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Abstract 
 

The Smith predictor controller and PI controller was simulated with different time delays and the 

resulting performance and robustness was compared. A P-only controller was tried as the primary 

controller in the Smith Predictor structure, which resulted in a discontinuous stability domain for a 

range of time delay values. Robust tuning rules were then used for the Smith Predictor, while SIMC 

tuning rules were used for the PI controller. This gave better performance for the Smith Predictor, by 

comparing the integral squared error for the two controllers. Higher controller gains were tried for 

the Smith predictor, while SIMC tuning rules were still used for the PI controller. This resulted in an 

unstable Smith Predictor for tight control.  

Optimisation of the Smith Predictor and the PI controller in terms of performance and robustness 

gave the optimal tuning parameters for each controller in two different cases, and a trade-off 

between performance and robustness was obtained. The Smith Predictor achieved a better 

performance for all values of Ms in both cases. The optimal tuning parameters from the optimisation 

were also tested in the model in Simulink. To see the results, the IAE values for the two controllers 

were plotted against the deviation from the nominal time delay. This resulted in a better 

performance for the SP controller after a certain value of the time delay was exceeded. 

In general the Smith Predictor is better than the PI controller when the time delay is large enough. 

But if the controller gain in the Smith Predictor is high enough, the controller will have discontinuous 

stability for the whole time delay range. 

  



ii 
 

Preface 
 

I would like to thank my supervisors Sigurd Skogestad and Vinicius De Oliveira for all their help during 

this project. In addition I want to thank other students for any input they have had.  



iii 
 

Contents 
Abstract .................................................................................................................................................... i 

Preface ......................................................................................................................................................ii 

1. Introduction ..................................................................................................................................... 1 

2. Theory .............................................................................................................................................. 2 

2.1. PI Control ................................................................................................................................. 2 

2.2. Smith Predictor Controller ...................................................................................................... 4 

2.2.1. Derivation of Transfer Function for Inner Feedback Loop .............................................. 5 

2.2.2. Robust Tuning of the Smith Predictor ............................................................................. 6 

2.3. SIMC Tuning ............................................................................................................................. 7 

2.4. Integral Squared Error ............................................................................................................. 7 

2.5. Trade-off between Performance and Robustness .................................................................. 8 

3. Simulation Procedure ...................................................................................................................... 9 

3.1. Verification of Example from an Article .................................................................................. 9 

3.2. PI Controller for the SP .......................................................................................................... 10 

3.3. Smith Predictor with Variation in Controller Gain ................................................................ 11 

3.4. Robust Tuning of SP and SIMC Tuning of PI .......................................................................... 11 

3.5. Optimisation of Performance and Robustness ..................................................................... 13 

3.6. Verification of Optimisation in Simulink................................................................................ 13 

4. Results ........................................................................................................................................... 14 

4.1. Verification of Example from an Article ................................................................................ 14 

4.2. PI Controller for the SP .......................................................................................................... 16 

4.3. Robust Tuning of SP and SIMC Tuning of PI .......................................................................... 17 

4.3.1. Set-point Tracking.......................................................................................................... 17 

4.3.2. Disturbance Rejection ................................................................................................... 19 

4.4. Smith Predictor with Increasing Controller Gain ................................................................... 21 

4.5. Optimisation of Performance and Robustness ..................................................................... 26 

4.5.1. Performance versus Robustness ................................................................................... 26 

4.5.2. Optimal Tuning .............................................................................................................. 28 

4.6. Verification of Optimisation in Simulink................................................................................ 30 

5. Discussion ...................................................................................................................................... 32 

6. Conclusions .................................................................................................................................... 33 

  



iv 
 

7. Symbols and Abbreviations ........................................................................................................... 34 

7.1. List of symbols ....................................................................................................................... 34 

7.2. List of Abbreviations .............................................................................................................. 35 

8. References ..................................................................................................................................... 36 

 

Appendix A – Matlab and Simulink files ................................................................................................ 37 

Appendix B – Calculation of Tuning Values ........................................................................................... 38 

Appendix C – Plots from Verification of Example ................................................................................. 39 

Appendix D – Plots From the Use of a PI Controller as the Primary Controller .................................... 43 

Appendix E – Optimal Tuning versus Robustness Plots ........................................................................ 47 

 

  



v 
 

List of Figures 

Figure 1: Block diagram of a control system with a PI controller [6]. ..................................................... 2 

Figure 2: Block diagram for a process with the Smith predictor controller [6]. ...................................... 4 

Figure 3: The Smith Predictor block diagram re-drawn as two nested feedback loops [6]. ................... 5 

Figure 4: The Smith Predictor block diagram drawn in reduced form [6]. .............................................. 5 

Figure 5: Block diagram of the Smith predictor and PI controller created in Simulink. The top block 

diagram is the Smith predictor structure and the bottom one is for a process with PI control. .......... 10 

Figure 6: Block diagram of the process with the change in set-point and disturbance included. The top 

block diagram is the Smith Predictor controller, and the bottom one is the PI controller. .................. 12 

Figure 7: Output of the Smith Predictor and a PI controller where the time delay is equal to θ=1.33. A 

P-only controller is used as the primary controller in Smith Predictor control structure..................... 15 

Figure 8: Output of the Smith Predictor and a PI controller where the time delay is equal to θ=1.78. A 

P-only controller is used as the primary controller in Smith Predictor control structure..................... 15 

Figure 9: Integral squared error plotted against the error in time delay with robust tuning of SP and 

SIMC tuning of the PI controller for set-point tracking. ........................................................................ 18 

Figure 10: Integral square error plotted against the error in time delay with robust tuning of SP and 

SIMC tuning of the PI controller for disturbance rejection. .................................................................. 20 

Figure 11: ISE values plotted against the error in delay (θ-θn) for set-point tracking when Kc = 2. ..... 21 

Figure 12: ISE values plotted against the error in delay (θ-θn) for set-point tracking when Kc = 3. ..... 22 

Figure 13: ISE values plotted against the error in delay (θ-θn) for set-point tracking when Kc = 4. ..... 22 

Figure 14: ISE values plotted against the error in delay (θ-θn) for disturbance rejection when Kc = 2. 23 

Figure 15: ISE values plotted against the error in delay (θ-θn) for disturbance rejection when Kc = 3. 24 

Figure 16: ISE values plotted against the error in delay (θ-θn) for disturbance rejection when Kc = 4. 25 

Figure 17: Trade-off between performance (J(c)) and robustness (Ms) for the Smith predictor 

controller and a PI controller for the process g=exp(-s)/(s+1). The process is optimised in terms of 

performance and robustness. ............................................................................................................... 26 

Figure 18: Trade-off between performance (J(c)) and robustness (Ms) for the Smith predictor 

controller and a PI controller for the process g=exp(-s)/(s+1). The process is optimised in terms of 

performance and robustness. ............................................................................................................... 27 

