
1 Abstract

This report presents optimization and control structure suggestions for a

model of petroleum production wells. The model presented in the report

is based the semi-realistic model of the Troll west oil rim form the work of

Gunnerud and Foss(2009).

With active capacity constraints maximization of oil production defined

as the optimization objective, an optimization routine that works well and

in compliance with model specifications and optimization objective has been

developed.

In the report, disturbance of well-composition was found to affect the

set-points for optimal operation. The null space method has been applied in

search for a self-optimizing structure for the model. By loss evaluation we

have obtained suggestions for a self optimizing structure that would give a

loss less than one third of what obtained by keeping the control vales at the

at the original position under impact of disturbances. This implies that a

further evaluation of self-optimizing control structures for the model could

be interesting.
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3 Introduction

Increasing the oil recovery from existing reservoirs is one of the greatest

challenges in oil production today. As the reservoir pressure drops produc-

tion difficulties arises and according to current estimations presented by the

Norwegian petroleum directorate 50% of the oil originally in place in the

reservoirs will be left under ground when production is ceased.

To maintain the pressure and oil dispersion in the reservoirs, injection of

water and/or gas are widely used methods. As a natural consequence to this,

however, the production of water and gas is also increased, which represents

a challenge both for the production facilities an for the environment.

The economical profit of increasing the recovery rate depends on the size

of the field as well as production costs and future oil prices. On important

oilfields where the recovery factor has been increased by 1% the gross value

would be as much as 16-10 billion NOK at an oil price of 570 NOK/barrel.

The paper can be divided in three parts. In the first part of this paper

we will present a model of petroleum production wells based the work of

Gunnerud and Foss(2009). In this part data form Troll has also been pro-

cessed and presented such that it can be applied in computation programs

as MATLAB.

In the second part we define the optimization objective: maximization

of oil production, and present the result obtained with active capacity con-

straints.

The third part we investigate the effect of disturbances and propose a

self-optimizing control structure for the model, found by applying the null

space method and loss evaluation.
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4 Model

The production process is dependent on the conditions in the reservoir, wells,

production pipeline as well as the separator. We therefore need a model that

describes all these relations. The model that will be presented in this report

describes:

1. The flow-pressure relations in four oil wells.

2. The pressure in the manifold.

3. The pressure drop in the production pipeline as a function of the flow

and flow composition.

4. Capacity constraints in the separator.

Figure 1: The figure shows the parts of the rig that will be described our
model .

Figure 1 shows which parts of the rim that will be relevant to – and

described in our model. The semi-realistic model of the Troll west rim is
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modelled in the numerical computing program MATLAB. As we look at a

RTPO problem and expect little change in the process conditions, the pro-

cess is modelled at steady state.

The model is based model equations from the work by Gunnerud and

Foss (2009) as well as two datasets that consist of flow- and pressure mea-

surements from the Troll west rim. The first dataset is used for modelling

the flow-pressure relations in the four wells and the second dataset is used

for modelling the pressure drop in the production pipeline.

In the following two sections we will elaborate on how the data was pro-

cessed and applied in our model. The first section will describe relations in

the wells and manifold, and the second part will describe relations in the

production pipeline and separator. Figure 2 shows the pressure- and flow

variables that are relevant to our problem. They are either given, or will be

calculated in the model. The variables are also listed in table 1 together with

an explanation.

Figure 2: The figure shows the relevant variables that are given or will be
calculated in the model.
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Table 1: Model Variables

Variables Definition

pWi Choke pressure in well i

qWij Flow of component j in well i

pM Manifold pressure

qPj Flow of component j in production pipe

pS Separator pressure

4.1 Wells and Manifold

The streams in the four wells are compositions of oil, gas and water. The

flow in each well can be controlled individually by a choke valve as illustrated

in figure 1. In our model the valve positions will be described in terms of

well pressures PW
i , which are the only variables in our system that can be

manipulated, i.e we have 4 degrees of freedom. The well flow- and composi-

tion is decided by the pressure in these valves. The four wells flow through

the manifold before entering the common production pipe.

