (l) iterations iterations extremum

1 0.005 30 1 ∗ 30 2400 2370 O
2 0.005 30 6 ∗ 30 2500 2380 O
3 0.005 30 10 ∗ 30 2800 2500 O
4 0.005 30 20 ∗ 30 2800 2200 O
5 0.005 180 1 ∗ 180 2600 2420 O
6 0.005 180 2 ∗ 180 2500 2140 O
7 0.005 180 3 ∗ 180 2600 2060 O
8 0.005 180 4 ∗ 180 3100 2380 O
9 0.005 180 8 ∗ 180 − - X
10 0.005 4 ∗ 180 4 ∗ 180 3000 2280 O
11 0.005 4 ∗ 180 8 ∗ 180 − - X

Comparing simulation number 2 and 5 or 8 and 10 in Table A6 states situations

that different dither time constants are applied while other tuning parameters are same.

Based on the fact that the Transient iterations are similar, it can be concluded that the

number of iterations is almost independent of the dither time constant. Simulations

number 2 and 5 are stated in Figure A30 and A31 respectively.

In terms of the window size, the transient iterations depending on the window

size do not have a clear tendency as well. However, it becomes meaningful in regards to

robustness when we have a look at simulation figures. In detail, figures for simulations

number 5 to 9 are provided to give the explanation where the window size only varies

in Figure A31 to A34.
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Figure A30: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 30, and l = 180.
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Figure A31: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 180.
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Figure A32: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 2 ∗ 180.
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Figure A33: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 3 ∗ 180.
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Figure A34: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 4 ∗ 180.

Figure A31 is obtained when the window size equals to 180. After Ju reaches

zero, a lot of small numerical peaks happens, and around 6500 iterations peaks with

amplitudes of 50 make recognizable deviations from the true extremum.

When the window size increased to 360 as illustrated in Figure A32, small nu-

merical peaks almost disappear and relatively big peaks with an amplitude of 32 about

3000 iterations make deviations.

With the increased window as 540, only small numerical peaks around 600 itera-

tions occur with amplitudes of 3 as depicted in Figure A33, and even in the 720 window

size, the result becomes stable without rigid peaks as in Figure A34.

Based on these observations, steady-state gradient estimation with a sufficient

number of data provides stable and robust results. This tendency is also obtained with

simulation number 1 to 4 that numerical peaks almost disappear in simulation number

4.
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Figure A35: Simulation result for first-order system using a dynamic ESC: Ki = 0.005,

TD = 180, and l = 8 ∗ 180.

However, as shown in Figure A35, too large window size gives huge numerical

peaks which surely trigger big deviations. Because the result hits the extremum only

for a second, it was not possible to get a number of iterations to converge. The same

result is obtained in simulation number 11 so that it is recommended a moderate length

of the window size in this first-order system.
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A.1.3 Numerical spike modification

Figure A36 is obtained where the ARX model is used when Ju > 0.002 and

the LS method is used when Ju < 0.002. This result shows that the Ju = 0.002 were

not able to remove the numerical spikes. This is because Ju = 0.002 is still causing

problems in the ARX model when it estimates parameters to calculate the steady-state

gradient.

Therefore, it is tested with larger thresholds. When the switching point is set to

be 0.008, the serious numerical spikes are removed as shown in Figure A37. Although

there are small spikes in the result, they are not seriously affecting the overall result.

When it is simulated with a threshold of 0.010, it is clear that the numerical

peaks are all removed as illustrated in Figure A38. Compared to Figure A36 and A37,

there are less conflicts between the ARX model and LS method. As intended, the

estimated gradient converges fast to zero at the initial stage with the ARX model, so

that the combination of the two methods does not effect on the overall iteration number

to converge. Therefore, this approach is concluded to work well to fix the numerical

problem in the first-order system and will be tried as well in the second-order system.
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Figure A36: Modified dynamic ESC simulation result for first-order system: Ki = 0.005,

TD = 180, and l = 360 with a tolerance of 0.002.

Figure A37: Modified dynamic ESC simulation result for first-order system: Ki = 0.005,

TD = 180, and l = 360 with a tolerance of 0.008.
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Figure A38: Modified dynamic ESC simulation result for first-order system: Ki = 0.005,

TD = 180, and l = 360 with a tolerance of 0.010.
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A.2 Plant process with second-order transfer function without

zero(τa = 0)

A.2.1 Changes in PRBS calculation step

Table A7: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function without zero when PRBS varies.

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.005 30 4 ∗ 180 2500 1780 O
2 0.005 60 4 ∗ 180 3000 2280 O
3 0.005 90 4 ∗ 180 3000 2280 O
4 0.005 180 4 ∗ 180 3000 2280 O

Table A7 shows the simulation result when PRBS calculation step is changed

from 30 to 180. Overall, there is no huge difference on the transient iteration number

depending on PRBS calculation steps.

Figure A39 to A42 are obtained for each PRBS calculation steps. Even though

the numerical spikes are problematic in all cases arousing deviations, all of the results

converge to the right extremum at the first time around 2500 − 3000 iterations. The

PRBS recalculation step is set to be every 30 because the amplitude of numerical peaks

with larger PRBS step tends to be large.
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Figure A39: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720

Figure A40: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 60, and l = 720
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Figure A41: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 90, and l = 720

Figure A42: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 180, and l = 720
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A.2.2 Changes in controller gain

Table A8: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function without zero when Ki varies.

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.001 30 4 ∗ 180 10000 9280 O
2 0.002 30 4 ∗ 180 6000 5280 O
3 0.003 30 4 ∗ 180 4000 3280 O
4 0.004 30 4 ∗ 180 3000 2280 O
5 0.005 30 4 ∗ 180 2500 1780 O
6 0.006 30 4 ∗ 180 2400 1680 offset*
7 0.007 30 4 ∗ 180 2300 1580 offset*
8 0.008 30 4 ∗ 180 2200 1480 offset*
* It converged to the optimum, but in the control input, there was a small offset

Table A8 illustrates the results with different applications of the integral gain

values. Based on the previous PRBS simulations. PRBS is set to be calculated every

30 iteration, and the window size is fixed as 720.

