
NTNU Fakultet for naturvitenskap og teknologi
Norges teknisk-naturvitenskapelige Institutt for kjemisk prosessteknologi
universitet

SPECIALIZATION PROJECT 2012

TKP 4550

PROJECT TITLE:
Refrigeration Cycle CO2

By

Nils Arne Susort

Supervisor for the project: Date:
Professor Sigurd Skogestad 07.12.12

Abstract

A simple refrigeration cycle based on CO2 which operates trans-critical has been modeled in
the equation based, object-oriented language Modelica. The modeling methodology, how the
final model of the cycle is carried out, is described in the report. The modeled cycle turned
out to differ from a reference model, but the differences was minor. A feasible steady-state
solution to the Modelica model was obtained, but not considered as optimal.

i

Preface

This report is reflecting the work done and achieved results from the specialization project
TKP4550. The credit of the project is 15 SP. The head of the project is incorporated inside the
process systems engineering group at the department of chemical engineering as a compulsory
part of the 5-year Master program. Many thanks to my supervisor Sigurd Skogestad and my
co-supervisors Vladimiros Minasidis and Johannes Jäschke.

Trondheim
December 7, 2012

Nils Arne Susort

ii

Contents

Abstract i

Preface ii

List of Figures v

List of Tables vi

1 Introduction 1

2 Process Description 2

3 Computer tools and thermodynamics 4
3.1 OpenModelica . 4
3.2 CoolProp . 4
3.3 Thermodynamic considerations . 4

4 Modeling methodology 8
4.1 Evaporator . 8
4.2 Compressor . 10
4.3 Gas cooler . 11
4.4 Internal heat exchanger . 12
4.5 Valve . 13

5 Results 15
5.1 The Modelica model construction . 15
5.2 Validation of the results . 16

6 Discussion 20
6.1 Suggestions for future work . 21

7 Conclusion 22

List of symbols and abbreviations 23

Attachments:

A Refrigeration cycle CO2 model code written in Modelica 27
A.1 Connectors . 27
A.2 Units used in the models . 27
A.3 Evaporator . 28
A.4 Valve . 29
A.5 Internal heat exchanger . 30

iii

A.6 Gas cooler (condenser) . 31
A.7 Compressor . 32
A.8 Refrigeration Cycle CO2 . 33

B Thermodynamic considerations 34
B.1 Modelica sample for the dimensionless Helmholtz function 34
B.2 Thermodynamic properties as function of specific enthalpy and pressure 36

iv

List of Figures

2.1 The refrigeration cycle process includes an evaporator (EVP), an internal heat
exchanger (IHX), a compressor (COM), a gas cooler (GCO) and a valve (VAL). . . 2

4.1 Utilized simulation scheme in the Modelica model. The starting point is where
the simulation is initialized. A starting value for the enthalpy entering the inlet
of the compressor is initialized at the secondary comparison point and updated
by the enthalpy from the internal heat exchanger outlet every interval time. The
enthalpy balance is controlled at the primary comparison point. 9

5.1 Pressure-enthalpy diagram which directly compares the Modelica model against
the MATLAB model by Jensen when applying the same pressure and mass flow
rate values. In this case the Modelica solution is infeasible since the isentropic
efficiency in the compressor becomes 1.38. Isotherms are included in the chart
raging from 270 K to 400 K displaced by 5 K. 17

5.2 The temperature profile inside the gas cooler for both Modelica and MATLAB
model is compared against each other when the exactly same fluid properties
from the MATLAB model is implemented to the Modelica model. It is important
to notice that this simulation for the Modelica model is infeasible, but the figure
is meant to illustrate how the two models differ in calculations. 18

5.3 Pressure-enthalpy diagram which compares a feasible Modelica model against
the MATLAB model by Jensen. Isotherms are included in the chart raging from
270 K to 400 K displaced by 5 K. 19

v

List of Tables

2.1 The design conditions for the refrigeration cycle 3
2.2 Typical variables which are optimized by J. B. Jensen 3
5.1 New supposed optimized variables . 18

vi

1 Introduction

Vapor compression cycle is the most common process utilized in refrigeration systems. Today,
refrigeration cycles are of great importance in the household (e.g. refrigerator) , automotive
vehicles (e.g. AC) and industry (e.g. LNG). Modeling and optimization of the mentioned
processes is advantageous when speaking of saving nature (choice of refrigerant) and possible
COP enhancement. The decision of choosing CO2 as refrigerant reflects the worlds increasing
interest and request for non-toxic, non-hazardous working medium.

This project was motivated by first of all reproducing parts of the work J. B. Jensen [1] did
in his PhD thesis, which was done in MATLABr, and implement a close to similar model
in Modelicar. The intention of using Modelica was to avoid the causality which dominates
many programming languages and take advantage of the benefits Modelica provides. Once a
model is written, the Modelica engine compiles the code into C-code or XML whereby almost
anything can be further analyzed (like optimization). Several books, articles and internet fo-
rums have been frequently employed to gain knowledge about Modelica usage, but the book
by Fritzson [2] have been used as base material to build a model.

The refrigeration cycle studied in this project utilizes CO2 as cooling medium. The cycle is kept
at a simple level and the steady state behavior has been of most interest, although dynamics is
included in the evaporator. In contrast to the model simplicity, a quite precise thermodynamic
equation of state routine by Span and Wagner [3] is implemented to the model. The equation
of state is in the form of a fundamental equation explicit in the Helmholtz free energy valid
in the region 216 K ≤ T ≤ 1100 K and 0 MPa ≤ p ≤ 800 MPa. For instance the uncertainty
in density in the region up to temperatures and pressures of 523 K and 30 MPa, respectively
ranges from ±0.03 % to ±0.05 %. Only the trans-critical case is considered, meaning that the
low pressure side of the process is sub-critical and the high pressure side is super-critical.

1

2 Process Description

The refrigeration cycle is depicted in Figure 2.1 and typical process variables1 are announced in
Table 2.2. The design conditions is given in Table 2.1. The evaporator operates in the two-phase
region where the gas and the liquid is in equilibrium. Saturated gas is ensured due to the accu-
mulator tank after the evaporator. The compressor is 75 % close to isentropic and compresses
the gas from the sub-critical region to the super-critical region. The gas cooler condenses the
gas and the heat flow entering the ambient air (Q̇GCO) at steady state is equal to the heat flow
entering the evaporator (Q̇EVP) plus the shaft work to the compressor (Ẇsha f t). At steady state
also the heat loss between the room and the ambient (Q̇loss) has to be equal to the heat entering
the evaporator (Q̇EVP) to maintain constant room temperature. The internal heat exchanger is
included by the fact that some studies have proven increased efficiency of sub-cooling the high
pressure gas before the valve inlet and super-heating the gas from the evaporator outlet. This
reduces the expansion loss through the valve, even though a super-heated gas will increase
the compressor power compared to saturated gas. The valve is modeled as pure isenthalpic.

Figure 2.1: The refrigeration cycle process includes an evaporator (EVP), an internal heat ex-
changer (IHX), a compressor (COM), a gas cooler (GCO) and a valve (VAL).

1The variables presented are inherited from the exact same refrigeration cycle defended by J. B. Jensen’s PhD
thesis [1]

2

Table 2.1: The design conditions for the refrigeration cycle

Process unit /
Condition Description Symbol Value

lumped region

Evaporator Thermal conductance U̇AEVP [kW K−1] 0.800

Valve Choke Cv [m2] 1.21× 10−6

Internal HEX
Thermal conductance U̇AIHX [kW K−1] 0.154
Control volumes nIHX 6

Gas Cooler
Thermal conductance U̇AGCO [kW K−1] 0.794
Control volumes nGCO 6

Compressor Isentropic efficiency η 0.75

Room
Thermal conductance U̇Aloss [kW K−1] 0.400
Temperature Tair [K] 293.15

Ambient air
Temperature Tair [K] 303.15
Mass flow rate ṁair [kg s−1] 0.25
Heat capacity at constant pressure Cair

p [kJ kg−1 K−1] 1.00

Table 2.2: Typical variables which are optimized by J. B. Jensen

Variable Symbol Value

Compressor power Ẇsha f t [kW] 0.958
Valve opening z 0.340
High pressure side p4, p5 and p6 [kPa] 9761
Low pressure side p1, p2′ , p2 and p3 [kPa] 5083
Heat flow leaving the gas cooler Q̇GCO [kW] 4.958
Heat flow entering the evaporator Q̇EVP [kW] 4.000
Heat flow exchanged in the internal HEX Q̇IHX [kW] 0.889
Mass flow rate circulating ṁ [kg s−1] 0.0250

Temperatures

T1 [K] 288.2
T3 [K] 304.4
T4 [K] 362.8
T6 [K] 298.7

3

3 Computer tools and thermodynamics

3.1 OpenModelica

The modeling and simulations are performed in the open-source environment OpenModelica
by use of the OMC compiler. The user friendly environment is suited for both modeling,
simulation and plotting of results. The OMC compiler handles most of the features present in
the Modelica language, but there happen to be a couple of bugs.

