
Abstract

The purpose of this project was to investigate strategies for dynamic back-off
for control of active constraints. The distillation column model "Column A" was
chosen as a case system to study. Optimization of the column operation and
implementation of a control structure was performed before testing two variants
of back-off control of the distillate purity (which is an active constraint variable).
The idea was to apply P control to change the setpoint of the distillate purity xD
every time the disturbance reached its amplitude. This did not work out, but it
turned out that for this very simple case it was possible to continuously impose P
control to keep xD backed off from its constraint value.
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1 Introduction

To determine the optimal operation point of a process, the general approach is to
formulate a cost function and minimize it subject to certain constraints. Examples
of constraints can be maximum allowable temperature in the reactor, minimum
product purity and maximum flow rate. The optimal operating point typically
occurs where one or more variables are at their constraints. These are called
active constraints. If a process is to be operated optimally, a disturbance might
lead to the violation of active constraints. Sometimes an active constraint also
might be a hard constraint, which means that it never can be exceeded. An
example of this might be the explosion temperature in a tank. To avoid breaking
these constraints, it is necessary to apply back-off, which means that the setpoint
is kept a certain distance away from the constraint value. This does also mean
that you are moving away from the economically most beneficial operating point.
A way of minimizing the loss due to back-off, is to adjust the setpoint dynamically
instead of having a constant setpoint. This entails that you can impose a smaller
back-off when the disturbance is low, and thus move the operating point closer to
the active constraint.

1.1 Problem description

A distillation column was chosen as a case for investigating strategies for dynamic
back-off control. The existing model Column A (developed by Skogestad et. al),
which is modeled in Matlab and have Simulink interfaces, was used in this study.

The project consisted of the following tasks:

1. Optimize the operation of the column to obtain active constraints regions
(Reproduce the results of Jacobsen[3]/Leer[4])
2. Select a control structure and tune the controllers
3. Test strategies for dynamic back-off control of active constraints
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2 Background

2.1 Optimization

The general form of the optimization problem is formulated as follows:

min
u
J(u, x, d) (2.1)

subject to
f(x, u, d) = 0 (2.2)

and
g(x, u, d) ≤ 0 (2.3)

Where J is the economical objective function, f the process model equations and
g the process constraints. u are the degrees of freedom (manipulated variables)
that can be adjusted to minimize J , while d are the expected disturbances.

Different computational tools can be applied to solve the optimization problem.
One of them is the function fmincon in Matlab, which solves constrained nonlinear
optimization problems, starting at an initial estimate.

2.2 Distillation

Distillation is an important unit operation which is often used for studying pro-
cess dynamics and control, as a distillation column is a system itself. A typical
distillation column is shown in Figure 2.1. A binary mixture is fed to the column
and separated into light product (top) and heavy product (bottom).

2.2.1 Column A

Column A is a nonlinear model of a continuous distillation column, studied in sev-
eral papers by Skogestad and Morari. It separates a binary mixture into products
of 99% purity.

The following assumptions underlies the model, as described by Skogestad in [6]:
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Figure 2.1: A conventional distillation column with one feed and two products,
taken from Jacobsen[3]

1. Binary mixture
2. Constant pressure
3. Constant relative volatility
4. Equilibrium on all stages
5. Total condenser
6. Constant molar flows
7. No vapor holdup
8. Linearized liquid dynamics (but effect of vapor flow ("K2-effect") is included.)

2.3 Controller tuning

In this study, P and PI control will be applied. For tuning of PID controllers,
Skogestad has developed a set of simple tuning rules, namely the SIMC (Sim-
ple/Skogestad Internal Model Control) tuning rules[9].

For a PI controller the steps will be like this:

Step 1: Obtain a first order + delay model (FOPDT) that approximates the
process:
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g(s) = k

τ1s+ 1e
−θs (2.4)

Where g(s) is the process transfer function, k is the plant gain, θ is the effective
time delay and τ1 is the dominant lag time constant (additional time to reach 63%
of the response).