Figure A43 is obtained with Ki = 0.005. With the increase of Ki values, the

number of iteration to converge decreased to 2500, which is a quarter of iteration with

Ki = 0.001. After convergence, the result deviates from the extremum by numerical

spikes around 3500 and 11500 iterations, so it is necessary to remove them to achieve

robustness.

When Ki = 0.006, the results start to converge passing the extremum with

small offsets due to a large controller gain. Figure A44 shows the simulation result

when Ki = 0.008, which converges to u = 21 and deviates later by numerical spikes.

Thus, Ki is set to be 0.005 in next simulations.
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Figure A43: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720

Figure A44: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.008, PRBS= 30, and l = 720
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A.2.3 Changes in window size

Table A9 provides simulation results when the gradient estimation window size

varies. Other parameters, Ki, and PRBS are set to be 0.005 and 30 respectively.

Figure A45 to A49 are plots for the simulation results. They show that a small

window size results in an aggressive behavior with frequent numerical peaks while a large

window size gives a more robust result. The best-tuned result is chosen to be simulation

number 4 and numerical spikes modification is performed in the next section.

Table A9: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function without zero when the window size varies

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.005 30 1 ∗ 180 1100 920

2 0.005 30 2 ∗ 180 1400 1040

3 0.005 30 3 ∗ 180 1600 1060

4 0.005 30 4 ∗ 180 2500 1780

5 0.005 30 5 ∗ 180 3000 2100
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Figure A45: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 180

Figure A46: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 360
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Figure A47: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 540

Figure A48: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720
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Figure A49: Simulation result for second-order without zero(τa = 0) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 900

A.2.4 Numerical spikes modification

Figure A50 is obtained with a threshold of 0.001. It is not enough to remove the

numerical spikes and in some region, the ARX model and LS method conflicts. With

an increased tolerance of 0.016 as shown in Figure A51, the situation becomes better

while the numerical peaks still exist.

In Figure A52 with a relatively higher tolerance of 0.030, serious numerical mat-

ters have disappeared. Although the ARX model and LS method conflicts around 3000

iterations, it is acceptable.

However, when simulations in the same condition are performed multiple times,

it rarely but sometimes gives a worse result than Figure A52. A possible reason for this

is that the PRBS frequency becomes different in every simulation and sometimes the

frequency is too small and gives a noise like behavior. Thus, it can be considered to

use higher PRBS frequencies such as 60 in the future work.
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Figure A50: Modified dynamic ESC simulation result for second-order without zero(τa = 0)

system: Ki = 0.005, PRBS= 30, and l = 720 with a tolerance of 0.001.

Figure A51: Modified dynamic ESC simulation result for second-order without zero(τa = 0)

system: Ki = 0.005, PRBS= 30, and l = 720 with a tolerance of 0.016.
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Figure A52: Modified dynamic ESC simulation result for second-order without zero(τa = 0)

system: Ki = 0.005, PRBS= 30, and l = 720 with a tolerance of 0.030.

A.3 Plant process with second-order transfer function with zero(τa =

40)

A.3.1 Changes in PRBS

Table A10: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function with zero when PRBS varies

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.005 30 4 ∗ 180 3000 2280 O
2 0.005 60 4 ∗ 180 2500 1780 O
3 0.005 90 4 ∗ 180 3000 2280 offset*
4 0.005 180 4 ∗ 180 2500 1780 offset*
* It converged to the optimum, but in the control input, there was a small offset

According to Table A10, it also indicates that the PRBS calculation steps are
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not influential on the iteration number to converge.

Figure A53 and A54 shows the result when PRBS is recalculated every 30 and

60 steps respectively. Both of them converges well to the maximum point, and a small

numerical peak happens around 4000 iterations in Figure A54, which is not seriously

problematic.

However, with PRBS calculation steps of 90 and 180 provided in Figure A55

and A56, both of them easily deviate from the true extremum. Therefore, the PRBS

recalculation step is set to be 30.

Figure A53: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720
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Figure A54: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 60, and l = 720

Figure A55: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 90, and l = 720
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Figure A56: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 180, and l = 720

A.3.2 Changes in controller gain

Table A11 states the results with different controller gains in a plant model with

the second-order system containing zero.
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Table A11: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function with zero when Ki varies

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.001 30 4 ∗ 180 13000 12280 O
2 0.002 30 4 ∗ 180 7500 6780 O
3 0.003 30 4 ∗ 180 6000 5280 O
4 0.004 30 4 ∗ 180 5000 4280 O
5 0.005 30 4 ∗ 180 3500 2780 O
6 0.006 30 4 ∗ 180 2500 1780 offset*
7 0.007 30 4 ∗ 180 2000 1480 offset*
8 0.008 30 4 ∗ 180 1500 780 offset*
* It converged to the optimum, but in the control input, there was a small offset

For small Ki, the results are almost stable with slow dynamics so that they do

not deviate from the maximum. Figure A57 shows the result obtained when Ki = 0.005

which converges around 3500 iterations with only small numerical spikes.

When the controller gain is increased to 0.006 as Figure A58, relatively large

numerical peaks happen and u and y pass the extremum. This tendency is detected in

simulations with larger controller gains 0.007 and 0.008 as well.

Based on the simulation results, Ki = 0.005 is chosen for next simulations in

this second-order with zero model as well.
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Figure A57: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720

Figure A58: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.006, PRBS= 30, and l = 720
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A.3.3 Changes in window size

Table A12 indicates simulation results when the window size varies.