Figure 19: IAE plotted against the delay error for case 1 with the process g=exp(-s)/(s+1) when the 

optimal tuning is applied on both controllers. ...................................................................................... 30 

Figure 20: IAE plotted against the delay error for case 2 with the process g=exp(-s)/(8s+1) when the 

optimal tuning is applied in both controllers. ....................................................................................... 31 

Figure 21: Optimal tuning for the Smith predictor with the process g = e-s/(s+1). ............................... 47 



vi 
 

Figure 22: Optimal tuning for the PI controller with the process g = e-s/(s+1). .................................... 47 

Figure 23: Optimal tuning for the SP controller with the process g = e-s/(8s+1). ................................. 48 

Figure 24: Optimal tuning for the PI controller with the process g = e-s/(8s+1). .................................. 48 

  



vii 
 

List of Tables 

Table 1: Description of the different blocks in a control system with a PI controller as shown above. . 2 

Table 2: Robust tuning of the Smith predictor when using τ0 = 1.7Δθmax [7]. ......................................... 7 

Table 3: Parameters used in the article [10]. .......................................................................................... 9 

Table 4: Tuning values for the Smith Predictor and the PI controller with robust- and SIMC tuning 

rules, respectively. ................................................................................................................................. 11 

Table 5: The processes that were optimised in terms of performance and robustness....................... 13 

Table 6: Stability domain made from the simulation of a P-only controller as the primary controller in 

the Smith predictor control structure. .................................................................................................. 14 

Table 7: Stability table made from the simulation of a PI controller as the primary controller in the 

Smith predictor control structure. ........................................................................................................ 16 

Table 8: Integral squared error results for different time delays for the PI controller and the Smith 

predictor controller for set-point tracking. SIMC tuning rules were used for the PI controller, while 

robust tuning rules were used for the SP. ............................................................................................. 17 

Table 9: Integral squared error results for different time delays for the PI controller and the Smith 

Predictor for disturbance rejection. SIMC tuning rules were used for the PI controller, while robust 

tuning rules were used for the SP. ........................................................................................................ 19 

Table 10: Robustness, controller gain, integral time and performance results from optimisation of 

both the SP and PI controller for the process g=exp(-s)/(s+1). ............................................................. 28 

Table 11: Robustness, controller gain, integral time and performance results from optimisation of 

both the SP and PI controller for the process g=exp(-s)/(8s+1). ........................................................... 28 

Table 12: Optimal tuning parameters for a robustness of Ms = 1.7 for the Smith Predictor and PI 

controller. .............................................................................................................................................. 29 

 

  



 

1 
 

1. Introduction 
 

The purpose of this project is to test the robustness and performance of a Smith predictor (SP) 

controller for processes with time delays. This will be performed by comparing the Smith predictor 

controller with a PI controller. It is desirable to see how the performance and robustness of the 

Smith predictor depends on the variation in the time delay. Time delays can occur in industrial 

processes due to the presence of distance velocity lags, recycle loops and the analysis time 

associated with composition measurements [1]. The presence of such time delays will reduce the 

performance of a conventional feedback control system, thus there is a need for time-delay 

compensation. 

Matausek and Micic (1996) tried to control higher order processes with integral action and long 

dead-time by using a modified Smith predictor [2]. The model consists of an ideal integrator and 

dead-time, and includes three tuning parameters. These are the dead-time, velocity gain of the 

model, and the desired time constant of the first order closed-loop set-point response. This was 

found to give a high possible performance for the set-point response and also for the load 

disturbance rejection. 

Lee and Wang (1996) have also obtained sufficient conditions for the practical stability, robust 

stability and the robust performance for the Smith predictor controller [3]. A norm-bounded 

uncertainty is associated with the process model. Lee and Wang (1996) developed a two-step 

controller design approach based on the discovered conditions.  

Lee et al. (1998) have looked at robust PID tuning for the Smith predictor in the presence of model 

uncertainty [4].  The equivalent gain plus time delay (EGPTD) was used to approximate the tuning 

method.  By using the EGPTD, it was possible to achieve relatively good approximation over the 

important frequency range. This robust tuning method is simple and easy, but the robustness is still 

ensured. 

Majhi and Atherton (1999) proposed a modified Smith predictor with a simple and effective 

controller design procedure [5]. This was developed for time delay processes. High performance for 

the controller was achieved, particularly for an integrating and unstable process. In addition, the 

predictor was able to successfully control a stable process and an integrator with a long dead-time. 

Simple tuning formulas were used. 
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2. Theory 
 

A general plant can be described by a first order plus time delay (FOPTD) transfer function as shown 

in equation (1).  

  ( )  
  

    
             (1) 

In the transfer function above, Kp is the gain of the process, τ is the process time constant and θ is the 

time delay or dead time.  

 

2.1. PI Control 
A control system with proportional and integral control (PI) is shown in Figure 1.  

 

Figure 1: Block diagram of a control system with a PI controller [6]. 

 

Table 1 gives an overview of what the different notations in Figure 1 represent. 

Table 1: Description of the different blocks in a control system with a PI controller as shown above. 

Parameter Definition 

Ysp Set-point of the process 
E Error between set-point and output of process 

GC Controller transfer function 
P Output of controller 
G Process transfer function 
Y Output of the process 
D Disturbance 
Gd Disturbance transfer function 

 

For a PI controller, the controller output is given by equation (2) in the time domain [1]: 
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  ( )   ̅    ( ( )  
 

  
∫  (  )    

 
)       (2) 

The corresponding transfer function in the Laplace domain is given by: 

 
  ( )

 ( )
   (  

 

   
)    (

     

   
)       (3) 

The closed-loop set-point transfer function for the feedback control in Figure 1 is obtained from the 

following derivation, where the disturbance is assumed to be zero: 

                (4) 

                (5) 

                  (6) 

By inserting equation (5) and (6) into equation (4), the equation becomes 

      (     )         (7) 

Collecting terms with Y on the left side and terms with Ysp on the right side: 

  (     )                 (8) 

This gives the closed-loop transfer function for set-point changes: 

 
 

   
 

   

     
          (9) 

When the process has a time delay, the process transfer function is given by 

                   (10) 

Finally the closed-loop set-point transfer function is given as: 

 
 

   
 

        

                   (11) 
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2.2. Smith Predictor Controller 
Smith predictor control is one of several strategies that have been developed to improve the 

performance of systems containing time delays [1]. It is desirable to achieve effective time-delay 

compensation with these methods. Previous experiments have shown that the Smith predictor gives 

a better performance for set-point changes than a conventional PI controller [1]. This was proved by 

comparing the integral-squared error criterion. On the other hand, this may not be the case for all 

types of disturbances.  