To obtain the FOPDT model, a step response experiment is performed: make
a step change in the input u and plot the output y. Using this plot, the parame-
ters can be obtained:
Steady-state gain:

k = ∆y∞
∆u (2.5)

Where ∆y∞ is the total change in the output, and ∆u is the step in the input.
τ1 is found as the time where the response reaches 63% of its final value:

y63% = y0 + 0.63 ·∆y (2.6)

Step 2: Obtain the controller settings for the PI controller:

c(s) = Kc · (1 + 1
τIs

) (2.7)

Controller gain:

Kc = 1
k′

1
(θ + τc)

(2.8)

Integral time:

τI = min(τ1, 4(τc + θ)) (2.9)

k’ is the slope after response "takes off", and is calculated as follows:

k′ = k

τ1
(2.10)
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For an integrating process, k’ is calculated directly from:

k′ = ∆y
∆t ·∆u (2.11)

τc is a tuning parameter that needs to be selected. Skogestad[9] states that a
small τc should be chosen for fast speed of response and good disturbance re-
jection, and a large τc for stability, robustness and small input usage. The first
corresponds to tight control, the latter to smooth control.

2.4 Dynamic back-off

As described in the introduction, the back-off b is the difference between the set-
point and the constraint value:

b = |yconstraint − ys| (2.12)

This is shown visually in Figure 2.2. As back-off results in economical loss, it would
be beneficial to at all times keep the back-off at a minimum instead of having a
constant setpoint (as is the case in Figure 2.2). Dynamic back-off will require a
controller that can adjust the setpoint of the output variable subject to the effect
of disturbances.
The most direct approach will be to apply feedforward control where the distur-
bance is measured directly and used to give the new setpoint, or feedback control
where the response in the output (subject to a disturbance) is measured and used
to give the new setpoint.

The magnitude of the required back-off depends on whether the active constraint
is soft or hard, as mentioned in the introduction. Soft and hard constraints can
be described as following:

1. Soft constraint: A constraint that can be violated dynamically, which means
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Figure 2.2: Illustration of back-off (Aske, 2003 [1])

that it can be violated as long as the average value of the output is satisfactory.
Example: Product purity.

b = bias = the steady-state measurement error

2. Hard constraint: A constraint that cannot be violated dynamically, for
example the explosion temperature in a tank.

b = bias + maximum dynamic control error
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3 Optimization and control of the column

3.1 Column description

3.1.1 Operating conditions

The operating conditions are given in Table 3.1 and are the same as for the Case
1a studied by Leer[4]. The column has 41 stages (40 theoretical), where stage 20
represents the feed.

Table 3.1: Operating conditions for Column A

Variable Value
α 1.5
zF 0.5
F variable 0-1.6 mol/s
pF 1 $/mol
pB 1 $/mol
pD 2 $/mol
pV 0.01-0.02 $/mol

xB,max 0.010
xD,min 0.950
Vmax 4.008 mol/s

3.1.2 Degrees of freedom

A distillation column with a given feed and pressure will have four dynamical
degrees of freedom, according to Skogestad, Lundström, Jacobsen (1990) [2]. The
levels in the condenser and the reboiler need to be controlled dynamically, but
have no steady-state effect. Thus, there are two degrees of freedom left to control
the compositions of the distillate and the bottoms product, and Jacobsen[3] chose
the vapor boilup V and the reflux L.

U = [L V ] (3.1)

7



3.1.3 Disturbances

For a distillation column, the feed conditions are important disturbances. In this
case study the only disturbances are the feed flow rate F and the energy cost pV .

d = [F pV ] (3.2)

3.1.4 Constraints

There are three constraints:

1. The purity of the distillate has to be at least 99%
2. The fraction of light component in the bottom has to be equal to or smaller
than 1%
3. The maximum boilup Vmax cannot exceed 4.008 mol/s

3.2 Optimization

For a single distillation column with one feed stream and two products, no side
streams and no heat integration, the cost function may be written[3]:

J(u, d) = pFF + pV V − pDD − pBB (3.3)

Then the optimization problem becomes:

min
u
J(u, d) = pFF + pV V − pDD − pBB (3.4)

subject to:
xB ≤ xB,max (3.5)

xD ≥ xD,min (3.6)

8



V ≤ Vmax (3.7)

The optimization was carried out using the optimizer fmincon in Matlab. The
scripts are attached in Appendix A.