3.2 CoolProp

Necessary lookup tables for the thermodynamics are created by the open-source database
CoolProp. CoolProp is easily accessed inside the Python interpreter and uses the fundamen-
tal equation of state developed by Span and Wagner [3] for calculation of the CO2 properties.
As long as the thermodynamic tables is finely discretized there should be no difference be-
tween interpolation in lookup tables and calculating directly from the equations, confirmed
by Andresen [4]. The model setup uses lookup tables in the evaporator due to it’s simplicity
when gas and liquid phase is in equilibrium. The saturation table is only dependent of one
single thermodynamic property, e.g. temperature or pressure, to calculate rest of the unknown
properties, which makes it simple. All the other units in the refrigeration cycle is modeled by
solving the equation of state explicitly.

3.3 Thermodynamic considerations

The thermodynamic equation of state given in equation (3.1) is a fundamental equation ex-
pressed in form of Helmholtz energy.

φ(δ, τ) = φ0(δ, τ) + φr(δ, τ) (3.1)

4

Where:

φ : dimensionless Helmholtz energy
(

A(ρ,T)
RT

)
φ0 : dimensionless ideal part of Helmholtz energy

(
A0(ρ,T)

RT

)
φr : dimensionless residual part of Helmholtz energy

(
Ar(ρ,T)

RT

)
δ : dimensionless density

(
ρ
ρc

)
ρc : critical density (467.6 kg m−3)

τ : dimensionless temperature
(

Tc
T

)
Tc : critical temperature (304.1282 K)
R : gas constant (0.188 924 1 kJ kg−1 K−1)

The expressions for φ0(δ, τ) and φr(δ, τ) are given in equation (3.2) and (3.3), respectively. The
coefficients, the exponents and the derivatives of the dimensionless Helmholtz energy are not
included in this section, due to the extensiveness, but can be investigated either in the Modelica
code [5] or in the original paper by Span and Wagner [3]. Also a sample on how the functions
are implemented in the Modelica model is included in appendix B.1.

φ0(δ, τ) = ln(δ) + a0
1 + a0

2τ + a0
3 ln(τ) +

8

∑
i=4

a0
i ln[1− e−τθ0

i] (3.2)

Where:

a0
i : coefficient for number i

θ0
i : exponent for number i

φr(δ, τ) =
7

∑
i=1

niδ
di τti +

34

∑
i=8

niδ
di τti e−δci +

39

∑
i=35

niδ
di τti e−αi(δ−εi)

2−βi(τ−γi)
2

+
42

∑
i=40

ni∆bi δe−Ci(δ−1)2−Di(τ−1)2
(3.3)

Where:

ni : coefficient for number i
di, ti, ci, αi, βi, γi, εi, ai, bi, Ai, Bi, Ci, Di : exponents for number i

Calculation of thermodynamic properties is intuitive from the Helmholtz energy. How this is
done for pressure, entropy, specific internal energy and specific enthalpy, which are utilized in
the Modelica model, are shown in equation (3.4a), (3.4b), (3.4c) and (3.4d), respectively.

5

p(δ, τ)

ρRT
=1 + δφr

δ (3.4a)

s(δ, τ)

R
=τ(φ0

τ + φr
τ)− φ0 − φr (3.4b)

u(δ, τ)

RT
=τ(φ0

τ + φr
τ) (3.4c)

h(δ, τ)

RT
=1 + τ(φ0

τ + φr
τ) + δφr

δ (3.4d)

The refrigeration cycle is modeled in terms of enthalpy and pressure. The thermodynamic
equation of state is based on ideal and residual parts of the Helmholtz energy. To make the
model handle enthalpies and pressures as function inputs, the temperatures and densities have
to be explicitly calculated by an iteration algorithm. To do so, a Newton-Raphson method,
equation (3.7), is implemented to the model. The necessary equations for the iteration strategy,
the residual function and the Jacobian, is given in the equation (3.5) and (3.6), respectively. In
the compressor model, also the outlet pressure needs to be calculated when only enthalpy and
entropy is known from the inputs, hence the same iteration procedure apply for that case.

f =

[
f1(δ, τ)

f2(δ, τ)

]
(3.5)

Jf =

[
∂ f1(δ,τ)

∂τ
∂ f1(δ,τ)

∂δ
∂ f2(δ,τ)

∂τ
∂ f2(δ,τ)

∂δ

]
(3.6)

Where:

fi : residual function i for desirable state
∂ fi
∂τ : partial derivative of residual function i with respect to τ
∂ fi
∂δ : partial derivative of residual function i with respect to δ

[
τ

δ

](k+1)

=

[
τ

δ

](k)
− Jf

−1(k)f(k) (3.7)

Where:

k : iteration counter

For instance, when density and temperature need to be solved explicitly in terms of enthalpy
and pressure, the residual function f (k)1 is the difference between the pressure at iteration k

6

and the desirable pressure. Likewise is the residual function f (k)2 the difference between the
enthalpy at iteration k and the desirable enthalpy. The iteration terminates when a certain
confidence error is reached. Although the Newton-Raphson method is effective, a reasonable
guess value has to be selected at startup. If not, it may iterate for ever and won’t find a solution.
A sample on how the iteration method is implemented in the Modelica model is attached to
appendix B.2.

7

4 Modeling methodology

The cycle in Figure 2.1 is considered when discussing the modeling approach below. The
Modelica model code is attached in Appendix A and available at the internet [5] along with
the thermodynamic code. How the model calculates can in principle be done in several ways,
however the model code following this report is only concerned about one single procedure.
The applied simulation procedure is inspired by the standard calculation procedure in CSIM,
covered by T. Andresen [4]. This procedure is illustrated in Figure 4.1. Initialization takes place
at the starting point (evaporator outlet), where temperature (Tout) and mass flow rate (ṁout) are
the only initialization variables. Basically, there are no differences whether the starting point
is set at the inlet or at the outlet since the temperature is constant throughout the evaporator.
The compressor do also need to be initialized at the same time requiring power (Wsha f t) and
a guess value for the temporary enthalpy (hin) at the inlet. The temporary enthalpy is only
for initializing the compressor such that the substance properties inside the gas cooler and
the internal heat exchanger successfully can be calculated. After the first simulation interval,
this enthalpy is updated (at the secondary comparison point) from the internal heat exchanger
outlet, every time instant behind the present. At every time interval is the enthalpy at the valve
inlet and at the valve outlet compared (at the primary comparison point) and the compressor
power is manipulated if there are inconsistencies. This scheme controls the conservation of the
energy of the cycle.

Complete model equations is given in equations (4.1) trough (4.5). Transport phenomenas and
hence friction is not taken into account. The evaporator is the only unit that has dynamic terms
since it is alone operating in the two-phase region. The holdups are nowhere calculated since
specific properties dominate the model.

4.1 Evaporator

The equations that are used to model the evaporator is given in the equation set (4.1). The
evaporator operates sub-critical and the outlet flow is connected to a tank ensuring saturated
conditions for the gas. The tank is also indirectly controlling the active charge in the process.
The steady state scenario assumes constant room temperature of 20 ◦C and fixed load (fixed
UA-value). Constant room temperature is achieved if the “heat loss” out of the room is equal
to the heat load transfered to the evaporator. The design specifications from Table 2.1 shows
that this steady-state condition is achieved when the heat load is 4 kW and the evaporator
temperature is 15 ◦C. The Modelica model is constructed to use temperature and mass flow
rate as input and linear interpolation in the lookup table to find saturated pressure, density
and enthalpy. The internal energy is also calculated from the equation of state.