There are not only benefits associated with the Smith predictor controller. It has a disadvantage due 

to the fact that a dynamic model of the process is required [1]. This can result in an inaccurate 

predictive model and reduced controller performance if the process dynamics are considerably 

changed.  

A block diagram of the Smith predictor controller is shown Figure 2.  

 

Figure 2: Block diagram for a process with the Smith predictor controller [6]. 

As seen in Figure 2, the Smith predictor structure can be divided into two parts. This includes the 

primary controller, GC(s), and the predictor structure. The predictor part consists of a model of the 

plant without time delay (Gn(s)), and a model of the time delay (e-θs) [7]. The parameter θ is the time 

delay. Thus, the complete process model is given by equation (12). 

   ( )    ( )             (12) 

The model without the dead-time is sometimes called the fast model and is used to compute an 

open-loop prediction. Thus, the model of the process without time delay (Gn) is used to predict the 

effect of control actions on the undelayed output [1]. Then the controller uses the predicted 

response (Y1) to calculate its output signal (P). The actual undelayed output (Y) is compared with the 

delayed predicted output (Y2). In the case of no disturbances or modelling errors, the difference 

between the process output and the model output will be zero. This means that the output signal (Y-

Y2) will be equal to the output of the plant without any time delay [7].  
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2.2.1. Derivation of Transfer Function for Inner Feedback Loop 

The block diagram for the Smith predictor given in Figure 2 can be re-drawn as two nested feedback 

loops as shown in Figure 3 [6]. 

 

 

Figure 3: The Smith Predictor block diagram re-drawn as two nested feedback loops [6]. 

 

Further on, the inner feedback loop can be reduced as shown in Figure 4. 

 

Figure 4: The Smith Predictor block diagram drawn in reduced form [6]. 
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To find the equivalent transfer function for the inner feedback loop in Figure 4, an expression for P/E 

is needed. This function is derived by using the blocks in Figure 4. The goal is to find G’, given by: 

    
 

 
           (13) 

Investigation of the block diagram in Figure 4 gives the following: 

                 (14) 

      (     )         (15) 

 (     )     (      )        (16) 

By inserting equation (15) and (16) into (14), the equation becomes: 

   [     (      )]          (17) 

Simplifying equation (17) gives 

  [      (      )]             (18) 

The transfer function for the inner feedback loop in Figure 4 is then obtained: 

    
 

 
 

  

      (      )
        (19) 

By doing some rearrangement, the closed-loop set-point transfer function for the Smith predictor is 

given by: 

 
 

   
 

        

      
          (20) 

By comparing equation (11) and equation (20), it is observed that the time delay part is missing from 

the characteristic equation of the Smith predictor controller, but it is present in the closed-loop set-

point transfer function of the PI controller. The characteristic equation is the denominator part of the 

closed-loop set-point transfer function for a given controller. This gives a theoretical explanation of 

the time delay compensating ability of the Smith predictor. 

 

2.2.2. Robust Tuning of the Smith Predictor 

Normey-Rico and Camacho (2007) have proposed a robust tuning procedure for the Smith predictor 

controller [7]. This method is supposed to ensure robust performance of the Smith predictor 

controller for a certain range of time delays. By considering only dead-time-estimation errors, robust 

tuning of the Smith predictor can be obtained for processes with dominant dead-time [7].  
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Under these conditions, the dead-time-error dominates any other errors in the process. A tuning rule 

for achieving both robust stability and robust performance was found, and the condition for this is 

given by equation (21): 

            ,         (21) 

where    is the desired time constant. The suggested tuning rules are given in Table 2.  

Table 2: Robust tuning of the Smith predictor when using τ0 = 1.7Δθmax [7]. 

Predictor model Controller Filter Kc τI τ1 

      

    
 

  (     )

   
 

(     )

     
 

 

    
             

 

In the tuning rules in Table 2, Kp is the process gain, τ is the time constant of the process, θ is the 

dead time, Kc is the controller gain, τI is the integral time, τ0 is the desired time constant and the 

nominal set-point response is defined by the parameter τ1. 

 

2.3. SIMC Tuning 
According to Skogestad and Grimholt (2011), the original SIMC rules for a first order model are given 

by equation (22) and equation (24) for a first order process with a PI controller [8]. 

    
 

 

  

    
 

 

  

 

    
          (22) 

In the above equation, k’ is given by 

    
 

  
           (23) 

             (    )         (24) 

The only tuning parameter, τc, is the desired first-order closed-loop time constant [8].  Further on, Kc 

is the controller gain,    is the process time constant, k is the steady-state gain, τI is the integral time 

and θ is the time delay of the process.  

 

2.4. Integral Squared Error 
To compare the performance between two controllers, the integral squared error can be calculated. 

This error is given by equation (25): 

     ∫ [[ ( )            ( )]
 
  ]

 

 
,        (25) 

where  ( ) is the output of the controller for the time delay i, and yset-point is the set-point of the 

process.   
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2.5. Trade-off between Performance and Robustness 
To compare the performance and robustness of the two different controllers, there is a need to 

quantify the performance and robustness. As seen before, the performance can be quantified by the 

integral squared error (ISE), but the integral absolute error (IAE) can also be used [9]. This is defined 

as 

     ∫   ( )    ( )   
 

 
,        (26) 

where  ( ) is the output measurement and   ( ) is the set-point of the output. Other methods to 

quantify the performance are also available, but the IAE will be used in this project. Grimholt and 

Skogestad (2011) have used a weighted average of IAE for a step change in the load disturbance   

and set-point    [9]. This is because the value of IAE depends on which set-point or disturbance 

change that is occurring. The weighted IAE is given by 

  ( )     [
     ( )

     
  

    ( )

    
 ],        (27) 

where      
 and      are the integrated absolute error for a step change in the set-point and load 

disturbance, respectively.  

In this case, J can be interpreted as the weighted cost of the controller, and the goal is to minimize 

J(c). Also, this cost is independent of the set-point and disturbance magnitudes, the process gain Kp, 

and the unit used for time [9]. 

Since the Smith predictor controller is being compared to a PI controller, the weighting factors      
  

and     
  are PI controllers in the Smith predictor structure. They are IAE-optimal for a certain 

process, and they need to have a given value of the robustness (  ) to get robust reference 

controllers [9].  

In order to quantify the robustness of the controllers, the sensitivity peak (  ) will be used. This is 

given by 

        |
 

    (  )
|,          (28) 

which is the maximum or the peak of the sensitivity function in the frequency domain [9]. When it 

comes to quantifying the robustness,    is the inverse of the closest distance between the critical 

point at -1 and the loop transfer function    in the Nyquist plot. Thus, a small value of    is desirable 

to get robustness, because the closest distance between the critical point and the loop transfer 

function increases when    decreases.  
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3. Simulation Procedure 
In all the simulations in this project, the nominal time delay (θ0) is equal to 1, and the simulations 

were performed for a FOPTD, as given in equation (1). All the Matlab scripts and Simulink files used in 

the project are given on a CD in Appendix A. 

