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Abstract

In this report, the objective is to study how to tune PI controllers in a
decentralized control structure for multivariable systems. Robustness with
respect to (i) parameter changes, (ii) multivariable interactions including
opening and closing other loops and (iii) input saturation are tuning criteria.
The SIMC tuning rules are extended to the proposed ‘robust’ SIMC settings
which takes expected worst case operation into account. Use of decouplers
to maintain the robustness criteria are also discussed as well as tuning of
the PI controllers when the decouplers are added to the control scheme.

The proposed techniques are first tested on a simple multivariable sys-
tem, thereafter an analytic model of a high pressure vessel is derived and
the controllers are designed first for SISO cases and then for the complete
multivariable vessel.

Based on the different simulations, the proposed robust settings manage
to control the systems in a satisfactory manner, both in the nominal case and
in the worst case. Combined with a one-way decoupler all of the robustness
criteras are met.
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Chapter 1

Introduction

1.1 Motivation

With a continuous increase in computational capacity in computers, the
advanced model predictive control (MPC) scheme is applied in more and
more applications. Especially in the process industry, MPC is increasing its
installation base (Maciejowski, 2002). Nevertheless, traditional controller
schemes as the decentralized controller structure with individual PID con-
trollers is still an important topic. Often the MPC resides in a control layer
above the PID controllers where the outputs from the MPC is used as set-
points to the PID controllers. Many process plants can have thousands of
control loops, and if MPC is installed, only a selected set of control variables
and manipulated variables are used. It is therefore still an important issue
how to tune the PID controllers.

Even if a controller is tuned to have a desired response to setpoint
changes and with a small disturbance rejection, changes in conditions in
the process can make the controller perform poor or even make the process
unstable. In Seborg et al. (2004) a system is defined as robust if it provides
satisfactory performance for a wide range of process conditions and for a
reasonable degree of model inaccuracy. For smaller multivariable systems,
installation of a model predictive controller can be too costly. Yet, they can
be too coupled (the control loops depend on each other) to be controlled
by decentralized controllers. In these cases, use of decouplers can make the
loops independent enough of each other so that decentralized control can be
used.

If decentralized control is applied, the one loops ability to be robust
against opening and closing other loops can be an important factor. If not
satisfied, setting one controller to manual can destabilize the whole system.
If this ability is not possible to obtain with decentralized control due to
coupling, using decouplers is one solution. In addition, the control system
should be able to be robust against input saturation in the process inputs.

1



2 CHAPTER 1. INTRODUCTION

In the process industry the controlled variables (process input) are often
control valves and these are limited to the range 0%− 100% which are hard
constraints that cannot be violated.

1.2 Project outline

In Chapter 1 the SIMC tuning rule will be presented, and the proposed
robust settings is derived. The traditional decoupler named ideal decoupler
is presented, as well as a simplification of it, named simplified decoupler.
Next, the newer decoupler method named inverted decoupler, which is lesser
discussed in literature, is presented. The one-way decoupler which is a
partial inverted decoupler is also presented. Last, the effect of model error
when designing decouplers is briefly discussed.

In Chapter 2, the robust settings are tested on an multivariable example
with model error in an off-diagonal element. The different decouplers are
tested and PI controllers are designed for these decouplers.

In Chapter 3, a model for a two-phase high pressure vessel is derived.
First, SISO examples are studied and the robust settings are applied and
compared to regular SIMC settings with τc = θ. Next, the multivariable sys-
tem is studied and decentralized PI controllers are designed for the system.
The robustness criteria are tested with decentralized control with robust
settings and a one-way decoupler.

The robustness criteria used in this report are:

1. Robustness against parameter changes.

2. Robustness against multivariable interactions including opening and
closing other loops.

3. Robustness against input saturation.
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1.3 Abbreviations and nomenclature

List of abbreviations

MIMO Multiple Input Multiple Output
MPC Model Predictive Control
PI Proportional Integral
PID Proportional Integral Derivative
PRGA Performance Relative Gain Array
RGA Relative Gain Array
SIMC Simple/Skogestad Internal Model Control
SISO Single Input Single Output

Nomenclature

y(t) Process output, measured variable
u(t) Process input, manipulated variable
c(t) Controller output
g(s) Transfer function, SISO
G(s) Transfer matrix, MIMO

