
Department of Chemical Engineering

Specialisation Project

Modeling and Optimization of
Multistream Heat Exchangers

with Phase Transition

Written by:

Axel Lødemel Holene

Supervisors:

Sigurd Skogestad
Johannes Jäsche

Vladimiros L. Minasidis

January 16, 2013

Abstract
This project has been carried out at the Norwegian University of Science
and Technology during the autumn of 2012 and a few weeks in January
2013.

An equation oriented model for a multistream heat exchanger with phase
transitions (MHEX) produced by Kamath et al. [Ref. 14]. They provide
a “motivating example MHEX” solved in GAMS, using the mixed integer
nonlinear programming solver CONOPT. A process scenario including inputs,
outputs, disturbances and measurment error and noise has been constructed
with the aim at finding possible output candidates for self-optimizing con-
trol. The optimal sensitivity, F, output gain matrix, Gy, and the Hessian of
the cost function, Juu has been attempted found. Improved values for the
objective function was found, suggesting that more research should be done
to the model. The programming languages Python, Matlab and make has
been utilized in addition to GAMS. The use has been documented, and the
use of GAMS for general purposes has been exemplified.

ii

Acknowledgments

Much appreciation is directed to Johanns Jäsche for his availability as my everyday
supervisor, even though he actually has been on both vacation and “daddy leave
of absence”. I’m also very grateful of my head supervisor, Sigurd Skogestad, and
his flexibility in relation to deadlines. General thanks are also directed to Tore
Haug Warberg for being at work during New Years, for his help in programming
issues and general guidance and company.

iii

CONTENTS CONTENTS

Contents

Abstract i

List of Figures 1

List of Tables 1

1 Introduction 2

2 Process Description 4
2.1 Heat Exchanger Model . 4
2.2 Process Scenario . 5

2.2.1 Inputs . 6
2.2.2 Outputs . 6
2.2.3 Disturbances . 7
2.2.4 Measurement Error . 7

3 Theory 8
3.1 Constrained Optimization . 8
3.2 Self-optimizing Control . 10

3.2.1 Operational Objective . 12
3.2.2 Degree of Freedom Analysis 13
3.2.3 Implementation of Optimal Operation 13
3.2.4 Throughput Manipulator . 15
3.2.5 Regulatory Layer . 16
3.2.6 Supervisory Layer . 16
3.2.7 Real-time Optimization . 16

3.3 Heat Exhanger Model . 16
3.4 Finite Difference Approximations 22

4 Programming 23
4.1 GAMS . 23
4.2 Modifications Done to mhexcs1v9.gms 27

4.2.1 Display variables . 27
4.2.2 Sensitivity Matrix, F . 28
4.2.3 Gain Matrix, Gy . 28

4.3 Python . 29
4.3.1 Reading Data . 29
4.3.2 Classes . 30
4.3.3 Sensitivity and Gain Matrices 31
4.3.4 Hessian of Cost . 32

iv

CONTENTS CONTENTS

4.4 MATLAB . 33

5 Results 34

6 Discussion 35
6.1 Simulations . 35
6.2 Sensitivity . 35

6.2.1 Feed Flow, Pump Work and Pressure at S1 36
6.2.2 Temperatures . 36

6.3 Gain . 37
6.4 The Hessian of the Cost Function 37

6.4.1 Loss . 37

7 Conclusion 39

References 40

Appendices 42

A The GAMS Model mhexcs1v9.gms 42

B The Python Script 53

C The Matlab Script 59

D Nifty Trifles 62
D.1 Python: Autovivification . 62
D.2 Python: Pretty Float . 62
D.3 make: Makefile Script . 62

E An Optimization Example with GAMS 64

v

LIST OF FIGURES LIST OF TABLES

List of Figures

2.1 A schematic representation of the example MHEX with three hot
and two cold flows, and a double loop nitrogen cooling flow. 4

3.1 Block diagram illustrating the principle of self-optimization. 11
3.2 A schematic illustration of how choosing different self-optimizing

variables affect the loss. 12
3.3 Schematic representation of the integrated model for simultaneous

optimization and heat integration with phase transitions. H1 and C2

are streams wihtout phase transitions while H2 and C1 are streams
with phase transitions. 20

6.1 Temperature variations as function of feed specifications. The illus-
tration is given from right to left to coincide with Figure 2.1. . . . 36

6.2 Somecaption . 38

List of Tables

2.1 Defined states of the nitrogen cooling stream. 5
2.2 Temperature and heat transport data for the hot and cold process

streams. 5
E.1 Data for the octane number mixing problem 64

1

1 INTRODUCTION

1 Introduction

Heat exchangers have existed since the dawn of life. For elephants, its ears are
essential for the cooling of its blood. In humans, the nasal passages serve as a
heat exchanger, warming and cooling the air that is inhaled and exhaled. In the
chemical process industry, the transfer of heat to and from process fluids is essen-
tial, and is generally done in heat exchangers. In order to minimize both capital
and operating expenses it is desired to utilize the heat as efficiently as possible.
Scientific research aims at revealing increasingly efficient ways of designing and op-
erating heat exchangers. Industrial sites often have huge heat exchanger networks
with several utility flows. Being able to reduce the number of heat exchangers by
applying multistream heat exchangers can improve both the capital and operating
costs of chemical process plants.

A multistream heat exchanger (MHEX) is a single process unit in which multiple
hot and cold streams exchange heat simultaneously. They are common in cryo-
genic applications where heat transfer equipment need to be kept compact and
well insulated, while recovering heat from streams at very small temperature driv-
ing forces [Ref. 14]. Natural gas is composed of mainly methane. When cooled
to approximately 111 K (−162 ◦C), it liquefies and has a volume of approximately
1/600 of gas at room temperature [Ref. 18]. In the production of liquefied natural
gas (LNG), the gas undergoes phase transitions. As a consequence, the heat trans-
fer coefficient will change throughout the heat exchanger and a simple logarithmic
mean temperature difference approach will not be applicable.

Another important issue concerns heat integration. Pinch technology techniques
are common, and are easy to implement if the stream temperatures and flow rates
are known. Nevertheless, at phase transition points the nonlinear variations in heat
capacity flow rates require an optimization method that can handle nonlinearities.

Kamath et al. [Ref. 14] report that a general high level targeting model that focuses
on process optimization while handling phase transitions in the heat exchanger is
missing. They have proposed an equation-oriented process model for MHEX’s,
with a special emphasis on handling phase transitions. The model is based on the
work done by Duran and Grossmann [Ref. 11] on optimal heat integration of heat
recovery networks.

An example process formulated in the article by Kamath et al. has been investi-
gated. A GAMS model file has been acquired and used as a basis to prepare a process
scenario with disturbances and measurement errors. The scenario has been used
to perform an analysis of potential self-optimizing variables. The programming
languages GAMS, Python, Matlab and make has been used to enable the analysis.

2

1 INTRODUCTION

The optimization problem is highly non-convex. The optimal solution found by
Kamath et al. was reproduced, but a positive semi-definite Hessian of the cost
function was not obtained. Better solutions was found for perturbations up to
2 · 10−3 in the pump work applied to the nitrogen cooling flow prior to entering
the MHEX. Further investigations should be made.

3

2 PROCESS DESCRIPTION

2 Process Description

2.1 Heat Exchanger Model

In this project the “motivating example MHEX”, given in the paper by Kamath
et al. [Ref. 14], is investigated. The MHEX model is written in GAMS (General
Algebraic Modeling System). A schematic illustration of the example MHEX is
given in Figure 2.1.

H1

H2

H3

C1

C2

FN2

Wpump

Wexpander

Nsub
2N2p

2Nsup
2 TN2

LmhexTb.p.Td.p.

S1S2S3S4

S5

S6

C3C4C5

C6

Figure 2.1: A schematic representation of the example MHEX with three hot and two
cold flows, and a double loop nitrogen cooling flow.

Here, H1, H2, H3, C1 and C2 are the hot and cold process streams, C3, C4, C5 and
C6 are decompositions of the nitrogen cooling stream, Si, i ∈ [1, . . . , 6] are states
in the cooling cycle, as described in Table 2.1. Nsub

2 , N2p
2 and Nsup

2 are subcooled,
two-phase and superheated phases of the nitrogen flow, respectively. Td.p. and
Tb.p. are dew point and bubble point temperatures of the nitrogen stream. The
coordinate system (TN2

, Lmhex), displayed in blue, is introduced to illustrate the
red temperature curve of the nitrogen flow in the first pass through the MHEX.
The heat capacity of the flows are assumed piecewise constant.

4

2.2 Process Scenario 2 PROCESS DESCRIPTION

Table 2.1: Defined states of the nitrogen cooling stream.

State Description

S1 After the pump, entering the MHEX.
S2 Within the MHEX, at bubble point.
S3 Within the MHEX, at dew point.
S4 At the exit of the MHEX, superheated, entering the expander.
S5 At the exit of the expander, entering the MHEX again.
S6 Final exit from the MHEX.

Flowrates, pressures and temperatures of the process streams H1, . . . , C2 are gov-
erned by an external process, and are assumed fixed for the problem. The data for
the example process is given in Table 2.2. By pinch analysis it has been revealed
that additional cooling is necessary. This is provided by the liquid nitrogen cooling
flow FN2

, which is assumed available at 6 bar and 95 K. The structural configu-
ration with two passes through the heat exchanger has been determined from the
concept of pressure-based energy combined with pinch analysis [Ref. 6]. Work is
recovered in the expander coincidental with cooling the nitrogen gas flow.

Table 2.2: Temperature and heat transport data for the hot and cold process streams.

Stream Tin [K] Tout [K] FCp [kW K−1]

H1 298 250 3.0
H2 265 180 4.0
H3 195 150 2.0
C1 220 245 3.0
C2 255 280 3.5

2.2 Process Scenario

An approximately realistic process scenario has to be simulated to produce the
data necessary for control evaluation purposes. In this chapter the inputs, outputs
and disturbances for the process are defined. The process scenario is based on
physical relevance and the variables that are possible to display from the GAMS
model (See Chapter 4.2). For instance, the temperatures TS2 and TS3 are available
from the mathematical model, but it’s not likely that temperature measurements
from inside the heat exchanger are available.

5

2.2 Process Scenario 2 PROCESS DESCRIPTION

2.2.1 Inputs

Possible inputs for the process are theoretically the available degrees of freedom
for the optimization problem. Kamath et al. [Ref. 14] report that there are five
degrees of freedom, namely the:

1. nitrogen feed flow rate (FN2
)

2. discharge pressure of the pump (pS1 , PresS1 in the GAMS model file)

3. temperature at the exit of the first pass through the MHEX (TS4 ,TempS4 in
the GAMS model file)

4. pressure at the exit of the expander (pS5 , PresS5 in the GAMS model file)

5. temperature at the exit of the second pass through the MHEX (TS6 , TempS6
in the GAMS model file)

In the model file mhexcs1v9.gms the expander outlet pressure, PresS5, has been
given a target value, thus removing it as a degree of freedom. The optimal bubble
point and dew point are found by solving a thermodynamic minimization prob-
lem simultaneously as the heat integration and optimization is carried out1. The
fixation of the expander pressure results in the minimization problem confiscating
two more degrees of freedom. This is because the pressure drop over the expander
defines the temperature TS5 . As a result, the number of available degrees of free-
dom is reduced to two. From a process control point of view, interesting variables
are degrees of freedom that can readily be controlled, such as FN2

and pS1 .

As the pressure pS1 is a one-to-one function of the amount of work performed by
the pump, using Wpump as a degree of freedom is equivalent to using pS1 . The final
input vector, u, is thus given in Equation (2.1).

u =
[
FN2

Wpump

]T
(2.1)

2.2.2 Outputs

The output variables of the process are those that can be measured. It is assumed
that temperature sensors are available at S4, S5 and S6, as well as a flow meter
at the feed and a pressure sensor at S1. The pressure pS5 is disregarded because
of its fixed target value. Likewise with temperature TS1 , as it is given from feed

1This is equivalent to calculating vapour-liquid equilibrium (VLE) relations, see Chapter 3.3.

6

2.2 Process Scenario 2 PROCESS DESCRIPTION

specifications and the pressure pS1 . The pressure at the states S4 and S6 are not
available from the model. The output vector, y, is given in Equation (2.2).

y =
[
FN2

Wpump pS1 TS4 TS5 TS6

]T
(2.2)

2.2.3 Disturbances

The process streams are prone to disturbances. It is assumed that the temperatures
T in
i , i ∈ {H1, . . . , C2}, the heat capacity of the streams, and thus the heat capacity

flow rates FCp,i, i ∈ {H1, . . . , C2}, may experience unmeasured variations. The
magnitude of the disturbances is assumed to be within 10 K for temperatures and
5.0 % for heat capacity flow rates. The disturbance vector, d, and the magnitude
scaling matrix, Wd, are given in Equation (2.3) and (2.4), respectively.

d =
[
∆TH1 ∆TH2 ∆TH3 ∆TC1 ∆TH1 . . .

. . . ∆FCp,H1 ∆FCp,H2 ∆FCp,H3 ∆FCp,C1 ∆FCp,C2

]T (2.3)

Wd = diag
([

10 . . . 10 5.0FCp,H1 . . . 5.0FCp,C2

])
(2.4)

2.2.4 Measurement Error

Measurement errors have to be included. In Chapter 2.2.2, sensor locations was
declared. The measurement error vector, ny, is given in Equation (2.5). It has been
assumed that the temperature and pressure sensors experience errors of 1 K and
0.1 bar, respectively, while the flow meter measuring FN2

may experience errors
of 10−3 kmol s−1. The pump work, Wpump, is assumed to have no error, as power
indicators are very precise. The measurement magnitude diagonal matrix, Wy

n, is
given in Equation (2.6).

ny =
[
FN2

Wpump pS1 TS4 TS5 TS6

]T
(2.5)

Wy
n = diag

([
10−3 0 0.1 1 1 1

])
(2.6)

7

3 THEORY

3 Theory

3.1 Constrained Optimization

Important goals in chemical process control is to meet standards of robustness
and optimize performance of operation without violating neither design nor pro-
cess specified constraints. Chemical process optimization usually aims at mini-
mizing costs and maximizing throughput without violating the mentioned con-
straints [Ref. 1].

When optimizing a process or system, it is necessary to identify the system’s ob-
jective, variables and constraints to be able to formulate an optimization problem.
This process is known as modeling. A good model describes the behaviour of a
system in an adequate manner, without being neither too simple nor too complex.

When a model has been established, an optimization algorithm can be used to
determine an optimal solution. The optimal values for the variables has been
discovered when the objective function reaches its minimum within the specified
constraints.

Mathematically, an optimization problem can be formulated as given in Equation
(3.1).

min
x∈Rn

f(x) subject to
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(3.1)

The vector x represent variables, f is the objective function, c represents constraint
functions on a subset of Rn, and E and I are sets of indices for equality and
inequality constraints, respectively. Many optimization algorithms locate only
some local optimum. For many optimization problems the global optimum is
difficult to both recognize and locate. This is not the case for convex programming
problems. However, the main optimization problems solved in this project are not
convex and no more focus will be given to the properties of convex programming
problems.