Table A12: Simulation result of a dynamic ESC with a plant model containing

second-order transfer function with zero when window size varies

Controller PRBS window Convergence Transient True
No. gain(Ki) calculation steps size(l) iterations iterations extremum

1 0.005 30 1 ∗ 180 3000 2820 O
2 0.005 30 2 ∗ 180 3000 2640 O
3 0.005 30 3 ∗ 180 3500 2960 O
4 0.005 30 4 ∗ 180 3500 2780 O
5 0.005 30 5 ∗ 180 3000 2100 O

Figure A59 to A63 depicts the simulations number 1 − 5. In this second-order

with zero system, there is a clear tendency that increasing the window size reduces a

noisy behavior in its early stage and numerical spikes in the ARX model. Based on the

figures, the best result is chosen as Figure A62.
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Figure A59: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 180

Figure A60: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 360
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Figure A61: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 540

Figure A62: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 720

83



Figure A63: Simulation result for second-order with zero(τa = 40) system using a dynamic

ESC: Ki = 0.005, PRBS= 30, and l = 900

A.3.4 Numerical spikes modification

Figure A64: Modified dynamic ESC simulation result for second-order with zero(τa = 40)

system: Ki = 0.005, PRBS= 30, and l = 720 with a tolerance of 0.001.
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Although the numerical spikes problem is not serious in this second-order with

zero system, the modification approach is also implemented. Figure A64 shows the

result that the same method can be applied in this system as well to prohibit unwanted

numerical problems.
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Appendix B Classic ESC tuning

In the classic ESC, there are mainly two tuning parameters, the controller gain

Ki and a dither time period TD. Specifically, the dither time period is located in the

middle of a high pass filter cut-off time period Th and a low pass filter cut-off time period

Tl which are set to be 10T and 0.2T respectively. To tune the parameters, simulations

with different Ki values are studied first.

B.1 Plant process with first-order transfer function

The best tuned result is obtained with Ki = 0.001 and TD = 600 which corre-

sponds to Figure B70

B.1.1 Changes in controller gain

Table B13: Simulation result of a classic ESC with a plant model containing

first-order transfer function when Ki varies

Controller Dither time Convergence
No. gain(Ki) constant(TD) Th = 0.2T Tl = 10T iterations

1 0.0005 1800 360 18000 1.5 · 105 − 2 · 105

2 0.0006 1800 360 18000 1.5 · 105 − 2 · 105

3 0.0007 1800 360 18000 1.5 · 105 − 2 · 105

4 0.0008 1800 360 18000 1.5 · 105 − 2 · 105

5 0.0009 1800 360 18000 1.5 · 105 − 2 · 105

6 0.0010 1800 360 18000 1.5 · 105 − 2 · 105

7 0.0020 1800 360 18000 1.5 · 105 − 2 · 105

8 0.0030 1800 360 18000 1.5 · 105 − 2 · 105

9 0.0040 1800 360 18000 1.5 · 105 − 2 · 105

10 0.0050 1800 360 18000 1.5 · 105 − 2 · 105
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Figure B65 is indicating the simulation number 1 with Ki = 0.0005 and TD =

1800. With these tuning parameters, there is a small overshoot in the control input u.

With the increased controller gain, the dynamic becomes faster making larger initial

slope of u and y, but overshoot becomes larger as shown in Figure B66, B67 and B68.

Moreover, they show more oscillatory behavior.

In specific, in Figure B66, the y value is oscillating at least around its extremum,

but in Figure B67 and B68, the y value oscillates more like the u value. Thus, the

controller gain is set to be 0.001.
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Figure B65: Simulation result for first-order system using a classic ESC: Ki = 0.0005 and

TD = 1800
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Figure B66: Simulation result for first-order system using a classic ESC: Ki = 0.0010 and

TD = 1800
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Figure B67: Simulation result for first-order system using a classic ESC: Ki = 0.0020 and

TD = 1800
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Figure B68: Simulation result for first-order system using a classic ESC: Ki = 0.0040 and

TD = 1800

B.1.2 Changes in dither time constant

Table B14: Simulation result of a classic ESC with a plant model containing

first-order transfer function when TD varies

Controller Dither time Convergence
No. gain(Ki) constant(TD) Th = 0.2T Tl = 10T iterations

1 0.0010 200 40 2000 1.5 · 105

2 0.0010 400 80 4000 1.0 · 105

3 0.0010 600 120 6000 0.5 · 105

4 0.0010 800 160 8000 1.0 · 105

5 0.0010 1000 200 10000 1.0 · 105

6 0.0010 1200 240 12000 1.5 · 105

7 0.0010 1400 280 14000 1.0 · 105

8 0.0010 1600 320 16000 1.5 · 105

9 0.0010 1800 360 18000 1.5 · 105 − 2 · 105
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Table B14 show simulation results with different T values. From the table, one

can check that TD = 600 gives the smallest iteration number to converge.

Simulation number 2, 3, 4, and 5 in Table B14 are provided as figures below.

With a small dither time constant value, there is no oscillatory behavior as shown in

Figure B69, but the dynamic with a smaller dither time constant is relatively slow

requiring a large number of iterations. In contrast, the increased dither time constant

value results in oscillations as Figure B71 and B72 resulting in a large iteration number.