G̃(s) Model of the system G(s)
D(s) Decoupler
k(s) Controller, SISO
K(s) Controller, MIMO
Kc Controller gain
τI Integral time in controller
λ(s) relative gain
Λ(s) RGA
Γ(s) PRGA
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Chapter 2

Theory

In this chapter the SIMC tuning rule for first order plus time delay processes,
and for integrating plus time delay processes will be presented (Skogestad,
2003a). In Seborg et al. (2004) it is stated that the derivative (D) part of
PID controllers is often omitted in process industry control. Therefore, the
focus in this report will be PI controllers. Next, a modification of the SIMC
tuning rule which includes the worst case expected scenario is presented.
These robust settings will be somewhat slower for nominal operation, but
will be robust against changes in the process. In the last part, different
decoupling techniques are presented, including ideal decoupling, simple de-
coupling, inverted decoupling and one-way decoupling. Also, the effect of
process model error is discussed.

2.1 The SIMC tuning rule and the half rule

2.1.1 The SIMC tuning rule

The proportional integral (PI) controller is given by

k(s) = Kc
τIs+ 1

τIs
(2.1)

where Kc is the controller gain and τI is the integral time. Although only
two parameters, selecting good ones can be cumbersome and even impossible
if no systematic method is used. There are several tuning rules where these
parameters are determined by experiments or from a simple model of the
system. Several examples are listed in Seborg et al. (2004). One of these
tuning rules is the SIMC tuning rule (Skogestad, 2003a). It preforms well for
step changes and disturbance rejection (e.g. Skogestad (2003a) and Seborg
et al. (2004)). One of its advantages is its simplicity, with simple equations
and only one tuning parameter τc. This parameter is the desired closed loop
time constant where the closed loop desired transfer function from reference

5



6 CHAPTER 2. THEORY

to output is (y
r

)
desired

=
1

τcs+ 1
e−θs

where θ is the time delay in the system. For the first order process with
time delay

g(s) =
k

τ1s+ 1
e−θs

the SIMC-PI settings are (Skogestad, 2003a)

Kc =
1

k

τ1
τc + θ

=
1

k′
1

τc + θ
; τI = min{τ1, 4(τc + θ)} (2.2)

and the for the integrating process with time delay

g(s) =
k′

s
e−θs

the SIMC-PI settings are

Kc =
1

k′
1

τc + θ
; τI = 4(τc + θ) (2.3)

The tuning parameter τc is the desired closed-loop time constant. The
SIMC-rule for fast response with good robustness is

τc = θ (2.4)

2.1.2 The half rule

The half rule for model reduction is also presented in Skogestad (2003a).
The original model is ∏

j

(
−T inv

j0 s+ 1
)

∏
i τi0s+ 1

e−θ0s

with T inv
j0 > 0 and with τi0 ordered according to magnitude, i.e. τ10 is the

largest. To reduce the model to e−θs/(τ1s+1), the following approximations
are used

τ1 = τ10 +
τ20
2

; θ = θ0 +
τ20
2

+
∑
i≥3

τi0 +
∑
j

T inv
j0 (2.5)

If there are positive numerator time constant T0, the cancellation of the nu-
merator term (T0s+1) with the denominator term (τ0s+1) is approximated
by

T0s+ 1

τ0s+ 1
≈



T0/τ0 for T0 ≥ τ0 ≥ θ
T0/θ for T0 ≥ θ ≥ τ0
1 for θ ≥ T0 ≥ τ0
T0/τ0 for τ0 ≥ T0 ≥ 5θ

τ̃0/τ0
(τ̃0−τ0)s+1 for τ̃0 := min(τ0, 5θ) ≥ T0

(2.6)



2.2. ROBUST SIMC SETTINGS 7

2.2 Robust SIMC settings

In Skogestad (2003a) it is suggested to use τc = θ for robust controller
settings with fast response. As will be demonstrated in this report, this
can still give a too aggressive controller. Even though the model is quite
good, e.g. as with the pressure dynamics in the tank in Section 4.1, the
parameters in the model can vary quite much due to change in operational
parameters, e.g. flow, level and pressure. If the process changes so that the
controller becomes too aggressive, one solution is to detune the controller by
increasing τc. The problem is that an increase in τc can make the response
unnecessary slow. In this section, a method for selecting τc is proposed. The
motivation for the proposed rules is to derive good robust settings without
trial and error tuning on τc and which gives a satisfactory response for both
nominal and worst case. The settings are based on the principle of detuning
for increased robustness.