8

Figure 4.1: Utilized simulation scheme in the Modelica model. The starting point is where the
simulation is initialized. A starting value for the enthalpy entering the inlet of the
compressor is initialized at the secondary comparison point and updated by the
enthalpy from the internal heat exchanger outlet every interval time. The enthalpy
balance is controlled at the primary comparison point.

dm
dt

= ṁin − ṁout (4.1a)

dU
dt

= ṁinhin − ṁouthout + Q̇ (4.1b)

dU
dt

= u
dm
dt

(4.1c)

Q̇ = U̇A(Tair − Tout) (4.1d)

q =
hin − hliq

hvap − hliq
(4.1e)

ṁevap =
Q̇

hvap − hliq
(4.1f)

0 = qṁin − ṁout + ṁevap (4.1g)

hout = hvap (4.1h)

pin = pout (4.1i)

(pout, ρvap, hvap) = f (Tout) (4.1j)

(pout, ρliq, hliq) = f (Tout) (4.1k)

u = f (ρliq, Tout) (4.1l)

9

Where:

m : mass inventory
ṁ : mass flow rate
U : internal energy
h : specific enthalpy

Q̇ : heat flow rate
u : specific internal energy

U̇A : thermal conductance
T : temperature
q : vapor quality
p : pressure
ρ : density

in : inlet

out : outlet

liq : saturated liquid

vap : saturated vapor

evap : evaporated liquid

4.2 Compressor

The equation set (4.2) describes the compressor model. It is assumed no holdup and a con-
stant isentropic efficiency. The gas entering the inlet is superheated. It is not straight forward
to implement the compressor to the cycle simulation cause the compressor power determines
the thermodynamic properties to the rest of the process. To contradict this issue the inlet en-
thalpy is updated every time instant from the internal heat exchanger outlet and the compres-
sor power is controlled such that the energy balance of the cycle is accomplished.

10

0 = ṁin − ṁout (4.2a)

0 = Ẇsha f t + ṁinhin − ṁouthout (4.2b)

ss = sin (4.2c)

ps = pout (4.2d)

η =
hs − hin

hout − hin
(4.2e)

ps = f (ρs, Ts) (4.2f)

sin = f (ρin, Tin) (4.2g)

(ρs, Ts) = f (hs, ss) (4.2h)

(ρin, Tin) = f (hin, pin) (4.2i)

(ρout, Tout) = f (hout, pout) (4.2j)

Where:

ṁ : mass flow rate
Ẇ : Power
h : specific enthalpy
s : specific entropy
T : temperature
p : pressure
η : isentropic efficiency
ρ : density

in : inlet

out : outlet

s : isentropic

sha f t : shaft work

4.3 Gas cooler

The associated gas cooler model is given in the equation set (4.3). The thermal conductance
and ambient air properties are given as inputs, thus this condenser is easy to model. The gas
cooler is divided into 6 control volumes for consistency with the MATLAB model, although
this number is easy to alter.

11

0 = ṁin − ṁout (4.3a)

0 = ṁair
in − ṁair

out (4.3b)

0 = ṁinhin − ṁouthout − Q̇ (4.3c)

Q̇ = ṁairCair
p (Tair

out − Tair
in) (4.3d)

Q̇ = U̇A(Tout − Tair
out) (4.3e)

pin = pout (4.3f)

(ρout, Tout) = f (hout, pout) (4.3g)

Where:

ṁ : mass flow rate
h : specific enthalpy

U̇A : thermal conductance
Q̇ : heat flow rate
T : temperature
p : pressure

Cp : heat capacity at constant pressure
ρ : density

in : inlet

out : outlet
air : ambient air

4.4 Internal heat exchanger

The equations used to model the internal heat exchanger is given in the equation set (4.4). The
high pressure stream from the gas cooler outlet is heat exchanged with the low pressure stream
from the evaporator outlet. Also the internal heat exchanger is divided into 6 control volumes
for consistency with the MATLAB model, although this number is easy to alter.

12

0 = ṁH,in − ṁH,out (4.4a)

0 = ṁC,in − ṁC,out (4.4b)

0 = ṁH,inhH,in − ṁH,outhH,out − Q̇ (4.4c)

0 = ṁC,inhC,in − ṁC,outhC,out + Q̇ (4.4d)

Q̇ = U̇A(TH,out − TC,out) (4.4e)

pH,in = pH,out (4.4f)

pC,in = pC,out (4.4g)

(ρH,out, TH,out) = f (hH,out, pH,out) (4.4h)

(ρC,out, TC,out) = f (hC,out, pC,out) (4.4i)

Where:

ṁ : mass flow rate
h : specific enthalpy

Q̇ : heat flow rate
U̇A : thermal conductance

T : temperature
p : pressure
ρ : density

in : inlet

out : outlet

H : hot side

C : cold side

4.5 Valve

The equations for modeling the valve are given in the equation set (4.5). The isenthalpic valve
is quite easy to implement into the simulation model if the outlet mass flow rate, pressure
drop, inlet pressure and inlet enthalpy are known inputs, which is the setup of the Modelica
model. As mentioned earlier under the compressor model section, the enthalpy connecting the
valve and the evaporator is indirectly controlled ensuring feasible energy transfer throughout
the process by adjusting the compressor power (Ẇsha f t) which satisfies the hard constrained
isentropic efficiency (η). In practice preferably the valve opening (z) is directly manipulated
rather than the mass flow rate.

13

ṁout = Cvz
√
(pin − pout)ρin· 1× 103 Pa kPa−1 (4.5a)

hin = hout (4.5b)

(ρin, Tin) = f (hin, pin) (4.5c)

Where:

ṁ : mass flow rate
Cv : cross section

z : valve opening
h : specific enthalpy
T : temperature
p : pressure
ρ : density

in : inlet

out : outlet

14

5 Results

5.1 The Modelica model construction

A model is not directly a result, but most of the time spended has been used to construct a
model from scratch. Therefore the final model is assumed to take a part of the results.

The simulations are modified in one single class, the class at the highest level in the model
hierarchy, where all parameters and initiate variables are set. This class is depicted below
where all predetermined specifications and supposed optimal variables are specified. At a
glance every process units are connected, as they should be, except for the specific enthalpy
connecting the valve and the evaporator (line 24), and the specific enthalpy connecting the
cold side of the internal heat exchanger and the compressor (line 33). The latter is in a form
connected since the specific enthalpy at the compressor inlet is equal to the previous (last
simulation interval) specific enthalpy at the internal heat exchanger outlet, hence it works
for steady-state studies. The connection between the valve and the evaporator is somewhat
difficult to keep balanced (respect to energy balance), since this is dependent on the compressor
power. Solving this issue has been accomplished by utilization of a PI-controller (instance at
line 8-9) to control the compressor power (line 42) for matching enthalpies between the valve
outlet and the evaporator inlet.

1 model RefrigerationCycleCO2Simulation

2 Compressor COM(eta = 0.75);

3 GasCooler GCO(n = 6, Cp_air = 1.0);

4 InternalHEX IHX(n = 6);

5 Valve VAL(Cv = 0.000001205151054618652);

6 Evaporator EVP;

7 // Instances of the model units

8 PIController CtrWs(K = -0.0001 , T = 0.0005 , val = pre(VAL.hOut.h),

9 ref = EVP.hIn.h);

10 // Controller to satisfy the enthalpy balance throughout the valve

11 //(primary comparison point)

12 equation

13 connect(COM.mOut ,GCO.HEX[1].mIn);

14 connect(COM.pOut ,GCO.HEX[1].pIn);

15 connect(COM.hOut ,GCO.HEX[1].hIn);

16 connect(GCO.HEX[GCO.n].mOut ,IHX.HEX[1].mInH);

17 connect(GCO.HEX[GCO.n].pOut ,IHX.HEX[1].pInH);

18 connect(GCO.HEX[GCO.n].hOut ,IHX.HEX[1].hInH);

19 connect(IHX.HEX[IHX.n].mOutH ,VAL.mIn);

20 connect(IHX.HEX[IHX.n].pOutH ,VAL.pIn);

21 connect(IHX.HEX[IHX.n].hOutH ,VAL.hIn);

22 connect(VAL.mOut ,EVP.mIn);

23 connect(VAL.pOut ,EVP.pIn);

24 // connect(VAL.hOut ,EVP.hIn) not in use since it is controlled by the

15

25 // compressor power;

26 connect(EVP.mOut ,IHX.HEX[IHX.n].mInC);

27 connect(EVP.pOut ,IHX.HEX[IHX.n].pInC);

28 connect(EVP.hOut ,IHX.HEX[IHX.n].hInC);

29 connect(IHX.HEX[1].mOutC ,COM.mIn);

30 connect(IHX.HEX[1].pOutC ,COM.pIn);

31 // Connecting the mass flow rates , pressures and specific enthalpies between

32 //all units

33 COM.hIn.h = if initial() then -54.432 else pre(IHX.HEX[1].hOutC.h);

34 // Connecting the specific enthalpy between internal heat exchanger and

35 // compressor (Secondary comparison point)

36 EVP.mIn.m_flow = 0.0254;

37 //Mass flow rate

38 EVP.T_air = 20 + 273.15;

39 //Room temperature

40 EVP.T_C = 15 + 273 .15;

41 // Evaporator temperature

42 COM.Ws = 0.958268 + CtrWs.outCtr;

43 // Compressor power

44 GCO.HEX[GCO.n].mairIn.m_flow = 0.25;

45 //Mass flow rate ambient air

46 GCO.HEX[GCO.n].TairIn.T = 30 + 273 .15;

47 // Inlet ambient air temperature

48 EVP.UA = 0.7999999999999875;

49 //UA-value evaporator

50 GCO.UA_tot = 0.7936318367211835;

51 //UA-value gas cooler

52 IHX.UA_tot = 0.1538926355428347;

53 //UA-value internal heat exchanger

54 end RefrigerationCycleCO2Simulation;

The models which are instances in the simulation model above are not depicted here, but can
be investigated at the internet [5] or in the appendix A.