3.1. Verification of Example from an Article 
Adam et al. (2000) have performed an experiment regarding the robustness of the Smith predictor 

with respect to uncertainty in the time-delay parameter [10]. This procedure was reproduced to 

verify the results that were obtained. The model in equation (1) was used, and the parameters of the 

undelayed part were as shown in Table 3. 

Table 3: Parameters used in the article [10]. 

Kp τ c(s) 

1 1 4 

 

This leads to the process transfer function given by equation (29). 

  ( )  
 

   
                (29) 

As seen from the table above, the controller is a P-only controller with a controller gain equal to Kc=4. 

The simulation of the example was performed in Matlab and Simulink, and the Matlab script and 

Simulink file is named ‘Robustness_SP_P.m’ and ‘SP_and_PI_withP.mdl’, respectively. The block 

diagram created in Simulink is shown in Figure 5. In addition to the tuning parameters in Table 3, the 

solver in the configuration parameters was set to be ode15s (stiff/NDF) and the relative tolerance 

was set to 1e-6.  

After the simulation, the output of the Smith predictor (YSP) and the output of the PI controller (YPI) 

were plotted against time in the same figure for a range of time delays different from the nominal 

delay, that is 0<θ<4. This was done to check if the simulation resulted in the same stability regions 

for the Smith predictor as in the given example [10]. The output of the PI controller was plotted in 

order to compare it with the Smith predictor. 

SIMC tuning rules were used for the PI controller structure because of simplicity and because they 

have proven to be good tuning rules. The calculation of the SIMC tuning parameters for the PI 

controller is given in Appendix B. 
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Figure 5: Block diagram of the Smith predictor and PI controller created in Simulink. The top block diagram is the Smith 
predictor structure and the bottom one is for a process with PI control. 

 

3.2. PI Controller for the SP 
A PI controller was used in the Smith predictor structure instead of the P controller in the previous 

section. This was performed in order to compare the difference between the two controllers. 

The simulation of the example was performed in Matlab and Simulink, and the script and block 

diagram is given in the files ‘Robustness_SP_PI’ and ‘SP_and_PI_withPI.mdl’. The block diagram 

created in Simulink was the same as the one shown in Figure 5, except that the primary controller in 

the Smith predictor was a PI controller and not a P-only controller. Because integral control was 

added, the integral time had to be included in the simulation. The integral time was set to τI = 1, 

which lead to an integral part equal to I=1. In addition the controller gain was changed from Kc=4 to 

Kc=2. 
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3.3. Smith Predictor with Variation in Controller Gain 
After the robust tuning performed in the previous section, the controller gain of the primary 

controller in the Smith predictor was increased in order to see the effect on the performance. 

Increasing the controller gain is the same as tightening the control of a process. The simulations were 

performed for three different controller gains, that is Kc=2, Kc=3 and Kc=4. 

 

3.4. Robust Tuning of SP and SIMC Tuning of PI 
In this section, the process given in equation (1) was used when tests of the performance and 

robustness were performed. The Smith predictor was to be compared with a PI controller by using 

robust tuning rules for the Smith predictor, found in Normey-Rico and Camacho (2007) [7]. 

Conventional SIMC tuning rules given in section 2.3 was used for the PI controller. The robust tuning 

rules for the Smith predictor are the ones given in section 2.2.2.  

Table 4 summarises the tuning values of the Smith predictor and the PI controller for this comparison 

when the maximum error in the time delay (Δθ) is equal to 1. This means a range of time delays from 

θ=0 to θ=2 since the nominal time delay is θ0=1. The calculation of the values in Table 4 is shown in 

Appendix B. 

Table 4: Tuning values for the Smith Predictor and the PI controller with robust- and SIMC tuning rules, respectively. 

 P=Kc I=1/τI 

Robust tuning of SP 0.59 1 
SIMC tuning of PI controller 0.5 1 

 

To test the performance and robustness of the Smith predictor, this tuning was used for both set-

point tracking and disturbance rejection in Simulink. The scripts for this are given in the files named 

‘SProb_PIsimctest’ and ‘SProb_PIsimctest_dist’. In addition, the corresponding Simulink files are 

named ‘SProb_PIsimc.mdl’ and ‘SProb_PIsimc_dist.mdl’. To compare the performance between the 

Smith predictor and the PI controller, the integral squared error (ISE) was also calculated for the two 

control schemes. This was also done for both the set-point tracking and disturbance rejection. To 

obtain the correct integral square errors, some configuration parameters in Simulink had to be 

changed. This included changing type in solver options from variable-step to fixed-step, with a step 

size of 0.01. This was done in order to calculate the integral of the squared error. In addition the 

solver was set to ode3 (Bogacki-Shampine). 

The set-point change was applied at t=10 and the disturbance was applied at t=0 in Simulink. The 

block diagram of the process in Simulink is given in Figure 6. In this simulation, the set-point change 

and disturbance was applied one by one. Thus, the controllers were first compared when there was a 

disturbance, and then when a set-point change was introduced. The blocks named Dist and Dist1 are 

the disturbances, and the blocks named Set-p and Set-p1 are set-point changes. There are also two 

blocks named Dist set-p and Dist set-p1. These blocks represent another type of disturbance which 

can be treated as a set-point change as well. 
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Figure 6: Block diagram of the process with the change in set-point and disturbance included. The top block diagram is 
the Smith Predictor controller, and the bottom one is the PI controller. 
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3.5. Optimisation of Performance and Robustness 
In order to optimise the controllers in terms of performance and robustness, the functions called 

optimset and fmincon in Matlab were used. The latter finds a constrained minimum of a function of 

several variables. The Matlab scripts used for the optimisation are given in the folder named ‘Optimal 

SP’ on the attached CD in Appendix A. As explained in section 2.5, the optimisation minimises the 

cost function  ( ), which is a function of the IAE values for a given controller. To find the best trade-

off between performance (  ( ) ) and robustness (  ), the cost function was plotted against a range 

of    values. This was done for two different processes, as shown in Table 5.  

Table 5: The processes that were optimised in terms of performance and robustness. 

 Process 

Case 1   
   

   
 

Case 2   
   

    
 

 

Case 1 is a first order plus time delay (FOPTD) process with     and    , and case 2 is also a 

FOPTD process with     and    . Included in the optimisation in Matlab was also finding the 

optimal tuning parameters for each controller in both cases.  

To be able to compare the Smith predictor with a PI controller, the same IAE weights had to be used 

for the two controllers. Therefore, the weights of the SP controller were first found, and they were 

then used for the optimisation of the PI controller.  