Well Performance Curves From flow- and pressure measurements(Appendix

I) well performance curves(WPC’s) were generated for the four wells. The

available flow data is for pressures between 20 and approximately 100 bar,

so the WPC’s are therefore only valid in this pressure interval. To obtain

a continuous model, linear interpolation was applied between the measured

points. The flow-pressure relations in the respective wells shown in Figure 3

is further used to optimize the four well pressures in order to maximize the

production of oil.
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Figure 3: The figure shows the well performance curves for the respective
wells.

Manifold Constraints In the manifold we have our first model con-

straint. To ensure that the optimization will provide well pressures that are

physical feasible, we need to implement a pressure constraint in the manifold.

None of the well pressures(pressures upstream the choke) can be lower than

the pressure in the manifold, thus we have to set the constraint:

pM ≤ pW (1)

The manifold pressure is decided by the separator pressure and the pressure

drop in the production pipeline. The pressure in the separator is given and

is sat to be 20 bar. The pressure drop in the pipeline is calculated from a
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dataset of measured flow- and pressure drop relations. This method will be

explained in the section 3.2.

pM = pS +4pP (2)

4.2 Production Pipeline and Separator

In the production pipeline the streams from the four wells are mixed. This

means that both the total flow and the component flow will be a summation

of the flows in well 1 – well 4.

qPj =
∑
i

qWij (3)

There is also a pressure drop across the pipeline. The pressure drop will

vary with the flow and flow composition in the pipeline. 27000 combinations

of this non-linear relation have been measured and is provided as a second

dataset. The pressure drop in the pipeline will be a limiting factor in the op-

timization problem because it will decide the manifold pressure and, hence,

also our first constraint.

In the separator we find two more model constraints. These are the water

and gas capacities which will limit the the maximum total flowrate, thus also

the maximum oil flowrate.

Pressure Drop in Production Pipeline As mentioned above, the

pressure drop in the pipeline is dependent on the oil, gas and water flowrate.

To be able to use the provided data, it is structured in a 4-dimensional matrix

with the flowrate values of oil,water and gas at the x-,y- and z-axes respec-

tively.

As the dataset is discrete it is made continuous by linear integration
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between the measured points. The resulting model will for any given flow

and flow composition, which lies within the range of the dataset, provide a

pressure drop close to the realistic value.

Figure 4: The figure illustrates how oil,water and gas flowrate is related to
the pipeline pressure drop.

The colorbar in Figure 4 translates the colour-code into pressure drop

values. The pressure drop in our model ranges from approximately 20 bar to

180. From Figure 4 it is obvious that high flows corresponds to high pressure

drops. In the model presented in this report we will operate in the low- to

mid region, corresponding to a pressure drop between 20 and 60 bar.
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Capacity Constraints in the Separator The separator has a maxi-

mum capacity of processing of water and gas.

qPwater ≤ CMax
water (4)

qPgas ≤ CMax
gas (5)

As the amount of water and gas in the wells are relatively high, the

capacity constraints will also be limiting for the oil production.

5 Optimization

The general procedure for solving an optimization problem is approached by

3 steps:

1. Define the objective

2. Formulate objective function

3. Find variable values which give an optimum of this function

Define Objective When optimizing a system we first need to define

the objective. By defining the objective you define what you want to achieve

by the optimization, which for a production process is often to maximise

profit. When the optimization problem is solved the variable values will be

adjusted in order to satisfy this objective.

Define Objective Function When the object is decided the second

step is to make the objective function. The objective function is a system

of equations that describes relationships and constraints in the optimization

problem. These equations contain the variables that is manipulated to opti-

mise the objective function. In simple cases the objective function should be

maximized or minimized, which will be the case for our objective function.
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Variable Values The third step is to solve the set of equations in order

to maximize or minimize the objective function. The variables can only take

on values within a certain region termed the feasible region. This region is

defined by one or more constraint functions. The methods for solving the

function will depend on the model and on the complexity of the system. Our

optimization problem will be solved by nonlinear programming, a process

that will be described in the following section.

5.1 Nonlinear Programming(NLP)

Nonlinear programming(NLP) is the process of solving constrained nonlinear

optimization problems. That an optimization problem is nonlinear means it

has nonlinear objective and/or constraint functions, this requires a nonlinear

solver.