Robust settings:

1. Find k′wc and θwc.

2. Select τc,wc, e.g. τc,wc = 0. Lower bound τc,wc > −θwc .

3. Calculate

τc,nom =
k′wc
k′nom

(τc,wc + θwc)− θnom

4. Calculate τc = max(τc, nom, θnom).

5. Calculate Kc and τI according to normal rule

Kc =
1

k′nom

1

τc + θnom

τI = min(τ1, nom, 4(τc + θnom))

Where ‘wc’ is short for ‘worst case’ and ‘nom’ is short for ‘nominal’. In the
following, each step will be explained in more detail.

Step 1 For the integrating process

k′wc = k′max

and for the first order plus time delay process

k′wc =
k′max

τ1,min

This is the maximum expected gain for the processes. By finding this
gain, in addition to obtaining θwc, a controller can be based on the
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worst case scenario which is expected to occur during normal opera-
tion.

Step 2 The SIMC-rule τc = θ for fast, yet robust response need not nec-
essary be used for the worst case. In fact, for a positive non-zero
controller gain the lower bound is τc > −θ (Skogestad, 2003a). With
τc = 0 the MS value is 3.13 (see Appendix A.1 for definition of MS) for
the first order plus time delay process with τ1 ≤ 4(τc + θ) and 4.14 for
the integrating plus time delay process, see Table A.1. This is higher
than the guidelines of typical MS values in the range of 1.2− 2.0 (see
Appendix A.1), but these values applies for the worst case scenario.
For these values, the lower bound on the gain margin is 1.47 and 1.29,
respectively. Thus τc,wc = 0 may be too small for the integrating plus
time delay process.

Step 3 The gain Kc, nom is selected equal to the gain Kc,wc for the worst
case. To find the controller gain which gives Kc,nom = Kc,wc the
equation

1

k′nom

1

τc,nom + θnom
=

1

k′wc

1

τc,wc + θwc

is solved for τc, nom.

Step 4 If the value for τc, nom found in Step 3 is smaller than θnom, it needs
to be be increased to prevent the response to be too aggressive in the
nominal case. Thus τc ≥ θnom is set as a lower bound. Note that there
is also an upper limit on τc. Finding the upper limit is discussed in
Skogestad (2006).

Steps 5 The previous steps finds a tuning parameter τc ≥ θnom, and this is
used in the normal SIMC-rule.

These settings will be tested on different cases throughout of the report.

2.3 Decentralized control

With decentralized control of the square multivariable process G(s), shown
in Figure 2.1, the controller K(s) is used where each output only is paired

K(s) G(s)
r u y

Figure 2.1: One degree of freedom control system.
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with one input. In case of pairing on the diagonal of G(s) the controller is

K(s) =


k1(s)

k2(s)
. . .

km(s)

 (2.7)

When the process is close to diagonal, i.e. the diagonal elements are dominate
compare to the off-diagonal elements, one can design the controller elements
ki(s) as if each diagonal element gii(s) in G(s) was a separate process.

If the process is coupled, it may not be apparent which input-output
pair which should be paired. A tool which can be used to select the correct
pairing is the relative gain array (RGA). The relative gain (Bristol, 1966)
between the isolated (open) loop (gij(s)) and the same loop with all other
control loops closed (ĝij(s)) is defined as

λij(s) =
gij(s)

ĝij(s)
(2.8)

The relative gain array (e.g. Skogestad and Postlethwaite (2005)) then be-
comes

Λ(s) = G(s)×G−T (s) (2.9)

where ‘×’ is element-by-element multiplication. In order to select a good
paring, Skogestad and Postlethwaite (2005) recommends pairing on elements
which is close to identity at frequencies around closed-loop bandwidth and
to avoid pairing on negative steady-state relative gains. The RGA gives a
good indication on two-way interaction, but it is not possible to measure
if the interaction goes one or both ways. A tool for measuring one-way
interactions is the performance relative gain array (PRGA). It is defined as
(Skogestad and Postlethwaite, 2005)

Γ(s) = Gdiag(s)G−1(s) (2.10)

where Gdiag(s) = diag{gii(s)} is the diagonal elements of G(s). While the
elements in RGA are scaled, the elements in PRGA depends on relative
scaling of the outputs.