 

3.6. Verification of Optimisation in Simulink 
To confirm the optimisation results from section 3.5, the optimal tuning for the SP and PI controller 

was applied to the model in Simulink and the IAE values were plotted for the different cases. This 

was done for several time delays to see how the controllers responded.  

The model in Simulink was modified to be more similar to the model used by Grimholt and Skogestad 

(2011). In this paper, the set-point change was applied at t = 0 and the disturbance was applied at t = 

20 [9]. For convenience, the same was done in this project. So in contrast to the simulations 

performed in section 3.4, where the disturbance and set-point change was simulated one by one, 

they were applied in the same simulation in the optimisation because the controllers were optimised 

for a combination of disturbance and set-point changes. Also, the blocks called Dist set-p and Dist 

set-p1 in Figure 6 were used to apply the set-point changes because this was done in the paper by 

Grimholt and Skogestad (2011).   

In order to find the best tuning of the two controllers in each case, a value of        was used 

because the SIMC rule gives this value. Then the optimal SP controller can be compared with the 

SIMC tuning rules applied on a PI controller later.  
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4. Results 

4.1. Verification of Example from an Article 
The plots of the outputs from the simulation of the example in the paper by Adam et al. (2000) are 

given in Appendix C. Table 6 gives the resulting stability regions achieved for the Smith predictor in 

this example. As shown here, the stability regions are the same as those found in the article [10]. 

Table 6: Stability domain made from the simulation of a P-only controller as the primary controller in the Smith predictor 
control structure. 

Time Delay Stable/Unstable 

0 - 0.3462 Stable 
0.3462 – 0.5668 Unstable 
0.5668 – 1.4425 Stable 
1.4425 – 1.8206 Unstable 
1.8206 – 2.5320 Stable 

2.5320  Unstable 

 

Consequently, the first thing that appears is the discontinuity in the stability of the Smith predictor 

controller. With a time delay θ < 2.53 the SP has three stable regions and two unstable regions of 

time delays, whereas it is unstable for all time delays above 2.53 in the tested time delay domain 

(0<θ<4). As this example uses a P-only controller for the primary controller in the SP control 

structure, it indicates that it can be dangerous to use this if the ideal is a stable process and the time 

delay parameter is not exactly known. If a designer for example fixes θ0=1 and verifies that the loop 

is stable for the case where the actual process has a larger delay, for example θ=1.4, it is incorrect to 

conclude that the closed loop will be stable for the case where the value of the real delay is θ < 1.4. 

This is an important consequence of the discontinuous stability domain of the SP.  

In order to see the difference between the PI controller and the Smith predictor, some of the output 

plots are included here. Figure 7 and Figure 8 show the output of the two controllers for time delays 

equal to θ=1.33 and θ=1.78, respectively. They show how the PI controller is still stable while the SP 

controller goes unstable at θ=1.78. 
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Figure 7: Output of the Smith Predictor and a PI controller where the time delay is equal to θ=1.33. A P-only controller is 
used as the primary controller in Smith Predictor control structure. 

 

 

Figure 8: Output of the Smith Predictor and a PI controller where the time delay is equal to θ=1.78. A P-only controller is 
used as the primary controller in Smith Predictor control structure. 
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4.2. PI Controller for the SP 
The plots of the outputs from the simulation of the same example, but with a PI controller instead of 

a P controller as the primary controller, are shown in Appendix D. Table 7 shows the stability region 

for this controller instead of a P-only controller. As shown here, this controller has only one stable 

region, and one unstable region in the tested time delay range (0<θ<4). Table 7 summarises the 

result of this simulation. 

Table 7: Stability table made from the simulation of a PI controller as the primary controller in the Smith predictor 
control structure. 

Time delay Stable/unstable 

0 – 2.68   Stable 
2.68  Unstable 

 

These simulations lead to the assumption that a P-only controller can give a discontinuous stability 

domain for a certain combination of tuning parameters, while a PI controller leads to a continuous 

stability domain for a given tuning. Therefore, if the time delay is unknown and has a value of for 

example θ < 2, using the Smith Predictor controller with a P-only controller includes a high risk of an 

unstable process or plant.  
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4.3. Robust Tuning of SP and SIMC Tuning of PI 

4.3.1. Set-point Tracking 

The integral squared error was calculated for different time delays in order to compare the SP with a 

PI controller and the results for a set-point change are shown in Table 8. In this case, the SP was 

tuned with robust tuning rules found by Normey-Rico and Camacho (2007) [7]. For the PI controller, 

conventional SIMC tuning rules were used for simplicity. 

 

Table 8: Integral squared error results for different time delays for the PI controller and the Smith predictor controller for 
set-point tracking. SIMC tuning rules were used for the PI controller, while robust tuning rules were used for the SP. 

Real Time Delay ISEPI ISESP 

0 3799,7 3706,1 
0.11 3810,9 3717,6 
0.21 3822,6 3729,4 
0.32 3835,0 3741,5 
0.42 3848,0 3754,0 
0.53 3861,9 3767,0 
0.63 3876,7 3780,3 
0.74 3892,6 3794,1 
0.84 3909,7 3808,4 
0.95 3928,3 3823,3 
1.05 3948,6 3838,9 
1.16 3970,9 3855,2 
1.26 3995,9 3872,3 
1.37 4024,2 3890,4 
1.47 4056,9 3909,5 
1.58 4095,5 3929,8 
1.68 4141,7 3951,6 
1.79 4198,0 3975,0 
1.89 4267,0 4000,2 
2.0 4352,4 4027,5 

 

As seen in Table 8, the ISE values of the Smith predictor are lower than the respective values for the 

PI controller for all time delays between θ=0 and θ=2. This confirms the idea of the Smith Predictor 

as a time delay compensator. Thus, the performance of the SP is better than for the PI controller in 

the tested time delay domain for a set-point change.  
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To see the results in a different way, the ISE values are also plotted in Figure 9 against the deviation 

from the nominal delay (θ-θn), where θn=1. 

 

Figure 9: Integral squared error plotted against the error in time delay with robust tuning of SP and SIMC tuning of the PI 
controller for set-point tracking. 

 

As from the table above, the same conclusions are drawn from Figure 9. The robust tuning of the 

Smith Predictor gives a better performance than SIMC tuning rules for a PI controller with values of 

the delay in the range 0<θ<2.   

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
3500

4000

4500

5000
Set-point tracking

Delay error

IS
E

 

 

PI SIMC

Robust SP



19 
 

4.3.2. Disturbance Rejection 

The resulting values of the ISE when a disturbance was applied to the process are given in Table 9. As 

for the set-point change, robust tuning and SIMC tuning rules were used for the SP and PI, 

respectively. 

