Modeling a Multiphase Subsea Separation System TKP 4550 Specialization Project

Torstein Bishop

Department of Chemical Engineering Norwegian University of Science and Technology

Trondheim, 2015

1 Project Scope

Motivation

3 Model Description

- Deliquidizer
- Governing equations

Results

- Comparison to Experimental Data
- Flow rate effect
- Flow split effect

1 Project Scope

2 Motivation

Model Description

- Deliquidizer
- Governing equations

4 Results

- Comparison to Experimental Data
- Flow rate effect
- Flow split effect

Torstein Bishop (NTNU)

- Based on the work from two Master thesis'.
 - Preben F. Tyvold(2015)
 - Fahad Matovu(2015)
- Model for Gas-Liquid separation
 - Model from Tyvold
 - Parameters from Matovu

Project Scope

Motivation

Model Description

- Deliquidizer
- Governing equations

Results

- Comparison to Experimental Data
- Flow rate effect
- Flow split effect

Torstein Bishop (NTNU)

Motivation

- Increased research focus
- Large focus in industry
- Improves economics

Figure: Picture from Statoil [2].

Project Scope

2 Motivation

3 Model Description

- Deliquidizer
- Governing equations

4 Results

- Comparison to Experimental Data
- Flow rate effect
- Flow split effect

Figure: From Tyvold [1]

Torstein Bishop (NTNU) Modeling a Multiphase Subsea Separation Sys

= 200

Model Description

Radial velocity
$$v_r(r,z) = rac{2r_d^2(
ho_d-
ho_c)}{9\mu} \, rac{v_ heta^2(r,z)}{r}$$

1= 9QC

Image: A matrix

Model Description

Radial velocity
$$v_r(r,z) = rac{2r_d^2(
ho_d -
ho_c)}{9\mu} \, rac{v_ heta^2(r,z)}{r}$$

Soave-Redlich-Kwong Equation of State

$$p = \frac{RT}{V_m - b} - \frac{a\,\alpha}{V_m(V_m + b)}$$

Torstein Bishop (NTNU)

Radial velocityDroplet size $v_r(r, z) = \frac{2r_d^2(\rho_d - \rho_c)}{9\mu} \frac{v_\theta^2(r, z)}{r}$ $r_d = m q_{in} + c$ Soave-Redlich-Kwong Equation
of StateSoave-Redlich-Kwong Equation
of State

$$p = \frac{RT}{V_m - b} - \frac{a\,\alpha}{V_m(V_m + b)}$$

Torstein Bishop (NTNU)

= 200

Radial velocity	Droplet size		
$v_r(r,z) = \frac{2r_d^2(\rho_d - \rho_c)}{9\mu} \frac{v_\theta^2(r,z)}{r}$	$r_d = m q_{in} + c$ Tangential velocity		
Soave-Redlich-Kwong Equation of State	$v_{ heta}(r,z) = v_{ heta}^0(r) \exp(rac{-C_{decay} z}{2R})$		
$p=rac{RT}{V_m-b}-rac{alpha}{V_m(V_m+b)}$	211		

-

Project Scope

2 Motivation

Model Description

- Deliquidizer
- Governing equations

Results

- Comparison to Experimental Data
- Flow rate effect
- Flow split effect

Conclusion

ъ.

Table: Comparison between experimental data and model results. Flow split(FS) = 0.97 and inlet gas fraction $\alpha_{in} = 0.83$.

Inlet flow	GVF _{LPO} [-]	GVF _{LPO} [-]	LVF _{HPO} [-]	LVF _{HPO} [-]
q _{in} [m ³ /h]	Exp.data	Model Results	Exp.data	Model Results
204.9	0.85	0.86	0.71	1
208.1	0.85	0.86	0.83	1
217.8	0.85	0.86	0.77	1

11 / 17

Flow rate effect Results

• Flow split = 0.8

•
$$\alpha_{in} = 0.8$$

Torstein Bishop (NTNU)

Modeling a Multiphase Subsea Separation Sys

= nar

Flow split effect Results

•
$$q_{in} = 140 \ m^3/h$$

•
$$\alpha_{in} = 0.8$$

Torstein Bishop (NTNU)

э

= 990

Project Scope

2 Motivation

B Model Description

- Deliquidizer
- Governing equations

Results

- Comparison to Experimental Data
- Flow rate effect
- Flow split effect

- Satisfying accuracy in GVF_{LPO}
- Expected performance towards flow rate
- Performance towards flow split:
 - ${\bullet}~$ As expected at FS > 0.5
 - ${\bullet}~$ Not as expected at FS < 0.5
- Looking forward
 - More accurate model parameters
 - Better droplet size correlations
 - Optimization of separator.

- Johannes Jäschke
- Tamal Das

< 67 ▶

Tyvold, P.

Modeling and Optimization of a Subsea Oil-Water Separation System. Master thesis, Norwegian University of Science and Technology, Trondheim, 2015.

Statoil

The Subsea Factory

http://www.statoil.com/en/technologyinnovation/ fielddevelopment/aboutsubsea/Pages/Lengre

17 / 17