In order to take other loops in and out of service, the controllers need to
be designed independently (Skogestad and Postlethwaite, 2005). With the
independent design method each loop of G(s) is designed to be stable, but
the controllers may be tuned to handle interactions between the loops, i.e.
making some loops faster than the others.
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2.4 Decoupling of multivariable systems

In recent years, it has been a large focus on model predictive control for
controlling multivariable systems (Maciejowski, 2002). Its advantage is that
the control is optimal with respect to a defined objective function and thus
performance is expected to be noticeable better than with decentralized
control. One other aspect with model predictive control which is just as
important, is the handling of constraints, whereas a simple decentralized
controller structure will act as open loop when the inputs saturates.

The disadvantage with model predictive control is the need for imple-
mentation of an advanced system which needs to continuous (or regularly)
do numerical optimization. For smaller, yet coupled systems it may not
be economical to develop a model and install the advanced controller. For
these systems, techniques as decoupling may be a simple, yet good way to
maintain stability and reduce the effect of input saturation.

In this section, the three different decoupling techniques presented in
Wade (1997) will be described. Also, a one-way decoupler which can be seen
as a feed-forward element will be described. Decoupling can be extended
to an n × n system, but are rarely used for systems with n > 3 because of
increase in complexity (Seborg et al., 2004). Thus, the discussion in this
report will be limited to the 2× 2 system

y1 = G11u1 +G12u2

y2 = G21u1 +G22u2
(2.11)

where Gij are known process transfer functions, yi are process outputs and
uj are the actual process inputs. The decoupler from the controller output
ck to the process input uj is

u1 = D11c1 +D12c2

u2 = D21c1 +D22c2
(2.12)

Ideally the decoupler removes all off-diagonal elements, giving

y = GDc = Gdiagc (2.13)

where Gdiag contains only the diagonal elements of G. In other words, ideally
the decoupler is given by

D = G−1Gdiag (2.14)

Thus, decoupling is a technique similar to inverse controllers and its use
is limited to systems which are not singular. In Skogestad and Postleth-
waite (2005) it is stated that decouplers or other inverse-based controllers
should not be used for systems with large RGA elements. When choosing
a decoupler technique, Shinskey (1996) argues that decouplers should be
as simple as possible and reflect process relationships rather than abstract
mathematical relationships.
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2.4.1 Ideal decoupling

With ideal decoupling (shown in Figure 2.2), the objective is to completely
decouple the off-diagonal elements so that the apparent process is

y1 = G11c1

y2 = G22c2
(2.15)

G11

G12

G21

G22

D11

D12

D21

D22

u1

u2

K1

K2

r1

r2

c1

c2

y1

y2

Figure 2.2: Ideal decoupling.

Combining (2.11), (2.12) and (2.15) it can be shown that the decoupler
elements Dij are

D11 =
G11G22

G11G22 −G12G21

D12 =
−G12G22

G11G22 −G12G21

D21 =
−G11G21

G11G22 −G12G21

D22 =
G11G22

G11G22 −G12G21

(2.16)

The decoupler elements are relatively complex, but the apparent process
(decoupler and process viewed as a whole) becomes diagonal with only the
diagonal elements of the process G on the diagonal.

2.4.2 Simplified decoupling

The simplified decoupler (shown in Figure 2.3) is given in Morari and Zafiriou
(1989) as

D = G−1((G−1)diag)−1 (2.17)
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G11

G12

G21

G22

D12

D21

u1

u2

K1

K2

r1

r2

c1

c2

y1

y2

Figure 2.3: Simplified decoupling.

This decoupler is a modification of the ideal decoupler where D11 = D22 = 1
which gives the simpler decoupler elements

D12 = −G12

G11

D21 = −G21

G22

(2.18)

Now the apparent process is changed to the more complex form

y1 =
G11G22 −G12G21

G22
c1

y2 =
G11G22 −G12G21

G11
c2

(2.19)

With this decoupler, the objective to decouple the off-diagonal elements is
fulfilled, but the apparent process is changed. Hence the controllers needs
to be retuned after installation. Also the apparent process can be difficult
to understand based on a physical interpretation.

2.4.3 Inverted decoupler

In Gagnon et al. (1998) is is shown that the ideal decoupler (2.12) with
elements given by (2.16) can be simplified to

u1 = c1 −
G12

G11
u2

u2 = c2 −
G21

G22
u1

(2.20)

which gives the same decoupling elements as the simplified decoupler, but
the same apparent process as the ideal decoupler, giving it the same advan-
tages as mentioned in Section 2.4.1. This decoupler is called the inverted



2.4. DECOUPLING OF MULTIVARIABLE SYSTEMS 13

G11

G12

G21

G22

D12

D21

u1

u2

K1

K2

r1

r2

c1

c2

y1

y2

saturation

saturation

Figure 2.4: Inverted decoupling.

decoupler and is shown in Figure 2.4, where the input saturation is included
to show that the actual process input is measured.