Table 9: Integral squared error results for different time delays for the PI controller and the Smith Predictor for 
disturbance rejection. SIMC tuning rules were used for the PI controller, while robust tuning rules were used for the SP. 

Real Time Delay ISEPI ISESP 

0 33,8 40,5 
0.11 44,2 47,9 
0.21 55,5 55,8 
0.32 67,9 64,2 
0.42 81,5 73,1 
0.53 96,3 82,5 
0.63 112,6 92,4 
0.74 130,5 102,8 
0.84 150,2 114,0 
0.95 171,9 125,8 
1.05 196,0 138,3 
1.16 222,8 151,7 
1.26 252,7 166,0 
1.37 286,2 181,3 
1.47 323,9 197,6 
1.58 366,8 215,2 
1.68 415,8 234,0 
1.79 472,5 254,4 
1.89 538,6 276,3 
2.0 616,8 300,2 

 

For the first three values of the time delay, the PI controller has lower ISE values than the SP. 

However, the Smith predictor achieved lower values of the ISE for all the remaining time delays in 

the tested domain. Consequently, the performance of the SP is better than the PI controller for a 

disturbance in the process when the time delay is between θ=0.32 and θ=2.0, while the PI controller 

has better performance for time delays between in the range 0< θ<0.21. 
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Figure 10 shows the integral squared error as a function of the delay error, which is the difference 

from the nominal delay.  

 

Figure 10: Integral square error plotted against the error in time delay with robust tuning of SP and SIMC tuning of the PI 
controller for disturbance rejection. 

These graphs show the same results as in the previous table. In contrast to the set-point change, the 

difference in the ISE value between the two controllers is very small for small time delays, and then 

increases with the time delay value. This means that the improved performance for the SP is more 

significant at higher time delays than for low time delays when a disturbance is applied.  
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4.4. Smith Predictor with Increasing Controller Gain 
In order to see how the Smith Predictor could handle different controller gains, the same simulations 

as in the previous section with robust tuning rules were performed, but with higher controller gains. 

This means that the control was tightened. The results are shown below by plotting the ISE values of 

the two controllers versus time delay. Figure 11, Figure 12 and Figure 13 show the results for set-

point tracking when the controller gain has the values Kc = 2, Kc = 3 and Kc = 4, respectively. 

 

Figure 11: ISE values plotted against the error in delay (θ-θn) for set-point tracking when Kc = 2. 

With a controller gain of Kc=2 in the primary controller in the SP, the PI controller achieves a higher 

performance for all the tested time delays, as shown in Figure 11. This indicates that the Smith 

predictor obtains worse performance for higher controller gains than what the robust tuning rules 

give. However, the difference between the PI and SP controller is not that evident for this value of 

the controller gain.   
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Figure 12: ISE values plotted against the error in delay (θ-θn) for set-point tracking when Kc = 3. 

 

 

Figure 13: ISE values plotted against the error in delay (θ-θn) for set-point tracking when Kc = 4. 
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The plots in Figure 12 and Figure 13 show a strange behaviour of the ISE values of the Smith 

Predictor controller compared to the PI controller. First of all, the PI controller has a better 

performance than the SP for all time delays both when Kc=3 and when Kc=4. But it is also seen that 

the SP has two major jumps in the ISE values in both cases, where it becomes unstable. Between the 

two jumps, the ISE values decreases to the level it was before the peak. These results indicate that 

the Smith Predictor is very unstable for higher controller gains, especially if the time delay parameter 

is uncertain. Because of this, the SP may not be used that much when the time delay is not known 

and the model is not well understood.  

 

Figure 14, Figure 15 and Figure 16 show the results for disturbance rejection when the controller gain 

has the values Kc = 2, Kc = 3 and Kc = 4, respectively. 

 

Figure 14: ISE values plotted against the error in delay (θ-θn) for disturbance rejection when Kc = 2. 

When Kc=2, the SP still has better performance for the whole time delay domain. However, the 

performances of the PI and SP for small time delays are almost identical.   
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Figure 15: ISE values plotted against the error in delay (θ-θn) for disturbance rejection when Kc = 3. 

The ISE values of the SP for a controller gain of Kc=3, show a strange behaviour. At a low time delay, 

the ISE values suddenly jump and peak at a delay error around -0.6, and the values decrease again 

after that. This result indicates that the SP may be unstable for certain time delays with this 

controller gain. 
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Figure 16: ISE values plotted against the error in delay (θ-θn) for disturbance rejection when Kc = 4. 

For a controller gain of Kc = 4, the Smith Predictor is even more unstable than for Kc=3. This is seen in 

Figure 16, where the SP goes crazy at two different time delays, and then decreases again after a 

while. Thus, the PI controller has much better performance than the SP at the time delay values 

where the SP increases remarkably. When the ISE values of the SP are at “normal” values, they are a 

little below the values of the PI controller, so here the SP has better performance. A conclusion from 

this is that the Smith Predictor gets unstable when the control is tight enough (high enough Kc). 

Accordingly, it can be dangerous to control a process like this with the Smith predictor controller 

when the time delay is not exactly known. Thus, the decision of using a Smith Predictor or another 

controller will depend on the importance of a stable process and if the time delay is known.  

To sum up, the Smith Predictor controller goes unstable and have two large peaks in the ISE values 

for both set-point changes and disturbances when the controller gain is increased to Kc = 4. 
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4.5. Optimisation of Performance and Robustness 
The two processes g=exp(-s)/(s+1) and g=exp(-s)/(8s+1) were optimised in Matlab in terms of 

performance and robustness, and the results of this are given in the following sections. As a result of 

the optimisation, the optimal tuning for the Smith Predictor and the PI controller was also found.   

4.5.1. Performance versus Robustness 

Figure 17 and Figure 18 compares the trade-off between performance and robustness for the SP and 

PI controller for case 1 and case 2, respectively. It is widely known that there exists a trade-off 

between the performance and the robustness of a controller because it is not possible to have the 

best possible performance simultaneously as the best possible robustness. Therefore the selection of 

tuning parameters will depend on what of the two objectives is the most important. It is desired to 

find the best combination of performance and robustness.  

 

 

Figure 17: Trade-off between performance (J(c)) and robustness (Ms) for the Smith predictor controller and a PI controller 
for the process g=exp(-s)/(s+1). The process is optimised in terms of performance and robustness. 
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Figure 18: Trade-off between performance (J(c)) and robustness (Ms) for the Smith predictor controller and a PI controller 
for the process g=exp(-s)/(s+1). The process is optimised in terms of performance and robustness. 