Given in equation 6 is the general form of a nonlinear programming prob-

lem:

Minxf(x) (6)

Subject to:

h(x) = 0 (Model equations)

g(x) ≤ 0 (Operational Constraints)

In equation 6 f(x) is the objective function to be minimized by optimiz-

ing the vector of continuous variables x. The inequality constraint functions

are given by the vector g(x), and the equality constraints by h(x). In our

problem these will represent the operational constraints and model equations
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respectively. Nonlinear programming is in general the procedure of finding

a a local minimum point x∗ for a feasible region defined by the constraint

functions.

Figure 5: The figure illustrates the procedure of NLP.

Figure 5 illustrates how the procedure of NLP works. The solution f(x∗)

has to be a value along the ”line” defined by the equality constraints h(x)

and at the ”right side” of the region defined by the inequality constraint g(x).

Satisfying these conditions the the solution should at the same time be in

the lowest possible point on the surface defined by f(x).
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Active constraints From figure 5 we see that the solution f(x∗) is not

in the lowest point of the surface f(x) – it is constrained by g(x∗), thus we

say that g(x∗) is an active constraint.

Optimality conditions In the reminder of this section we will gen-

eralize the concept of constrained minimization and describe the optimality

conditions referred to as Kuhn Tucker (KT) conditions. To simplify notation

we define the objection function as a Legrange function:

L(x, µ, λ) = f(x) + g(x)Tµ+ h(x)Tλ = 0 (7)

The vectors µ and λ are weights referred to as Kuhn Tucker multipliers.

The solution of the NLP satisfies optimality conditions referred to as the

Kuhn Tucker(KT) condition(Biegler et.al(1997)). Satisfying these conditions

are necessary for optimality.

1. Linear dependence of gradients

∇L(x∗, µ∗, λ∗) = ∇f(x∗) +∇g(x∗)Tµ∗ +∇h(x∗)Tλ∗ = 0 (8)

Satisfying the first condition ensures that the objective function is min-

imized within the linear and nonlinear constraints. In terms of the

illustration this means that the ball is at the lowest possible point –

balanced by gravitational and normal forces.

2. Feasibility of NLP solution

g(x∗) ≤ 0 , h(x∗) = 0 (9)
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The second condition ensures that the linear and nonlinear constraints

are satisfied.

3. Complementarity condition

µ∗Tg(x∗) = 0 (10)

The complimentary condition states that either the inequality con-

straint is inactive (g(x∗) < 0) and the corresponding multiplier(µ) is

zero, or, the constraint is active(g(x∗) = 0) and the multiplier can be

positive.

4. Nonnegativity of inequality constraint multipliers

µ∗ ≥ 0 (11)

The fourth condition ensures that the problem solution is on the right

side of the inequality constraint.
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5.2 Our Optimization Problem

We have a constrained nonlinear function which we want to solve such that

the amount of produced oil is maximized. Mathematically the problem can

be described as in equation 5.2.

Minx(−qPo (x)) (12)

Subject to:

Model equations:

QW
i = f(PW

i ,WPCi) i ∈ {1, 2, 3, 4}

QP =
∑
i

QW
i i ∈ {1, 2, 3, 4}

dP = f(QP
j ) j ∈ {water, gas, oil}

PM = P S + dP j ∈ {water, gas, oil}

Operational Constraints

PM ≤ PW
i i ∈ {1, 2, 3, 4}

P P
j ≤ CMax

j j ∈ {water, gas}

For solving our optimization problem we have used the MATLAB-solverfmincon.

fmincon attempts to find a constrained minimum of the objective function

by using a method referred to as nonlinear programming.
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5.3 Optimization Results

It is economical to set the capacity limit as close to the real production as

possible. The capacity constrain for water in the separator is set to 1800

[Sm3/day] which results in the production flow presented in table 2. The

gas capacity is adjusted close to the production flow of gas so that both con-

strains can be considered as active.

Table 2: Capacity constraints and optimized flow values

Capacity Constraints Production Flow

Gas 3800 3792

Water 1800 1800

Oil – 1189

With constraints as given in table 2 the optimized oil production is 1189

[Sm3/day]. This oil production can under the given conditions be attained

by setting the well pressures as listed in table 11.