Studying Figure 2.4 it is apparent that with inverted decoupling the
input to one process input (ui) can be viewed as a disturbance to the other
controllers output (ck). One advantage of this decoupler is that the actual
process input is measured, so the effect of actuator saturation is counteracted
with the decoupler.

In Wade (1997), three important advantages with inverted decoupling
are listed:

1. The apparent process seen by each controller when [inverted] decoupling
is implemented is the same as if there were no decoupling and the
alternate controller were in manual mode.

2. Each decoupled control loop is immune to abnormalities (e.g. valve at
a limit or a secondary controller in manual) in the secondary of the
opposite control loop.

3. Inverted decoupling can often be implemented with in a DCS (Dis-
tributed Control System) using a PID function block with feedforward
input.

Gagnon et al. (1998) also discusses the disadvantage of inverted decoupling
over the other two techniques to be that implementation with lead-lag and
delay function block may decrease performance. Even so, the robustness of
inverted decoupling with respect to opening and closing other loops, as well
as robustness with respect to input saturation, makes it the most promising
of the presented decouplers.
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2.4.4 One-way decoupling

Often, the coupling is not as strong both ways in the process. In these
cases, only decoupling of the strongest off-diagonal element(s) can yield a
significant improvement over a pure decentralized controller structure. Use
of feedforward to reduce coupling from the jth loop to the ith loop can be seen
as a partly decoupler. In fact, the inverted decoupler with only decoupling
one way will be the same as the kind of feedforward control described in
Shinskey (1996). In addition to be simpler, the destabilization which can
result from using decoupling is eliminated with partial decoupling (Shinskey,
1996). This is a very important property, which will be studied further in
Section 3.5. Also, one-way decouplers are generally much less sensitive to
input uncertainty (Morari and Zafiriou, 1989).

If one-way decoupling is used from u1 to c2, (2.20) is reduced to

u1 = c1

u2 = c2 −
G21

G22
c1

(2.21)

This gives the apparent process

y1 =

(
G11 −G12

G21

G22

)
c1 +G12c2 =

G11

λ11
c1 +G12c2

y2 = G22c2

(2.22)

where λ11 is the relative gain. This decoupling is the same as removing D12

in Figure 2.4.

2.4.5 Decoupling with process model error

As mentioned earlier, one problem of using decoupling is that it includes the
inverse of the process. When the model of the process (G̃) differs from the
real plant (G) the apparent process y = PDc is no longer given by (2.15)
for the ideal and inverted decouplers. With D = G̃−1G̃diag the apparent
process becomes

GD = GG̃−1G̃diag (2.23)

and for the 2× 2 system this is

GD =
1

G̃11G̃22 − G̃12G̃21

·
[
G̃11(G11G̃22 −G12G̃21) G̃22(G12G̃11 −G11G̃12)

G̃11(G21G̃22 −G22G̃21) G̃22(G22G̃11 −G21G̃22)

] (2.24)

Note that if G̃ = G, (2.24) is reduced to (2.15). For the simplified decoupler,
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using D = G̃−1((G̃−1)diag)−1, the apparent process y = GDc becomes

GD = GG̃−1((G̃−1)diag)−1 (2.25)

so also in this case, the inverse of the model (G̃−1) has an effect of the
sensitivity to model errors.
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Chapter 3

A two-way interactive
process

In this chapter, a simple 2×2 interactive process will be studied. The process
is purely a theoretical example, and is a modified example from Skogestad
and Postlethwaite (2005). The process is the linear time-invariant system

G(s) =
1

s+ 1

[
1 g12
5 1

]
(3.1)

with g12 ∈ [0.17,−1]. The purpose with this example is to look at how to
obtain controllers which are good for all values of the uncertain element g12,
and which are as little as possible dependent of the other loops. For conve-
nience, the study will be limited to the three cases g12 = {0.17,−0.2,−1}.
Further, all simulations are done with a time-delay θ of 0.5 s. In this way
the upper achievable controller gains are limited. The controllers tested are
simple PI controllers in addition to decouplers.