To ensure that a given solution, x?, is a local minimizer, the Karush-Kuhn-Tucker
(KKT) first order necessary conditions must be fulfilled. The KKT conditions are
given in Equation (3.2):

8

3.1 Constrained Optimization 3 THEORY

∇xL(x?, λ?) = 0, (3.2a)

ci(x
?) = 0 ∀ i ∈ E , (3.2b)

ci(x
?) ≥ 0 ∀ i ∈ I, (3.2c)

λ?i ≥ 0 ∀ i ∈ I, (3.2d)

λ?i ci(x
?) = 0 ∀ i ∈ E ∪ I, (3.2e)

where the Lagrangian function for the general problem in Equation (3.1) is defined
in Equation (3.3).

L(x, λ) , f(x)−
∑
i∈E∪I

λici(x) (3.3)

The active set of any feasible x, denoted A(x), consists of equality constraint
indices and inequality constraints indices for which ci(x) = 0, that is
A(x) , E ∪{i ∈ I | ci(x) = 0}. Given a local solution x? the Mangarian-Fromovitz
constraint qualification (MFCQ) is defined by linear independence of the equality
constraint gradients and the existence of a search direction2, d, such that
∇ci(x?)Td ≤ 0, ∀ i ∈ A(x). The linear inequality constraint qualification (LICQ)
is said to hold if the set of active constraint gradients {∇ci(x?), i ∈ A(x?)} is
linearly independent. MFCQ is always satisfied if LICQ holds. Fulfilled MFCQ
also leads to bounded, but not necessarily unique, Lagrangian multipliers. LICQ
ensures that the KKT conditions are satisfied for a solution x? [Ref. 9, 20].

Both MFCQ and LICQ link the KKT conditions to the limiting direction d of a
feasible sequence leading to x?. In the article by Kamath et al. [Ref. 14] the temper-
ature disjunctions caused by the handling of phase transitions are reformulated and
solved as an inner minimization problem with complementarity constraints. Thus
it becomes appropriate to introduce a discrete/continuous formulation known as a
mixed integer nonlinear optimization problem with complementarity constraints,
or more commonly a mathematical program with complementarity constraints
(MPCC) [Ref. 9]. The MPCC problem formulation is given in Equation (3.4).

2Line search methods will not be covered in this paper, but are extensively documented,
e.g. [Ref. 9, 20].

9

3.2 Self-optimizing Control 3 THEORY

min f(x,y, z) (3.4a)

s.t. h(x,y, z) = 0, (3.4b)

g(x,y, z) ≤ 0, (3.4c)

0 ≤ x ⊥ y ≥ 0, (3.4d)

where ⊥ is the complementarity operator enforcing at least one of the bounds
to be active, x and y are complementarity variables, while z holds the remaining
variables. As done in the GAMS model given by Kamath et al., the complementarity
constraints can be written in several equivalent ways, e.g. xTy = 0, x ≥ 0, y ≥ 0,
which is useful when applying nonlinear programming (NLP) solution strategies
[Ref. 9].

3.2 Self-optimizing Control

The principle of self-optimizing control relies upon the existence of self-optimizing
variables. Such variables possesses the property that, when kept constant, they
achieve acceptable loss without having to be re-optimized every time the process
experience a disturbance. The idea was first introduced by Morari in 1980 [Ref. 19],
and has been developed by, amongst others, Skogestad and Postlethwaite [Ref. 25].

For the self-optimization theory presented by Skogestad and Postlethwaite some
assumptions has to be presented.

1. The loss is defined as L , J(u,d)− Jopt(d).

2. The cost function J is smooth.

3. The optimization problem is unconstrained, “active constraint control” is
assumed.

4. Only steady-state control and optimization is considered.

5. The number of degrees of freedom equals the number of variables that is
controlled.

A block diagram illustrating the concept is given in Figure 3.1. Here, c + n is
the linear combination selection of self-optimizing, controlled variables including
affecting noise, cs denotes the set points for c given from the optimization, u
is the process inputs, d is the disturbances, ny is the measurement error and
noise, y is the process output while ym represents the measured variables, and H

10

3.2 Self-optimizing Control 3 THEORY

is the measurement combination matrix. The consequence of choosing different
self-optimizing variables is illustrated in Figure 3.2.

Objective

Optimizer

Controller

Process

H

ny

d

u

cs

y

+

−
c + n

ym+

+

Figure 3.1: Block diagram illustrating the principle of self-optimization.

Plantwide Control In 2004, Skogestad introduced a procedure for plantwide
control [Ref. 24] which summarizes to seven points:

1. Definition of the operational objective.
2. Identification of degrees of freedom and optimization of operation for ex-

pected disturbances.
3. Implementation of optimal operation.
4. Location of the throughput manipulator.
5. Implementation of regulatory control.
6. Implementation of supervisory control.
7. Implementation to real-time optimization.

11

3.2 Self-optimizing Control 3 THEORY

Loss

c2 = constant

c1 = constant

Reoptimized Jopt(d)

d?

Disturbance d

Cost J

Figure 3.2: A schematic illustration of how choosing different self-optimizing variables
affect the loss.

The focus of this paper is on the first three points in the procedure.

3.2.1 Operational Objective

The operational objective of the process is given by the feed cost of liquid nitrogen
and the cost of electricity. The cost function, J , is given in Equation (3.5):

J =
FN2

MN2
CN2
· 103

ρN2
· 102 +

Ce(Wpump −Wexpander)

3600 · 102 (3.5)

where FN2
is the feed flow of liquid nitrogen in kmol s−1, MN2

is the molecular
weight of nitrogen in kg kmol−1, CN2

is the specific cost of liquid nitrogen in ¢/L,
ρN2

is the density of nitrogen in kg m−3, Ce is the cost of electricity in ¢/kWh,
Wpump is the pump work in kW and Wexpander is the expander work in kW. The
final dimension of J is $/s.

12

3.2 Self-optimizing Control 3 THEORY

3.2.2 Degree of Freedom Analysis

The expression for steady state degrees of freedom available for optimization, Nopt,
is given in Equation (3.6):

Nopt = Nm −N0 = Nm − (Nm0 +Ny0) (3.6)

where Nm0 is the number of manipulated input variables with no effect on J ,
Ny0 is the number of controlled output variables with no effect on J and Nm is
the number of control degrees of freedom. J often depends on steady-state only.
Active constraint degrees of freedom is disregarded as such variables are better off
fixed at its constraint limits [Ref. 23].

The argumentation behind the number of degrees of freedom is found in Chapter
2.2.1. For this process Nopt = 2, being the feed flow rate of liquid nitrogen and the
pressure of the feed flow before entering the heat exchanger. Thus the feed flow
rate, FN2

, and the pump work, Wpump, are the optimization degrees of freedom.

3.2.3 Implementation of Optimal Operation

The ideal solution for self-optimizing variables is the gradient of the Lagrangian
of the cost function set to zero. Providing measurements that makes it possible
to readily calculate the gradient is often very difficult. Figure 3.2 illustrates how
the choice of controlled variables, c, affects the loss. There has been developed
approaches for selecting c, which render to determining the measurement combi-
nation matrix H.

The Null Space Method In 2007, Alstad and Skogestad [Ref. 3] presented an
easy way to compute H. The null space method yields locally optimal controlled
variables c. The method requires at least as many measurements as unconstrained
degrees of freedom, disturbances included, and neglecting implementation error.
H is then in the left null space of the sensitivity matrix F, where F = ∂yopt/∂dT ,
such that H ∈ Null(FT).

The Exact Local Method Halvorsen et al. [Ref. 13] found the following re-
lations by elimination of the model states using the model equations and active
constraints: c = fc(u,d), y = fy(u,d) and c = h(y). These relations were
linearized around a nominal point, denoted ‘?’, given in Equation (3.7):

13

3.2 Self-optimizing Control 3 THEORY

∆c = G∆u + Gd∆d (3.7a)

∆y = Gy∆u + Gy
d∆d (3.7b)

∆c = H∆y (3.7c)

where ∆u , u−u?, ∆d , d−d?, ∆c , c−c?, G , (∂fc/∂uT)?, Gd , (∂fc/∂dT)?,
Gy , (∂fy/∂uT)?, Gy

d , (∂fy/∂dT)?, and H , (∂h/∂yT). By second order Taylor
series expansion of the cost function around the nominal point (u?,d?), Halvorsen
et al. [Ref. 13] shows that the loss L is given from Equation (3.8).

L =
1

2
(u− uopt) Juu (u− uopt) ,

1

2
zTz (3.8)

Here z , J
1/2
uu (u− uopt) are the loss variables and Juu = ∂2J/∂uTu is the Hessian

of the cost function with respect to inputs. The average loss function is from
Kariwala et al. [Ref. 15] given by Equation (3.9):

Lavg =
1

6(ny + nd)

∥∥J1/2
uu (HGy)−1 HY

∥∥2
F

(3.9)

where ny and nd are the number of inputs and disturbances, Y =
[
FWd Wy

n

]
and F = GyJ−1uuJud − Gy

d. The subscript F denotes the Frobenius norm of the
expression. Wd represent the expected magnitudes of the individual disturbances
and Wy

n represent the magnitude of the measurement noise associated with each
of the candidate measurements. It is assumed that the implementation error for c
is caused only by the measurement error such that n = Hny. The loss may also
be computed as given by Umar [Ref. 26] in Equation (3.10):

Lavg =
1

6(ny + nd)
trace(P) (3.10)

where P =
(
J−0.5uu (Gy)T (YYT)−1GyJ−0.5uu

)−1
.

Introducing ∆d and ny in Equations (3.11) and (3.12):

∆d = Wdd
′ (3.11)

ny = Wy
nn

y′ (3.12)

14

3.2 Self-optimizing Control 3 THEORY

where d′ and ny′ satisfies ‖
[
d′ ny′]T‖∞ ≤ 1. The arguments for using the chosen

norm are given in Kariwala [Ref. 15].

Finding the optimal H implies to minimize the loss Lavg, that is minH Lavg [Ref. 13].
Alstad et al. [Ref. 4] showed in 2009 that this in fact is a convex optimization
problem, which can be formulated as in Equation (3.13).

min
H

‖HY‖F (3.13a)

s.t. HGy = J1/2
uu (3.13b)

Equation (3.13) was further simplified by Yelchuru et al. [Ref. 28] yielding the
mixed integer quadratic program (MIQP) in Equation (3.14).

min
H

‖HYF‖ (3.14a)

s.t. HGy = Q (3.14b)

Kariwala et al. [Ref. 15] and Yelchuru et al. [Ref. 28] shows that the optimal H-

matrix is non-unique: H′opt = QHopt. By choosing Q = ((Gy)T (YYT)−1Gy)J
1/2
uu ,

Hopt can be expressed as given in Equation (3.15).

Hopt = (Gy)T
(
YYT

)−1
(3.15)

3.2.4 Throughput Manipulator

The throughput manipulator (TPM) is defined as a degree of freedom that affects
the network flow. It is not directly or indirectly determined by the control of the
individual units, including their inventory control [Ref. 5]. The TMP is tradition-
ally located at the feed of the process, but it could be set at the process bottleneck
for maximum production with small back-off. It is a link between the economic
objective and the stabilization of the plant.

For this process the throughput manipulator is defined from the cold utility nec-
essary to meet temperature targets.

15

3.3 Heat Exhanger Model 3 THEORY

3.2.5 Regulatory Layer

The regulatory layer is the control layer used to stabilize the plant, in terms of
stabilizing mathematically unstable modes as well as slow modes who tend to drift
due to disturbances. The layer should usually be of low complexity, i. e. using
a simple, decentralized control structure of single-input single-output (SISO) PI
control loops. It takes care of local disturbance rejection, active constraint control
and tracks setpoint changes from the layer above. This allows for slow control in
the supervisory layer [Ref. 24].

No regulatory control layer was applied in this project.

3.2.6 Supervisory Layer

The supervisory layer uses the setpoints for the regulatory layer as degrees of
freedom to keep the primary controlled outputs, c, at the optimal setpoints, cs.
This can be done by decentralized or multivariable control [Ref. 24].

No supervisory layer was implemented in this project.

3.2.7 Real-time Optimization

The purpose of real-time optimization (RTO) is to have updated variables for all
disturbance occurrences. If the active constraints doesn’t change and good self-
optimizing variables are obtained, the need for RTO may be reduced or eliminated
[Ref. 24].

No real time optimization was used in this project.

3.3 Heat Exhanger Model

Kamath et al. [Ref. 14] states that an MHEX can be modeled the same way as
heat exchanger networks. An MHEX only exchanges heat between the streams
involved, and the model for an MHEX is equivalent to the following problem
statement: “Given an MHEX that does not consume heating or cooling utili-
ties, determine feasible temperatures and heat capacity flowrates for the involved
streams” [Ref. 14]. The model of Duran and Grossmann [Ref. 11] was modified
and applied for MHEXs, by setting the hot and cold utility loads in their heat
integration constraints to zero. Thus the MHEX is treated as an adiabatic device,
ensuring that the heat lost from the hot streams matches the heat gained by the

16

3.3 Heat Exhanger Model 3 THEORY

cold streams. The pinch concept enforces maximum heat recovery without vio-
lating the minimum driving force criterion. The model without handling of phase
transitions is given in Equation (3.16).

min φ(x,w) (3.16a)

s.t. h(x,w) = 0, (3.16b)

g(x,w) ≤ 0, (3.16c)

Ω(x) =
∑
i∈H

Fi

(
T in
i − T out

i

)
−
∑
j∈C

Fj

(
T in
j − T out

j

)
= 0, (3.16d)

AP p
C − AP

p
H ≤ ε, p ∈ P (3.16e)

AP p
H =

∑
i∈H

Fi

[
max{0, T in

i −T p} −max{0, T out
i − T p}

]
, p ∈ P (3.16f)

AP p
C =

∑
j∈C

Fj

[
max{0, (T out

j − (T p −∆Tmin)} −max{0, T in
j − (T p −∆Tmin}

]
, p ∈ P

(3.16g)

H and C are sets of indices for hot and cold streams, respectively. The vector x is
given by x = {Fi, T

in
i , T

out
i : ∀ i ∈ H; Fj, T

in
j , T

out
j : ∀ j ∈ C; }. The set P = H ∪ C

is the index of the pinch point candidates whose temperatures are defined by
T p = T in

i : for p = i ∈ H;T p = (T in
j + ∆Tmin) : for p = j ∈ C. The vector w

represents all the other process parameters and variables that are not associated
with heat integration, while φ(x,w), h(x,w) and g(x,w) represent the objective
function, mass and energy balances, design equations and other specifications of
the process. The smoothing approximation of Balakrishna and Biegler [Ref. 7],
given in Equation (3.17), is used to handle the maximum function.

max{0, f(x)} =
1

2

[
(f(x)2 + β2)1/2 + f(x)

]
(3.17)

ε (used in Equation (3.16e)) and β are small values used for conditioning of the
smooth approximation function, and belong to a well known class of nonlinear
complementarity problem (NCP) functions. The values β = 10−4 and ε = 10−7

are reported to work well with the NLP solver CONOPT [Ref. 10].

