> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Modelling & Optimization of a Distillation Train

Vegard Skogstad

December 12, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Process overview

2 Optimisation

3 Steam distribution

4 Potential savings

6 Conclusions

Table of contents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

> Vegard Skogstad

Process overview

Optimisation

Steam distributior

Potential savings

Realistic savings

Conclusions

Goal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Goal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Find steam savings

The Process

Modelling & Optimization

of a

996

Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Over-purification

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Assumption:

Excess steam usage gives over-purification of products

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Modelling & Optimization

of a Distillation Train

◆□> ◆□> ◆三> ◆三> ・三 のへの

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Over-purification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We do have over-purification!

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

The optimisation problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{l} \max_{M} Z = M_{PRAL} p_{PRAL} + M_{IBAL} p_{IBAL} + M_{NBAL} p_{NBAL} - E_{tot} H_{vap} p_{steam} \\ c_{Ibal in PRAL} \leq 0.002 \\ c_{Pral in IBAL} \leq 0.001 \\ c_{Nbal in IBAL} \leq 0.002 \\ c_{Ibal in NBAL} \leq 0.0012 \end{array}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

• Pral price needs to be 8 times as large as other products before constraint non-active

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

Optimisation

- Steam distribution
- Potential savings
- Realistic savings
- Conclusions

- Pral price needs to be 8 times as large as other products before constraint non-active
- Ibal price needs to be 7 times as large as other products

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

Optimisation

Steam distributior

Potential savings

Realistic savings

Conclusions

- Pral price needs to be 8 times as large as other products before constraint non-active
- Ibal price needs to be 7 times as large as other products
- Nbal price needs to be 8 times as large as other products

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

Optimisation

Steam distributior

Potential savings

Realistic savings

Conclusions

- Pral price needs to be 8 times as large as other products before constraint non-active
- Ibal price needs to be 7 times as large as other products
- Nbal price needs to be 8 times as large as other products
- For common price estimates, the optimal solution is always to minimise steam usage!

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Steam distribution in Isomer columns

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Assumption: Uneven separation in Isomer columns gives steam losses

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Steam distribution in Isomer columns

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Assumption:

Uneven separation in Isomer columns gives steam losses

- What is optimal steam distribution?
 - As much separation as possible in ISOM 1
 - As much separation as possible in ISOM 2
 - Equal separation in both columns

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Steam distribution in Isomer columns

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

on		Duty ISOM 1	Duty ISOM 2	Total duty	Savings
	Units	kJ/h	kJ/h	kJ/h	kr/h
n	Base case	3,57E+07	3,17E+07	9,60E+07	
	Same concentration	3,76E+07	2,86E+07	9,47E+07	
	Difference	-1,91E+06	3,18E+06	1,27E+06	127

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Steam distribution in Isomer columns

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

	D	uty ISOM 1	Duty ISOM 2	Total duty	Savings
i	Jnits	kJ/h	kJ/h	kJ/h	kr/h
Base	case	3,57E+07	3,17E+07	9,60E+07	
Same concentra	ation	3,76E+07	2,86E+07	9,47E+07	
Differ	ence	-1,91E+06	3,18E+06	1,27E+06	127

- Product streams identical
- Yearly savings of pprox 1 million
- Increased steam usage in ISOM 1
- Decreased steam usage in ISOM 2

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Potential savings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We would like to reduce over-purification

Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Potential savings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We would like to reduce over-purification

Where would it be most profitable to improve control?

Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Potential savings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Table: Changing concentrations from base case values to maximum allowable values

Ibal in PRAL	Pral in IBAL	Nbal in IBAL	Ibal in NBAL	Total duty	Savings
				kJ/h	kr/h
0,00028	0,00023	0,002	0,00042	9,03E+07	582
0,002	0,00023	0,00062	0,00042	9,42E+07	190
0,00028	0,001	0,00062	0,00042	9,53E+07	85
0,00028	0,00023	0,00062	0,0012	9,27E+07	347

• The largest potential savings are from the Isomer columns

Vegard Skogstad

Process overview

- Optimisation
- Steam distribution
- Potential savings
- Realistic savings
- Conclusions

Realistic savings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- At the set point we will violate the constraint 50% of the time
- need back-off
- How much can we decrease back-off without violating the constraints?

> Vegard Skogstad

Process overview

Optimisation

Steam distributio

Potential savings

Realistic savings

Conclusions

Probability distributions

(日)、

æ

> Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Savings with new set points

Table: Changing the concentrations out of the ISOM 2 column to meet new specified set points for the product streams

	Nbal in IBAL	Ibal in NBAL	Total duty	Steam savings
			kJ/h	kr/h
Measured data base case	0,062	0,042	9,60E+07	
Isomer set points 1% failure	0,091	0,058	9,18E+07	421,58
Isomer set points 2.27% (Norm distr.)	0,143	0,078	9,05E+07	543,29

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

- Optimisation
- Steam distribution
- Potential savings
- Realistic savings
- Conclusions

- For common price estimates, the optimal solution is always to minimise steam usage
- The largest potential savings are from the Isomer columns
- Identical separation in Isomer columns leads to steam savings without changing product streams
- To achieve this: Decrease steam usage in ISOM 2, increase steam usage in ISOM 1