The purpose of the optimization was to reproduce the active constraint regions
map (Leer, 2012 [4]), shown in Figure 3.1. Even though an identical Matlab code
was used, the values were not corresponding accurately, and xD did not become
active in all regions. Also when running scripts obtained from Minasidis[5] that
should result in exactly the same values as Leer’s, the results were not exactly the
same.
The further work was therefore based on Leer’s values. The optimization results
for selected variables are presented in Table 3.2, for comparison with Leer’s results
and the values obtained with Minadisis’ scripts.

Table 3.2: Selected optimal values, comparison with the results from Leer[4] and
Minasidis[5]

Haarsaker Leer Minasidis
Region I II III I II III I II III

F [mol/s] 1.2 0.7 1.4 1.2 0.7 1.4 1.2 0.7 1.4
pV [$/mol] 0.012 0.018 0.002 0.012 0.018 0.002 0.012 0.018 0.002
L[mol/s] 2.6712 1.6093 3.2760 2.7364 1.3275 3.2760 2.7337 1.5520 3.2751
V [mol/s] 3.2970 1.9689 4.0080 3.3631 1.6402 4.008 3.3604 1.9169 4.0071
D[mol/s] 0.6258 0.3596 0.7320 0.6267 0.3128 0.7320 0.6267 0.3649 0.7320
B[mol/s] 0.5742 0.3404 0.6680 0.5733 0.2872 0.6680 0.5733 0.3351 0.6680

xD 0.9500 0.9638 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500
xB 0.0096 0.0100 0.0068 0.0088 0.0100 0.0069 0.0081 0.0098 0.0068

J [$/s] -0.5862 -0.3242 -0.7240 - - - -0.5863 -0.3304 -0.7240

As Figure 3.1 shows, the mole fraction of the heavy component in the distillate is
always at its constraint value, i.e. it is always active. In region II, also the mole
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Figure 3.1: Active constraints regions, as found by Leer (2012)[4]

fraction of heavy component in the bottom becomes active. Vmax becomes active
in region III, and when F exceeds 1.48 the operation becomes infeasible.
Region III is selected for this study, as keeping both xB and xD at their constraint
values eliminates the need of finding a self-optimizing variable.

3.3 Control structure

According to [6], a particular way of stabilizing the column is the LV configuration,
where the distillate flow D is used to control the condenser holdup MD and the
bottoms flow B to control the reboiler holdup MB. The existing Simulink model
colas_lv_nonlin has P controllers with gain -10, but no composition loops closed.
Then L is left to control xD and V to control xB.

A couple of small modifications were made to the Simulink model before start-
ing the work with the control structure, as can be seen in Appendix B.
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Because the purity of the distillate usually is the most critical issue, the distillate
composition controller will be tuned before the bottoms composition controller,
applying PI control in both cases.

3.4 Generating steady-state values

Since the column initially was configured to yield xB = 0.01 and xD = 0.99, new
steady-state values have to be generated for the case with xB = 0.01 and xD = 0.95.
This is done by applying and tuning the two PI controllers, saving the steady-state
values and loading the new values as initial values. Then the controllers are tuned
again. The new steady-state data is attached in Appendix C, and the new setpoints
for MB, MD, L and V are shown in Table 3.3:

Table 3.3: Setpoints for key variables for different distillate purity.

xD = 0.99 xD = 0.95
Lnom 2.7063 2.2125
Vnom 3.2063 2.7337
MB nom 0.5000 0.5962
MDnom 0.5000 0.6048

3.5 Tuning of composition controllers

The controllers were tuned according to the SIMC tuning rules described in Sec-
tion 2.3. See Appendix D for plots and calculations.

Distillate composition controller: Kc = 51, τI = 4

Bottoms composition controller: Kc = −35, τI = 16
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4 Back-off strategies

After finding the active constraints regions, and implementing and tuning con-
trollers, back-off strategies can be investigated. In order to stay i Region II where
both xD and xB are at their constraint values, pV is kept constant at 0.18 $/mol.
The only disturbance will then be the feed rate F, which must never exceed about
1.4 mol/s in order to not make the operation infeasible.
To investigate back-off strategies, a disturbance in the feed has to be created.