Phase Transitions When applying pinch analysis it is common to assume the
heat capacity to be constant. Alternatively, an average value for the temperature
interval may be used [Ref. 22]. This assumption does not hold for nonlinear heat

17

3.3 Heat Exhanger Model 3 THEORY

capacity with respect to temperature, nor when a stream changes phase while
exchanging heat. To apply a piecewise linear approximation of the heat capacity
on temperature intervals, the dew and bubble points need to be calculated. When
performing simultaneous heat integration and optimization, the dew and bubble
points will change during the optimization as pressure and compositions are treated
as variables. Nor is it known a priori whether phase transitions occurs as the inlet
and outlet temperatures of the flows are variables of the optimization problem.

The streams are classified as either capable of undergoing phase transition or not.
The former of the two is denoted as parent streams. They are subdivided into
substreams corresponding to superheated (sup), two-phase (2p) and subcooled
(sub) regions. The parent streams are disregarded and each of the substreams are
treated as separate variables. The substreams have corresponding heat load, inlet
and outlet temperatures and inherit the flow rate and overall composition of the
parent streams. If the pressure drop across the MHEX can be neglected for the
parent streams, the substreams also inherit the pressure from their parent streams.
The substreams corresponding to all three phases are always present in the model.
If a particular phase doesn’t exist, the heat load of the substream is set to zero by
the disjunctive model for phase detection. The model for phase detection consist
of three components: disjunctions for phase detection at the inlet and outlet of
the MHEX, flash calculations for the two-phase substreams that integrate with the
disjunctions, and enthalpy calculations and heat load evaluation of the substreams.
The model is given in Equations (3.18) and (3.19).

Y V
in

Tin ≥ Td.p.

T sup
in = Tin

T 2p
in = Td.p.

T sub
in = Tb.p.

 ∨

Y V L
in

Tb.p. ≤Tin ≤ Td.p.

T sup
in = Td.p.

T 2p
in = Tin

T sub
in = Tb.p.

 ∨

Y L
in

Tin ≤ Tb.p.

T sup
in = Td.p.

T 2p
in = Tb.p.

T sub
in = Tin

 (3.18)

Y V
out

Tout ≥ Td.p.

T sup
out = Tout

T 2p
out = Td.p.

T sub
out = Tb.p.

 ∨

Y V L
out

Tb.p. ≤Tout ≤ Td.p.

T sup
out = Td.p.

T 2p
out = Tout

T sub
out = Tb.p.

 ∨

Y L
out

Tout ≤ Tb.p.

T sup
out = Td.p.

T 2p
out = Tb.p.

T sub
out = Tout

 (3.19)

The Y ’s are boolean variables and V , V L and L are designated to “vapour”,
“vapour/liquid” and “liquid”. Tin and Tout are inlet and outlet temperatures, Td.p.
and Tb.p. are the dew and bubble point temperatures, all of the parent stream. The

18

3.3 Heat Exhanger Model 3 THEORY

rest of the variables correspond to the temperatures of the substreams as seen in
Figure 3.3. The disjunctions are exclusive, thus only one boolean variable can be
true. The integration of flash calculations with the disjunctions is relying on the
following formulation: “To allow vapour liquid equilibrium (VLE) equations for
flash calculation to converge to a feasible solution in case of single phase (vapour
or liquid), is to operate it at the boundary of the two-phase region.” [Ref. 14] Thus:

a) If only vapour outlet exists, the operating temperature for flash calculations
should be equal to the dew point temperature of the inlet stream.

b) If only liquid outlet exists, the operating temperature for flash calculations
should be equal to the bubble point temperature of the inlet stream.

This way the flash calculations are forced to operate in single saturated phase at
the boundaries of the two-phase region of the parent stream.

The model is illustrated in Figure 3.3, where H1, H2, C1 and C2 are the physical
streams. The streams H2 and C1 undergo phase transitions while H1 and C2 do
not.

Handling streams with small temperature changes For evaporating liq-
uids or condensation of vapour, the streams can have a high heat load while the
temperature difference approaches zero. To be able to use well-defined, bounded
values for heat capacity flowrates, a number α is assigned as a fictitious tempera-
ture drop. The assignments in Equations (3.18) and (3.19) are relaxed. By defining
T p.c.
in and T p.c.

out from process conditions (p.c.) and the heat integration variables
THI
in and THI

out, the disjunctions given in Equation (3.20) are introduced.

 ∆T ≥ α

THI
in = T p.c.

in

THI
out = T p.c.

out

 ∨

∆T ≤ α

THI
in =

T p.c.
in − T

p.c.
out

2
± α

2

THI
out =

T p.c.
in − T

p.c.
out

2
± α

2

 (3.20)

The value α/2 is added in THI
in and subtracted in THI

out for hot streams, and op-
posite for cold streams. To avoid the boolean variables introduced by the use of
the disjunction in Equation (3.20), the maximum operator is applied, as given in
Equation (3.21), in combination with the smoothing approximation of Balakrishna
and Biegler [Ref. 7].

19

3.3 Heat Exhanger Model 3 THEORY

Csup
1

Csub
1

C2p
1

Hsup
2

H2p
2

Hsub
2

H1

C2

T sup
C1, in

T 2p
C1, in

T sub
C1, in

T sup
H2, in

T 2p
H2, in

T sub
H2, in

T sup
H2, out

T 2p
H2, out

T sub
H2, out

T sup
C1, out

T 2p
C1, out

T sub
C1, out

H2

C1

Figure 3.3: Schematic representation of the integrated model for simultaneous opti-
mization and heat integration with phase transitions. H1 and C2 are
streams wihtout phase transitions while H2 and C1 are streams with phase
transitions.

20

3.3 Heat Exhanger Model 3 THEORY

THI
in = max

(
T p.c.
in ,

T p.c.
in + T p.c.

out + α

2

)
THI
out = max

(
T p.c.
in ,

T p.c.
in + T p.c.

out − α
2

) (3.21)

For the process in this project, the temperature drop is small only for the isother-
mal stream C4. Thus only C4 is handled using the disjunctions in Equation (3.21).

Reformulation of Disjunctions The disjunctions for phase detection are piece-
wise smooth functions, and can be reformulated as a mixed-integer nonlinear pro-
gramming (MINLP). By picking the correct function in piecewise smooth domains
the disjunctions can be formulated as an NLP problem, avoiding the binary vari-
ables. The associated equations are given in Equation (3.22) [Ref. 8].

min
y

N∑
i=1

(x− ai)(x− ai−1)yi (3.22a)

s.t.
N∑
i=1

yi = 1 (3.22b)

yi ≥ 0 (3.22c)

z =
N∑
i=1

fi(x)yi (3.22d)

N is the number of piecewise segments, fi(x) is the function over the interval
x ∈ [ai−1, ai], and z represents the value of the piecewise function. This is a linear
programming (LP) problem, and can be embedded as an inner problem within an
outer optimization problem from the KKT-conditions.

N∑
i=1

yi = 1 (3.23a)

(x− ai)(x− ai−1)− µi + λ = 0 (3.23b)

0 ≤ yi ⊥ µi ≥ 0 (3.23c)

where λ and µi are multipliers corresponding to Equations (3.22c) and (3.22d).

21

3.4 Finite Difference Approximations 3 THEORY

The disjunctions given in Equation (3.18) and (3.19) can then be reformulated as
given in Equation (3.24). The subscripts “in” and “out” are omitted for conve-
nience.

min −
[
Y V (T − Td.p.) + Y V L(Td.p. − T)(T − Tb.p.) + Y L(Tb.p. − T)

]
(3.24a)

s.t. Y V + Y LV + Y L = 1 (3.24b)

Y V ≥ 0, Y LV ≥ 0, Y L ≥ 0 (3.24c)

With the optimality conditions in Equation (3.25)

Y V + Y LV + Y L = 1 (3.25a)

−(T − Td.p.)− µV + λ = 0 (3.25b)

−(Td.p. − T)(T − Tb.p.)− µV L + λ = 0 (3.25c)

−(Tb.p. − T)− µL + λ = 0 (3.25d)

0 ≤ Y V ⊥ µV ≥ (3.25e)

0 ≤ Y V L ⊥ µV L ≥ (3.25f)

0 ≤ Y L ⊥ µL ≥ (3.25g)

3.4 Finite Difference Approximations

To determine the Hessian matrix, Juu, a central finite difference approximation
method was used. The difference equations are given in Equation (3.26).

∂2f

∂x2
i

=
−f(x + 2hiei) + 16f(x + hiei)− 30f(x) + 16f(x− hiei)− f(x− 2hiei)

12h2i
(3.26a)

∂2f

∂xi∂xj

=
f(x + hiei + hjej)− f(x + hiei − hjej)− f(x− hiei + hjej) + f(x− hiei − hjej)

4hihj
(3.26b)

Here, f is a function, x the function variables, h represent step lengths and e are
unit vectors [Ref. 2].

22

4 PROGRAMMING

4 Programming

4.1 GAMS

The General Algebraic Modeling System (GAMS) is a high-level modeling system for
mathematical programming problems. It is designed to provide an algebra based
language for the compact representation of large and complex models. It allows
unambiguous statements of algebraic relationships, and permits model descriptions
that are independent of solution algorithm. GAMS provides in total 41 solvers
for linear, nonlinear, mixed integer, mixed integer nonlinear problems and mixed
complementarity optimization problems. The program is called from the command
line, accepting .gms-files as input, and returns .lst-files as output [Ref. 17, 21].

The GAMS model file used for this project is the “motivating example” given in the
paper by Kamath et al. [Ref. 14]. The file mhexcs1v9.gms is provided in Appendix
A.

A GAMS program can be extensive and complex. There are, however, good docu-
mentation to how a GAMS model can be prepared and solved. Some general remarks
should be made [Ref. 21]:

a) A GAMS model is a collection of statements in the GAMS language. The only rule
governing the ordering of statements is that the model cannot be referenced
before it is declared to exist.

b) GAMS statements may be laid out typographically in almost any style, including
multiple lines per statement, embedded blank lines, and multiple statements per
line. In mhexcs1v9.gms there are for instance multiple EQUATION environment
declarations.

c) The GAMS compiler does not distinguish between uppercase and lowercase let-
ters.

d) Comments may be declared by an asterisk to the beginning of a line, or by the
onText/offText commands.

An introduction to some of the scopes used in mhexcs1v9.gms follows.

Input, output and command shell print GAMS accepts .gms input files. The
resulting output is written to a .lst-file with filename corresponding to that of the
input file. The command shell print is the progress documentation given from the
solver. In this case, the solver used was CONOPT, so the printout in the command
shell is given by CONOPT, not GAMS itself.

23

4.1 GAMS 4 PROGRAMMING

Sets Sets in GAMS correspond exactly to the indices in the algebraic represen-
tations of models. Declaration of sets follow the Set command. The sets in
mhexcs1v9.gms are declared as indicated in Listing 1.

1 SETS
2 Str "Streams" /H1,H2,H3,C1,C2,C3,C4,C5,C6/
3 HtStr(Str) "Hot streams" /H1,H2,H3/
4 CdStr(Str) "Cold streams" /C1,C2,C3,C4,C5,C6/
5

6 CC1 "Constants for CP of N2" /C1,C2,C3,C4,C5,C6,C7/
7 ;
8

9 ALIAS
10 (Str,Str2,Str3)
11 ;

Listing 1: Some of the sets defined in mhexcs1v9.gms.

It should be noted that the sets HtStr and CdStr are subsets of Str. Streams, Hot
streams and Cold streams describes the sets, and are optional. The elements of
the set are defined using slashes ‘/.../’. The ALIAS statement defines Str2 and
Str3 as aliases of Str. The semicolons ‘;’ close the environments.

Variables Decision variables are declared with a VARIABLES statement, and is
given a name, a domain (if appropriate) and an optional description. There are
different variable types, limited to default free (−∞ to +∞), positive (0 to +∞),
negative (−∞ to 0), binary (0 or 1) and integer variables. Examples of the op-
timization variables in mhexcs1v9.gms are given in Listing 2, with the variable
MxInHt having a domain of two Str-sets.

1 VARIABLES
2 MxInHt(Str,Str2)
3 FN2 "in kmol/s"
4 ExpdrWork
5 ;
6 VARIABLES
7 Z
8 ;
9 BINARY VARIABLES
10 Yloc(Str,Str2) "1 indicates it is above the pinch and contributes,
11 while 0 means no contribution"
12 ;

Listing 2: Examples of variables defined in mhexcs1v9.gms.

24

4.1 GAMS 4 PROGRAMMING

Assigning Data Data may be introduced to the model as parameters (lists),
tables or by direct assignment (scalars). When declaring parameters, names and
domain has to be set. Documentation is optional. Listing 3 shows how the
PARAMETERS-environment is used to define heat capacities in the CC1 domain.

1 PARAMETERS
2 Cpconst(CC1) "for Cp = kJ/kmol K, T = K"
3 /C1 = 29.105, C2 = 8.6149, C3 = 1701.6, C4 = 0.10347, C5 = 909.79/
4 ;

Listing 3: Example of parameter assignment used in mhexcs1v9.gms.

Using tables for the assignment of data is very efficient for two-dimensional struc-
tures. Blank entries in a table are interpreted as zeroes. Data assignment by table
has not been used in mhexcs1v9.gms. An example from the transport problem
given in Rosenthal’s GAMS User Guide [Ref. 21] is presented in Listing 4.

1 Table d(i,j) "distance in thousands of miles"
2 new−york chicago topeka
3 seattle 2.5 1.7 1.8
4 san−diego 2.5 1.8 1.4 ;

Listing 4: Illustration of the use of tables in data assignment in a GAMS model

Scalars are used for direct value assignment, that is, a single data entry. Examples
of scalars used in mhexcs1v9.gms are given in Listing 5.

1 SCALARS
2 HRAT "Heat recovery approach temperature" /4/
3 epsi "epsilon for smooth approximation" /0.000005/
4 Could also be written 5e-6
5 ;

Listing 5: Examples of single data entries, scalars, used in mhexcs1v9.gms.

Equations Equations in GAMS must first be declared and then defined. Declara-
tion of equations is exemplified in Listing 6. Definitions are exemplified in Listing
7. The syntax for defining the content of equations is to write the equation name,
including its domain if necessary, followed by the ‘..’-operator, and then define
the equation content. Each equation declaration must be closed with a semicolon,
as with the equation environment.

25

4.1 GAMS 4 PROGRAMMING

1 EQUATIONS
2 EqFF2(Str)
3 EqOmega
4 EqMxInHt(Str,Str2)
5 ;

Listing 6: Example of declaration of equations in mhexcs1v9.gms.

1 EqFF1(Str)$(HtStr(Str)*Nonisoth(Str))..
2 FCp(Str)*(Tin(Str) − Tout(Str)) =E= HetLd(Str) ;
3 EqOmega..
4 Omega =E= SUM(Str$(HtStr(Str)), HetLd(Str)) − SUM(Str$(CdStr(Str)),

HetLd(Str)) ;
5 EqMxInHt(Str,Str2)$((HtStr(Str)*Nonisoth(Str)))..
6 MxInHt(Str,Str2) =E= 0.5*sqrt(Power(Tin(Str)− TPch(Str2),2) + Power

(epsi,2)) + 0.5*(Tin(Str)−TPch(Str2)) ;

Listing 7: Example of equation content definitions in mhexcs1v9.gms.