3.1 Decentralized control

In order to select the best pairing of the input and outputs, the steady-state
RGA is calculated for the three different cases

Λ1(0) =

[
6.67 −5.67
−5.67 6.67

]
; Λ2(0) =

[
0.5 0.5
0.5 0.5

]
Λ3(0) =

[
0.167 0.833
0.833 0.167

] (3.2)

There is no loss in generality of using the steady-state RGA in this case, since
the RGA (for this particular example) is the same for all frequencies. From a
first inspection of the different RGA matrices, it is evident that this process
is difficult to control with one paring and one set of controllers. In order

17
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not to pair on negative steady-state elements of the RGA (as mentioned in
Section 2.3), Λ1 shows that pairing on the off-diagonal elements should be
avoided. At the same time, with g12 = −1 it can be seen from Λ3 that it is
recommended to pair on the off-diagonal elements because these are closest
to identity.

With pairing on the diagonal, and using independent design of the diag-
onal elements in G(s), the SIMC controller gain parameters will be

Kc1 =
1

k1

τ1
τc + θ

=
1

τc1 + 0.5
Kc2 =

1

τc2 + 0.5

Because of the large off-diagonal element G21(s), using τc = θ for the two
loops gives a unsatisfactory control. As discussed in Skogestad and Postleth-
waite (2005) the PRGA can be used to indicate which of the loops should
be fastest. A large element in a row of the PRGA indicates that fast control
is needed. The steady-state PRGA for the three cases is

Γ1(0) =

[
6.67 −1.13
−33.3 6.67

]
; Γ2(0) =

[
0.50 0.10
−2.50 0.50

]
Γ3(0) =

[
0.167 0.167
−0.833 0.167

] (3.3)

For all cases, the second row in Γ is large and the magnitude of γ21
γ22

is 5

(due to Γi = G−1 since G̃ = I). Thus, we must control y2 faster than y1.
Since the independent design strategy is followed, k2(s) is designed based
on G22(s) and thus τc2 = θ is used. This gives

Kc2 = 1 τI2 = min{τ2, 4(τc2 + θ)} = τ2 = 1

If y2 is perfectly controlled, closing y1 will give y1 = ĝ11u1 = g11
λ11
u1. If the

RGA element is between 0 and 1, it means that the gain will increase when
closing the loop. For these cases, if the open-loop gain k′1 = k1

τ1
is scaled

with |λii| around the crossover frequency the actual gain when closing the
loop will be found. The different cases of g12 gives λ11 = {6.67, 0.5, 0.167},
so selecting the worst case of 0.167, the worst case k̂′1 will be k̂′1,worst case =

1/0.167 = 6 where k̂′1 =
k′1
λ11

. With k̂′1, nom = 1/0.5 = 2 the tuning parameter
is found to be τc1 = 14θ using

τc,nom =
k̂′1wc

k̂′1 nom
(τc,wc + θwc)− θnom =

6

2
(4θ + θ)− θ = 14θ

τc = max(τc,nom, θnom) = max(14θ, θ) = 14θ

This gives the controller

Kc1 =
1

k̂′1 nom

τ1
τc + θ

=
1

2

1

14 · 0.5 + 0.5
= 0.067

τI1 = min{τ1, 4(τc1 + θ)} = τ1 = 1
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Figure 3.1: Decentralized control with diagonal pairing.

where k̂1 = k1
λ11

.

The responses to a unit step in both loops are shown in Figure 3.1.
As expected, y2 has a fast response with small overshoot. In order to get
a stable response for all cases for y1, the controller needed to be detuned
noticeably, as can be seen from the very slow response for g12 = 0.17. This
is as expected, since the relative gain λii varies with a factor of 40 between
the extremes of g12.

3.2 Ideal and inverted decoupling

Many of the problems arising when using decentralized control of the pro-
cess (3.1) is due to the large element G21(0) = 5. One way of minimizing the
effect of this off-diagonal element is to use a decoupler. The problem when
designing the decoupler is that the overall process only will be completely
decoupled for the nominal case. When there is a model error in the decou-
pler, this will affect both the off-diagonal elements in the overall process as
well as the diagonal. This can be seen from (2.24) where the off-diagonal
elements in general are non-zero for G̃ 6= G. In addition, the decoupler
should not be designed based on a model with large RGA elements. Thus,
designing the decoupler based on g12 = 0.17 is not recommended since it
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will make it sensitive to model error. For the decouplers, the model