5.2 Validation of the results

The Modelica model was made as an exact copy of the MATLAB model by Jensen. Despite
identical models, there are two differences between the two models that may cause deviations.
First, the Modelica model is based on mass unit, while the MATLAB model is based on molar
unit. Second, the Modelica model are using the complete equation of state while the MATLAB
model are using a modified equation of state. Nevertheless, both models refer to the same
publisher of the thermodynamic equations, Span and Wagner, which are based on mass as the
primary unit. From this fact should the Modelica model in principle be more precise com-
pared to the MATLAB model, due to the absence of modified equations. How the two models
conduct can be seen in Figure 5.1. From this p-h chart it is clear that the two models are not
matching complete, which means that the Modelica model is infeasible with the pressure and

16

mass flow rate settings from the MATLAB model. The infeasibility is outlined in the compres-
sor that is 138 % more effective to an ideal isentropic compressor. There are a major enthalpy
gap of −18.48 kJ kg−1 at the compressor outlet and two minor enthalpy gaps at the valve and
at the compressor inlet of −1.27 kJ kg−1 and −0.99 kJ kg−1, respectively. The deviations are
relative to the MATLAB model.

350 300 250 200 150 100 50 0 50 100
Enthalpy [kJ/kg]

3000

4000

5000

6000

7000

8000

9000

10000

11000

Pr
es

su
re

 [k
Pa

]

Modelica model
MATLAB model by Jensen

Figure 5.1: Pressure-enthalpy diagram which directly compares the Modelica model against
the MATLAB model by Jensen when applying the same pressure and mass flow
rate values. In this case the Modelica solution is infeasible since the isentropic effi-
ciency in the compressor becomes 1.38. Isotherms are included in the chart raging
from 270 K to 400 K displaced by 5 K.

All process units in Modelica calculates approximately the same values found in the MATLAB
model except from the gas cooler where the relative deviations becomes significant and the
feasibility breaks. This is seen in Figure 5.2. One plausible reason for this departed behavior
is that the modified equation of state, which is used in the MATLAB model, cannot produce
high accuracy results in the highly non-linear region above the critical point.

A feasible solution to the Modelica model is achieved by keeping the temperature in the evap-
orator constant at 15 ◦C (hence steady state) and adjusting the mass flow rate and the com-
pressor power until convergence. Since the MATLAB model is optimized, then the optimal
operation of the Modelica model would be somewhere close. The supposed optimal operation
of the Modelica model is depicted in Figure 5.3. For this feasible model the new deviations are
small and are hard to visualize in the figure. The new supposed optimal variables are listed in
Table 5.1.

17

0.0 0.2 0.4 0.6 0.8 1.0
Scaled length of heat exchanger (inlet: 0.0, outlet: 1.0)

300

305

310

315

320

325

330

335
Te

m
pe

ra
tu

re
 [K

]
Modelica model
MATLAB model by Jensen

Figure 5.2: The temperature profile inside the gas cooler for both Modelica and MATLAB
model is compared against each other when the exactly same fluid properties from
the MATLAB model is implemented to the Modelica model. It is important to no-
tice that this simulation for the Modelica model is infeasible, but the figure is meant
to illustrate how the two models differ in calculations.

Table 5.1: New supposed optimized variables

Variable Symbol Value

Compressor power Ẇsha f t [kW] 0.958
Valve opening z 0.345
High pressure side p4, p5 and p6 [kPa] 9714
Low pressure side p1, p2′ , p2 and p3 [kPa] 5087
Heat flow leaving the gas cooler Q̇GCO [kW] 4.958
Heat flow entering the evaporator Q̇EVP [kW] 4.000
Heat flow exchanged in the internal HEX Q̇IHX [kW] 0.907
Mass flow rate circulating ṁ [kg s−1] 0.0254

Temperatures

T1 [K] 288.15
T3 [K] 304.58
T4 [K] 362.60
T6 [K] 298.84

18

350 300 250 200 150 100 50 0 50 100
Enthalpy [kJ/kg]

3000

4000

5000

6000

7000

8000

9000

10000

11000

Pr
es

su
re

 [k
Pa

]

Modelica model
MATLAB model by Jensen

Figure 5.3: Pressure-enthalpy diagram which compares a feasible Modelica model against the
MATLAB model by Jensen. Isotherms are included in the chart raging from 270 K
to 400 K displaced by 5 K.

19

6 Discussion

Due to the fact that the Modelica model and the MATLAB model are not completely alike,
there will be differences on how they behave. This was seen in the result section, Figure 5.2,
where all process units calculated about the same values except for the gas cooler. A strategy
could be to clone the original MATLAB model into the Modelica model, but that wouldn’t be
much of interest, besides, it is better to stay closest to the primary sources as possible.

The acausality Modelica provides has not been entirely adopted to the model. The acausal
strategy means only use of equations (not assignments), connecting flow and potential vari-
ables, making partial models, inheritance of reusable models for multiple purposes etc. This
CO2 refrigeration cycle is more like a semi-causal type. It has connections between model com-
ponents, but every model (i.e. class) are build in the causal way, therefore they cannot always
be reused in other applications, e.g. there is not an easy way to replace the thermodynamic
package if an other substance is desirable. Reusability is an important feature in Modelica,
which means that large models shall depend on smaller models or other class types that are
independent. Developing libraries that contain such reusable components are of great interest
when fundamental investigations are to be made and besides, reconfigurations of complete cy-
cles are then made simpler due to the connection principle in Modelica. Papers that presents
the benefits, opportunities and development of implementing Modelica libraries for simula-
tion of refrigeration systems is given by Pfafferott and Schmitz [6] and Schmitz et al. [7].

The ideal modeling approach is to code the governing equations, both for the process units and
the thermodynamics, the acausal way. This method was also tried, but turned unsuccessful.
The main problem is the equation of state, which has a lot of terms and is highly non-linear,
including the derivatives. An another approach to meet the thermodynamic requirement is
to develop lookup tables. The simulation time will then drastic decrease, due to the function
calls and iterations avoidance. The lookup table approach have been tried and was successful.
Anyhow the final model ended using the thermodynamic equation of state by solving density
and temperature explicitly. The reason for this was a failure attempt trying to optimize the
cycle when it was using lookup tables. Lookup tables was not directly the source of failure,
but use of external functions was only partially supported by the JModelica2 compiler and the
interpolation in the lookup tables was performed by use of an external C-function. Hence,
the lookup tables was rejected and replaced by the solution of using the EOS solving density
and temperature explicitly. Yet another opportunity to deal with the thermodynamics is to
use existing, freely available libraries like ThermoFluid [8], which also uses the high accuracy
CO2 EOS from Span and Wagner [3]. The downside is that ThermoFluid is no longer active
developed, but it could be worth a try anyway.

The intention was to optimize the final model by use of the JModelica platform, but some

2Extensible Modelica-based open source platform for optimization, simulation and analysis of complex dynamic
systems

20

constraints were met. The model has to be rewritten before an attempt to optimization can be
done. The reason is that JModelica has limitations to the features available in the Modelica lan-
guage. Some of these non-supporting features are while- and if-statements, string arguments
in functions, built in functions like initial() and pre() etc.