When defining equations, the operators ‘=e=’, ‘=g=’ and ‘=l=’ must be used to
indicate “equals”, “greater than” and “less than”, respectively. The dollar operator
resembles a condensed way of writing an if-statement. For line 1 in Listing 7 the
dollar operator statement reads: “EqFF1(Str) is, for all Str in the sets HtStr

and Nonisoth, given by the following equation: ...”. Thus, if the condition in
the brackets gives a boolean true-value, the statement is executed, resulting that
HetLd (heat load) is only assigned to hot, nonisothermal streams.

Bounds and Starting Points Bounds on variables are defined by the .lo and
.up operators. Variables may also be fixed by the .fx operator, which enforces the
relations var.fx = var.lo = var.up. The level operator, .l, defines the activity
level of the variable. var.l receives new values when a model is solved, and will
in a GAMS model indicate the starting value of a variable. Activity levels can also
be given from equations. The use of boundary and level statements is illustrated
in Listing 8.

1 HetLd.lo(Str) = 0.0 ;
2 HetLd.up(Str) = 1000.0 ;
3 Tin.fx(’H1’) = 298 ;
4 Tout.fx(’H1’) = 250 ;
5 TempS4.l = 180 ;
6 TempS5.l = TempS4.l*(PresS5/PresS1.l)**((gamma−1)/gamma) ;

Listing 8: Example of the use of bounds and activity level operators from
mhexcs1v9.gms.

26

4.2 Modifications Done to mhexcs1v9.gms 4 PROGRAMMING

Model and Solve Statement The model statement specifies the model and
assigns a name to it. One can pick equations for a model, or make GAMS include
all equations in a model. The solve statement defines the model that is to be
solved, which solver should be used and what the objective of the solver should
be. The type of the model (linear, nonlinear, etc.) must be known prior to solving
the model. The heat exchanger modeled in mhexcs1v9.gms is a mixed integer
nonlinear problem (MINLP) where the objective function is named Z. The model

and solve statements are given in Listing 9.

1 Model Ravi /ALL/ ;
2 Solve Ravi using MINLP minizing Z ;

Listing 9: The model and solve statement used in mhexcs1v9.gms.

Global Options The GAMS language provides a set of global options which con-
trol compiler directives to the input file to control the preferences of the output.
Some of the options used in mhexcs1v9.gms are displayed in Listing 10.

1 * global options
2 $offlisting DCD3 stops the echo print of the input file
3 $eolcom // Defining end of line comments delimiter
4 $inlinecom /* */ Defining inline comments delimiters
5 option iterlim = 5e5 ; Iteration limit (= 5 · 105)
6 option optcr = 0.0 ; Relative termination tolerance [Ref. 17]
7 option decimals = 8 ; Number of decimals to be printed by the
8 display option

Listing 10: Some global options used in mhexcs1v9.gms.

4.2 Modifications Done to mhexcs1v9.gms

In order to perform the necessary calculations with GAMS some modifications were
made to the original script.

4.2.1 Display variables

The .lst-output file reports the variables with a limited amount of decimals,
namely 4. This proved insufficient for the calculations. A Display statement was

3Dollar Control Directive [Ref. 21].

27

4.2 Modifications Done to mhexcs1v9.gms 4 PROGRAMMING

included in all GAMS model files after the solve statement. The activity level of
each variable at the solution was printed using the command listed in Listing 11.

1 Display FN2.l, PumpWork.l ,PresS1.l, TempS4.l, TempS5.l, TempS6.l,
2 Tboil.l, Z.l, YLoc.l, contri.l, FCp.l, Tin.l, Tout.l ;

Listing 11: The display statement added to mhexcs1v9.gms.

4.2.2 Sensitivity Matrix, F

To calculate the sensitivity matrix, F = ∂yopt/∂dT , disturbances on the inlet tem-
peratures and heat flowrates was simulated by changing the temperature targets
separately and re-optimizing. This was done by simply increasing the tempera-
tures individually by 1 K. For heat flowrates, relative disturbances was performed
individually on each stream. This was solved as illustrated in Listing 12.

1 SCALAR
2 dcp /1.05/
3 FCp.fx(’H1’) = 3*dcp ;
4 FCp.fx(’H2’) = 4 ;

Listing 12: Disturbance simulation on heat flowrates.

4.2.3 Gain Matrix, Gy

To produce the output gain matrix, Gy = ∂y/∂uT , and the Hessian of the cost
function, Juu, perturbations were made around the optimal input, u?, that is, u1
was perturbed while u2 was kept constant and vica verca. To keep the remaining
degrees of freedom constant, control equations was introduced. The equations are
given in Listing 13.

1 EQUATIONS
2 EqControl
3 EqControl2
4 ;
5 SCALARS
6 perp1 /1.1e−3/
7 perp2 /1.1e−3/
8 ;
9 EqControl..
10 FN2 =E= 0.02959005;
11 * FN2 =E= 0.02959005*(1+perp1);
12 * FN2 =E= 0.02959005*(1−perp1);

28

4.3 Python 4 PROGRAMMING

13 EqControl2..
14 PumpWork =E= 0.17132506;
15 * PumpWork =E= 0.17132506*(1+perp2);
16 * PumpWork =E= 0.17132506*(1−perp2);

Listing 13: Control equations for keeping degrees of freedom constant.

Removing degrees of freedom resulted in large objective function values, Z ≈
5 · 105Zopt. This problem was solved by changing the intitial point of the calcula-
tion, as given in Listing 14.

1 * Optimal initial values
2 FN2.l = 0.02959005 ;
3 PresS1.l = 7.25345316 ;
4 TempS4.l = 265.7347 ;
5 TempS6.l = 293.9971 ;
6 Tboil.l = 98.999995 ;
7 YLoc.l(’C4’,’C3’) = 0 ; Changed from 1 in mhexcs1v9.gms
8 YLoc.l(’C4’,’C6’) = 0 ; Changed from 1 in mhexcs1v9.gms

Listing 14: Optimal initial values.

4.3 Python

The input and output files of a GAMS program are text files. The necessary calcula-
tions made from the input and output data of the program was carried out utilizing
the objective oriented programming language Python version 2.7 [Ref. 12], with
software acquired through Macports [Ref. 16].

Some key elements of the script mhex.py written to perform the calculations are
given in the following section. The complete code is presented in Appendix B.

4.3.1 Reading Data

The input and output file formats of a GAMS model is clean text. The function
readFile was constructed to read a file and return its content as a string. The
function is given in Listing 15.

1 def readFile(folder,filename):
2 try:
3 with open(folder+’/’+filename, ’r’) as f:
4 res = f.read()
5 except IOError:

29

4.3 Python 4 PROGRAMMING

6 print "Error: Can’t find file or read data named ’%s’" \
7 % filename
8 else:
9 print "File named ’%s’ from the folder ’%s’ successfully

loaded" % (filename, folder)
10 f.close()
11 return res

Listing 15: A python function for reading .gms and .lst files.

4.3.2 Classes

To handle the different problems and solutions in a convenient way, a model class
was introduced. solvedModel is given in Listing 16. solvedModel objects are
populated with values for temperatures, heat flowrates, cost function values and so
on, from the .lst output files from GAMS. solvedModel calls readFile which opens
and reads the .lst files. The function findData, given in Listing 17, uses regular
expressions to traverse the .lst files and extract values from them. Instantiation
of a solvedModel object requires two arguments: which subfolder the .lst-file is
located in and the filename.

1 class solvedModel:
2 ’’’
3 Class specifying the values retrieved from the .list file of
4 the solved .gms model.
5 ’’’
6 def init (self, folder, filename):
7 ’’’
8 Assigns a name to the model (typically file name),
9 then loads the values from "data".
10 ’’’
11 data = findData(readFile(folder, filename))
12 self.name = filename
13 self.inputfile = data.get(’Inputfile’)
14 self.outputfile = data.get(’Outputfile’)
15 self.FN2 = data.get(’FN2’)
16 self.PumpWork = data.get(’PumpWork’)
17 self.Z = data.get(’Z’)
18 self.Tin = data.get(’Tin’)
19 self.Tout = data.get(’Tout’)
20 self.FCp = data.get(’FCp’)
21 self.PresS1 = data.get(’PresS1’)
22 self.TempS4 = data.get(’TempS4’)
23 self.TempS5 = data.get(’TempS5’)
24 self.TempS6 = data.get(’TempS6’)

30

4.3 Python 4 PROGRAMMING

25 def repr (self):
26 return "Class for solved gamsModel"

Listing 16: The python class solvedModel.

1 def findData(aString):
2 oneVar = [’FN2’, ’PumpWork’, ’PresS1’, ’TempS4’, ’TempS5’, \
3 ’TempS6’, ’Z’]
4 multiVar = [’FCp’, ’Tin’]
5 streams = [’H1’, ’H2’, ’H3’, ’C1’, ’C2’]
6 nameList = [’Input’, ’Output’]
7 ans = AutoVivification()
8 for var in oneVar:
9 try:
10 ans[var] = re.match(r’ˆ(.|\n)*?$\n.*VARIABLE ’+var+\
11 ’\.L\s*=\s*([0−9.E+−]+)’, aString, re.MULTILINE).group(2)
12 except:
13 pass
14 for var in multiVar:
15 for stream in streams:
16 try:
17 ans[var][stream] = \
18 re.match(r’ˆ(.|\n)*?$\n.*VARIABLE ’+var+\
19 ’\.L\s*\n.*\n.*’+stream+’ ([0−9.E+−]+)’, aString, \
20 re.MULTILINE).group(2)
21 except:
22 pass
23 for aName in nameList:
24 try:
25 ans[aName+’file’] = re.match(r’ˆ(.|\n)*?$\n.*’+aName+\
26 ’\s+(\/\S+)+\/(\S+)$’, aString, re.MULTILINE).group(3)
27 except:
28 pass
29 return ans

Listing 17: Python function for finding model data from .lst files.

4.3.3 Sensitivity and Gain Matrices

For computing the sensitivity matrix F, the Python function sens accepts a list
of solvedModel objects, and traverses them to find the data necessary to perform
the computations. F is returned as a list of lists, which in Python corresponds to
a matrix. sens is given in Listing 18. The gain matrix Gy is found in a similar
way.

31

4.3 Python 4 PROGRAMMING

1 def sens(aModelList):
2 ’’’
3 aModel = solvedModel−object
4 y = [FN2, PumpWork, pS1, TS4, TS5, TS6]
5 d = [H1, ... , C2, FCp(H1), ... FCp(C2)]
6 F = [[dFN2/dTin(H1), dFN2/dTin(H2), ... , dFN2/dFCp(H1),],
7 [dPW/dTin(H1), ... ,]]
8 finds dFN2 and dPW for each model in the list
9 computes dTin(H1) etc. Disregards current iteration and continues
10 looping if dTin(H1) is zero. If it’s not, continuing to FCp,
11 repeating.
12 ’’’
13 y = [’FN2’, ’PumpWork’, ’PresS1’, ’TempS4’, ’TempS5’, ’TempS6’]
14 subs = [’Tin’, ’FCp’]
15 streams = [’H1’, ’H2’, ’H3’, ’C1’, ’C2’]
16 F = [[] for in range(len(y))]
17 for aModel in aModelList:
18 for y i in y:
19 dy = float(getattr(aModel,y i)) − float(getattr(ref,y i))
20 for sub in subs:
21 for stream in streams:
22 dd = float(getattr(aModel,sub)[stream]) − \
23 float(getattr(ref,sub)[stream])
24 if dd != 0:
25 F[y.index(y i)].append(dy/dd)
26 break
27 else:
28 continue
29 return F

Listing 18: The function for computing the sensitivity matrix F.

4.3.4 Hessian of Cost

The Hessian matrix of the cost function was determined by having one main func-
tion calling two sub-functions, one for the diagonal elements and one for the nondi-
agonal elements. The main function accepts a nested list of solvedModel objects.
The printing option is used for debugging. When assigned the value True, it
prints extended information about each matrix element during the calculation of
Juu.

32

4.4 MATLAB 4 PROGRAMMING

4.4 MATLAB

After the computation of the sensitivity, gain and Hessian matrices from the .lst

output files, a Matlab script was written to perform further computations. Mat-
lab was used because it handles matrix calculus in a much more convenient way
than Python.

33

5 RESULTS

5 Results

The matrices F, Gy and Juu was determined by the use of the methods described
in Chapter 4.1 and 4.3. The values of the matrices are given in Equation (5.1). It
should be noted that in the theory section, analytic expressions for F is provided.
It was considered easier to measure F directly from simulations.

F =

9.095 · 10−5 0.000 523 94 −1.6 · 10−7 2.3572 1.3432 0.999 96
0.000 225 95 0.001 308 9 −1.6 · 10−7 2.29 1.3049 −4.5 · 10−5

0.000 148 95 0.000 861 94 −1.6 · 10−7 −0.188 94 −0.107 67 −4.2 · 10−5

0.000 222 95 0.001 292 9 −1.6 · 10−7 −0.282 69 −0.161 09 −4.2 · 10−5

0.000 483 95 0.002 801 9 −1.6 · 10−7 −0.607 13 −0.345 97 −4.2 · 10−5

0.002 513 0.014 566 −1.0667 · 10−6 34.6638 19.7533 −0.000 28
0.006 329 8 0.036 635 −8 · 10−7 −7.738 −4.4095 −0.000 21
0.003 349 5 0.019 399 −1.6 · 10−6 −4.2243 −2.4072 −0.000 42
−0.001 860 3 −0.010 774 −1.0667 · 10−6 2.3955 1.3651 −0.000 28
−0.001 251 7 −0.007 251 8 −9.1429 · 10−7 −20.6161 −11.7481 −0.000 24

(5.1a)

Gy =

1 0
0 1

−41.5667 7.3684
25 000 58.4795

14 666.6667 0
−26 666.6667 −58.4795

 (5.1b)

Juu =

[
−3 680 034 953 700 2 083 333.3334

2 083 333.3334 −11 666.6666

]
(5.1c)

The measurement combination matrix, H and the average loss, Lavg, was calcu-
lated as described in Chapter 3.2.3. The results are given in Equation (5.2)

H =

[
0.900 99 −0.153 91 −0.368 86 −6.6429 · 10−5 0.000 335 12 −0.000 526 32
−0.1532 0.027 171 0.065 385 1.2842 · 10−5 −2.2254 · 10−5 −1.1793 · 10−6

]
(5.2a)

Lavg =
[
1927.6592

]
(5.2b)

Lworst =
[
92 527.6336

]
(5.2c)

34

6 DISCUSSION

6 Discussion

6.1 Simulations

The optimal solution for the unaltered file, mhexcs1v9.gms, was readily obtained.
Changing the temperature and heat capacity flow rates yielded objective values
within a reasonable range.

However, there was encountered problems with restricting the degrees of freedom.
Upon the introduction of the control equations given in Listing 13 CONOPT re-
ported that there were no superbasic variables. This means that the solver found
no degrees of freedom, and in practice was used as a normal equation solver. Still,
doubtful solutions were found. Upon fixing both FN2 and PumpWork at it’s optimal
values, found from mhexcs1v9.gms, the objective function, z, yielded a better solu-
tion compared to the objective function value found from the “clean” optimization
in mhexcs1v9.gms, zopt.

The process of finding perturbation step size proved troublesome. The value of z
increased dramatically for values of h greater than 0.5 · 10−7 in positive and nega-
tive FN2 direction. For PumpWork, z was further improved by performing positive
perturbations. In fact, z > zopt for values of h ≥ 1 · 10−4. Upon reduction of the
step length to h = 2 · 10−3, the value of z increased drastically to a magnitude of
≈ 105.