G̃(s) =
1

s+ 1

[
1 −0.4
5 1

]
(3.4)

will be used. The gain of the unknown element is selected to be g̃12 = −0.4
based on the range g12 ∈ [−1, 0.17]. For the ideal decoupler, using (2.16)
gives the decoupler elements

D11 = 0.33

D12 = 0.13

D21 = −1.67

D22 = 0.33

(3.5)

and using (2.18), the decoupler elements for the inverted decoupler is

D12 = 0.4

D21 = −5
(3.6)

For the nominal case (g12 = −0.4), the decoupled system will be com-
pletely coupled (Λ = I) if the decoupler is realizable. Hence, the controllers
are designed based on the diagonal elements of G̃, but at the same time the
effect of model error must be taken into account. For the three different
cases of g12, the decoupled system GD using (2.23) is

GD =
1

s+ 1

[
0.05 0.19

0 1

]
; GD =

1

s+ 1

[
0.67 0.07

0 1

]
GD =

1

s+ 1

[
2 −0.2
0 1

] (3.7)

The element (GD)22 stays constant, but (GD)11 varies quite a lot. To
design a robust PI controller for this process, the procedure Section in 2.2 is
followed. With k′1,worst case = 2, k′1, nom = 0.67 and θ = 0.5 for both nominal
and worst case, selecting τc1,worst case = 0, gives the value τc1 = 2θ. This
gives the controller

Kc1 =
1

k′1,nom

1

τc1 + θ
=

1

1

1

2 · 0.5 + 0.5
= 0.67

τI1 = min{τ1, 4(τc1 + θ)} = τ1 = 1

With τc2 = θ (the same controller as with decentralized control) the response
for ideal and inverted decoupling is shown in Figure 3.2, where it can be seen
from the lower plot that even a lower value for τc1,wc may be used. Overall,
the effect of decoupling is evident when comparing Figures 3.1 and 3.2. The
response of y1 is faster, and the effect of coupling is much smaller. Note that
the decoupling is not complete due to use of the same decoupler for all the
cases. This is because of the problem with model error as discussed above.
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Figure 3.2: Ideal, simplified and inverted decoupling without saturation.

3.3 Simplified decoupling

As described in Section 2.4.2, simplified decoupling changes the apparent
process, even in the nominal case. The decoupler elements are the same as
with the inverted decoupler (3.6). Therefore, in order to tune the controllers
it is necessary to calculate the apparent process also in the nominal case.
Using (2.25), GD is calculated in the same manner as in the previous section
to be

GD =
1

s+ 1

[
0.15 0.57

0 3

]
; GD =

1

s+ 1

[
2 0.20
0 3

]
GD =

1

s+ 1

[
6 −0.6
0 3

] (3.8)

By comparing (3.7) with (3.8), the difference is found to be a gain-increase
of 3 in the latter. Therefore, the same controllers will be used as with ideal
and simplified decoupling, but with a gain-increase of 3. The response is
as expected identical with ideal and simplified decoupling and is shown in
Figure 3.2. The disadvantage with simplified decoupling becomes more clear
with this example, since the diagonal elements in the overall system GD is
changed. With a physical example, this means that the whole process will
in fact change, and that the physical understanding of the loops will easily
be lost.
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3.4 The effect of opening and closing loops

In addition to have controllers which are robust with respect to changes
in the process, it is also in many applications important to have a control
system which remains stable if loops are taken out of service. By using an
independent design method when designing the decentralized controllers,
this property is tried to be maintained. When using the decouplers, the
response was identical for all three decouplers when both loops were in
operation without any saturation. In this section, the effect of opening the
loops will be studied.

When loop 1 is taken out of service (c1 = 0 where c1 is the output from
the controller), both decentralized control and the decouplers manage to
control y2 more or less unaffected. In fact, the response for y2 is more or
less identical for decentralized control and decoupling. This can be explained
by the fact that the effect of the large element G21(s) is limited or removed
when c1 = 0. When the output of the controller is non-zero but constant,
this will not be the case. This will happen when the controller goes into
saturation, which will be addressed in the next section.

With c2 = 0, the decentralized controllers looses control of loop y1 as
can be seen in Figure 3.3. From Figure 3.4 it can be seen that the three
different decouplers manage to maintain control of y1 without any difference
in the response of y2.
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Figure 3.3: Decentralized control looses control with loop 2 open (c2 = 0).
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Figure 3.4: Ideal, simplified and inverted decoupling with loop 2 open (c2 =
0).