4.1 Disturbance

A sinusoidal disturbance was constructed and imposed on the nominal feed rate
of 1 mol/s. The disturbance has a constant frequency, but sequences of varying
amplitude. The disturbed feed is plotted in Figure 4.1, while the corresponding
response in xD is shown in Figure 4.2. The amplitudes of F and xD for each
sequence are listed in Table 4.1. For xD there were some variations in the am-
plitude within each sequence, so the largest amplitude during each section is listed.

Table 4.1: Amplitude of the disturbed feed and the corresponding response in xD

Sequence Feed amplitude xD amplitude (max)
1 1 0
2 0.20 0.0010
3 0.30 0.0014
4 0.15 0.0007
5 0.03 0.0002
6 1 0
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Figure 4.1: Sinusoidally disturbed feed rate, where Fnom=1.0 kmol/s
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Figure 4.1
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4.2 Back-off controller

A feedforward control strategy for the back-off control is investigated. The idea is
to continuously monitor the disturbed feed rate, and whenever it reaches its am-
plitude, adjust the setpoint for xD depending on the magnitude of the amplitude.

When dF

dt
= 0 (4.1)

Calculate A = |Fnom − F | (4.2)

The new setpoint for xD is then calculated from:

xD,sp = xnomD,sp + (constant · A) (4.3)

This is equivalent to implementing a P controller with A as the gain.

Two cases are studied; the first one with the back-off controller always operat-
ing, and the second one with the back-off controller only operating when the
disturbance was larger than a threshold.

4.3 Case study I: Back-off controller always operating

The idea of the first case study is to keep the setpoint at the constraint value and
always keep the back-off controller operating. This means that the setpoint always
will be larger than the constraint value, unless there is no disturbance at all.
Figure 4.3 shows a simplified Simulink block diagram with emphasis on the back-
off control structure. The complete block diagrams are attached in Appendix E.
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Figure 4.3: Back-off control implementation in Simulink

4.4 Case study II: Implying back-off only when the distur-
bance is sufficiently large

The idea of the second case study is to keep the nominal setpoint a little higher
than the constraint value, such that there will be no need for back-off when the
disturbance is small. Hence, the back-off controller will only be operating when
the amplitude exceeds a threshold.
For this case study, the threshold is set to 0.29, which is slightly lower than the
amplitude of the third and largest feed sequence. This will preferably make the
back-off controller operate only during this feed sequence.

The nominal setpoint for xD has to be set such that none of the other feed se-
quences will make xD violate its constraint value. As seen from Table 4.1, the
second largest feed sequence leads to a maximum amplitude of 0.001 in xD, such
that the nominal setpoint for xD must be increased to 0.95 + 0.001 = 0.951.
The control structure for Case II is the same as for Case I, with the only difference
that xD,nom is set to 0.951 instead of 0.95, and that a switch that only passes the
feed through to the controller when the amplitude is above a certain threshold, is
added.
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5 Results

5.1 Back-off controller

The idea of adjusting the setpoint only when F reaches its maximum did not work
out. The switch that was applied to send F as an input to the P controller only
when the derivative was equal to zero, did never pass anything through. However,
by removing the switch such that P control always is imposed, the controller proved
to be able to change the setpoint of xD such that xD never violated its constraint
value. This is described further in Case I.
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Figure 5.1: Response in xD with the back-off controller from Case I (solid line)
compared to response with no back-off controller (dashed line)
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5.2 Case I

The minimum gain of the P controller that was required to never break the con-
straint value for xD was found by trial and error to be 0.012.
Hence, the setpoint for xD is calculated as follows:

xD,sp = 0.95 + 0.012A (5.1)

The setpoint change with the Case I P controller is tracked in Figure 5.2 together
with ideal setpoint change for Case I. The response in xD subject to the disturbance
is shown in Figure 5.3 together with the response if the setpoint was changing
ideally. Finally, the cost function is plotted in Figure ??
The second plot shows that the back-off controller - in this specific case - is able
to change the setpoint of xD such that it never drops below 95% purity.
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Figure 5.2: Change in the setpoint for xD with the Case I controller vs. ideal
setpoint change for Case I (dashed line)
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5.3 Case II

With the threshold for the P controller set to A = 0.29, and xD,sp = 0.951, the
gain for the P controller was found by trial and error to be 0.038.
The setpoint for xD is then calculated from:

xD,sp = 0.951 + 0.038A where A > 0.29 (5.2)

The setpoint change with the Case I P controller is tracked in Figure 5.5 together
with ideal setpoint change for Case II. The response in xD subject to the dis-
turbance is shown in Figure 5.6 together with the response if the setpoint was
changing ideally. Finally, the cost function is plotted in Figure 5.7.