Therefore, TD is set to be 600 where the smallest iteration is needed without oscillation.
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Figure B69: Simulation result for first-order system using a classic ESC: Ki = 0.0010 and

TD = 400
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Figure B70: Simulation result for first-order system using a classic ESC: Ki = 0.0010 and

TD = 600
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Figure B71: Simulation result for first-order system using a classic ESC: Ki = 0.0010 and

TD = 800
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Figure B72: Simulation result for first-order system using a classic ESC: Ki = 0.0010 and

TD = 1000

B.2 Plant process with second-order transfer function without

zero(τa = 0)

The best tuned result is obtained with Ki = 0.001 and TD = 800 which corre-

sponds to Figure B79

B.2.1 Changes in controller gain

The simulation result in this second-order without zero system is more or less

similar to that of a first-order system. Figure B73 to B76 shows overshoots in the

estimation of u as well. Additionally, simulations with larger Ki values are fast initially

but the oscillatory behavior becomes serious as well. Thus, the overall iteration numbers

to converge are similar. Based on these facts, Ki = 0.0010 is chosen as well which has

a fast dynamic and less an oscillatory behavior.
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Table B15: Simulation result of a classic ESC with a plant model containing

second-order transfer function without zero when Ki varies

Controller Dither time Convergence
No. gain(Ki) constant(TD) Th = 0.2T Tl = 10T iterations

1 0.0005 1800 360 18000 1.5 · 105 − 2 · 105

2 0.0006 1800 360 18000 1.5 · 105 − 2 · 105

3 0.0007 1800 360 18000 1.5 · 105 − 2 · 105

4 0.0008 1800 360 18000 1.5 · 105 − 2 · 105

5 0.0009 1800 360 18000 1.5 · 105 − 2 · 105

6 0.0010 1800 360 18000 1.5 · 105 − 2 · 105

7 0.0020 1800 360 18000 1.5 · 105 − 2 · 105

8 0.0030 1800 360 18000 1.5 · 105 − 2 · 105

9 0.0040 1800 360 18000 1.5 · 105 − 2 · 105

10 0.0050 1800 360 18000 1.5 · 105 − 2 · 105
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Figure B73: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0005 and TD = 1800
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Figure B74: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0010 and TD = 1800
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Figure B75: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0020 and TD = 1800
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Figure B76: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0040 and TD = 1800

B.2.2 Changes in dither time constant

Table B16: Simulation result of a classic ESC with a plant model containing

second-order transfer function without zero when TD varies

Controller Dither time Convergence
No. gain(Ki) constant(TD) Th = 0.2T Tl = 10T iterations

1 0.0010 400 80 4000 3.5 · 105

2 0.0010 600 120 6000 1.0 · 105

3 0.0010 800 160 8000 0.5 · 105

4 0.0010 1000 200 10000 1.0 · 105

5 0.0010 1200 240 12000 1.5 · 105

6 0.0010 1400 280 14000 1.5 · 105

7 0.0010 1600 320 16000 1.5 · 105

8 0.0010 1800 360 18000 1.5 · 105 − 2 · 105

Similarly with the previous tuning processes, Figure B77 to B80 concludes that
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T = 800 provides the smallest iterations to converge. In short, as the first-order system,

small T values has a slow dynamic while large T values have an oscillatory behavior,

and both of them requires a large number of iterations.
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Figure B77: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0010 and TD = 400
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Figure B78: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0010 and TD = 600
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Figure B79: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0010 and TD = 800
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Figure B80: Simulation result for second-order without zero(τa = 0) system using a classic

ESC: Ki = 0.0010 and TD = 1000

97



B.3 Plant process with second-order transfer function with zero(τa =

40)

The best tuned result is obtained with Ki = 0.001 and TD = 600 which corre-

sponds to Figure B86

B.3.1 Changes in controller gain

Table B17: Simulation result of a classic ESC with a plant model containing

second-order transfer function with zero when Ki varies

Controller Dither time Convergence
No. gain(Ki) constant(TD) Th = 0.2T Tl = 10T iterations

1 0.0005 1800 360 18000 1.5 · 105 − 2 · 105

2 0.0006 1800 360 18000 1.5 · 105 − 2 · 105

3 0.0007 1800 360 18000 1.5 · 105 − 2 · 105

4 0.0008 1800 360 18000 1.5 · 105 − 2 · 105

5 0.0009 1800 360 18000 1.5 · 105 − 2 · 105

6 0.0010 1800 360 18000 1.5 · 105 − 2 · 105

7 0.0020 1800 360 18000 1.5 · 105 − 2 · 105

8 0.0030 1800 360 18000 1.5 · 105 − 2 · 105

9 0.0040 1800 360 18000 1.5 · 105 − 2 · 105

10 0.0050 1800 360 18000 1.5 · 105 − 2 · 105

Simulation results for 1, 6, 7, and 9 in Table B17 are provided in Figure B81

to B84. Because the result becomes much oscillatory with large controller gain, the

observation on these figures results in a Ki set to be 0.0010 as well.

98



0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

40

45

y

0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

15

20

25

u

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Iterations 10
5

-0.5

0

0.5

J
u

Figure B81: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0005 and TD = 1800
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Figure B82: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0010 and TD = 1800
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Figure B83: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0020 and TD = 1800

0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

40

45

y

0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

15

20

25

u

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Iterations 10
5

-0.5

0

0.5

J
u

Figure B84: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0040 and TD = 1800
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Table B18: Simulation result of a classic ESC with a plant model containing

second-order transfer function with zero when TD varies

Controller Dither time Convergence
No. gain(Ki) constant(TD) Th = 0.2T Tl = 10T iterations

1 0.0010 400 80 4000 1.0 · 105

2 0.0010 600 120 6000 0.5 · 105

3 0.0010 800 160 8000 1.0 · 105

4 0.0010 1000 200 10000 1.0 · 105

5 0.0010 1200 240 12000 1.5 · 105

6 0.0010 1400 280 14000 1.5 · 105

7 0.0010 1600 320 16000 1.5 · 105 − 2 · 105

8 0.0010 1800 360 18000 1.5 · 105 − 2 · 105

B.3.2 Changes in dither time constant

In this case, T = 600 provides the smallest number of iterations to converge.