 

By comparing Figure 17 and Figure 18, it is observed that they look very similar. The difference 

between the two processes is the value of the process time constant. It has a value of τ=1 in the first 

case and a value of τ=8 in the second case. As explained before, a small value of Ms is desirable 

because the process is more robust the smaller value of Ms. At the same time, a small value of J(c) is 

also desirable because this is the weighted IAE values for set-point change and disturbances. And the 

optimal solution has the smallest possible error. In both the plots above, the part of the graphs 

beyond Ms = 2 is uninteresting because both the performance and the robustness decreases at the 

same time when Ms is larger than approximately 2. Somewhere in the region to the left of this value 

is therefore where the optimal trade-off will be located.  

Also, the graphs show that the Smith Predictor controller has a better performance than the PI 

controller for all values of the robustness in both case 1 and case 2. This is for a combination of a set-

point change and an applied disturbance to the processes. In addition, the increased performance for 

the SP is higher for higher values of Ms. One thing to notice is that this optimisation is for the 

processes with a time delay equal to θ=1, so the time delay is a known parameter for the 

optimisation. The performance of the controllers may not be the same when the real time delay is 

different from the nominal time delay. 
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4.5.2. Optimal Tuning 

The robustness, tuning parameters and the performance function obtained from the optimisation is 

given in Table 10 and Table 11 for case 1 and case 2, respectively. The results are shown for both the 

Smith Predictor and the PI controller in each case. 

Table 10: Robustness, controller gain, integral time and performance results from optimisation of both the SP and PI 
controller for the process g=exp(-s)/(s+1). 

Case 1:   
   

   
 

 Smith Predictor PI Controller 
Ms Kc = P Kc/ τI I = 1/τI J(c) Kc = P Kc/ τI I = 1/τI J(c) 

1,25 3,63 3,63 1,00 2,16 3,98 3,98 1,00 2,37 
1,35 2,66 2,65 1,00 1,58 2,99 2,99 1,00 1,78 
1,45 2,13 2,12 1,00 1,26 2,45 2,45 1,00 1,46 
1,55 1,79 1,78 0,99 1,06 2,15 2,13 0,99 1,27 
1,65 1,56 1,55 0,99 0,93 2,01 1,92 0,95 1,17 
1,75 1,40 1,39 0,99 0,83 1,97 1,77 0,90 1,11 
1,85 1,26 1,25 0,99 0,75 1,94 1,67 0,86 1,07 
1,95 1,19 1,13 0,95 0,69 1,94 1,61 0,83 1,06 
2,05 1,18 1,07 0,91 0,67 1,96 1,57 0,80 1,05 
2,15 1,21 1,06 0,88 0,67 1,98 1,55 0,78 1,05 
2,25 1,26 1,05 0,84 0,69 2,02 1,53 0,76 1,06 
2,35 1,34 1,06 0,79 0,71 2,06 1,52 0,74 1,07 
2,45 1,43 1,06 0,74 0,74 2,11 1,52 0,72 1,08 
2,55 1,52 1,07 0,70 0,77 2,15 1,53 0,71 1,09 
2,65 1,62 1,07 0,66 0,80 2,21 1,54 0,70 1,11 
2,75 1,69 1,08 0,64 0,82 2,26 1,55 0,69 1,13 
2,85 1,76 1,08 0,61 0,84 2,31 1,56 0,68 1,15 
2,95 1,82 1,08 0,59 0,86 2,36 1,58 0,67 1,17 

 

Table 11: Robustness, controller gain, integral time and performance results from optimisation of both the SP and PI 
controller for the process g=exp(-s)/(8s+1). 

Case 2:   
   

    
 

 Smith Predictor controller PI Controller 
Ms Kc = P Kc/ τI I = 1/τI J(c) Kc = P Kc/ τI I = 1/τI J(c) 

1,25 3,86 2,67 0,69 2,19 4,30 2,96 0,69 2,44 
1,35 2,99 1,93 0,65 1,64 3,56 2,09 0,59 1,87 
1,45 2,46 1,58 0,64 1,35 3,23 1,60 0,50 1,58 
1,55 2,09 1,39 0,66 1,16 3,02 1,33 0,44 1,42 
1,65 1,81 1,27 0,70 1,03 2,88 1,16 0,40 1,31 
1,75 1,58 1,20 0,76 0,94 2,79 1,04 0,37 1,23 
1,85 1,37 1,15 0,84 0,86 2,74 0,94 0,34 1,18 
1,95 1,17 1,10 0,94 0,78 2,68 0,87 0,33 1,13 
2,05 1,17 1,01 0,86 0,74 2,66 0,81 0,30 1,10 
2,15 1,18 1,00 0,85 0,74 2,67 0,74 0,28 1,08 
2,25 1,21 1,00 0,83 0,75 2,69 0,70 0,26 1,07 
2,35 1,27 1,00 0,79 0,77 2,72 0,67 0,25 1,07 
2,45 1,38 1,00 0,73 0,80 2,74 0,66 0,24 1,07 
2,55 1,53 1,00 0,65 0,85 2,80 0,63 0,23 1,07 
2,65 1,56 1,00 0,64 0,86 2,85 0,62 0,22 1,08 
2,75 1,42 1,00 0,70 0,81 2,88 0,62 0,21 1,09 
2,85 1,44 1,00 0,69 0,82 2,97 0,59 0,20 1,11 
2,95 1,47 1,00 0,68 0,83 3,02 0,59 0,19 1,12 



29 
 

As explained in section 3.6, a robustness of        was used as the best optimal tuning for the two 

controllers. In order to find the exact optimal tuning values for this robustness, the optimal tuning 

was also plotted as a function of the robustness in Matlab, and these graphs are given in Appendix E. 

The best optimal tuning for this robustness is shown in Table 12 for both cases. 

 

Table 12: Optimal tuning parameters for a robustness of Ms = 1.7 for the Smith Predictor and PI controller. 

Robustness, Ms = 1.7 

 P = Kc I = 1/ τI 
 SP PI SP PI 

Case 1:   
   

   
 1.48 1.99 0.99 0.93 

Case 2:   
   

    
 1.70 2.83 0.73 0.39 

 

The optimal tuning parameters found from the optimisation are different from the tuning 

parameters found by the robust tuning of SP and the SIMC tuning of the PI controller. Case 2 has 

different optimal tuning parameters than case 1 and that is probably because of the different time 

constant of the two processes. Case 2 has a tighter control for both the SP and PI controller when it 

comes to controller gain. Also, case 2 has higher values of integral time for the two controllers.  
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4.6. Verification of Optimisation in Simulink 
In order to verify the optimisation results from the previous section, the simulations in Simulink were 

performed with the obtained optimal tuning parameters for case 1 and case 2. However, the 

simulations were performed for a combination of a set-point change and a disturbance in order to 

compare it with the optimisation results. The true time delay was varied, and the IAE values were 

plotted for each case, as shown in Figure 19 and Figure 20. 