6.1 Suggestions for future work

• Rewrite the model code in a more acausal structure and make it simpler to simulate. The
simulation difficulties so far are the two comparison points that have to be controlled
every simulation interval to make sure the system is conserved.

• Implement another approach respect to the current thermodynamics. Could there be
a opportunity to implement the equation of state the acausal way and not by causal
functions (assignments)? If that is possible, and stable off course, this solution would
certainly improve simulation flexibility.

• Keep the thermodynamics as implemented, but develop a reliable guess routine for the
density and the temperature in all phases.

• Optimizing the model when the first bulletin in this list is solved.

• Derive applicable control structures for self-optimizing control.

21

7 Conclusion

A refrigeration cycle based on CO2, which operates trans-critical, has been modeled in the
equation based, object-oriented language Modelica. The cycle was based on the same model
presented in the PhD thesis by Jensen [1]. The modeled cycle turned out to differ from the
model by Jensen, but the differences was minor. A test simulation with the exact same values
of the fluid properties (mass flow rate, high and low pressure) revealed a non-consistency re-
lationship between the modified EOS used in the model by Jensen and the full EOS used in the
Modelica model. This could be seen in Figure 5.1 and Figure 5.2 where the latter shows accu-
mulating deviations of magnificence. A feasible steady-state solution to the Modelica model
was obtained, but not considered as optimal. The model has to be rewritten before it can
support all the dependencies in the JModelica compiler and, from then, be optimized.

22

List of symbols and abbreviations

Symbol Dimension Description

Uppercase
Jf - Jacobian matrix for function vector f
A - Exponent in EOS
B - Exponent in EOS
C - Exponent in EOS
C [kJ kg−1 K−1] Heat capacity
Cv [m2] Choke valve
D - Exponent in EOS
Q̇ [kW] Heat flow rate
R [kJ kg−1 K−1] Gas constant
T [K] Temperature
U [kJ] Internal energy
U̇A [kW K−1] Thermal conductance
Ẇ [kW] Power
Lowercase
f - Vector of functions
a - Coefficient in EOS
a - Exponent in EOS
b - Exponent in EOS
c - Exponent in EOS
d - Exponent in EOS
d - Differential
f - A function
h [kJ kg−1] Specific enthalpy
m [kg] Mass
ṁ [kg s−1] Mass flow rate
n - Coefficient in EOS
n - Number of control volumes
p [kPa] Pressure
q - Vapor quality
s [kJ kg−1 K−1] Specific entropy
t - Exponent in EOS
t [s] Time
u [kJ kg−1] Specific internal energy
z [m2] Valve opening
Greek letters

Continued on next page

23

Continued from previous page

Symbol Dimension Description

α - Exponent in EOS
β - Exponent in EOS
γ - Exponent in EOS
δ - Dimensionless density
ε - Exponent in EOS
η - Isentropic efficiency
θ - Exponent in EOS
ρ [kg m−3] Density
τ - Dimensionless temperature
φ - Dimensionless Helmholtz energy
Superscript
air - Either room or ambient air
k - Iteration index
r - Residual part
0 - Ideal part
Subscript
C - Cold side
COM - Compressor
EVP - Evaporator
GCO - Gas cooler (condenser)
H - Hot side
IHX - Internal heat exchanger
VAL - Valve
evap - Evaporated
i - Integer
in - Inlet
liq - Liquid
loss - Loss (i.e. heat loss in the room-ambient interphase)
out - Outlet
p - Constant pressure
s - Isentropic
sha f t - Shaft work (compressor power)
vap - Vapor
δ - Partial derivative with respect to dimensionless density
τ - Partial derivative with respect to dimensionless temperature
1 - Connection point between valve and evaporator

Continued on next page

24

Continued from previous page

Symbol Dimension Description

1 - Function index
2 - Connection point between evaporator and internal heat exchanger
2 - Function index
3 - Connection point between internal heat exchanger and compressor
4 - Connection point between compressor and gas cooler
5 - Connection point between gas cooler and internal heat exchanger
6 - Connection point between internal heat exchanger and valve

25

References

[1] J. B. Jensen, Optimal Operation of Refrigeration Cycles. PhD thesis, Norwegian University of
Science and Technology, May 2008.

[2] P. Fritzson, Introduction to Modeling and Simulation of Technical and Physical Systems with
Modelica. A John Wiley & Sons, Inc., Publication, 2011.

[3] R. Span and W. Wagner, “A new equation of state for carbon dioxide covering the fluid
region from the triple-point temperature to 1100 k at pressures up to 800 mpa,” J. Phys.
Chem. Ref. Data, vol. 25, no. 6, p. 88, 1996.

[4] T. Andresen, Mathematical modeling of CO2 based heat pumping systems. PhD thesis, Norwe-
gian University of Science and Technology, September 2009.

[5] N. A. Susort, “Refrigeration cycle co2 - modelica model code.” Internet, December 2012.
http://folk.ntnu.no/nilsarsu/Projects/TKP4550/.

[6] Modelling and transient simulation of CO2-refrigeration systems with Modelica, vol. 27, Elsevier
Ltd and IIR, 2004.

[7] G. Schmitz, ed., System Simulation of Automotive Refrigeration Cycles, 4th, 2005.

[8] F. W. J. Eborn, H. Tummescheit, ThermoFluid A Thermo-Hydraulic Library in Modelica, 2001.

26

A Refrigeration cycle CO2 model code written in Modelica

A.1 Connectors

1 connector ConnectFlow

2 import RefrigerationCycleCO2.Units.MassFlowRate;

3 MassFlowRate m_flow;

4 end ConnectFlow;

5

6 connector ConnectPressure

7 import RefrigerationCycleCO2.Units.Pressure;

8 Pressure p;

9 end ConnectPressure;

10

11 connector ConnectEnthalpy

12 import RefrigerationCycleCO2.Units.SpecificEnthalpy;

13 SpecificEnthalpy h;

14 end ConnectEnthalpy;

15

16 connector ConnectTemperature

17 import RefrigerationCycleCO2.Units.Temperature;

18 Temperature T;

19 end ConnectTemperature;

A.2 Units used in the models

1 package Units

2 type Area = Real(final quantity = "Area", final unit = "m2", min = 0);

3 type CrossSection = Real(final quantity = "Area", final unit = "m2", min = 0);

4 type Density = Real(final quantity = "Density", final unit = "kg/m3",

5 min = 0.000001 , max = 30000.0);

6 type Efficiency = Real(final quantity = "Efficiency", final unit = "1",

7 min = 0, max = 1);

8 type HeatFlowRate = Real(final quantity = "HeatFlowRate", final unit = "kW");

9 type InternalEnergy = Real(final quantity = "Energy", final unit = "kJ");

10 type Mass = Real(quantity = "Mass", final unit = "kg", min = 0);

11 type MassFlowRate = Real(quantity = "MassFlowRate", final unit = "kg/s");

12 type Pressure = Real(final quantity = "Pressure", final unit = "kPa", min = 0,

13 max = 1000000.0 , nominal = 100.0 , start = 100.0);

14 type PressureDrop = Real(final quantity = "PressureDrop", final unit = "kPa",

15 min = 0);

16 type Power = Real(final quantity = "Power", final unit = "kW");

17 type Quality = Real(final quantity = "Quality", final unit = "1", min = 0,

18 max = 1);

19 type SpecificEnthalpy = Real(final quantity = "SpecificEnthalpy",

20 final unit = "kJ/kg");

27

21 type SpecificEntropy = Real(final quantity = "SpecificEntropy",

22 final unit = "kJ/(kg.K)");

23 type SpecificHeatCapacity = Real(final quantity = "SpecificHeatCapacity",

24 final unit = "kJ/(kg.K)");

25 type SpecificInternalEnergy = Real(final quantity = "SpecificEnergy",

26 final unit = "kJ/kg");

27 type Temperature = Real(final quantity = "Temperature", final unit = "K",

28 min = 1, max = 6000, start = 288.15 , nominal = 300);

29 type ThermalConductance = Real(final quantity = "ThermalConductance",

30 final unit = "kW/K");

31 type ValveOpening = Real(final quantity = "ValveOpening", final unit = "1",

32 min = 0, max = 1);

33 type Volume = Real(final quantity = "Volume", final unit = "m3", min = 0);

34 end Units;

A.3 Evaporator

1 model Evaporator

2 import RefrigerationCycleCO2.Units.*;