Different simulation results are illustrated in Figure B85 to B88 verifying that T = 600

gives smooth non-oscillatory behavior and converges faster.
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Figure B85: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0010 and TD = 400
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Figure B86: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0010 and TD = 600

102



0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

40

45

y

0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

15

20

25

u

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Iterations 10
5

-0.5

0

0.5

J
u

Figure B87: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0010 and TD = 800
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Figure B88: Simulation result for second-order with zero(τa = 40) system using a classic

ESC: Ki = 0.0010 and TD = 1000
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Appendix C Matlab Script

C.1 Dynamic ESC

C.1.1 Plant process with first-order transfer function

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sample time

9 y = MX.sym('y');

10 u = MX.sym('u');

11 tau = (174/Ts);

12

13 dx1 = ((-0.1*u^2+4*u+5) - y)/tau;

14

15 ode = struct('x',y,'p',u,'ode',dx1,'quad',y);

16 opts = struct('tf',Ts);

17

18 F = integrator('F','cvodes',ode,opts);

19

20 xf = 42.5;

21 u_in0 = 15;

22 u_in = u_in0;

23

24 Ki = 0.005; % Controller gain

25 TD = 1*180; % Dither time constant
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26 l = 4*180; % Window size

27

28 nIter = 2*3600;

29

30 h = waitbar(0,'Simulation in Progress...');

31 aL = Ts/(Ts+ 100);

32 sim.uf = u_in;

33 sim.yf = xf;

34

35 ARX = 1;

36

37 for sim_k = 1:nIter

38 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

39

40 Fk = F('x0',xf,'p',u_in);

41 xf = full(Fk.xf);

42

43 sim.y(sim_k) = xf + 0.005*randn(1);

44 sim.u(sim_k) = u_in + 0.005*randn(1);

45 sim.ySS(sim_k) = -0.1*u_in^2+4*u_in+5;

46 sim.JuSS(sim_k) = -0.2*u_in+4;

47 if sim_k>1 % Noise filtering

48 sim.uf(sim_k) = (1-aL)*sim.uf(sim_k-1) + aL*sim.u(sim_k);

49 sim.yf(sim_k) = (1-aL)*sim.yf(sim_k-1) + aL*sim.y(sim_k);

50 end

51 if sim_k > l

52 ymeas = sim.yf(sim_k-l:sim_k)';

53 umeas = sim.uf(sim_k-l:sim_k)';

54 if ARX

55 Y0 = ymeas - mean(ymeas); % Zero mean

56 U0 = umeas - mean(umeas); % Zero mean

57
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58 data = iddata(Y0,U0,Ts);

59 sysARX = arx(data,[1,1,0]);

60 sysD = idss(sysARX);

61 sys = d2c(sysD);

62 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

63 Ju(sim_k) = Ju_hat;

64

65 end

66 if sim_k > l && (mean(Ju(sim_k-10:sim_k)) >0.001) % ...

I-controller

67 u_in0 = u_in0 + Ki*Ju_hat ;

68 else

69 u_in0 = u_in0 ;

70 end

71 end

72 u_in = u_in0+ 0.1*sin(2*pi*(1/(TD))*sim_k); % add perturbation

73

74 end

75 close(h);

76

77 sim.Ju = Ju;

78

79 %%

80

81 figure(3411)

82 subplot(311)

83 hold all

84 plot(sim.y)

85 plot(sim.yf)

86 plot( sim.ySS,'--')

87 set(gca,'FontSize',20);

88 grid on
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89 ylabel 'y'

90

91 subplot(312)

92 hold all

93 plot(sim.u)

94 plot(sim.uf,'--')

95 set(gca,'FontSize',20);

96 grid on

97 ylabel 'u'

98

99 subplot(313)

100 hold all

101 plot(sim.JuSS,'--')

102 plot(sim.Ju)

103 set(gca,'FontSize',20);

104 grid on

105 ylabel 'J_u'

C.1.2 Plant process with second-order transfer function

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sample time

9 y = MX.sym('y');

10 u = MX.sym('u');
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11 x1 = MX.sym('x1');

12 x2 = MX.sym('x2');

13 tau = (174/Ts);

14

15 tau_1 = 174;

16 tau_2 = 60;

17 tau_a = 40; % tau_a = 0 and 40 are studied

18

19 [a, b, c, d] = tf2ss([0 tau_a 1],[tau_1*tau_2 tau_1+tau_2 1]);

20

21 % dx/dt=Ax+Bu, y=Cx+Du, x=[x1 x2]', A=2X2 matrix

22 dx1 = a(1,1)*x1+a(1,2)*x2+b(1,1)*(-0.1*u^2+4*u+5);

23 dx2 = a(2,1)*x1+a(2,2)*x2+b(2,1)*(-0.1*u^2+4*u+5);

24 y = c(1,1)*x1+c(1,2)*x2+d*(-0.1*u^2+4*u+5);

25

26 ode = struct('x',vertcat(x1,x2),'p',u,'ode',vertcat(dx1,dx2),'quad',y);

27 opts = struct('tf',Ts);

28

29 F = integrator('F','cvodes',ode,opts);

30

31 xf = [0; 42.5/c(1,2)];

32 u_in0 = 15;

33

34 u_in = u_in0;

35

36 Ki = 0.005; % Controller gain

37 PRBS = 30; % PRBS calculation steps

38 l = 4*180; % Window size

39

40 nIter = 4*3600;

41

42 h = waitbar(0,'Simulation in Progress...');
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43 aL = Ts/(Ts+ 100);

44 sim.uf = u_in;

45 sim.yf = c*xf;

46

47

48

49 ARX = 1;

50 pbrs = 0;

51

52 for sim_k = 1:nIter

53 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

54

55 Fk = F('x0',xf,'p',u_in);

56 xf = full(Fk.xf);

57

58 sim.y(sim_k) = c*xf + 0.005*randn(1);

59 sim.u(sim_k) = u_in + 0.005*randn(1);

60 sim.ySS(sim_k) = -0.1*u_in^2+4*u_in+5;

61 sim.JuSS(sim_k) = -0.2*u_in+4;

62 if sim_k>1 % Noise filtering

63 sim.uf(sim_k) = (1-aL)*sim.uf(sim_k-1) + aL*sim.u(sim_k);

64 sim.yf(sim_k) = (1-aL)*sim.yf(sim_k-1) + aL*sim.y(sim_k);

65 end

66 if sim_k > l

67 ymeas = sim.yf(sim_k-l:sim_k)';

68 umeas = sim.uf(sim_k-l:sim_k)';

69 if ARX

70 Y0 = ymeas - mean(ymeas); % Zero mean

71 U0 = umeas - mean(umeas); % Zero mean

72

73

74 data = iddata(Y0,U0,Ts);
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75 sysARX = arx(data,[2,2,0]);

76 sysD = idss(sysARX);

77 sys = d2c(sysD);

78 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

79 Ju(sim_k) = Ju_hat;

80

81 end

82 if sim_k > l && (mean(Ju(sim_k-10:sim_k)) >0.001) % ...