As a result, a positive semi-definite Hessian cost matrix was not obtained. Some
notes on the positive elements of Juu are discussed in Chapter 6.4.

The GAMS display statement is limited to displaying 8 decimals. Because of this
limited ability to display highly precise numbers, using small step sizes, such as
h = 0.5 · 10−7, could result in such small changes in output values that it is difficult
to capture the mathematical essence of the variations. The CONOPT command shell
print displays 10 decimal precision for the value of the objective function. It should
be considered to capture the values from this print.

6.2 Sensitivity

From the resulting sensitivity matrix, F, given in Equation (5.1a) in Chapter 5, it
is clear that the temperatures TS4 and TS5 in general are sensitive to disturbances.
High sensitivity in TS4 and TS5 can be observed for disturbances in TH1 , TH2 , FCp,H1

and FCp,C2 . Both the pressure pS1 and outlet temperature TS6 are completely

35

6.2 Sensitivity 6 DISCUSSION

insensitive to changes in the inlet temperatures or heat capacity flow rates. An
exception can be observed for disturbances in TH1 , where TS6 is relatively sensitive.

6.2.1 Feed Flow, Pump Work and Pressure at S1

The nitrogen feed flow rate shows small sensitivity to the disturbances. This is
probably caused by the heat of evaporation being the main consumer of heat in
the cooling process of the first pass through the MHEX. It is important to note
that this is valid only as long as the dew point temperature is reached. All the
nitrogen must be allowed to evaporate in the first pass through the heat exchanger.
The temperature at S1 does not change with changing FN2

or pS1 , as the model
assumes the liquid nitrogen to be an incompressible fluid.

The pressure at S1 affects the boiling point and dew point temperatures. The
pump work will therefore change as disturbances occurs. However, based on the
same arguments as for FN2

, the sensitivity to disturbances is relatively small. The
pressure at S1, pS1 , shows extremely small sensitivity to disturbances. Most of the
values, such as −1.6 · 10−7 and 8 · 10−7, are probably caused by numerical noise or
GAMS’ decimal display limit.

Figure 6.1 illustrates how moving the dew point and bubble point affect the tem-
perature at state S4.

N
(sub)
2N

(2p)
2N

(sup)
2

TN2

LMHEX

S1S2S3S4

Td.p. Tb.p.

Figure 6.1: Temperature variations as function of feed specifications. The illustration
is given from right to left to coincide with Figure 2.1.

6.2.2 Temperatures

The temperature at S4, TS4 , is sensitive to disturbances. Changes in FCp caused
the greatest variations in TS4 . This is expected, as small changes in heat capacity
can result in vast changes in heat transport. The temperature after the expander,
TS5 , experiences a similar pattern, though of smaller magnitude.

36

6.3 Gain 6 DISCUSSION

The temperature at the exit of the nitrogen cooling flow, TS6 is almost completely
insensitive to disturbances. An exception is for disturbances to the temperature
TH1 . This sensitivity is not matched by a similar trend for disturbances in FCp,H1.
There could be a possibility of the high temperature at T in

H1
governs this sensitivity,

as the exit temperature, TS6 , is close to the H1 inlet temperature. If this is true,
and the inlet temperature for H1 is known, TS6 could be a self-optimizing variable
candidate.

6.3 Gain

The gain matrix shows that the input variables in general have high influence on
the output variables. The value for ∆TS6/∆FN2 is very high, and is thus backing
up TS6 as being a self-optimizing variable candidate.

6.4 The Hessian of the Cost Function

The positive elements in Juu are of high magnitude, indicating that the starting
point used for the central differences is lying in a “deep valley”. For this calcu-
lation, h1 = 0.6 · 10−7 and h2 = 1 · 10−6, where h1 is the step length in the FN2

direction and h2 is the step length in the PumpWork direction.

6.4.1 Loss

As Juu is not positive semi-definite, the loss calculations does not make sense.
Calculations of loss was also performed following the notation given in Equation
(3.10), which yielded an unphysical loss in terms of a complex number, due to Juu.

37

6.4 The Hessian of the Cost Function 6 DISCUSSION

Cost, J

Steplength, h

J < Jopt

J ≈ 105Jopt

h ≈ 0.5 · 10−7 h ≈ 10−4

Figure 6.2: Somecaption

38

7 CONCLUSION

7 Conclusion

The results for the “motivating example MHEX” given in the paper by Kamath
et al. [Ref. 14] was reproduced using GAMS with the solver CONOPT. The degrees
of freedom for the example was determined to N = 2. A process scenario was
simulated, where the degrees of freedom chosen as inputs were FN2

and Wpump,
denoted FN2 and PumpWork in the GAMS model, respectively. When deciding data
for finding F, Gy and Juu from the simulations, it was observed that a better
optimum could be obtained by fixing FN2 and PumpWork at it’s optimal values,
and giving the optimal point as a starting point for the solver. Juu was by finite
central differences found to not be positive semi-definite.

Further work should focus on further model analysis. Whether to use GAMS for
solving the model should be re-evaluated.

39

REFERENCES REFERENCES

References

[1] Process optimization. http://en.wikipedia.org/wiki/Process_

optimization.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. New
York: Dover Publications Inc., 1972.

[3] V. Alstad and S. Skogestad. Null space method for selecting optimal mea-
surement combinations as controlled variables. Ind. Eng. Chem. Res., 46:846,
2007.

[4] V. Alstad, S. Skogestad, and E. S. Hori. Optimal measurement combinations
as controlled variables. ScienceDirect Journal of Process Control, 19:138,
2009.

[5] E. M. B. Aske and S. Skogestad. Consistent inventory control. Ind. Eng.
Chem. Res., 48:10892, 2009.

[6] A. Aspelund, D. O. Berstad, and T. Gundersen. An extended pinch analysis
adn design procedure utilizing pressure based energy for subambient cooling.
Ind. Eng. Chem. Res, 47:8724, 2008.

[7] S. Balakrishna and L. Biegler. Targeting strategies for the synthesis and
energy integration of nonisothermal reactor networks. Ind. Eng. Chem. Res.,
31:2152.

[8] B. Baumrucker, J. Renfro, and L. Biegler. Mpec problem formulations and
solution strategies with chemical engineering applications. Computers and
Chemical Engineering, 32:2903, 2008.

[9] L. T. Biegler. Nonlinear Programming: Consepts, Algorithms, and Applica-
tions to Chemical Processes. Society for Industrial and Applied Mathematichs
and the Mathematical Optimization Society, 2010.

[10] A. Drud. Conopt — a large scale grg code. ORSA J. Comput, 6:207.

[11] M. A. Duran and I. E. Grossmann. Simultaneous optimization and heat
integration of chemical processes. AIChE, 32:123.

[12] P. S. Foundation. http://www.python.org.

[13] I. J. Halvorsen, S. Skogestad, J. C. Morud, and V. Alstad. Optimal selection
of controlled variables. Ind. Eng. Chem. Res., 42:3273, 2003.

40

REFERENCES REFERENCES

[14] R. S. Kamath, L. T. Biegler, and I. E. Grossman. Modeling multistream heat
exchangers with and wihout phase changes for simultaneous optimization and
heat integration. Wiley Online Library, 2011.

[15] V. Kariwala, Y. Cao, and S. Janardhanan. Local self-optimizing control with
average loss minimization. 47:1150, 2008.

[16] Macports. http://www.macports.org.

[17] B. A. McCarl, A. Meeraus, P. van der Eijk, M. Bussieck, S. Dirkse, P. Steacy,
F. Nilssen, and G. D. Corporation. Mccarl gams user guide. http://www.

gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf, 2012.

[18] S. Mokhatab, W. A. Poe, and J. G. Speight. Handbook of Natural Gas Trans-
mission and Processing. Elsevier Inc, 2006.

[19] M. Morari, Y. Arkun, and G. Stephanopoulos. Studies in the synthesis of
control structures for chemical processes. AIChE, 26(2):220, 1980.

[20] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edi-
tion, 2006.

[21] R. E. Rosenthal. Gams – a user’s guide. http://www.gams.com/dd/docs/

bigdocs/GAMSUsersGuide.pdf, 2012.

[22] R. Sinnott and G. Towler. Chemical Engineering Design. Elsevier, fifth edi-
tion, 2009.

[23] S. Skogestad. Plantwide control: The search for the self-optimizing control
structure. Journal of Process Control, 10:487, 2000.

[24] S. Skogestad. Control structure design for complete chemical plants. Com-
puters and Chemical Engineering, 28:219, 2004.

[25] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. Wiley &
Sons, Ltd, second edition, 2005.

[26] L. M. Umar, W. Hu, Y. Cao, and V. Kariwala. Plantwide Control: Recent
Developments and applications. John Wiley and Sons, Ltd., first edition, 2012.

[27] Wikipedia. http://en.wikipedia.org/wiki/Autovivification.

[28] R. Yelchuru, S. Skogestad, and H. Manum. Miqp formulation fo controlled
variable selection in self optimizing control. Proceedings of the 9th Internation
Symposium on Dynamics and Control of process Systems, 2010.

41

A THE GAMS MODEL MHEXCS1V9.GMS

A The GAMS Model mhexcs1v9.gms

1 * same as v8 except using bonmin
2

3 * same as v7 except that
4 * doing full optimization
5

6 * same as v6 except that
7 * adding isothermal stream to heat integration
8 * original big M by Ignacio does not occur...relaxation of

contribution constraint?
9 * doing full optimization in next version
10

11 * same as mhexcs1v5 except that
12 * now added Fcp for C3 C5 and C6 into the heat integration
13 * adding above pinch contribution to heat integration in next version

since it will affect the optimization result
14

15 * same as mhexcs1v4 except that
16 * adding the noisothermal streams C3, C5, C6 to the heat integration

but one step at a time
17 * forgot to add expander work...adding that first
18 * now added Fcp for C3 C5 and C6 into the heat integration
19 * adding above pinch contribution to heat integration in next version

since it will affect the optimization result
20

21 * same as mhexcs1v3 except that
22 * 1) Tin, Tout and FCp are converted from parameters to variables for

simple streams
23

24 *new stream for heat integration are assigned temperature and heat
load data

25 * C3 stream is from state S1 to S2
26 * C4 stream is from state S2 to S3
27 * C5 stream is from state S3 to S4
28 * C6 stream is from state S5 to S6
29

30 * same as mhexcs1v2 except that new streams are introduced into the
sets but not used in the code

31 * basically i use new subsets so that they still work only on the
originally specified streams

32

33 * same as mhexcs1v1 except that i am including properties of Nitrogen
34 * defining states for convenience
35 * S1 − after the pump and entering the MHEX
36 * S2 − within the MHEX at bubblle point
37 * S3 − within the MHEX at dew point
38 * S4 − at exit of MHEX and superheated and entering expander

42

A THE GAMS MODEL MHEXCS1V9.GMS

39 * S5 − exit of expander and entering MHEX again
40 * S6 − final exit from MHEX
41

42 * a simple version of Duran and Grossmann for minimum utility
calculation

43 * uses smooth approximation for max operators
44 * at bottom have information for generating composite curves
45

46 * global options
47 $offlisting
48 $eolcom //
49 $inlinecom /* */
50 option limrow = 100 ;
51 option limcol = 100 ;
52 option iterlim = 500000 ;
53 option reslim = 50000 ;
54 option optcr = 0.0 ;
55 option solprint = ON ;
56 option decimals = 6 ;
57 // end of global options
58

59 SCALARS
60 HRAT Heat recovery approach temperature /4/
61 epsi epsilon for smooth approximation /0.000005/
62 Tref "Reference temperature for Enthalpy calculations in K"

/298.15/
63 PN2Inlet "Pressure of main N2 inlet in bar" /6.0/
64 TN2Inlet "Temperature of main N2 inlet in K" /95/
65 Pmax "Max pressure to which N2 can be pumped in bar" /15/
66 DenLiqN2 "density of liquid N2 in kg/m3" /808.607/
67 PumpEff "efficiency of pump" /0.75/
68 ExpdrEff "expander efficiency" /0.7/
69 MWN2 "molecular weight" /28.0134/
70 PresS5 "pressure at state S5 in bar" /1.01325/
71 gamma "Cp/Cv for diatomatic N2" /1.4/
72 Tc "Critical temperature of N2 in K" /126.2/
73 TrS1
74 EnthS1
75 costN2 "cost of liquid nitrogen in cents per litre" /50/
76 costElec "cost of electricity in cents per kW hr" /12/
77 ;
78

79 TrS1 = TN2Inlet/Tc ;
80 Display TrS1 ;
81

82 SETS
83 Str Total Streams /H1,H2,H3,C1,C2,C3,C4,C5,C6/
84 HtStr(Str) Hot streams of HEX /H1,H2,H3/
85 CdStr(Str) Cold Streams of HEX /C1,C2,C3,C4,C5,C6/

43

A THE GAMS MODEL MHEXCS1V9.GMS

86 Simple(Str) "basic streams" /H1,H2,H3,C1,C2/
87 Isoth(Str) "isothermal streams" /C4/
88

89 CC1 "Constants for CP of N2" /C1,C2,C3,C4,C5,C6,C7/
90 NonIsoth(Str)
91 ;
92

93 NonIsoth(Str) = Str(Str) − Isoth(Str) ;
94 Display Nonisoth ;
95

96 ALIAS
97 (Str,Str2,Str3)
98 ;
99

100 PARAMETERS
101 *FCp(Str) "unit is kW/K" /H1 = 3, H2 = 4, H3 = 2, C1 = 3,

C2 = 3.5/
102 *Tin(Str) "unit is K" /H1 = 298, H2 = 265, H3 = 195, C1 = 220,

C2 = 255/
103 *Tout(Str) "unit is K" /H1 = 250, H2 = 180, H3 = 150, C1 = 245,

C2 = 280/
104 Cpconst(CC1) "for Cp = kJ/kmol K, T = K" /C1 = 29.105, C2 = 8.6149,

C3 = 1701.6, C4 = 0.10347, C5 = 909.79/
105 TSatconst(CC1)"for Tsat, in K, in bar" /C1 = 46.76907454, C2 =

−1084.1, C5 = −8.3144, C6 = 0.044127, C7 = 1/
106 LtHtconst(CC1)"in MJ/kmol, T in K" /C1 = 7.4905, C2 = 0.40406,

C3 = −0.317, C4 = 0.27343/
107 ;
108

109 EnthS1 = CpConst(’C1’)*(TN2Inlet − Tref) + CpConst(’C2’)*CpConst(’C3’
)*(1/tanh(CpConst(’C3’)/TN2Inlet) − 1/tanh(CpConst(’C3’)/Tref))

110 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/TN2Inlet) −
tanh(CpConst(’C5’)/Tref))

111 − (LtHtconst(’C1’)*(1−TrS1)**(LtHtconst(’C2’)+ LtHtconst(’C3’)

TrS1 + LtHtconst(’C4’)(TrS1**2)))*1000 ;
112

113 Display EnthS1 ;
114

115 VARIABLES
116 MxInHt(Str,Str2)
117 MxOutHt(Str,Str2)
118 MxOutCd(Str,Str2)
119 MxInCd(Str,Str2)
120 HetCntHt(Str)
121 HetCntCd(Str)
122 TPch(Str)
123 HetLd(Str)
124 HtUtLd
125 CdUtLd