Table 3: Optimized well pressures

Well 1 Well 2 Well 3 Well 4

Well pressure 109.00 76.72 58.47 76.53

5.4 Optimization Discussion

By comparing the optimal well pressures to the well performance curves in

figure 3 we see that a pressure of 109 bar in well 1 corresponds to a fully

closed valve. Figure 3 also shows that well 1 produces the largest gas flow

and at the same time has a relatively low oil composition. From these ob-

servations we can conclude that a closed valve in well 1 will agree with the
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objective of our optimization problem.

Further, we see that the optimal well pressure in well 3 is 58.47 which

corresponds to a valve position that is fully open. This result agrees with the

well performance curve in Figure 3 that shows that well 3 has lowest flow of

gas, and thus the highest composition of oil. Well 2 and well 4 have approx-

imately the same compositions and behaviour, and will therefore operate at

more or less the same optimal well pressure.

We can from these results conclude that the optimization routine works

well and in compliance with model specifications and optimization objective.

However, as mentioned in the previous part, the optimal well pressures corre-

spond to two valve positions that have been driven into full saturation. This

gives us two active constraints, and leave us with only two remaining degrees

of freedom.

From a control perspective it is desirable to have as many degrees of

freedom as possible, so for the following sections it should be kept in mind

to try to stay in a region where maximum one of the valve positions have to

stay fully opened/closed.
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6 System Disturbance

In a realistic case the well performance will decrease during production. The

wells will after some time of production produce a higher water and gas com-

position than what is presented in the well performance curves which is the

pressure-flow relations at production start. A change in the process condi-

tions implies that the values for optimal well pressures also will change as

illustrated in figure 6.

Figure 6: The figure illustrates the how process disturbence effects optimal
operating conditions.

Figure 6 illustrates how the optimal operational conditions shift under

impact of disturbances. Keeping the controlled variables at the their ”old”
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optimal values will make the process run suboptimal and therefore lead to

a loss. To keep the process at optimal operation, a frequent re-optimizing

of the system is needed. This is costly, time consuming, and requires a very

good model for process and disturbances.

To avoid re-optimizing it would also be beneficial to control variables

where the optimal point changes minimally due to the effect of disturbances.

Variables with this property are termed self optimizing variables. The con-

cept of self-optimizing variables will be elaborated on it the next section.

6.1 Self-optimizing Control

The idea of self-optimizing control is, as mentioned in the previous section,

to control certain variables that makes it possible to circumvent the whole

process of continuous re-optimization. We want to control variables which,

when held at a constant set-point, can keep the process close to the optimum

and this way keep the loss at an acceptable level.

The procedure of finding self-optimizing variables requires a process model

and a cost function to be minimized(Skogestad, 1999). A self-optimizing vari-

able should satisfy the following requirements:

1. Its optimal value is insensitive to disturbances i.e 4copt
4d

= small

2. It should be easy to measure and control

3. Its value should be sensitive to input changes i.e 4c
4u

= large

There is a handful methods for identifying self optimizing structure. Ex-

amples are: ”Brute force”, ”Maximum gain rule” ”Null space method” and

”Exact local method”.
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”Brute force” and ”Maximum gain rule” are easy and intuitive, how-

ever tedious methods. Here, one CV-candidate is held constant at the time,

while the loss and gain is calculated under the impact of the different dis-

turbances. The methods also requires that all CV-candidates are provided.

As the self-optimizing variable could be a ratio or a function as well as a

single measurement, this means that the result will depend strongly on the

process/control insight of the person applying the method.

With ”Null space method” and ”Exact local method” we find self-optimizing

variables as an optimal combination of measurements. The difference be-

tween the methods is that Exact local method takes account for both dis-

turbance and measurement noise where Null space method only accounts for

disturbance. Also, the Null space method needs to satisfy: ny ≥ nu + nd.

This is not the case for the exact local method.

As we can satisfy the criteria: ny ≥ nu +nd and only look at disturbance

in our problem,the Null space method is reasonable choice for evaluation

self-optimizing variables.