0 20 40 60 80 100 120
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

time [min]

x
D

,s
p

 

 

Setpoint change with Case II controller

Ideal setpoint change for Case II

Figure 5.5: Change in the setpoint for xD with the Case II controller vs. ideal
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Figure 5.7: Cost function

5.4 Comparing the case studies

The responses in xD in Case I and Case II are plotted together in Figure 5.8, while
the cost function J for both cases is plotted in Figure 5.9. Table 5.1 shows the
average value of xD and J for both cases, together with the corresponding values
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for ideal setpoint change in each case.
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Figure 5.8: Response in xD in Case I (dashed line) and Case II (solid line).
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Figure 5.9: Cost function J for Case I (dashed line) and Case II (solid line).
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Table 5.1: Average values of xD and J over the simulation time interval

Case I Case II

w/SP controller w/ideal SP change w/SP controller w/ideal SP change

xavD,sp 0.9513 0.9508 0.9537 0.9511

Jav -0.4578 -0.4784 -0.1951 -0.4622

6 Discussion

Even though the idea of applying P control only when F reaches its maximum
did not work out, for this specific case it was shown that a continuously working
back-off P controller was sufficient to adjust the setpoint of xD such that it never
violated the constraint value. However, this might be considered a "toy case",
where the disturbance was created such that P control actually was sufficient all
the time. For a more realistic feed, simple P control will probably not be sufficient.
For example, if there is a positive step in the feed, xD is immediately brought far
below its constraint value.
The controller in Case II lead to the least profitable operation, as might be ex-
pected. However, it is usually necessary to include a "safety margin" (such as here
with a nominally higher setpoint) when controlling hard constraints, so this might
be a more realistic case.
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7 Conclusion and further work

From this study there are not many conclusions that can be drawn, except from
the fact that the amplitude strategy did not work out, and that for this certain
disturbance sequence a simple P controller was sufficient to keep xD dynamically
backed off from its constraint value. So for disturbances that show some degree
of regularity, it might be possible to apply a P controller based on experience to
keep the controlled variable dynamically backed off from the constraint.

However, dynamic back-off is a difficult subject to address, and the work with
this project have been essential for gaining insight on the topic and has laid the
foundation for the work I will carry out in the master thesis in the spring semester
of 2013. It is possible that a pH neutralization process will studied instead of
a distillation column, but the task will independent of the system be to further
investigate strategies for dynamic back-off.

For example, for the disturbance in this case, it might be possible to monitor
the amplitude of the feed, and whenever a changed amplitude is detected, use this
to give a new setpoint, and keep this setpoint constant until the amplitude changes
sufficiently.

Another approach might be to try to implement a feedback strategy, or do do a
more statistical approach; such as counting incidents when xD is below a warning
limit and change the setpoint when there has been a certain number of subsequent
incidents.

The disturbance that was constructed for this project was very simple, and in
the further work more realistic disturbances should be considered.
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Appendix A Matlab codes used for optimization

A.1 Main script
The fmincon routine was used to optimize the operation of Column A:

clear all
clc

% x = [X U]’, where X = [mole fractions (1 to 41) ; holdups (42 to 82)]
% U = [LT VB D B F zF qF]

%Disturbances: p_v, F, zF and qF

p_v = 0.002; % 0.01 - 0.02 mol/s

prices = [p_v, 1, 1, 2];

F = 1.4 ; % 1.0 - 1.6 mol/s
zF = 0.5;
qF = 1;

d = [F zF qF]’;

%Inequality constraints (upper/lower bounds):
xB_max = 0.01; % (1) x_heavy >= 0.99 --> x_light <= 0.01. xB = X(1)
xD_min = 0.95; % (2) x_light >= 0.95. xD = X(41)
Vmax = 4.008; % (3)

%Upper and lower bounds:
lb = zeros(89,1); % cannot have negative values
lb(41) = xD_min; % Ineq. constraint 1. xD = X(41)
lb(83) = 0.1;
lb(84) = 0.1;

ub = ones(89,1); %no fractions can be larger than 1.