44

A THE GAMS MODEL MHEXCS1V9.GMS

126 Omega
127 FN2 "in kmol/s"
128 PresS1 "Pressure at state S1"
129 PumpWork "in kW"
130 TempS4 "Temperature at state S4"
131 TempS5 "Temperture at state S5"
132 TempS6 "Temperture at state S6"
133 Tboil "boiling point at pressure of S1"
134 EnthS4 "enthalpy at S4 in kJ/kmol"
135 EnthS3 "enthalpy at S3 in kJ/kmol"
136 EnthS2 "enthalpy at S2 in kJ/kmol"
137 EnthS5 "enthalpy at S5 in kJ/kmol"
138 EnthS6 "enthalpy at S6 in kJ/kmol"
139 TrS2 "reduced temperature"
140 Tin(Str)
141 Tout(Str)
142 FCp(Str)
143 ExpdrWork
144 contri(Str,Str2)
145 dummy1
146 ;
147

148 VARIABLES
149 Z ;
150

151 BINARY VARIABLES
152 YLoc(Str,Str2) "1 indicates that it is above the pinch and

contributes while 0 means no contribution"
153 ;
154

155 EQUATIONS
156 EqFF1(Str)
157 EqFF2(Str)
158 EqOmega
159 EqTPch1(Str)
160 EqTPch2(Str)
161 EqMxInHt(Str,Str2)
162 EqMxOutHt(Str,Str2)
163 EqMxOutCd(Str,Str2)
164 EqMxInCd(Str,Str2)
165 EqHetCntHt(Str)
166 EqHetCntCd(Str)
167 EqHtUtLd(Str)
168 EqCdUtLd
169 EqPumpWork
170 Eqadiaexpn
171 EqTboil
172 EqPhase1
173 EqEnthS3

45

A THE GAMS MODEL MHEXCS1V9.GMS

174 EqEnthS4
175 EqEnthS5
176 EqEnthS6
177 EqTrS2
178 EqEnthS2
179

180 EqTinC3
181 EqToutC3
182 EqTinC4
183 EqToutC4
184 EqTinC5
185 EqToutC5
186 EqTinC6
187 EqToutC6
188

189 EqHtLdC3
190 EqHtLdC4
191 EqHtLdC5
192 EqHtLdC6
193

194 Eqrefri
195

196 EqExpdrWork
197

198 Eqlogic1(Str,Str2)
199 Eqlogic11(Str,Str2)
200 Eqlogic2(Str,Str2)
201 Eqlogic3(Str,Str2)
202 Eqlogic4(Str,Str2)
203 ;
204

205 EqFF1(Str)$(HtStr(Str)*Nonisoth(Str))..
206 FCp(Str)*(Tin(Str) − Tout(Str)) =E= HetLd(Str) ;
207 EqFF2(Str)$(CdStr(Str)*Nonisoth(Str))..
208 FCP(Str)*(Tout(Str) − Tin(Str)) =E= HetLd(Str) ;
209 EqOmega..
210 Omega =E= SUM(Str$(HtStr(Str)), HetLd(Str)) − SUM(Str$(CdStr(Str)),

HetLd(Str)) ;
211 EqTPch1(Str)$(HtStr(Str))..
212 TPch(Str) =E= Tin(Str) ;
213 EqTPch2(Str)$(CdStr(Str))..
214 TPch(Str) =E= Tin(Str) + HRAT ;
215 EqMxInHt(Str,Str2)$((HtStr(Str)*Nonisoth(Str)))..
216 MxInHt(Str,Str2) =E= 0.5*sqrt(Power(Tin(Str)− TPch(Str2),2) + Power

(epsi,2)) + 0.5*(Tin(Str)−TPch(Str2)) ;
217 EqMxOutHt(Str,Str2)$((HtStr(Str)*Nonisoth(Str)))..
218 MxOutHt(Str,Str2) =E= 0.5*sqrt(Power(Tout(Str)− TPch(Str2),2) +

Power(epsi,2)) + 0.5*(Tout(Str)−TPch(Str2)) ;
219 EqMxOutCd(Str,Str2)$((CdStr(Str)*Nonisoth(Str)))..

46

A THE GAMS MODEL MHEXCS1V9.GMS

220 MxOutCd(Str,Str2) =E= 0.5*sqrt(Power(Tout(Str)− TPch(Str2)+ HRAT,2)
+ Power(epsi,2)) + 0.5*(Tout(Str)−TPch(Str2)+HRAT) ;

221 EqMxInCd(Str,Str2)$((CdStr(Str)*Nonisoth(Str)))..
222 MxInCd(Str,Str2) =E= 0.5*sqrt(Power(Tin(Str)− TPch(Str2)+ HRAT,2) +

Power(epsi,2)) + 0.5*(Tin(Str)−TPch(Str2)+HRAT) ;
223 EqHetCntHt(Str2)..
224 HetCntHt(Str2) =E= SUM(Str$(HtStr(Str)*Nonisoth(Str)), FCp(

Str)*(MxInHt(Str,Str2) − MxOutHt(Str,Str2))) ;
225 * about the isothermal cold stream
226 Eqlogic1(Str,Str2)$((CdStr(Str)*Isoth(Str)))..
227 contri(Str,Str2) − HetLd(Str) =L= 10000*(1−YLoc(Str,Str2)) ;
228 Eqlogic11(Str,Str2)$((CdStr(Str)*Isoth(Str)))..
229 contri(Str,Str2) − HetLd(Str) =G= −10000*(1−YLoc(Str,Str2)) ;
230 Eqlogic2(Str,Str2)$((CdStr(Str)*Isoth(Str)))..
231 contri(Str,Str2) =L= 10000*YLoc(Str,Str2) ;
232 Eqlogic3(Str,Str2)$((CdStr(Str)*Isoth(Str)))..
233 Tin(Str) − TPch(Str2) =G= −500*(1 −YLoc(Str,Str2)) ;
234 Eqlogic4(Str,Str2)$((CdStr(Str)*Isoth(Str)))..
235 Tin(Str) =L= TPch(Str2) − epsi + 500*YLoc(Str,Str2) ;
236 EqHetCntCd(Str2)..
237 HetCntCd(Str2) =E= SUM(Str$(CdStr(Str)*Nonisoth(Str)), FCP(

Str)*(MxOutCd(Str,Str2) − MxInCd(Str,Str2))) + SUM(Str$(
CdStr(Str)*Isoth(Str)),contri(Str,Str2)) ;

238 EqHtUtLd(Str2)..
239 HtUtLd =G= HetCntCd(Str2) − HetCntHt(Str2) ;
240 EqCdUtLd..
241 CdUtLd =E= Omega + HtUtLd ;
242 EqPumpWork..
243 PumpWork =E= (PresS1 − PN2Inlet)*FN2*MWN2*100/(PumpEff*

DenLiqN2) ;
244 * pressure in bar...so multipled by 100 to convert to kPa...kg gets

cancelled with m3 in numerator
245 * final result is kW
246 Eqadiaexpn..
247 (gamma−1)*log(PresS1) + gamma*log(TempS5) =E= (gamma−1)*log(

PresS5) + gamma*log(TempS4) ;
248 * wrote the expression in log form
249 EqTboil..
250 log(PresS1) =E= TSatconst(’C1’) + TSatconst(’C2’)/Tboil +

TSatconst(’C5’)*log(Tboil) + TSatconst(’C6’)*Tboil ;
251 EqPhase1..
252 TempS4 =G= Tboil ;
253 EqEnthS3..
254 EnthS3 =E= CpConst(’C1’)*(Tboil − Tref) + CpConst(’C2’)*

CpConst(’C3’)*(1/tanh(CpConst(’C3’)/Tboil) − 1/tanh(
CpConst(’C3’)/Tref))

255 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/
Tboil) − tanh(CpConst(’C5’)/Tref)) ;

256 EqEnthS4..

47

A THE GAMS MODEL MHEXCS1V9.GMS

257 EnthS4 =E= CpConst(’C1’)*(TempS4 − Tref) + CpConst(’C2’)*
CpConst(’C3’)*(1/tanh(CpConst(’C3’)/TempS4) − 1/tanh(
CpConst(’C3’)/Tref))

258 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/
TempS4) − tanh(CpConst(’C5’)/Tref)) ;

259 EqEnthS5..
260 EnthS5 =E= CpConst(’C1’)*(TempS5 − Tref) + CpConst(’C2’)*

CpConst(’C3’)*(1/tanh(CpConst(’C3’)/TempS5) − 1/tanh(
CpConst(’C3’)/Tref))

261 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/
TempS5) − tanh(CpConst(’C5’)/Tref)) ;

262 EqEnthS6..
263 EnthS6 =E= CpConst(’C1’)*(TempS6 − Tref) + CpConst(’C2’)*

CpConst(’C3’)*(1/tanh(CpConst(’C3’)/TempS6) − 1/tanh(
CpConst(’C3’)/Tref))

264 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/
TempS6) − tanh(CpConst(’C5’)/Tref)) ;

265 EqExpdrWork..
266 ExpdrWork =E= (EnthS4 − EnthS5)*FN2*ExpdrEff ;
267 EqTrS2..
268 TrS2 =E= Tboil/Tc ;
269 EqEnthS2..
270 EnthS2 =E= EnthS3 − (LtHtconst(’C1’)*(1−TrS2)**(LtHtconst(’C2

’)+ LtHtconst(’C3’)*TrS2 + LtHtconst(’C4’)*(TrS2**2)))*1000
;

271 * inlet temperature data for C3 stream
272 EqTinC3..
273 Tin(’C3’) =E= TN2Inlet ;
274 * outlet temperature data for C3 stream
275 EqToutC3..
276 Tout(’C3’) =E= Tboil ;
277 * inlet temperature data for C4 stream
278 EqTinC4..
279 Tin(’C4’) =E= Tboil ;
280 * outlet temperature data for C4 stream
281 EqToutC4..
282 Tout(’C4’) =E= Tboil ;
283 * inlet temperature data for C5 stream
284 EqTinC5..
285 Tin(’C5’) =E= Tboil ;
286 * outlet temperature data for C5 stream
287 EqToutC5..
288 Tout(’C5’) =E= TempS4 ;
289 * inlet temperature data for C6 stream
290 EqTinC6..
291 Tin(’C6’) =E= TempS5 ;
292 * outlet temperature data for C6 stream
293 EqToutC6..
294 Tout(’C6’) =E= TempS6 ;

48

A THE GAMS MODEL MHEXCS1V9.GMS

295 EqHtLdC3..
296 HetLd(’C3’) =E= (EnthS2 − EnthS1)*FN2 ;
297 EqHtLdC4..
298 HetLd(’C4’) =E= (EnthS3 − EnthS2)*FN2 ;
299 EqHtLdC5..
300 HetLd(’C5’) =E= (EnthS4 − EnthS3)*FN2 ;
301 EqHtLdC6..
302 HetLd(’C6’) =E= (EnthS6 − EnthS5)*FN2 ;
303 Eqrefri..
304 dummy1 =E= HetLd(’C3’) + HetLd(’C4’) + HetLd(’C5’) + HetLd(’C6

’) ;
305

306 EQUATIONS
307 obj ;
308 obj..
309 Z =E= 1000*HtUtLd + 1000*CdUtLd + FN2*MWN2*1000*costN2/(100*

DenLiqN2) + costElec*(Pumpwork − ExpdrWork)/(3600*100) ;
310

311 *−−−−−−−−
312 * Bounds
313 *−−−−−−−−
314 HetLd.lo(Str) = 0.0 ;
315 HetLd.up(Str) = 1000.0 ;
316 Fcp.lo(Str) = 0.0001 ;
317 Fcp.up(Str) = 1000 ;
318 FN2.lo = 0.0 ;
319 FN2.up = 10.0 ;
320 PresS1.lo = PN2Inlet ;
321 PresS1.up = Pmax ;
322 PumpWork.lo = 0 ;
323 PumpWork.up = 10000 ;
324 TempS4.lo = 75 ;
325 TempS4.up = 300 ;
326 * to ensure that expander outlet is not in 2 phase
327 TempS5.lo = 77.36 ;
328 TempS5.up = 300 ;
329 Tboil.lo = 50 ;
330 Tboil.up = 300 ;
331 TempS6.lo = 77.36 ;
332 TempS6.up = 300 ;
333 TrS2.lo = 0.1 ;
334 TrS2.up = 1.1 ;
335 EnthS2.lo = −50000 ;
336 EnthS2.up = 0 ;
337 EnthS3.lo = −50000 ;
338 EnthS3.up = 0 ;
339 EnthS4.lo = −50000 ;
340 EnthS4.up = 0 ;
341 EnthS5.lo = −50000 ;

49

A THE GAMS MODEL MHEXCS1V9.GMS

342 EnthS5.up = 0 ;
343 EnthS6.lo = −50000 ;
344 EnthS6.up = 0 ;
345 contri.lo(Str,Str2) = 0.0 ;
346 contri.up(Str,Str2) = 10000.0 ;
347 CdUtLd.lo = −0.0001 ;
348 HtUtLd.lo = −0.0001 ;
349

350 *−−−−−−−
351 * Fixed
352 *−−−−−−−
353 * fixing the Tin, Tout and FCp for simple streams
354 * unit is kW/K
355 FCp.fx(’H1’) = 3 ;
356 FCp.fx(’H2’) = 4 ;
357 FCp.fx(’H3’) = 2 ;
358 FCp.fx(’C1’) = 3 ;
359 FCp.fx(’C2’) = 3.5 ;
360

361 * unit is K
362 Tin.fx(’H1’) = 298 ;
363 Tin.fx(’H2’) = 265 ;
364 Tin.fx(’H3’) = 195 ;
365 Tin.fx(’C1’) = 220 ;
366 Tin.fx(’C2’) = 255 ;
367

368 * unit is K
369 Tout.fx(’H1’) = 250 ;
370 Tout.fx(’H2’) = 180 ;
371 Tout.fx(’H3’) = 150 ;
372 Tout.fx(’C1’) = 245 ;
373 Tout.fx(’C2’) = 280 ;
374

375 * temporary fixing variables
376 FN2.l = 0.04 ;
377 PresS1.l = 11 ;
378 TempS4.l = 180 ;
379 TempS6.l = 250 ;
380

381 *−−−−−−−−−−−−−−−
382 * Initial Point
383 *−−−−−−−−−−−−−−−
384 HtUtLd.l = 1000;
385 Tboil.l = 105 ;
386

387 * logic
388 YLoc.l(’C4’,’H1’) = 0 ;
389 YLoc.l(’C4’,’H2’) = 0 ;
390 YLoc.l(’C4’,’H3’) = 0 ;

50

A THE GAMS MODEL MHEXCS1V9.GMS

391 YLoc.l(’C4’,’C1’) = 0 ;
392 YLoc.l(’C4’,’C2’) = 0 ;
393 YLoc.l(’C4’,’C3’) = 1 ;
394 YLoc.l(’C4’,’C4’) = 0 ;
395 YLoc.l(’C4’,’C5’) = 0 ;
396 YLoc.l(’C4’,’C6’) = 1 ;
397