3 RefrigerationCycleCO2.ConnectFlow mIn ,mOut;

4 //Mass flow rate instances for inlet and outlet

5 RefrigerationCycleCO2.ConnectPressure pIn ,pOut;

6 // Pressure instances for inlet and outlet

7 RefrigerationCycleCO2.ConnectEnthalpy hIn ,hOut;

8 // Specific enthalpy instances for inlet and outlet

9 Density rho_l "Liquid density";

10 Density rho_v "Vapor density";

11 HeatFlowRate Q "Heat transferred from room to evaporator";

12 InternalEnergy U "Internal energy";

13 Mass m "Mass inventory";

14 MassFlowRate m_flow_vap "Liquid evaporation rate";

15 Pressure p_l "Liquid pressure";

16 Pressure p_v "Vapor pressure";

17 SpecificEnthalpy h_l "Liquid specific enthalpy";

18 SpecificEnthalpy h_v "Vapor specific enthalpy";

19 SpecificInternalEnergy u "Specific internal energy";

20 Temperature T_C "Temperature at the cold side (the CO2 side)";

21 Temperature T_air "Room temperature (the hot side)";

22 ThermalConductance UA "Heat transfer rate per temperature difference";

23 Quality q "Vapor quality";

24 equation

25 der(m) = mIn.m_flow - mOut.m_flow;

26 //Mass balance

27 m_flow_vap = Q / (h_v - h_l);

28 // Liquid evaporation calculated from enthalpy of vaporization

29 0 = q * mIn.m_flow - mOut.m_flow + m_flow_vap;

30 //All gas is leaving the evaporator

31 der(U) = Q + mIn.m_flow * hIn.h - mOut.m_flow * hOut.h;

28

32 // Energy balance

33 der(U) = der(m) * u;

34 // Relation between accumulated mass and accumulated internal energy

35 q = (hIn.h - h_l) / (h_v - h_l);

36 // Definition of vapor quality

37 Q = UA * (T_air - T_C);

38 //Heat transferred

39 pIn.p = pOut.p;

40 //No pressure drop

41 pOut.p = p_v;

42 //Oulet pressure equal to vapor pressure

43 hOut.h = h_v;

44 // Outlet specific enthalpy equal to specific enthalpy for saturated gas

45 (p_v ,rho_v ,h_v) = RefrigerationCycleCO2.SpanWagnerEOS.SatPropGivenpLUT(T =

46 T_C , phase = "v");

47 // Saturation properties for gas given temperature

48 (p_l ,rho_l ,h_l) = RefrigerationCycleCO2.SpanWagnerEOS.SatPropGivenpLUT(T =

49 T_C , phase = "l");

50 // Saturation properties for liquid given temperature

51 u = RefrigerationCycleCO2.SpanWagnerEOS.InternalEnergy(rho = rho_l , T = T_C);

52 // Specific internal energy given liquid density and temperature

53 assert(q > 0, "Vapor quality is below zero");

54 //The model is considering only two phase fluid at the inlet

55 end Evaporator;

A.4 Valve

1 model Valve

2 import RefrigerationCycleCO2.Units.*;

3 RefrigerationCycleCO2.ConnectFlow mIn ,mOut;

4 //Mass flow rate instances for inlet and outlet

5 RefrigerationCycleCO2.ConnectPressure pIn ,pOut;

6 // Pressure instances for inlet and outlet

7 RefrigerationCycleCO2.ConnectEnthalpy hIn ,hOut;

8 // Specific enthalpy instances for inlet and outlet

9 parameter CrossSection Cv "Cross section of valve";

10 Density rho_in "Inlet density";

11 PressureDrop Dp "Inlet pressure subtracted for outlet pressure";

12 Temperature T_in "Inlet temperature";

13 ValveOpening z "Manipulated variable";

14 equation

15 mOut.m_flow = Cv * z * sqrt(Dp * rho_in * 1000);

16 //Mass balance

17 Dp = pIn.p - pOut.p;

18 // Pressure drop

19 hIn.h = hOut.h;

20 // Enthalpic

21 (rho_in ,T_in) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhp(h = hIn.h ,

29

22 p = pIn.p , rho0 = 815, T0 = 298);

23 //Inlet density and temperature given inlet specific enthalpy and pressure

24 end Valve;

A.5 Internal heat exchanger

1 model PartialInternalHEX

2 import RefrigerationCycleCO2.Units.*;

3 RefrigerationCycleCO2.ConnectFlow mInH ,mOutH ,mInC ,mOutC;

4 //Mass flow rate instances for inlet and outlet , hot and cold side

5 RefrigerationCycleCO2.ConnectPressure pInH ,pOutH ,pInC ,pOutC;

6 // Pressure instances for inlet and outlet , hot and cold side

7 RefrigerationCycleCO2.ConnectEnthalpy hInH ,hOutH ,hInC ,hOutC;

8 // Specific enthalpy instances for inlet and outlet , hot and cold side

9 Density rho_C "Outlet density cold side";

10 Density rho_H "Outlet density hot side";

11 HeatFlowRate Q "Heat flow rate from hot to cold side";

12 Temperature T_H "Outlet temperature hot side";

13 Temperature T_C "Outlet temperature cold side";

14 ThermalConductance UA "UA-value for one single control volume";

15 equation

16 0 = mInH.m_flow - mOutH.m_flow;

17 //Mass balance hot side

18 0 = mInC.m_flow - mOutC.m_flow;

19 //Mass balance cold side

20 0 = -Q + mInH.m_flow * hInH.h - mOutH.m_flow * hOutH.h;

21 // Energy balance hot side

22 0 = Q + mInC.m_flow * hInC.h - mOutC.m_flow * hOutC.h;

23 // Energy balance cold side

24 Q = UA * (T_H - T_C);

25 //Heat transfer balance

26 pInH.p = pOutH.p;

27 //No pressure drop hot side

28 pInC.p = pOutC.p;

29 //No pressure drop cold side

30 (rho_H ,T_H) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhp(h = hOutH.h ,

31 p = pOutH.p , rho0 = 745, T0 = 305);

32 // Outlet density and temperature for the hot side given specific enthalpy and pressure

33 (rho_C ,T_C) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhp(h = hOutC.h ,

34 p = pOutC.p , rho0 = 140, T0 = 298);

35 // Outlet density and temperature for the cold side given specific enthalpy and pressure

36 end PartialInternalHEX;

1 model InternalHEX

2 import RefrigerationCycleCO2.Units.*;

3 PartialInternalHEX HEX[n](each UA = UA_tot / n);

4 // Instances of the internal heat exchanger model

30

5 parameter Integer n "Number of control volumes";

6 ThermalConductance UA_tot "Total UA-value for the entire heat exchanger";

7 equation

8 for i in 1:n - 1 loop

9 connect(HEX[i].mOutH ,HEX[i + 1].mInH);

10 connect(HEX[i].pOutH ,HEX[i + 1].pInH);

11 connect(HEX[i].hOutH ,HEX[i + 1].hInH);

12 connect(HEX[i].mInC ,HEX[i + 1].mOutC);

13 connect(HEX[i].pInC ,HEX[i + 1].pOutC);

14 connect(HEX[i].hInC ,HEX[i + 1].hOutC);

15

16 end for;

17 /*Connecting all mass flow rates , pressures and specific enthalpies , both hot

18 and cold side , between the control volumes inside the internal heat exchanger */

19 end InternalHEX;

A.6 Gas cooler (condenser)

1 model PartialGasCooler

2 import RefrigerationCycleCO2.Units.*;

3 RefrigerationCycleCO2.ConnectFlow mIn ,mOut ,mairIn ,mairOut;

4 //Mass flow rate instances for inlet and outlet , hot and cold side

5 RefrigerationCycleCO2.ConnectPressure pIn ,pOut;

6 // Pressure instances for inlet and outlet , only hot side

7 RefrigerationCycleCO2.ConnectEnthalpy hIn ,hOut;

8 // Specific enthalpy instances for inlet and outlet , only hot side

9 RefrigerationCycleCO2.ConnectTemperature TairIn ,TairOut;

10 // Temperature instances for inlet and outlet , only cold side

11 parameter SpecificHeatCapacity Cp_air "Heat capacity ambient air";

12 Density rho_H "Outlet density hot side";

13 HeatFlowRate Q "Heat flow rate from hot to cold side";

14 Temperature T_H "Outlet temperature hot side";

15 ThermalConductance UA "UA-value for one single control volume";

16 equation

17 0 = mIn.m_flow - mOut.m_flow;

18 //Mass balance hot side

19 0 = mairIn.m_flow - mairOut.m_flow;