 

Figure 19: IAE plotted against the delay error for case 1 with the process g=exp(-s)/(s+1) when the optimal tuning is 
applied on both controllers. 

With a delay error from -1 to -0.5 in case 1, the PI controller actually has lower IAE values than the 

Smith Predictor controller. With further increase in the time delay, the SP has the best performance. 

However, both controllers IAE values increase rapidly when at two different time delays.  
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Figure 20: IAE plotted against the delay error for case 2 with the process g=exp(-s)/(8s+1) when the optimal tuning is 
applied in both controllers. 

 

A similar behaviour is observed for case 2, but the PI controller has the best performance for delay 

errors up to around 0.9.  

Based on these results, it looks like even though the optimal tuning is applied for both controllers, 

the Smith Predictor does not have the best performance for all values of the time delay. But at the 

same time, the optimal tuning parameters were found as a trade-off between performance and 

robustness. In addition, the magnitude of the difference in performance is not very large at the time 

delays where the PI controller has best performance.   
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5. Discussion 
After evaluating all the results, it can be concluded that the stability of the Smith predictor depends 

strongly on the chosen tuning parameters for a given process. For example, the stability was 

drastically altered when the controller gain was increased. Another issue is that the PI control system 

was tuned using the SIMC tuning rules in all of the simulations. The results and comparisons with the 

Smith predictor could have been different if the tuning parameters of the PI controller were changed 

as well.   

In addition to the Smith Predictor controller, there exist other types of controllers that compensate 

for the time delay parameters. These could be better or worse than the Smith Predictor. The Smith 

Predictor has also been modified for certain processes, and this could be tested to see if the 

performance and robustness would increase.  

In the optimisation part, a third case with the transfer function g=exp(-s) was also supposed to be 

optimised. However, there were problems with achieving convergence in the optimisation of this 

process (pure time delay). Several initial guesses were tried, but none of them gave convergence for 

all the iterations. Thus, only case 1 and case 2 was optimised and focused on.  

Further work from this project could be to optimise the third process (pure time delay) in terms of 

performance and robustness in order to see how this kind of process would behave. In addition, 

modified versions of the Smith Predictor controller could be tested in order to improve the standard 

Smith Predictor. A wider range of time delays could also have been tested to see how the controllers 

respond to very large time delays. 

Another thing that can be tried is to add a reference filter to the Smith Predictor structure in order to 

improve the set-point response [11]. A predictor filter could also be used to improve the properties 

of the predictor, as proposed by Normey-Rico and Camacho (2009).  
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6. Conclusions 
In this project, the performance and robustness of a Smith Predictor controller has been tested for 

processes with time delays. First order processes were tested and compared with the performance 

and robustness of a PI controller. The SP and PI controllers were also optimised in terms of 

performance and robustness for two different process transfer functions, and the optimal tuning 

parameters were found.  

From the optimisation, the Smith Predictor controller turned out to have better performance than 

the PI controller for all values of the robustness Ms, as shown in Figure 17 and Figure 18. Also, the 

magnitude of the performance difference between the two controllers increases with increasing Ms. 

When the time delay was varied for the optimal tuning of the SP and PI controller, the SP controller 

had better performance when the time delay reached a certain value, as shown in Figure 19 and 

Figure 20. However, the Smith predictor controller had discontinuous stability domains and unstable 

behaviour for certain combinations of the controller gain and other tuning parameters.  
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7. Symbols and Abbreviations 
 

7.1. List of symbols 
 

Symbol Unit Description 

θ min Process time delay 

θ0 min Nominal time delay (=1) 

τ  min Time constant 

τ0 min Desired time constant 

τ1 min Process time constant 

τc min Desired first order closed-loop time constant 

τI min Integral time 

c - Transfer function for a given controller 

D - Disturbance to the process 

e(t)  - Error between set-point and output in time domain 

E - Error between set-point and output in Laplace domain 

g - Transfer function for a given process 

G - Transfer function in Laplace domain 

Gc - Controller transfer function 

Gd - Disturbance transfer function 

Gn - Transfer function for process without time delay 

Gp  - Process transfer function 

I (tuning) - Integral part 

J(c) - Weighted integral absolute error for disturbance and set-point change 

k - Steady-state gain 

k' s-1 Steady-state gain divided by process time constant 

Kc - Controller gain 

Ms - Robustness 

p(t) - Output of controller in time domain 

P - Output of controller/input to process 

P(tuning) - Proportional part 

Pn(s) - Total process in the predictor part 

s - Laplace domain 

t min Time 

y(t) - Process output in time domain 

Y - Process output 

Y1 - Output of process without time delay 

Y2 - Output of process with time delay in Smith predictor structure 

YS - Process set-point 
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7.2. List of Abbreviations 
 

Abbreviation Stands for 

EGPTD Equivalent gain plus time delay 

FOPTD First order plus time delay 

IAE Integral absolute error 

ISE Integral squared error 

PI Proportional and Integral 

PID Proportional, Integral and Derivative 

SP Smith Predictor 
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Appendix A – Matlab and Simulink files  
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Appendix B – Calculation of Tuning Values 
 

The calculation of the tuning parameters with SIMC tuning rules is shown below for the PI controller: 
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The calculation of the tuning parameters for the robust tuning of the Smith predictor is given here: 
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Appendix C – Plots from Verification of Example 
 

The plots made from this script are shown in the following figures for a time delay range of 0 < θ < 4. 
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Appendix D – Plots From the Use of a PI Controller as the Primary 

Controller 
 

The plots made from this script are shown in the following figures and the values of the time delay 

are 0 < θ < 4.   
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Appendix E – Optimal Tuning versus Robustness Plots 
 

Figure 21 and Figure 22 show the optimal tuning plotted against the robustness in case 1 for the SP 

and PI controller, respectively.  

 

Figure 21: Optimal tuning for the Smith predictor with the process g = e
-s

/(s+1). 

 

Figure 22: Optimal tuning for the PI controller with the process g = e
-s

/(s+1). 

  

1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4
SP, g = exp(-s)/(s+1)

Robustness, M s

T
u

n
in

g
p

a
ra

m
et

er
(K

c,
K

c=
ta

u
I
)

 

 

K
c

K
c
/tau

I

1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4
PI, g = exp(-s)/(s+1)

Robustness, M s

T
u

n
in

g
p

a
ra

m
et

er
(K

c,
K

c=
ta

u
I
)

 

 

K
c

K
c
/tau

I



48 
 

Figure 23 and Figure 24 show the optimal tuning plotted against the robustness in case 2 for the SP 

and PI controller, respectively.  

 

Figure 23: Optimal tuning for the SP controller with the process g = e
-s

/(8s+1). 

 

Figure 24: Optimal tuning for the PI controller with the process g = e
-s

/(8s+1). 
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