398 PumpWork.l = (PresS1.l − PN2Inlet)*FN2.l*MWN2*100/(PumpEff*DenLiqN2)
;

399 TempS5.l = TempS4.l*(PresS5/PresS1.l)**((gamma−1)/gamma) ;
400 EnthS3.l = CpConst(’C1’)*(Tboil.l − Tref) + CpConst(’C2’)*CpConst(’C3

’)*(1/tanh(CpConst(’C3’)/Tboil.l) − 1/tanh(CpConst(’C3’)/Tref))
401 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/Tboil.l) −

tanh(CpConst(’C5’)/Tref)) ;
402 EnthS4.l = CpConst(’C1’)*(TempS4.l − Tref) + CpConst(’C2’)*CpConst(’

C3’)*(1/tanh(CpConst(’C3’)/TempS4.l) − 1/tanh(CpConst(’C3’)/Tref)
)

403 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/TempS4.l)
− tanh(CpConst(’C5’)/Tref)) ;

404 EnthS5.l = CpConst(’C1’)*(TempS5.l − Tref) + CpConst(’C2’)*CpConst(’
C3’)*(1/tanh(CpConst(’C3’)/TempS5.l) − 1/tanh(CpConst(’C3’)/Tref)
)

405 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/TempS5.l)
− tanh(CpConst(’C5’)/Tref)) ;

406 EnthS6.l = CpConst(’C1’)*(TempS6.l − Tref) + CpConst(’C2’)*CpConst(’
C3’)*(1/tanh(CpConst(’C3’)/TempS6.l) − 1/tanh(CpConst(’C3’)/Tref)
)

407 − CpConst(’C4’)*CpConst(’C5’)*(tanh(CpConst(’C5’)/TempS6.l)
− tanh(CpConst(’C5’)/Tref)) ;

408 ExpdrWork.l = (EnthS5.l − EnthS4.l)*FN2.l*ExpdrEff ;
409 TrS2.l = Tboil.l/Tc ;
410 EnthS2.l = EnthS3.l − (LtHtconst(’C1’)*(1−TrS2.l)**(LtHtconst(’C2’)+

LtHtconst(’C3’)*TrS2.l + LtHtconst(’C4’)*(TrS2.l**2)))*1000 ;
411 Tin.l(’C3’) = TN2Inlet ;
412 Tout.l(’C3’) = Tboil.l ;
413 Tin.l(’C4’) = Tboil.l ;
414 Tout.l(’C4’) = Tboil.l ;
415 Tin.l(’C5’) = Tboil.l ;
416 Tout.l(’C5’) = TempS4.l ;
417 Tin.l(’C6’) = TempS5.l ;
418 Tout.l(’C6’) = TempS6.l ;
419 HetLd.l(’C3’) = (EnthS2.l − EnthS1)*FN2.l ;
420 HetLd.l(’C4’) = (EnthS3.l − EnthS2.l)*FN2.l ;
421 HetLd.l(’C5’) = (EnthS4.l − EnthS3.l)*FN2.l ;
422 HetLd.l(’C6’) = (EnthS6.l − EnthS5.l)*FN2.l ;
423 dummy1.l = HetLd.l(’C3’) + HetLd.l(’C4’) + HetLd.l(’C5’) + HetLd.l(’

C6’) ;
424 HetLd.l(Str)$(HtStr(Str)*Nonisoth(Str)) = FCp.l(Str)*(Tin.l(Str) −

Tout.l(Str)) ;

51

A THE GAMS MODEL MHEXCS1V9.GMS

425 HetLd.l(Str)$(CdStr(Str)*Nonisoth(Str)) = FCp.l(Str)*(Tout.l(Str) −
Tin.l(Str)) ;

426 FCp.l(Str)$(HtStr(Str)*(NOT Simple(Str))*Nonisoth(Str)) = HetLd.l(
Str)/(Tin.l(Str) − Tout.l(Str)) ;

427 FCp.l(Str)$(CdStr(Str)*(NOT Simple(Str))*Nonisoth(Str)) = HetLd.l(
Str)/(Tout.l(Str) − Tin.l(Str)) ;

428 Omega.l = SUM(Str$(HtStr(Str)*Nonisoth(Str)), HetLd.l(Str)) − SUM(
Str$(CdStr(Str)*Nonisoth(Str)), HetLd.l(Str)) ;

429 TPch.l(Str)$(HtStr(Str)*Nonisoth(Str)) = Tin.l(Str) ;
430 TPch.l(Str)$(CdStr(Str)*Nonisoth(Str)) = Tin.l(Str) + HRAT ;
431 MxInHt.l(Str,Str2)$((HtStr(Str)*Nonisoth(Str)) AND Nonisoth(Str2)) =

0.5*sqrt(Power(Tin.l(Str)− TPch.l(Str2),2) + Power(epsi,2)) +
0.5*(Tin.l(Str)−TPch.l(Str2)) ;

432 MxOutHt.l(Str,Str2)$((HtStr(Str)*Nonisoth(Str)) AND Nonisoth(Str2)) =
0.5*sqrt(Power(Tout.l(Str)− TPch.l(Str2),2) + Power(epsi,2)) +
0.5*(Tout.l(Str)−TPch.l(Str2)) ;

433 MxOutCd.l(Str,Str2)$((CdStr(Str)*Nonisoth(Str)) AND Nonisoth(Str2)) =
0.5*sqrt(Power(Tout.l(Str)− TPch.l(Str2)+ HRAT,2) + Power(epsi,2)
) + 0.5*(Tout.l(Str)−TPch.l(Str2)+HRAT) ;

434 MxInCd.l(Str,Str2)$((CdStr(Str)*Nonisoth(Str)) AND Nonisoth(Str2)) =
0.5*sqrt(Power(Tin.l(Str)− TPch.l(Str2)+ HRAT,2) + Power(epsi,2))
+ 0.5*(Tin.l(Str)−TPch.l(Str2)+HRAT) ;

435 HetCntHt.l(Str2)$Nonisoth(Str2) = SUM(Str$(HtStr(Str)*Nonisoth(Str)),
FCp.l(Str)*(MxInHt.l(Str,Str2) − MxOutHt.l(Str,Str2))) ;

436 HetCntCd.l(Str2)$Nonisoth(Str2) = SUM(Str$(CdStr(Str)*Nonisoth(Str)),
FCP.l(Str)*(MxOutCd.l(Str,Str2) − MxInCd.l(Str,Str2))) ;

437 CdUtLd.l = Omega.l + HtUtLd.l ;
438 Z.l = 10*HtUtLd.l + 120*CdUtLd.l ;
439

440 Model Ravi /All/ ;
441 Ravi.holdfixed = 1 ;
442 option minlp = sbb ;
443

444 Solve Ravi using MINLP minimizing Z ;

gms/mhex for print.gms

52

B THE PYTHON SCRIPT

B The Python Script

1 ’’’
2 @ summary: Reads text files, return them as lists of text lines.
3 Classes for model input (.gms−files) and
4 outputs (.lst−files).
5 Calculates F, G y and J uu.
6 @ author: Axel Lodemel Holene
7 @ organization: Department of Chemical Engineering, NTNU, Norway
8 @ contact: axel.holene@gmail.com
9 @ requires: Python 2.7 or higher
10 @ todo: Make "readFile" more efficient by using i.e.
11 iteration with regex.
12 ’’’
13

14 import re
15

16 class AutoVivification(dict):
17 """Implementation of perl’s autovivification feature."""
18 def getitem (self, item):
19 try:
20 return dict. getitem (self, item)
21 except KeyError:
22 value = self[item] = type(self)()
23 return value
24

25 class pf(float):
26 ’’’ Class for printing readable lists.’’’
27 def repr (self):
28 return "%.10e" % self
29

30 class solvedModel:
31 ’’’
32 Class specifying the values retrieved from the .list file of
33 the solved .gms model.
34 ’’’
35 def init (self, folder, filename):
36 ’’’
37 Assigns a name to the model (typically file name),
38 then loads the values from "data".
39 ’’’
40 data = findData(readFile(folder, filename))
41 self.name = filename
42 self.inputfile = data.get(’Inputfile’)
43 self.outputfile = data.get(’Outputfile’)
44 self.FN2 = data.get(’FN2’)
45 self.PumpWork = data.get(’PumpWork’)
46 self.Z = data.get(’Z’)

53

B THE PYTHON SCRIPT

47 self.Tin = data.get(’Tin’)
48 self.Tout = data.get(’Tout’)
49 self.FCp = data.get(’FCp’)
50 self.PresS1 = data.get(’PresS1’)
51 self.TempS4 = data.get(’TempS4’)
52 self.TempS5 = data.get(’TempS5’)
53 self.TempS6 = data.get(’TempS6’)
54 def repr (self):
55 return "Class for solved gamsModel"
56

57 def readFile(folder,filename):
58 try:
59 with open(folder+’/’+filename, ’r’) as f:
60 res = f.read()
61 except IOError:
62 print "Error: Can’t find file or read data named ’%s’" \
63 % filename
64 else:
65 print "File named ’%s’ from the folder ’%s’ successfully

loaded" % (filename, folder)
66 f.close()
67 return res
68

69 def findData(aString):
70 oneVar = [’FN2’, ’PumpWork’, ’PresS1’, ’TempS4’, ’TempS5’, \
71 ’TempS6’, ’Z’]
72 multiVar = [’FCp’, ’Tin’]
73 streams = [’H1’, ’H2’, ’H3’, ’C1’, ’C2’]
74 nameList = [’Input’, ’Output’]
75 ans = AutoVivification()
76 for var in oneVar:
77 try:
78 ans[var] = re.match(r’ˆ(.|\n)*?$\n.*VARIABLE ’+var+\
79 ’\.L\s*=\s*([0−9.E+−]+)’, aString, re.MULTILINE).group(2)
80 except:
81 pass
82 for var in multiVar:
83 for stream in streams:
84 try:
85 ans[var][stream] = \
86 re.match(r’ˆ(.|\n)*?$\n.*VARIABLE ’+var+\
87 ’\.L\s*\n.*\n.*’+stream+’ ([0−9.E+−]+)’, aString, \
88 re.MULTILINE).group(2)
89 except:
90 pass
91 for aName in nameList:
92 try:
93 ans[aName+’file’] = re.match(r’ˆ(.|\n)*?$\n.*’+aName+\
94 ’\s+(\/\S+)+\/(\S+)$’, aString, re.MULTILINE).group(3)

54

B THE PYTHON SCRIPT

95 except:
96 pass
97 return ans
98

99 def sens(aModelList):
100 ’’’
101 aModel = solvedModel−object
102 y = [FN2, PumpWork, pS1, TS4, TS5, TS6]
103 d = [H1, ... , C2, FCp(H1), ... FCp(C2)]
104 F = [[dFN2/dTin(H1), dFN2/dTin(H2), ... , dFN2/dFCp(H1),],
105 [dPW/dTin(H1), ... ,]]
106 finds dFN2 and dPW for each model in the list
107 computes dTin(H1) etc. Disregards current iteration and continues
108 looping if dTin(H1) is zero. If it’s not, continuing to FCp,
109 repeating.
110 ’’’
111 y = [’FN2’, ’PumpWork’, ’PresS1’, ’TempS4’, ’TempS5’, ’TempS6’]
112 subs = [’Tin’, ’FCp’]
113 streams = [’H1’, ’H2’, ’H3’, ’C1’, ’C2’]
114 F = [[] for in range(len(y))]
115 for aModel in aModelList:
116 for y i in y:
117 dy = float(getattr(aModel,y i)) − float(getattr(ref,y i))
118 for sub in subs:
119 for stream in streams:
120 dd = float(getattr(aModel,sub)[stream]) − \
121 float(getattr(ref,sub)[stream])
122 if dd != 0:
123 F[y.index(y i)].append(dy/dd)
124 break
125 else:
126 continue
127 return F
128

129 def gain(aModelList):
130 u = [’FN2’, ’PumpWork’]
131 y = [’FN2’, ’PumpWork’, ’PresS1’, ’TempS4’, ’TempS5’, ’TempS6’]
132 g = [[0 for in range(len(y))] for in range(len(u))]
133 for (u i, aModel) in zip(u,aModelList):
134 du = float(getattr(aModel,u i)) − float(getattr(ref,u i))
135 for y i in y:
136 g[u.index(u i)][y.index(y i)] = \
137 (float(getattr(aModel,y i)) − float(getattr(ref,y i)))/du
138 return g
139

140 def nonDiagH(aModelList, printing):
141 ’’’
142 nondiagonal: h12, h21
143 Computing dˆ2/(dx i dx j) by central differences.

55

B THE PYTHON SCRIPT

144 aModelList = [fpp, fpm, fmp, fmm]
145 fpp = f((hx) i+(hx) j), fpm = f((hx) i−(hx) j), etc
146 ’’’
147 eps = 1.e−8 # numerical tolerance
148 if printing: print "nonDiagH runs: *****************************"
149 hi = abs(float(aModelList[0].FN2) − float(ref.FN2))
150 hj = abs(float(aModelList[0].PumpWork) − float(ref.PumpWork))
151 if hi == 0:
152 step = 4*hj**2
153 if printing: print "hi = 0, step = %4.4e" % step
154 elif hj == 0:
155 step = 4*hi**2
156 if printing: print "hj = 0, step = %4.4e" % step
157 else:
158 step = 4*hi*hj
159 if printing: print "step = %4.4e" % step
160 if printing: print "Z values:\n %.8e, %.8e, %.8e, %.8e" % \
161 (float(aModelList[0].Z),float(aModelList[1].Z),\
162 float(aModelList[2].Z),float(aModelList[3].Z))
163 if printing: print "objective = \n %.8e" % \
164 (float(aModelList[0].Z) − float(aModelList[1].Z) − \
165 float(aModelList[2].Z) + float(aModelList[3].Z))
166 if printing: print "nonDiagH finished: *************************"
167 return (float(aModelList[0].Z) − float(aModelList[1].Z) − \
168 float(aModelList[2].Z) + float(aModelList[3].Z))/step
169

170 def diagH(aModelList, printing):
171 ’’’
172 Computes h11, h22. Same infrastructure as nonDiagH.
173 ’’’
174 eps = 1.e−8 # numerical tolerance
175 hi = abs(float(aModelList[0].FN2) − float(ref.FN2))
176 hj = abs(float(aModelList[0].PumpWork) − float(ref.PumpWork))
177 if printing: print "diagH runs: ********************************"
178 if hi < eps:
179 step = 12*hj**2
180 if printing: print "hi = 0, step = %4.4e" % step
181 elif hj < eps:
182 step = 12*hi**2
183 if printing: print "hj = 0, step = %4.4e" % step
184 else:
185 step = −1
186 if printing: print "h1 and h2 < eps, step = −1"
187 z pp = float(aModelList[0].Z); z pm = float(aModelList[1].Z)
188 z pm = float(aModelList[2].Z); z mm = float(aModelList[3].Z)
189 z p = float(aModelList[4].Z); z m = float(aModelList[5].Z)
190 z = float(ref.Z)
191 if printing: print "Z values:\n %.8e, %.8e, %.8e, %.8e, %.8e" %\
192 (z pp, z p, z, z m, z mm)

56

B THE PYTHON SCRIPT

193 if printing: print "objective = \n %.8e" % \
194 (−1*z pp + 16*z p − 30*z + 16*z m − z mm)
195 if printing: print "diagH finished: ****************************"
196 return (−1*z pp + 16*z p − 30*z + 16*z m − z mm)/step
197