20 //Mass balance cold side

21 0 = -Q - mOut.m_flow * hOut.h + mIn.m_flow * hIn.h;

22 // Energy balance hot side

23 Q = mairIn.m_flow * Cp_air * (TairOut.T - TairIn.T);

24 // Energy balance cold side

25 Q = UA * (T_H - TairOut.T);

26 //Heat transfer balance

27 pIn.p = pOut.p;

28 //No pressure drop

29 (rho_H ,T_H) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhp(h = hOut.h ,

30 p = pOut.p , rho0 = 558, T0 = 315);

31

31 // Outlet density and temperature hot side given specific enthalpy and pressure

32 end PartialGasCooler;

1 model GasCooler

2 import RefrigerationCycleCO2.Units.*;

3 PartialGasCooler HEX[n](each UA = UA_tot / n, each Cp_air = Cp_air);

4 // Instances of the gas cooler model

5 parameter Integer n "Number of control volumes";

6 parameter SpecificHeatCapacity Cp_air "Heat capacity for ambient air";

7 ThermalConductance UA_tot "Total UA-value for the entire heat exchanger";

8 equation

9 for i in 1:n - 1 loop

10 connect(HEX[i].mOut ,HEX[i + 1].mIn);

11 connect(HEX[i].pOut ,HEX[i + 1].pIn);

12 connect(HEX[i].hOut ,HEX[i + 1].hIn);

13 connect(HEX[i].mairIn ,HEX[i + 1].mairOut);

14 connect(HEX[i].TairIn ,HEX[i + 1].TairOut);

15

16 end for;

17 /*Connecting all mass flow rates , pressures and specific enthalpies , both hot

18 and cold side , between the control volumes inside the gas cooler */

19 end GasCooler;

A.7 Compressor

1 model Compressor

2 import RefrigerationCycleCO2.Units.*;

3 RefrigerationCycleCO2.ConnectFlow mIn ,mOut;

4 //Mass flow rate instances for inlet and outlet

5 RefrigerationCycleCO2.ConnectPressure pIn ,pOut;

6 // Pressure instances for inlet and outlet

7 RefrigerationCycleCO2.ConnectEnthalpy hIn ,hOut;

8 // Specific enthalpy instances for inlet and outlet

9 parameter Efficiency eta "Isentropic efficiency";

10 Density rho_in "Inlet density";

11 Density rho_s "Outlet density for isentropic compressor";

12 Density rho_out "Outlet density";

13 Power Ws "Compressor power";

14 Pressure p_s "Outlet pressure for isentropic compressor";

15 SpecificEnthalpy h_s "Outlet specific enthalpy for isentropic compressor";

16 SpecificEntropy s_in "Inlet specific entropy";

17 SpecificEntropy s_s "Outlet specific entropy for isentropic compressor";

18 Temperature T_in "Inlet temperature";

19 Temperature T_s "Outlet temperature for isentropic compressor";

20 Temperature T_out "Outlet temperature";

21 equation

22 0 = mIn.m_flow - mOut.m_flow;

32

23 //Mass balance

24 0 = Ws + mIn.m_flow * hIn.h - mOut.m_flow * hOut.h;

25 // Energy balance

26 eta * (mOut.m_flow * hOut.h - mIn.m_flow * hIn.h) = mOut.m_flow * h_s

27 - mIn.m_flow * hIn.h;

28 // Isentropic efficiency in terms of enthalpies

29 s_s = s_in;

30 // Isentropic compressor

31 pOut.p = p_s;

32 // Outlet pressure is equal for both isentropic case and real case

33 p_s = RefrigerationCycleCO2.SpanWagnerEOS.Pressure(rho = rho_s , T = T_s);

34 // Outlet pressure given density and temperature

35 s_in = RefrigerationCycleCO2.SpanWagnerEOS.Entropy(rho = rho_in , T = T_in);

36 //Inlet specific entropy given density and temperature

37 (rho_s ,T_s) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhs(h = h_s ,

38 s = s_s , rho0 = 229, T0 = 346);

39 // Outlet density and temperature for isentropic compressor given specific enthalpy and specific entropy

40 (rho_out ,T_out) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhp(h = hOut.h ,

41 p = pOut.p , rho0 = 196, T0 = 363);

42 // Outlet density and temperature given specific enthalpy and pressure

43 (rho_in ,T_in) = RefrigerationCycleCO2.SpanWagnerEOS.PropGivenhp(h = hIn.h ,

44 p = pIn.p , rho0 = 125, T0 = 305);

45 //Inlet density and temperature given specific enthalpy and pressure

46 end Compressor;

A.8 Refrigeration Cycle CO2

1 model RefrigerationCycleCO2Simulation

2 Compressor COM(eta = 0.75);

3 GasCooler GCO(n = 6, Cp_air = 1.0);

4 InternalHEX IHX(n = 6);

5 Valve VAL(Cv = 0.000001205151054618652);

6 Evaporator EVP;

7 // Instances of the model units

8 PIController CtrWs(K = -0.0001 , T = 0.0005 , val = pre(VAL.hOut.h),

9 ref = EVP.hIn.h);

10 // Controller to satisfy the enthalpy balance throughout the valve

11 //(primary comparison point)

12 equation

13 connect(COM.mOut ,GCO.HEX[1].mIn);

14 connect(COM.pOut ,GCO.HEX[1].pIn);

15 connect(COM.hOut ,GCO.HEX[1].hIn);

16 connect(GCO.HEX[GCO.n].mOut ,IHX.HEX[1].mInH);

17 connect(GCO.HEX[GCO.n].pOut ,IHX.HEX[1].pInH);

18 connect(GCO.HEX[GCO.n].hOut ,IHX.HEX[1].hInH);

19 connect(IHX.HEX[IHX.n].mOutH ,VAL.mIn);

20 connect(IHX.HEX[IHX.n].pOutH ,VAL.pIn);

21 connect(IHX.HEX[IHX.n].hOutH ,VAL.hIn);

33

22 connect(VAL.mOut ,EVP.mIn);

23 connect(VAL.pOut ,EVP.pIn);

24 // connect(VAL.hOut ,EVP.hIn) not in use since it is controlled by the

25 // compressor power;

26 connect(EVP.mOut ,IHX.HEX[IHX.n].mInC);

27 connect(EVP.pOut ,IHX.HEX[IHX.n].pInC);

28 connect(EVP.hOut ,IHX.HEX[IHX.n].hInC);

29 connect(IHX.HEX[1].mOutC ,COM.mIn);

30 connect(IHX.HEX[1].pOutC ,COM.pIn);

31 // Connecting the mass flow rates , pressures and specific enthalpies between

32 //all units

33 COM.hIn.h = if initial() then -54.432 else pre(IHX.HEX[1].hOutC.h);

34 // Connecting the specific enthalpy between internal heat exchanger and

35 // compressor (Secondary comparison point)

36 EVP.mIn.m_flow = 0.0254;

37 //Mass flow rate

38 EVP.T_air = 20 + 273.15;

39 //Room temperature

40 EVP.T_C = 15 + 273 .15;

41 // Evaporator temperature

42 COM.Ws = 0.958268 + CtrWs.outCtr;

43 // Compressor power

44 GCO.HEX[GCO.n].mairIn.m_flow = 0.25;

45 //Mass flow rate ambient air

46 GCO.HEX[GCO.n].TairIn.T = 30 + 273 .15;

47 //Inlet ambient air temperature

48 EVP.UA = 0.7999999999999875;

49 //UA-value evaporator

50 GCO.UA_tot = 0.7936318367211835;

51 //UA-value gas cooler

52 IHX.UA_tot = 0.1538926355428347;

53 //UA-value internal heat exchanger

54 end RefrigerationCycleCO2Simulation;

B Thermodynamic considerations

B.1 Modelica sample for the dimensionless Helmholtz function

The ideal and residual Helmholtz functions, including the derivatives, are too extensive to in-
clude in the appendix, but they are available at the internet [5]. Only a representative sample
on how the functions are written is given in the script below for the residual of the dimension-
less Helmholtz energy (φr).

1 function phir

2 input Real rho;

3 input Real T;

4 output Real phir;

34

5 protected

6 constant Real rhoc = 467 .606;

7 constant Real Tc = 304 .1282;

8 parameter Real[42] n =

9 {0.38856823203161 ,2 .938547594274 ,-5.5867188534934 ,-0.76753199592477 ,

10 0.31729005580416 ,0 .54803315897767 ,0 .12279411220335 ,2 .165896154322 ,1.