ub(1) = xB_max; % Ineq. constraint 2. xB = X(1)

i=42:82;
ub(i) = inf; %maximum holdups

%i=83:89;
%ub(i) = 10; %upper bounds for the U’s

%i=84;
%ub(i) = Vmax; % Ineq. constraint 3: vapor streams cannot be larger than Vmax

ub(83) = Vmax; % Ineq. constraint 3: vapor streams cannot be larger than Vmax
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ub(84) = Vmax;
ub(85) = F;
ub(86) = F;
ub(87:89) = 10;

%Controller:
par.KcB = 10;
par.KcD = 10;
par.MDs = 0.5;
par.MBs = 0.5;
par.Ds = 0.5;
par.Bs = 0.5;

%initial guess
x0 = 0.5*ones(89,1);
x0(1:41) = linspace(0.01,0.95,41);
x0(87)=F; x0(88)=zF; x0(89)=qF;

options = optimset(’TolCon’, 1e-8,’TolFun’, 1e-8, ’TolX’, 1e-8,’Algorithm’,’active-set’);
[x,fval,Eflag] = fmincon(@(x)objfunc(x,prices),x0,[],[],[],[],lb,ub,@(x)nonlinconstr(x,d,par),
options);
Eflag

disp(’Fraction of light component on each stage:’)
disp(x(1:41))

disp(’Holdups:’)
disp(x(42:82))

disp(’LT’)
disp(x(83))

disp(’VB’)
disp(x(84))

disp(’D’)
disp(x(85))

disp(’B’)
disp(x(86))

disp(’xB’)
disp(1-x(1))

disp(’xD’)
disp(x(41))
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disp(’J’)
disp(fval)

disp(’Eflag’)
disp(Eflag)

A.2 Nonlinear constraints
function [c, ceq] = nonlinconstr(x,d,par)

NT=41;

X=x(1:2*NT); % i = 1:82
U = x(2*NT+1:end); % i = 83:89, U = [LT VB D B F zF qF]
MB = X(NT+1); % MB = X(42)
MD = X(2*NT); % MD = X(82)
LT = U(1);
VB = U(2);
D = U(3);
B = U(4);

%Controller:
KcB = par.KcB;
KcD = par.KcD;
MDs = par.MDs;
MBs = par.MBs;
Ds = par.Ds;
Bs = par.Bs;

ceq = [colamodoriginal(0,X,U) ; U(5:7)-d ; D-KcD*MD-(Ds-MDs*KcD) ; B-KcB*MB-(Bs-MBs*KcB)];
%D-KcD*MD-(Ds-MDs*KcD) ; B-KcB*MB-(Bs-MBs*KcB)
%MB-0.5 ; MD-0.5
%U(5:7)-d

c = [];

end

A.3 Object function

function f = objfunc(x,prices) %takes in x = [X U]’ and vector with prices

%Conversion of the state vector variables to standard notation:
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d = x(87:89); % d = [F zF qF]’
F = d(1);

U = x(83:89); % U = [LT VB D B F zF qF]
VB = U(2);
D = U(3);
B = U(4);

%Prices:
p_v = prices(1);
p_f = prices(2);
p_b = prices(3);
p_d = prices(4);

%Cost function:
f = p_f*F + p_v*VB - p_b*B - p_d*D;

Appendix B Modifications of Simulink interface
1. Changed ODE-solver from ode45s to ode15s.

2. Changed the demux-block from [1,1,1,1,41] to [1,1,1,1,82]

3. Modification 1 of colas.m:

Changed
sys(5:NT + 4,1) = x(1:NT);

to
sys(5:2*NT + 4,1) = x;

4. Modification 2 of colas.m:
Changed

sys = [2*NT, 0, NT+4, 7, 0, 0];

to
sys = [2*NT, 0, 2*NT+4, 7, 0, 0];

Appendix C Steady-state data for Column A
How to load the new steady-state data:
Xinit = Comp(end,:)’;
load(’cola_init.mat’);
save(’cola_init.mat’,’Xinit’);
Xinit=xinit;
save(’cola_init.mat’,’Xinit’);
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Table C.1: Xinit: Initial values for Column A with xD = 0.95 instead of xD=0.99