I-controller

83 u_in0 = u_in0 +Ki*Ju_hat ;

84 else

85 u_in0 = u_in0 ;

86 end

87 end

88

89 if rem(sim_k,PRBS)==0

90 pbrs = 1*idinput(1);

91 end

92 u_in = u_in0+ pbrs; % add perturbation

93 end

94 close(h);

95

96 sim.Ju = Ju;

97

98 %%

99

100 figure(3411)

101 subplot(311)

102 hold all

103 plot(sim.y)

104 plot(sim.yf)

105 plot( sim.ySS,'--')
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106 set(gca,'FontSize',20);

107 grid on

108 ylabel 'y'

109

110 subplot(312)

111 hold all

112 plot(sim.u)

113 plot(sim.uf,'--')

114 set(gca,'FontSize',20);

115 grid on

116 ylabel 'u'

117

118 subplot(313)

119 hold all

120 plot(sim.JuSS,'--')

121 plot(sim.Ju)

122 set(gca,'FontSize',20);

123 grid on

124 ylabel 'J_u'

125 ylim([-2 2])

C.2 Modified Dynamic ESC combining ARX model and LS

method

C.2.1 Plant process with first-order transfer function

1 clear

2 clc

3
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4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sample time

9 y = MX.sym('y');

10 u = MX.sym('u');

11 tau = (174/Ts);

12

13 dx1 = ((-0.1*u^2+4*u+5) - y)/tau;

14

15 ode = struct('x',y,'p',u,'ode',dx1,'quad',y);

16 opts = struct('tf',Ts);

17

18 F = integrator('F','cvodes',ode,opts);

19

20 xf = 42.5;

21 u_in0 = 15;

22 u_in = u_in0;

23

24 Ki = 0.005; % Controller gain

25 TD = 180; % Dither time constant

26 l = 2*180; % Window size

27

28 nIter = 4*3600;

29

30 h = waitbar(0,'Simulation in Progress...');

31 aL = Ts/(Ts+ 100);

32 sim.uf = u_in;

33 sim.yf = xf;

34

35 ARX = 1;
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36

37 for sim_k = 1:nIter

38 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

39

40 Fk = F('x0',xf,'p',u_in);

41 xf = full(Fk.xf);

42

43 sim.y(sim_k) = xf + 0.005*randn(1);

44 sim.u(sim_k) = u_in + 0.005*randn(1);

45 sim.ySS(sim_k) = -0.1*u_in^2+4*u_in+5;

46 sim.JuSS(sim_k) = -0.2*u_in+4;

47 if sim_k>1 % Noise filtering

48 sim.uf(sim_k) = (1-aL)*sim.uf(sim_k-1) + aL*sim.u(sim_k);

49 sim.yf(sim_k) = (1-aL)*sim.yf(sim_k-1) + aL*sim.y(sim_k);

50 end

51 if sim_k > l

52 ymeas = sim.yf(sim_k-l:sim_k)';

53 umeas = sim.uf(sim_k-l:sim_k)';

54

55 Ju(l) = 1; %initialization

56

57 if Ju(sim_k-1) > 0.010 % ARX model

58 Y0 = ymeas - mean(ymeas); % Zero mean

59 U0 = umeas - mean(umeas); % Zero mean

60

61 data = iddata(Y0,U0,Ts);

62 sysARX = arx(data,[1,1,0]);

63 sysD = idss(sysARX);

64 sys = d2c(sysD);

65 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

66 Ju(sim_k) = Ju_hat;

67 flag(sim_k) = 1;
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68 else % LS method

69 Y = ymeas;

70 U = umeas;

71 X = [U ones(size(U))];

72 b = (inv(X'*X))*(X'*Y);

73 Ju_hat = b(1,1);

74 Ju(sim_k) = Ju_hat;

75 flag(sim_k) = 0;

76 end

77

78 if sim_k > l && (mean(Ju(sim_k-10:sim_k)) >0.001) % ...

I-controller

79 u_in0 = u_in0 + Ki*Ju_hat ;

80 else

81 u_in0 = u_in0 ;

82 end

83 end

84 u_in = u_in0+ 0.1*sin(2*pi*(1/(TD))*sim_k); % add perturbation

85 end

86

87 close(h);

88

89 sim.Ju = Ju;

90 %%

91

92 figure(3412)

93 subplot(411)

94 hold all

95 plot(sim.y)

96 plot(sim.yf)

97 plot( sim.ySS,'--')

98 set(gca,'FontSize',20);
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99 grid on

100 ylabel 'y'

101

102 subplot(412)

103 hold all

104 plot(sim.u)

105 plot(sim.uf,'--')

106 set(gca,'FontSize',20);

107 grid on

108 ylabel 'u'

109

110 subplot(413)

111 hold all

112 plot(sim.JuSS,'--')

113 plot(sim.Ju)

114 set(gca,'FontSize',20);

115 grid on

116 ylabel 'J_u'

117 ylim([-2,2])

118

119 subplot(414)

120 hold all

121 plot(flag)

122 set(gca,'FontSize',20);

123 grid on

124 ylabel 'flag'

C.2.2 Plant process with second-order transfer function

1 clear
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2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sample time

9 y = MX.sym('y');

10 u = MX.sym('u');

11 x1 = MX.sym('x1');

12 x2 = MX.sym('x2');