6.2 Null Space Method

The null space method is a method for finding candidate control variables(c)

for self-optimizing control. The variables may not only be single measure-

ments, but can be a function or a ratio of measurements. The idea is to find

a combination of measurements(y) that, at a constant set point, will keep

the process at its optimum even under impact of disturbances.

4c = h14 y1 + h14 y1 + ... = H 4 y (13)

Equation B shows that the control variable is a linear combination of the
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measurement vector y and H. The matrix H is a selection matrix where each

row sums to 1.

As we want to look at the measurement’s sensitivity to disturbance(d),

we define the optimal sensitivity matrix:

F =
δyopt

δdT
(14)

The H matrix that gives us an optimal combination of the measurements

lies in the null space of F such that:

HF = 0 (15)

By choosing this value for H, and fixing the value of c to its nominal

optimal value, it will give a zero loss for disturbances.

For the null space method the following assumptions are made:

A1: Only steady state operation is considered.

A2: Only disturbances with effect on steady state operation are included.

A3: We assume to have the same active constraints for all values of distur-

bances.

A4: Implementation error is disregarded.
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6.3 Disturbance evaluation

To see if implementation of a control structure could be relevant to our pro-

cess, it is interesting to look at how disturbances affect our process. In this

section follows an evaluation on how much the variation in well composi-

tions can effect our optimal set points. To simulate these conditions a −10%

disturbances is implemented in oil flow of all four wells respectively. The

notation together with an explanation of the disturbance implementations

are given in table 4.

Table 4: Disturbance nature and size
Disturbance nature Disturbance size

d1 oil flow in well 1 -10%

d2 oil flow in well 2 -10%

d3 oil flow in well 3 -10%

d4 oil flow in well 4 -10%

To see the individual effect of each disturbance, the oil flow will be de-

creased in one well at the time. The new optimal well pressures, manifold

pressure and product flow can then be compared with their nominal values.

The comparison is made in table 5.
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Table 5: Optimal values for disturbed process

Nominal value d1 d2 d3 d4

pW∗1 109.00 109.00 109.00 109.00 109.00

pW∗2 76.72 76.31 85.84 62.00 62.00

pW∗3 58.47 59.47 62.04 85.85 62.00

pW∗4 73.53 73.31 62.00 62.01 85.86

pM∗ 58.47 58.46 58.41 58.44 58.41

qP∗g 3792 3789 3800 3800 3800

qP∗w 1800 1800 1799 1799 1799

qP∗o 1189 1188 1159 1169 1160

ActiveConstraints qPw qPw qPg qPg qPg

From table 5 we see that a disturbance in well 1 has a negligible effect on

the process and on the optimal values of the well pressures. This is expected

as the optimal valve position in well 1 is fully closed. Disturbances in the

other well compositions gives, on the other hand, significant changes in the

optimal well pressures. This means that the process will operate suboptimal

if the valve positions are not adjusted, and implies that it could be useful to

look at a control strategy for the valves.

7 Loss Evaluations and Results

7.1 Applying Null Space Method to our Problem

Form table 5 we note that the active constraint region change for some of

the implemented disturbances. To apply the null space method , and to be

able to compare the results we need to remain in the same active constraint

region. Before proceeding with the analysis for the self optimizing variables
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we therefore need to define conditions where we will keep within the same

active constraint region, also as disturbances are implemented.

The two capacity constraints as equality constraints in stead of inequality

constraints as for the previous optimization. In other words we will control

the two constraints to be active:

qPwater = CMax
water (16)

qPgas = CMax
gas (17)

By controlling the two constraints we ensure that these always are active.

However, disturbance implementation can also cause other constraints to

become active, which will lead to an invalid solution(Assumption 3). To

keep away from the other active constraint regions we need to define a new

set of capacity limits. The new capacity constraints are given in table 6

Table 6: New capacity constraints in the separator

Separator Capacity

Gas flow 3300

Water flow 1600

With new capacity constraints and also a some smaller disturbance value,

we repeat the disturbance evaluation from section 6.3. The size and nature

of the disturbances implemented to the system is presented in table 7.
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Table 7: Disturbance nature and size
Disturbance nature Disturbance size

d1 oil flow in well 1 -7%

d2 oil flow in well 2 -7%

d3 oil flow in well 3 -7%

d4 oil flow in well 4 -7%

The details in the null space method calculations are given in Appendix

II. From these calculations we obtain four optimal CV’s:

c1 = [ 0.0031 −0.5773 −0.5773 −0.5773 0.0102 0 −0.00003 0]

c2 = [ 0 0 0 0 0 1 0 0]

c3 = [ 0.0031 0.9999 0.0018 0.0018 0.0018 0 − 0.00003 0]

c4 = [ 0 0 0 0 0 0 0 1]