Fractions of heavy component, x(i) Molar holdups, M(i)

Variable Value Variable Value Variable Value Variable Value

x(1) 0.010000 x(21) 0.448739 M(1) 0.596224 M(21) 0.468890

x(2) 0.014191 x(22) 0.455460 M(2) 0.468890 M(22) 0.468890

x(3) 0.019477 x(23) 0.463746 M(3) 0.468890 M(23) 0.468890

x(4) 0.026113 x(24) 0.473901 M(4) 0.468890 M(24) 0.468890

x(5) 0.034393 x(25) 0.486252 M(5) 0.468890 M(25) 0.468890

x(6) 0.044649 x(26) 0.501139 M(6) 0.468890 M(26) 0.468890

x(7) 0.057239 x(27) 0.518888 M(7) 0.468890 M(27) 0.468890

x(8) 0.072521 x(28) 0.539773 M(8) 0.468890 M(28) 0.468890

x(9) 0.090822 x(29) 0.563977 M(9) 0.468890 M(29) 0.468890

x(10) 0.112386 x(30) 0.591532 M(10) 0.468890 M(30) 0.468890

x(11) 0.137315 x(31) 0.622276 M(11) 0.468890 M(31) 0.468890

x(12) 0.165508 x(32) 0.655816 M(12) 0.468890 M(32) 0.468890

x(13) 0.196609 x(33) 0.691519 M(13) 0.468890 M(33) 0.468890

x(14) 0.229993 x(34) 0.728549 M(14) 0.468890 M(34) 0.468890

x(15) 0.264791 x(35) 0.765931 M(15) 0.468890 M(35) 0.468890

x(16) 0.299970 x(36) 0.802651 M(16) 0.468890 M(36) 0.468890

x(17) 0.334454 x(37) 0.837770 M(17) 0.468890 M(37) 0.468890

x(18) 0.367246 x(38) 0.870505 M(18) 0.468890 M(38) 0.468890

x(19) 0.397544 x(39) 0.900299 M(19) 0.468890 M(39) 0.468890

x(20) 0.424801 x(40) 0.926829 M(20) 0.468890 M(40) 0.468890

x(41) 0.950000 M(41) 0.604776
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Appendix D Tuning of controllers

D.1 Tuning of distillate composition controller

Making a 3% step change in the input L and plotting the response of the output
xD:

Figure D.1: Controller 1, 2nd tuning

Calculating the tuning parameters:

k = 0.9916− 0.9500
0.03 · 2.234544 = 0.0416

0.067066 = 0.018546 (D.1)

63% of response:

y63% = y0 + 0.63 ·∆y = 0.9500 + 0.63 · 0.018546 = 0.9762 (D.2)
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This corresponds to τ1 = (40.31− 10) min = 30.31 min

k′ = 0.598813
30.31 = 0.01976 (D.3)

Setting τc = 1:

Kc = 1
0.01976

1
(0 + 1) = 50.62 (D.4)

τI = min(30.31, 4τc) = 4 (D.5)

Closing the loop and making a step in the setpoint for xD from 0.95 to 0.97 to test
the performance of the controller:

Figure D.2: Controller 1, 2nd tuning, sp change
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D.2 Tuning of bottoms composition controller

Making a -3% step change in the input V and plotting the response of the output
xB:

Figure D.3: Controller 2, 2nd tuning

Calculating the tuning parameters: Integrating process:

k′ = ∆y
∆t ·∆u = 0.00146

2.5 · −2.5 = −0.007121 (D.6)

Setting τc = 4:

Kc = 1
−0.007121

1
(0 + 1) = −140.43/4 (D.7)

τI = 4τc = 16 (D.8)
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Closing the loop and making a step in the setpoint for xB from 0.010 to 0.015 to
test the performance of the controller:

Figure D.4: Testing the performance of the controller

Choosing a larger τc for this controller (smoother control) gave better control of
xD, which is the most important variable to control in this case. This can be seen
in Figure D.5.
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Figure D.5: Testing the effect of the value of τc on the response in xD. Dashed
line: τc = 1. Solid line: τc = 4

Appendix E Simulink block diagrams
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Figure E.1: Simulink block diagram for Case I
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Figure E.2: Simulink block diagram for Case II
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