13 tau = (174/Ts);

14

15 tau_1 = 174;

16 tau_2 = 60;

17 tau_a = 40; % tau_a = 0 and 40 are studied

18

19 [a, b, c, d] = tf2ss([0 tau_a 1],[tau_1*tau_2 tau_1+tau_2 1]);

20

21

22 % dx/dt=Ax+Bu, y=Cx+Du, x=[x1 x2]', A=2X2 matrix

23 dx1 = a(1,1)*x1+a(1,2)*x2+b(1,1)*(-0.1*u^2+4*u+5);

24 dx2 = a(2,1)*x1+a(2,2)*x2+b(2,1)*(-0.1*u^2+4*u+5);

25 y = c(1,1)*x1+c(1,2)*x2+d*(-0.1*u^2+4*u+5);

26

27 ode = struct('x',vertcat(x1,x2),'p',u,'ode',vertcat(dx1,dx2),'quad',y);

28 opts = struct('tf',Ts);

29

30 F = integrator('F','cvodes',ode,opts);

31

32 xf = [0; 42.5/c(1,2)];

33 u_in0 = 15;
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34 u_in = u_in0;

35

36 Ki = 0.005; % Controller gain

37 PRBS = 30; % PRBS calculation steps

38 l = 4*180; % Window size

39

40 nIter = 4*3600;

41

42 h = waitbar(0,'Simulation in Progress...');

43 aL = Ts/(Ts+ 100);

44 sim.uf = u_in;

45 sim.yf = c*xf;

46

47

48

49 ARX = 1;

50 pbrs = 0;

51

52 for sim_k = 1:nIter

53 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

54

55 Fk = F('x0',xf,'p',u_in);

56 xf = full(Fk.xf);

57

58 sim.y(sim_k) = c*xf + 0.005*randn(1);

59 sim.u(sim_k) = u_in + 0.005*randn(1);

60 sim.ySS(sim_k) = -0.1*u_in^2+4*u_in+5;

61 sim.JuSS(sim_k) = -0.2*u_in+4;

62 if sim_k>1

63 sim.uf(sim_k) = (1-aL)*sim.uf(sim_k-1) + aL*sim.u(sim_k);

64 sim.yf(sim_k) = (1-aL)*sim.yf(sim_k-1) + aL*sim.y(sim_k);

65 end
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66 if sim_k >Gradient

67 ymeas = sim.yf(sim_k-Gradient:sim_k)';

68 umeas = sim.uf(sim_k-Gradient:sim_k)';

69

70 Ju(Gradient) = 1; %initialization

71

72 if Ju(sim_k-1) > 0.030 % ARX model

73 Y0 = ymeas - mean(ymeas);

74 U0 = umeas - mean(umeas);

75

76 data = iddata(Y0,U0,Ts);

77 sysARX = arx(data,[2,2,0]);

78 sysD = idss(sysARX);

79 sys = d2c(sysD);

80 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

81 Ju(sim_k) = Ju_hat;

82 flag(sim_k) = 1;

83 else % LS method

84 Y = ymeas;

85 U = umeas;

86 X = [U ones(size(U))];

87 b = (inv(X'*X))*(X'*Y);

88 Ju_hat = b(1,1);

89 Ju(sim_k) = Ju_hat;

90 flag(sim_k) = 0;

91 end

92

93 if sim_k > Gradient && (mean(Ju(sim_k-10:sim_k)) >0.001) ...

% I-controller

94 u_in0 = u_in0 +Ki*Ju_hat ;

95 else

96 u_in0 = u_in0 ;
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97 end

98 end

99

100 if rem(sim_k,PRBS)==0

101 pbrs = 1*idinput(1);

102 end

103 u_in = u_in0+ pbrs; % add perturbation

104 end

105 close(h);

106

107 sim.Ju = Ju;

108

109 %%

110

111 figure(1)

112 subplot(411)

113 hold all

114 plot(sim.y)

115 plot(sim.yf)

116 plot( sim.ySS,'--')

117 set(gca,'FontSize',20);

118 grid on

119 ylabel 'y'

120

121 subplot(412)

122 hold all

123 plot(sim.u)

124 plot(sim.uf,'--')

125 set(gca,'FontSize',20);

126 grid on

127 ylabel 'u'

128

119



129 subplot(413)

130 hold all

131 plot(sim.JuSS,'--')

132 plot(sim.Ju)

133 set(gca,'FontSize',20);

134 grid on

135 ylabel 'J_u'

136 ylim([-2 2])

137

138 subplot(414)

139 hold all

140 plot(flag)

141 set(gca,'FontSize',20);

142 grid on

143 ylabel 'flag'

C.3 Classic ESC

C.3.1 Plant process with first-order transfer function

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sample time

9 y = MX.sym('y');

10 u = MX.sym('u');
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11 tau = (174/Ts);

12

13 dx1 = ((-0.1*u^2+4*u+5) - y)/tau;

14

15 ode = struct('x',y,'p',u,'ode',dx1,'quad',y);

16 opts = struct('tf',Ts);

17

18 F = integrator('F','cvodes',ode,opts);

19

20 xf = 42.5;

21 u_in0 = 15;

22 u_in = u_in0;

23

24 nIter = 4*1e5;

25

26 h = waitbar(0,'Simulation in Progress...');

27

28 TD = 800; % dither time constant

29 Th = (0.2)*TD; % High Pass Filter time constant

30 Tl = 10*TD; % Low Pass Filter time constant

31 a = 1; % sine amplitude

32 Ki = 0.005; % Controller gain

33

34 %intitalisation

35 z(1) = 0;

36 x(1) = 0;

37 u_esc(1) = 15;

38 y_esc(1) = 42.5;

39 sim.u(1) = 15;

40 sim.y(1) = 42.5;

41 J(1) = y_esc(1);

42 u_hat(1) = u_esc(1);
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43 sine(1) = 0;

44 f = 1/TD;

45

46 % filter coefficients

47 al = Ts/(Ts + Tl);

48 ah = Th/(Ts + Th);

49

50 ARX = 1;

51 pbrs = 0;

52

53

54 for sim_k = 2:nIter

55 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

56

57 Fk = F('x0',xf,'p',u_in);

58 xf = full(Fk.xf);

59

60 sim.y(sim_k) = xf + 0.005*randn(1);

61 sim.u(sim_k) = u_in + 0.005*randn(1);

62

63 y_esc(sim_k) = sim.y(sim_k);

64 J(sim_k) = sim.y(sim_k);

65 u_esc(sim_k) = sim.u(sim_k);

66

67 z(sim_k) = ah*z(sim_k-1) + ah*J(sim_k) - ah*J(sim_k-1); ...