11 5841735109724 , -0.23132705405503 ,0 .058116916431436 ,-0.55369137205382 ,

12 0.48946615909422 ,-0.024275739843501 ,0 .062494790501678 ,-0.12175860225246 ,

13 -0.37055685270086 ,-0.016775879700426 ,-0.11960736637987 ,-0.045619362508778 ,

14 0.035612789270346 ,-0.0074427727132052 ,-0.0017395704902432 ,-0.021810121289527 ,

15 0.024332166559236 ,-0.037440133423463 ,0 .14338715756878 ,-0.13491969083286 ,

16 -0.02315122505348 ,0 .012363125492901 ,0 .002105832197294 ,-0.00033958519026368 ,

17 0.0055993651771592 ,-0.00030335118055646 ,-213 .6548868832 ,26641 .569149272 ,

18 -24027 .212204557 ,-283 .41603423999 ,212 .47284400179 ,-0.66642276540751 ,

19 0.72608632349897 ,0 .055068668612842};

20 parameter Real[39] d = {1,1,1,1,2,2,3,1,2,4,5,5,5,6,6,6,1,1,4,4,4,7,8,

21 2,3,3,5,5,6,7,8,10,4,8,2,2,2,3,3};

22 parameter Real[39] t =

23 {0.0 ,0.75 ,1.0 ,2.0 ,0.75 ,2.0 ,0.75 ,1.5 ,1.5 ,2.5 ,0.0 ,1.5 ,2.0 ,0.0 ,1.0 ,2.0 ,3.0 ,

24 6.0 ,3.0 ,6.0 ,8.0 ,6.0 ,0.0 ,7.0 ,12.0 ,16.0 ,22.0 ,24.0 ,16.0 ,24.0 ,8.0 ,2.0 ,28.0 ,

25 14.0 ,1.0 ,0.0 ,1.0 ,3.0 ,3.0};

26 parameter Real[27] c = {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,5,6};

27 parameter Real[5] alpha = {25.0 ,25.0 ,25.0 ,15.0 ,20.0};

28 parameter Real[5] beta = {325.0 ,300.0 ,300.0 ,275.0 ,275.0};

29 parameter Real[5] gamma = {1.16 ,1.19 ,1.19 ,1.25 ,1.22};

30 parameter Real[5] epsilon = {1.0 ,1.0 ,1.0 ,1.0 ,1.0};

31 parameter Real[3] a = {3.5 ,3.5 ,3.0};

32 parameter Real[3] b = {0.875 ,0.925 ,0.875};

33 parameter Real[3] BETA = {0.3 ,0.3 ,0.3};

34 parameter Real[3] A = {0.7 ,0.7 ,0.7};

35 parameter Real[3] B = {0.3 ,0.3 ,1.0};

36 parameter Real[3] C = {10.0 ,10.0 ,12.5};

37 parameter Real[3] D = {275.0 ,275.0 ,275.0};

38 Real delta;

39 Real tau;

40 Real sum1;

41 Real sum2;

42 Real sum3;

43 Real sum4;

44 Real PSI;

45 Real THETA;

46 Real DELTA;

47 Real dummy;

48 algorithm

49 delta:=rho / rhoc;

50 tau:=Tc / T;

51 sum1:=0;

52 sum2:=0;

53 sum3:=0;

54 sum4:=0;

35

55 for i in 1:7 loop

56 sum1:=sum1 + n[i] * delta ^ d[i] * tau ^ t[i];

57 end for;

58 for i in 8:34 loop

59 sum2:=sum2 + n[i] * delta ^ d[i] * tau ^ t[i] * exp(-delta ^ c[i - 7]);

60 end for;

61 for i in 35:39 loop

62 sum3:=sum3 + n[i] * delta ^ d[i] * tau ^ t[i] * exp(-alpha[i - 34]

63 * (delta - epsilon[i - 34]) ^ 2 - beta[i - 34]

64 * (tau - gamma[i - 34]) ^ 2);

65 end for;

66 for i in 40:42 loop

67 PSI:=exp(-C[i - 39] * (delta - 1) ^ 2 - D[i - 39] * (tau - 1) ^ 2);

68 dummy:=(delta - 1) ^ 2;

69 THETA:=1 - tau + A[i - 39] * dummy ^ (1 / (2 * BETA[i - 39]));

70 DELTA:=THETA ^ 2 + B[i - 39] * (delta - 1) ^ (2 * a[i - 39]);

71 sum4:=sum4 + n[i] * DELTA ^ b[i - 39] * delta * PSI;

72 end for;

73 phir:=sum1 + sum2 + sum3 + sum4;

74 end phir;

B.2 Thermodynamic properties as function of specific enthalpy and pressure

Below is the script calculating density and temperature as a function of specific enthalpy and
pressure included. The same scripting is done for the entropy-enthalpy case, but is not in-
cluded in appendix.

1 function PropGivenhp

2 input Real h;

3 input Real p;

4 input Real rho0;

5 input Real T0;

6 output Real rho;

7 output Real T;

8 protected

9 constant Real rhoc = 467 .606;

10 constant Real Tc = 304 .1282;

11 constant Real R = 0.1889241;

12 parameter Real tol = 0.000001;

13 Real f1;

14 Real f2;

15 Real f1tau;

16 Real f2tau;

17 Real f1delta;

18 Real f2delta;

19 Real delta;

20 Real tau;

36

21 Real phirdelta;

22 Real phi0tau;

23 Real phirtau;

24 Real phirdeltatau;

25 Real phirdeltadelta;

26 Real phi0tautau;

27 Real phirtautau;

28 Real phi0deltatau;

29 Real det;

30 Real rhoi;

31 Real Ti;

32 algorithm

33 rhoi:=rho0;

34 Ti:=T0;

35 delta:=rho0 / rhoc;

36 tau:=Tc / T0;

37 f1:=1;

38 f2:=1;

39 while (abs(f1) > tol and abs(f2) > tol) loop

40 phirdelta:=RefrigerationCycleCO2.SpanWagnerEOS.phirdelta(rho = rhoi ,

41 T = Ti);

42 phi0tau:=RefrigerationCycleCO2.SpanWagnerEOS.phi0tau(T = Ti);

43 phirtau:=RefrigerationCycleCO2.SpanWagnerEOS.phirtau(rho = rhoi , T = Ti);

44 phirdeltatau:=RefrigerationCycleCO2.SpanWagnerEOS.phirdeltatau(rho = rhoi ,

45 T = Ti);

46 phirdeltadelta:=RefrigerationCycleCO2.SpanWagnerEOS.phirdeltadelta(rho =

47 rhoi , T = Ti);

48 phi0tautau:=RefrigerationCycleCO2.SpanWagnerEOS.phi0tautau(T = Ti);

49 phirtautau:=RefrigerationCycleCO2.SpanWagnerEOS.phirtautau(rho = rhoi ,

50 T = Ti);

51 phi0deltatau:=RefrigerationCycleCO2.SpanWagnerEOS.phi0deltatau();

52 // Calculating the necessary terms

53 f1:=delta / tau * (1 + delta * phirdelta) - p / (rhoc * R * Tc);

54 f2:=1 + delta * phirdelta + tau * (phi0tau + phirtau) - (tau * h) / (R * Tc);

55 // Residual functions

56 rho:=delta * rhoc;

57 T:=Tc / tau;

58 //The returned output

59 f1tau:=((1 + delta * phirdelta) * (-delta)) / tau ^ 2 + delta / tau * delta

60 * phirdeltatau;

61 f1delta:=(1 + 2 * delta * phirdelta + delta ^ 2 * phirdeltadelta) / tau;

62 f2tau:=delta * phirdeltatau + phi0tau + phirtau + tau * (phi0tautau

63 + phirtautau) - h / (R * Tc);

64 f2delta:=phirdelta + delta * phirdeltadelta + tau * (phi0deltatau

65 + phirdeltatau);

66 // Derivatives inside the Jacobian matrix

67 det:=f1tau * f2delta - f1delta * f2tau;

68 // Determinant of the Jacobian matrix

69 tau:=tau - 1 / det * (f1 * f2delta - f2 * f1delta);

70 delta:=delta - 1 / det * (f2 * f1tau - f1 * f2tau);

37

71 //One step in Newton -Raphson method

72 rhoi:=delta * rhoc;

73 Ti:=Tc / tau;

74 // Update the iteration variables

75 end while;

76 end PropGivenhp;

38