The combination vectors c1 and c3 suggest to different a combination of

the measurements as self-optimizing variables, while c2 and c4 suggest to

keep qP∗g and qP∗o constant respectively.

Please note that the vector of c1 does not sum to one. This will be

discussed in the end of the report.

7.2 Evaluation by Loss Function

As we have two remaining degrees of freedom, we can use two of the mea-

surement combinations found above to keep the process as close to optimum
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as possible. To evaluate which combination that gives the best result we

look at the total loss for each combination. The loss is calculated for each

disturbance implementation by equation 18.

L = J(c, d)− J(copt(d), d) (18)

We first find the optimal values (given in [Sm3/day]) of the cost function

for the nominal point and for implemented disturbances.

Table 8: Optimal values for nominal and disturbed process

nom d1 d2 d3 d4

Jopt -1055.5 -1055.2 -1037.3 -1032.3 -1037.3

The same cost calculation is done for each variable combination and pre-

sented in table 9. We see that the combination of c2,c4 gives infeasible solu-

tions for disturbance in well 3 and well 4, and is therefore disregarded in the

loss evaluation.

Table 9: Optimal oil flow for all combinations of c

Jd1 Jd2 Jd3 Jd4

c1, c2 -1055.1 -1037.2 -1032.3 -1033.5

c1, c3 -1053.6 -1024.5 -1030.2 -1033.5

c1, c4 -1055.1 -1037.2 -1032.1 -1033.5

c2, c3 -1055.1 -1036.9 -1030.7 -1025.0

c2, c4 -1055.2 -1037.3 – –

c3, c4 -1055.1 -1036.9 -1030.7 -1025.0

PW,const
∗ -1055.2 -1032.4 -1028.2 -1032.4
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The loss for each combination is given in table 10. The total loss indi-

cates which combination of variables that keeps operating conditions closest

to optimum for the given disturbances. To be able to evaluate if control of

self-optimizing variables is beneficial, the total loss for process with constant

well pressures was also calculated.

Table 10: Loss for all combinations of c
Ld1 Ld2 Ld3 Ld4 Total Loss % Total Loss

c1, c2 0.1 0.1 0 3.8 4 0.000961 %

c1, c3 1.6 12.8 2.1 3.8 20.3 0.00489 %

c1, c4 0.1 0.1 0 3.8 4 0.000961 %

c2, c3 0.1 0.4 1.6 12.3 14.4 0.00346 %

c3, c4 0.1 0.1 1.6 12.3 14.4 0.00346 %

PW,const
∗ 0 4.9 4.1 4.9 13.9 0.00334 %
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7.3 Discussion of Results

The results imply a potential for implementation of a control structure in

our model. This is also the result that should be given the most focus in

this part, in stead of the individual values form the loss evaluation and the

suggestions of CV-combinations. When considering the following results one

should keep in mind that the c1-vector does not sum to zero, which can imply

that something could be wrong in this evaluation. In further work a more

detailed analysis of the problem should be done, which hopefully can provide

a loss evaluation and CV-suggestions with lower insecurity .

From Table 10 we see that the combinations that give the lowest total loss

is c1,c2 and c1,c4 implying that this would be the most beneficial structures

to implement. The control variable c1 is a part of both combinations. The

vector c1 keep a constant ratio between 6 of the 8 measurements, where c2

and c4 only keep one of the measurements constant constants.

From the results it can look like it is beneficial to control a ratio an a

constant at the same time. The cobmination of two constant measurements

c2,c4, gave an infeasible solution. This is reasonable as this combination

suggests keeping a constant gas- and oil rate, which are two variables that

highly depend on each other as the component ratio in each well is given for

a given pressure.