% High pass filter

68 x(sim_k) = ((1-al)*x(sim_k-1) + ...

al*z(sim_k)*sin(2*pi*f*Ts*(sim_k))); % correlation and Low ...

pass filter

69 u_esc(sim_k) = u_esc(sim_k-1) + Ts*Ki*x(sim_k).*2/a; ...

% I-controller
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70 u_hat(sim_k) = u_esc(sim_k) + a*sin(2*pi*f*Ts*(sim_k)); ...

% estimated optimal input + dither

71 sine(sim_k)= sin(2*pi*f*Ts*(sim_k));

72

73 u_in = u_hat(sim_k);

74

75

76 end

77 close(h);

78 %% Plotting

79

80 hold all

81 figure(1)

82 subplot(311)

83 hold all

84 plot(y_esc)

85 set(gca,'FontSize',20);

86 ylabel 'y'

87

88 subplot(312)

89 hold all

90 plot(u_hat)

91 set(gca,'FontSize',20);

92 ylabel 'u'

93

94 subplot(313)

95 hold all

96 plot(x.*2/a)

97 set(gca,'FontSize',20);

98 ylabel 'J_u'
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C.3.2 Plant process with second-order transfer function

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sample time

9 y = MX.sym('y');

10 u = MX.sym('u');

11 x1 = MX.sym('x1');

12 x2 = MX.sym('x2');

13 tau = (174/Ts);

14

15 tau_1 = 174;

16 tau_2 = 60;

17 tau_a = 40; % tau_a = 0 and 40 are studied

18

19 [a,b,c,d] = tf2ss([0 tau_a 1] , [tau_1*tau_2 tau_1+tau_2 1]);

20

21 % dx/dt=Ax+Bu, y=Cx+Du, x=[x1 x2]', A=2X2 matrix

22 dx1 = a(1,1)*x1+a(1,2)*x2+b(1,1)*(-0.1*u^2+4*u+5);

23 dx2 = a(2,1)*x1+a(2,2)*x2+b(2,1)*(-0.1*u^2+4*u+5);

24 y = c(1,1)*x1+c(1,2)*x2+d*(-0.1*u^2+4*u+5);

25

26 ode = struct('x',vertcat(x1,x2),'p',u,'ode',vertcat(dx1,dx2),'quad',y);

27 opts = struct('tf',Ts);

28

29 F = integrator('F','cvodes',ode,opts);
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30

31 xf = [0; 42.5/c(1,2)];

32 u_in0 = 15;

33 u_in = u_in0;

34

35 nIter = 4e5;

36

37 h = waitbar(0,'Simulation in Progress...');

38

39 TD = 1800; % dither time constant

40 Th = (0.2)*TD; % High Pass Filter time constant

41 Tl = 10*TD; % Low Pass Filter time constant

42 a = 1; % sine amplitude

43 Ki = 0.001; % Controller gain

44

45 %intitalisation

46 z(1) = 0;

47 x(1) = 0;

48 u_esc(1) = 15;

49 y_esc(1) = 42.5;

50 sim.u(1) = 15;

51 sim.y(1) = 42.5;

52 J(1) = y_esc(1);

53 u_hat(1) = u_esc(1);

54 sine(1) = 0;

55 f = 1/TD;

56

57 % filter coefficients

58 al = Ts/(Ts + Tl);

59 ah = Th/(Ts + Th);

60

61 ARX = 1;
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62 pbrs = 0;

63

64 for sim_k = 2:nIter

65 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

66

67 Fk = F('x0',xf,'p',u_in);

68 xf = full(Fk.xf);

69

70 sim.y(sim_k) = c*xf + 0.005*randn(1);

71 sim.u(sim_k) = u_in + 0.005*randn(1);

72

73 y_esc(sim_k) = sim.y(sim_k);

74 J(sim_k) = sim.y(sim_k);

75 u_esc(sim_k) = sim.u(sim_k);

76

77 z(sim_k) = ah*z(sim_k-1) + ah*J(sim_k) - ah*J(sim_k-1); ...

% High pass filter

78 x(sim_k) = ((1-al)*x(sim_k-1) + ...

al*z(sim_k)*sin(2*pi*f*Ts*(sim_k))); % correlation and Low ...

pass filter

79 u_esc(sim_k) = u_esc(sim_k-1) + Ts*Ki*x(sim_k).*2/a; ...

% I-controller

80 u_hat(sim_k) = u_esc(sim_k) + a*sin(2*pi*f*Ts*(sim_k)); ...

% estimated optimal input + dither

81 sine(sim_k)= sin(2*pi*f*Ts*(sim_k));

82

83 u_in = u_hat(sim_k);

84

85 end

86 close(h);

87 %% Plotting

88
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89 hold all

90 figure(1)

91 subplot(311)

92 hold all

93 plot(y_esc)

94 set(gca,'FontSize',20);

95 ylabel 'y'

96

97 subplot(312)

98 hold all

99 plot(u_hat)

100 set(gca,'FontSize',20);

101 ylabel 'u'

102

103 subplot(313)

104 hold all

105 plot(x.*2/a)

106 set(gca,'FontSize',20);

107 ylabel 'J_u'
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