198 def Hessian(aModelList, printing):
199 ’’’
200 aModelList = [hlist11, hlist12, hlist21, hlist22]
201 ’’’
202 return [[diagH(aModelList[0], printing), \
203 nonDiagH(aModelList[1], printing)], \
204 [nonDiagH(aModelList[2], printing), \
205 diagH(aModelList[3], printing)]]
206

207 def printMatrix(nestedList):
208 try:
209 print map(pf,nestedList)
210 except:
211 for line in nestedList:
212 print map(pf,line)
213

214 def sortPrintDict(mydict):
215 for key in sorted(mydict.iterkeys()):
216 print "%s: %s" % (key, mydict[key])
217

218 # Global reference object
219 ref = solvedModel(’ref’, ’mhex ref.lst’)
220

221 sensitivity = [\
222 solvedModel(’sensitivity’, ’mhex sens H1.lst’), \
223 solvedModel(’sensitivity’, ’mhex sens H2.lst’), \
224 solvedModel(’sensitivity’, ’mhex sens H3.lst’), \
225 solvedModel(’sensitivity’, ’mhex sens C1.lst’), \
226 solvedModel(’sensitivity’, ’mhex sens C2.lst’),\
227 solvedModel(’sensitivity’, ’mhex sens FCP H1.lst’),\
228 solvedModel(’sensitivity’, ’mhex sens FCP H2.lst’),\
229 solvedModel(’sensitivity’, ’mhex sens FCP H3.lst’),\
230 solvedModel(’sensitivity’, ’mhex sens FCP C1.lst’),\
231 solvedModel(’sensitivity’, ’mhex sens FCP C2.lst’)\
232]
233

234 gainModels = \
235 [solvedModel(’gain’, ’gain FN2.lst’),
236 solvedModel(’gain’, ’gain PW.lst’)]
237

238 hessianModels = [\
239 [solvedModel(’hessian/h 11’, ’hessian pp.lst’), \
240 solvedModel(’hessian/h 11’, ’hessian pm.lst’), \
241 solvedModel(’hessian/h 11’, ’hessian mp.lst’), \

57

B THE PYTHON SCRIPT

242 solvedModel(’hessian/h 11’, ’hessian mm.lst’), \
243 solvedModel(’hessian/h 11’, ’hessian p.lst’), \
244 solvedModel(’hessian/h 11’, ’hessian m.lst’)], \
245 [solvedModel(’hessian/h 12’, ’hessian pp.lst’), \
246 solvedModel(’hessian/h 12’, ’hessian pm.lst’), \
247 solvedModel(’hessian/h 12’, ’hessian mp.lst’), \
248 solvedModel(’hessian/h 12’, ’hessian mm.lst’)],\
249 [solvedModel(’hessian/h 21’, ’hessian pp.lst’), \
250 solvedModel(’hessian/h 21’, ’hessian pm.lst’), \
251 solvedModel(’hessian/h 21’, ’hessian mp.lst’), \
252 solvedModel(’hessian/h 21’, ’hessian mm.lst’)],\
253 [solvedModel(’hessian/h 22’, ’hessian pp.lst’), \
254 solvedModel(’hessian/h 22’, ’hessian pm.lst’), \
255 solvedModel(’hessian/h 22’, ’hessian mp.lst’), \
256 solvedModel(’hessian/h 22’, ’hessian mm.lst’), \
257 solvedModel(’hessian/h 22’, ’hessian p.lst’), \
258 solvedModel(’hessian/h 22’, ’hessian m.lst’)] \
259]
260

261 printing = False
262

263 F = sens(sensitivity)
264 print "F = \n", printMatrix(F)
265 Gy = gain(gainModels)
266 print "Gy = \n", printMatrix(Gy)
267 Juu = Hessian(hessianModels, printing)
268 print "Juu =\n", printMatrix(Juu)

../python/mhex print.py

58

C THE MATLAB SCRIPT

C The Matlab Script

1 clear all
2 clc
3 cd(’˜/Documents/NTNU/Project/matlab/’)
4

5 %% FYI
6 % y = [FN2 PW pS1 TS4 TS5 TS6]’ (6x1)
7 % u = [FN2 PW]’ (2x1)
8 % d = [Tin(H1) ... Tin(C2) FCp(H1) ... FCp(C2)]’ (10x1)
9 % ny = [FN2 PW pS1 TS4 TS5 TS6]’ (6x1)
10 % F = [dFN2/dd ; dPW/dd]’ (10x2)
11 % Wd = diag(d values) (10x10)
12 % wny = diag(ny values) (2x2)
13 % Gy = [dy/du] (2x6)
14

15 %% Misc data
16 y = ones(6,1); % y = [FN2 PW pS1 TS4 TS5 TS6]’ (6x1)
17 d = ones(10,1);%d = [Tin(H1) ... Tin(C2) FCp(H1) ... FCp(C2)]’ (10x1)
18 Tin = [298 265 195 220 255]’; % Inlet temperatures [K]
19 FCp = [3 4 2 3 3.5]’; % Inlet flow heat capacity [kW/K]
20 TS = [2.657347e+2 1.514299e+2 2.939971e+2]’; % State temperatures,
21 % TS = [TS4 TS5 TS6] [K]
22 pS1 = 7.25345316; % State pressure at S1 [bar]
23

24 %% Disturbance and measurement error data
25 d T = 10; % Absolute temperature disturbance [K]
26 d FCp = 0.05; % Relative flow heat capacity disturbance [kW/K]
27 n F = 1e−3; % Abolute flow measurment error [kmol/s]
28 n w = 0; % Absolute pump work measurement error [kW]
29 n T = 1; % Absolute Temperature measurement error [K]
30 n p = 0.01; % Absolute pressure measurement error [bar]
31

32 Wd = diag([ones(length(Tin),1)*d T; FCp*d FCp]);
33 Wny = diag([n F n w n p ones(1,length(TS))*n T]’);
34

35 % Hessian of costfunction. Values given from mhex.py
36 Juu = [−3.6800349537e+12, 2.0833333334e+06;
37 2.0833333334e+06, −1.1666666596e+04];
38 % E = eig(Juu);
39 Gy = [1.0000000000e+00, 0.0000000000e+00, −4.1566666668e+01, ...
40 2.5000000000e+04, 1.4666666667e+04, −2.6666666666e+04;
41 0.0000000000e+00, 1.0000000000e+00, 7.3684210526e+00, ...
42 5.8479532183e+01, 0.0000000000e+00, −5.8479532149e+01]’;
43 % NOTE: transposed
44

45 F = [9.0950000000e−05, 2.2595000000e−04, 1.4895000000e−04, ...
46 2.2295000000e−04, 4.8395000000e−04, 2.5130000000e−03, ...

59

C THE MATLAB SCRIPT

47 6.3297500000e−03, 3.3495000000e−03, −1.8603333333e−03, ...
48 −1.2517142857e−03 ;
49 5.2394000000e−04, 1.3089400000e−03, 8.6194000000e−04, ...
50 1.2929400000e−03, 2.8019400000e−03, 1.4566266667e−02, ...
51 3.6634700000e−02, 1.9399400000e−02, −1.0773733333e−02, ...
52 −7.2517714286e−03 ;
53 −1.5999999992e−07, −1.5999999992e−07, −1.5999999992e−07, ...
54 −1.5999999992e−07, −1.5999999992e−07, −1.0666666661e−06, ...
55 −7.9999999958e−07, −1.5999999992e−06, −1.0666666661e−06, ...
56 −9.1428571380e−07 ;
57 2.3571710000e+00, 2.2899580000e+00, −1.8894300000e−01, ...
58 −2.8268600000e−01, −6.0713200000e−01, 3.4663793333e+01, ...
59 −7.7379850000e+00, −4.2242600000e+00, 2.3954533333e+00, ...
60 −2.0616057143e+01 ;
61 1.3432440000e+00, 1.3049430000e+00, −1.0766800000e−01, ...
62 −1.6108800000e−01, −3.4597500000e−01, 1.9753300000e+01, ...
63 −4.4095100000e+00, −2.4071900000e+00, 1.3650733333e+00, ...
64 −1.1748125714e+01 ;
65 9.9995600000e−01, −4.5000000000e−05, −4.2000000008e−05, ...
66 −4.2000000008e−05, −4.2000000008e−05, −2.8000000005e−04, ...
67 −2.1000000004e−04, −4.2000000008e−04, −2.8000000005e−04, ...
68 −2.4000000004e−04]’;
69 % NOTE: transposed
70

71 %% Calculations Exact Local Method
72

73 Y = [F’*Wd Wny] ;
74 H = Gy’*(Y*Y’)ˆ−1 ;
75 %H = ((Y*Y’)ˆ(−1)*Gy)’ ;
76 P = (Juuˆ−0.5*Gy’*(Y*Y’)ˆ−1*Gy*Juuˆ−0.5)ˆ(−1);
77

78 %% Loss calulations
79

80 L = (1/(6*(length(y)+length(d))))*...
81 (norm(Juuˆ0.5*(H*Gy)ˆ(−1)*H*Y,’fro’))ˆ2;
82 L avg = (1/(6*(length(y)+length(d))))*trace(P);
83 L w = 0.5*(svds(Juuˆ0.5*(H*Gy)ˆ(−1)*H*Y,1,’L’))ˆ2;
84

85 %% Exporting as tex
86 H n = H/norm(H); % Making H readable. Doesn’t affect solution
87

88 cd(’˜/Documents/NTNU/Project/tex/matlab/’)
89 matrix2latexmatrix(F, ’F val.tex’)
90 matrix2latexmatrix(Gy, ’Gy val.tex’)
91 matrix2latexmatrix(Juu, ’Juu val.tex’)
92 matrix2latexmatrix(H n, ’H val.tex’)
93 matrix2latexmatrix(L, ’L val.tex’)
94 matrix2latexmatrix(L avg,’Lavg val.tex’)
95 matrix2latexmatrix(L w, ’Lw val.tex’)

60

C THE MATLAB SCRIPT

96

97 %% Null Space Method
98 %H null = null(F’);
99 %L null = (1/(6*length(y)*length(d)))*...

100 %(norm(Juuˆ0.5*(H null*Gy)ˆ(−1)*H null*Y,’fro’))ˆ2;
101

102 %% Testing
103 H2 = H/norm(H,’fro’) ;
104 L w2 = 0.5*(svds(Juuˆ0.5*(H2*Gy)ˆ(−1)*H2*Y,1,’L’))ˆ2 ;
105 H3 = H/norm(H) ;
106 L w3 = 0.5*(svds(Juuˆ0.5*(H3*Gy)ˆ(−1)*H3*Y,1,’L’))ˆ2 ;

../matlab/script.m

61

D NIFTY TRIFLES

D Nifty Trifles

D.1 Python: Autovivification

For storing and easily having available the different temperatures associated with,
for instance, Tin, using nested dictionaries come in handy. Python has no intuitive
native way of nesting dictionaries. However, the programming language Perl has a
nice feature called autovivification [Ref. 27]. This can be implemented in Python
by adding the class AutoVivification, given in Listing 19.

1

2 class AutoVivification(dict):
3 """Implementation of perl’s autovivification feature."""
4 def getitem (self, item):
5 try:
6 return dict. getitem (self, item)
7 except KeyError:
8 value = self[item] = type(self)()

Listing 19: Perl’s autovivification feature as a python class.

D.2 Python: Pretty Float

Printing Python lists when the lists contain multiple digits can produce fairly un-
readable printouts. Defining a PrettyFrint class, as done in Listing 20 provide the
possibility of mapping a list with PrettyPrint producing user defined formatting.

1

2 class pf(float):
3 ’’’ Class for printing readable lists.’’’
4 def repr (self):

Listing 20: A PrettyFloat class.

D.3 make: Makefile Script

GAMS is a command line program which is run through a command shell. When
working with numerous files, it becomes convenient to automate the process of
running .gms files if their corresponding .lst file is out of date. To do this, the
make language comes in handy.

62

D.3 make: Makefile Script D NIFTY TRIFLES

A Makefile script was written which contains information about where to look
for .gms and .lst files. The command make then checks if the time stamp on the
.lst file is out of date compared to the .gms file, and if necessary runs the .gms

file to update its output file. The file is run by, in a command shell, standing in
the folder where the Makefile is located and typing the command make.

The Makefile script is given in Listing 21.

1 all : *.lst
2 @exit 0
3

4 %.lst : %.gms
5 @tput setaf 6; \
6 echo "Target = $(@)"; \
7 echo "Depend = $(<)"; \
8 tput sgr0; \
9 gams $(<) O=$(@)

Listing 21: Makefile script used to automatically update .lst files.

63

E AN OPTIMIZATION EXAMPLE WITH GAMS

E An Optimization Example with GAMS

In the process of familiarizing with the GAMS programming language, an exercise
from the course “TKP10: Advanced Control” at the Norwegian University Of
Science and Technology (NTNU) was solved using GAMS. The exercise text is given
below. The proposed GAMS script is given in Listing 22.

Product specification: 1 kg s−1 gasoline with an octane number of at least 98 and
max. 1 % benzene. Max. production rate of stream 1 is 0.4. Assume linear mixing
for octane numbers.

Table E.1: Data for the octane number mixing problem

Stream Octane # Benzene cont. [%] Price $/kg

1 99 0 0.1m̂1

2 105 0 0.2
3 95 0 0.12
4 99 2 0.185

1 $TITLE Ex1
2 $OFFSYMXREF
3 $OFFSYMLIST
4

5 OPTION SOLPRINT = ON ;
6

7 SETS
8 m flows / 1*4 /
9 i(m) subset / 2*4 /
10 ;
11

12 PARAMETERS
13 OCT(m) the values of the octane numbers
14 / 1 99 ,
15 2 105 ,
16 3 95 ,
17 4 99 /
18 BENZ(m) the values of benzene content in the flows
19 / 1 0 ,
20 2 0 ,
21 3 0 ,
22 4 0.02 /
23 P(m) the prices of the different flows in dollar per kg
24 / 1 0.1 ,
25 2 0.2 ,
26 3 0.12,

64

E AN OPTIMIZATION EXAMPLE WITH GAMS

27 4 0.185 /
28

29 VARIABLES
30 COST
31 X(m)
32 ;
33

34 POSITIVE VARIABLES
35 X(m) flow rate of stream m
36 ;
37

38 EQUATIONS
39 E1,E2,I1,I2,I3
40 ;
41

42 *E1..COST =E= SUM(m, P(m)*X(m));
43 E1..COST =E= P(’1’)*(1+X(’1’))*X(’1’) + SUM(m$(ORD(m) NE 1), P(m)*X(m

));
44 *E1..COST =E= P(’1’)*(1+X(’1’))*X(’1’) + SUM(i, P(i)*X(i));
45 E2..1 =E= SUM(m, X(m));
46 I1..98 =L= SUM(m, X(m)*OCT(m));
47 I2..0.01 =G= SUM(m, X(m)*BENZ(m));
48 I3..0.4 =G= X(’1’);
49

50 MODEL JUPITER/ALL/;
51 SOLVE JUPITER USING NLP MINIMIZING COST;

Listing 22: Proposed solution with GAMS

65