8 Conclusion and suggestion to further work

In the final part of this report we will give some concluding remarks as well

as some aspects and ideas on further work on this problem
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8.1 Concluding remarks

In this paper we have made a model of the flow-pressure drop relation in a

well-model based on data form the Troll west rig. As expected the general

trend was increasing pressure drop with increasing total flow, but there will

be slight differences depending on the flow composition.

Further an optimization problem has been defined, with objective to max-

imize the oil flow up from the reservoirs. The optimization routine developed

in MATLAB works well and in compliance with model specifications and op-

timization objective. The optimal well-pressures that were found at capacity

constraints CMax
water = 1800 and CMax

gas = 3800 are given in Table 11 :

Table 11: Optimized well pressures

Well 1 Well 2 Well 3 Well 4

Well pressure 109.00 76.72 58.47 76.53

From a disturbance evaluation it was concluded that disturbance in the

well compositions would effect the optimal operating set-points for our pro-

cess. In trying to find a self-optimizing structure for the well-model, the null

space method was applied to find suggestions for self-optimizing variables.

The loss was evaluated for combinations of the self-optimizing variables

found from the null space method. The loss evaluation implied that the

implementation of c1,c2 or c1,c4 would give the lowest loss, and more than

three times lower loss than with valve positions set at the original optimum.

This implies an economical potential in implementing a control structure in

the model.
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8.2 Further Work

The results and conclusion in this report suggests potential in looking at con-

trol structures for the model. It could be interesting to investigate further

on self-optimizing structures for the model, in attempt to find a structure

that could keep the operations close to optimal at a constant set-point. Fur-

ther, also control structures in different active constraint regions, and shift

between these, could be investigated.

However, as mentioned in the previous part, the c1-vector does not sum

to zero, which can imply that something could be wrong in this evalua-

tion. Before building further on these results, a more detailed analysis of the

problem should be done, which hopefully can provide a loss evaluation and

CV-suggestions with lower insecurity.
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B APPENDIX II - Null Space Calculation

Our candidates for self-optimizing variables are:

y =
∣∣∣ pW∗1 pW∗2 pW∗3 pW∗4 pM∗ qP∗g qP∗w qP∗o

∣∣∣ .

From simulations we find the following nominal values for our y-matrix(matrix

of measurements/candidates for self-optimizing variables):

ynom =
∣∣∣ 109.0000 85.5045 77.5209 63.9579 54.2464 3300 1055.5 1600

∣∣∣ .

Implementing the disturbance, we obtain new optimal values for the mea-

surements:

y(d)opt =

∣∣∣∣∣∣∣∣∣∣∣∣

109.0000 85.5045 77.5208 63.9580 54.2455 3300 1055.2 1600

109.0000 88.2364 69.7468 69.0002 54.1975 3300 1037.3 1600

109.0000 69.7469 88.2364 69.0000 54.2163 3300 1044.3 1600

109.0000 69.0000 69.7469 88.2364 54.1975 3300 1037.3 1600

∣∣∣∣∣∣∣∣∣∣∣∣
.

First we calculate the sensitivity matrix

F =
δyopt

δdT
(19)
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F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0

0 390.27 −225.10857 −235.77857

−0.00142857 −111.05857 153.07857 −111.05714

0.00142857 72.032857 72.03000 346.8357

−0.012857 −0.69857 −0.4300 −0.69857

0 0 0 0

−4.2857 −260.0000 −160.0000 −260.0000

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Further, we find the combination matrix H which lies in the null space of

F:

HF = 0 (20)

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0.0031 −0.5773 −0.5773 −0.5773 0.0102 0 −0.00003 0

0 0 0 0 0 1 0 0

0.999995 0.001789 0.001789 0.001789 −0.00003 0 0.0000001 0

0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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This gives us the following values for c:

c1 = [ 0.0031 −0.5773 −0.5773 −0.5773 0.0102 0 −0.00003 0]

c2 = [ 0 0 0 0 0 1 0 0]

c3 = [ 0.0031 0.9999 0.0018 0.0018 0.0018 0 − 0.00003 0]

c4 = [ 0 0 0 0 0 0 0 1]
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