3.5 The effect of input saturation

Until now, there have been no difference between the different decouplers.
In this section, the effect of input saturation will be studied and the differ-
ent decouplers will be compared. As opposed to the case with open loop,
saturation in both loops will affect the response for the decouplers differ-
ently, but saturation in loop 1 is most illustrating and will be the focus of
discussion in this section. With saturation

u1 ∈ [0.2, 0.4]

and u2 without saturation, the response for decentralized control is shown
in Figure 3.5, the response for ideal and simplified decoupling is shown in
Figure 3.6, and the response for inverted decouping is shown in Figure 3.7.

Comparing these three figures, the first observation is that ideal and sim-
plified decoupling actually deteriorate the response compared to not using
any decoupling. For all cases of g12 in Figure 3.6, y2 is heavily influenced by
saturation in u1, and for the first case g12 = 0.17, the whole system becomes
unstable. Inverted decoupling on the other hand, manages to control the
system with saturation as can be seen in Figure 3.7. The response for y2
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Figure 3.5: Decentralized control with u1 saturated.
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Figure 3.6: Ideal and simplified decoupling with u1 saturated.
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Figure 3.7: Inverted decoupling with u1 saturated.

is unaffected by saturation in u1 and the response is noticeably better than
for decentralized control.

With the different cases tested in this chapter, inverted decoupling seems
to be the best alternative when using decoupling. This is in accordance with
the comparison of the different decouplers in Section 2.4. One important
factor, which is the case for all decouplers, is to avoid using a process model
which has large RGA elements.

3.6 One-way decoupling

As described in Section 2.4.4, one-way decoupling can give a good result
when the coupling is stronger in one way than in the other. To design a
controller for the one-way decoupled process, the apparent process (2.22) is
used as starting point. In similar manner as in Section 3.1, k1(s) is designed
based on λ11, but the effect of decoupling must also be considered. Using
(3.7) (the effect the one-way decoupler has on loop 1 is the same as the full
decoupler), the worst case and nominal gains are

k′1,wc =
k′1

λ11,wc
(GD)11,wc =

1

0.167
· 2 = 12.0

k′1 nom =
k′1

λ11, nom
(GD)11, nom =

1

0.5
· 0.67 = 1.34
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Using the procedure from Section 2.2 with τc1,worst case = 0, τc1 is found to
be

τc1 = 7.9θ

This will give the robust settings

Kc1 =
1

k′1 nom

τ1
τc + θ

=
1

1.34

1

7.9 · 0.5 + 0.5
= 0.168

τI1 = min{τ1, 4(τc1 + θ)} = τ1 = 1

where k̂1 = k1
λ11

. Loop 2 is nominally completely decoupled and k2(s) will
be designed based on G22(s) with τc2 = θ which gives the same controller
parameters as with decentralized control in Section 3.1.

In fact, using a one-way decoupler from u1 to c2 gives a result almost as
good as inverted decoupling in the previous sections. The largest difference
will be in the case when there is a saturation in u2. This saturation is not
counteracted since there are no decoupling from u2 to c1 (D12 = 0 in Figure
2.4). Using the saturation

u2 ∈ [−1,−0.5]

and u1 without saturation, a comparison of the effect of saturation in u2 with
inverted decoupling and one-way decoupling is shown in Figure 3.8. Only
the case g12 = −1 is shown, since this is the case with most interactions. The
effect of saturation in u2 is, as expected, larger on y1 with one-way decoupler
than with inverted decoupler. Note that the reason for inverted decoupling
not being perfect for y1 is that the model of the process is different from the
actual process, as discussed earlier. Even though the inverted decoupler is
better with respect to y1, the simplicity of the one-way decoupler makes it
a good choice for this process.
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Figure 3.8: Comparison of inverted decoupling and one-way decoupling when
u2 is saturated and g12 = −1.
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Chapter 4

A multivariable high
pressure vessel

In the previous chapter, a simple illustrating multivariable example was used
to study the different control structures. In this chapter, models based on
physical examples will be studied. First-principle models will be derived and
based on these, controller parameters will be calculated. The basis for the
examples is the two-phase tank from Skogestad and Wolff (1991). The tank
represents an oil-gas separator where a high-pressure two-phase well stream
is separated into liquid and gas.

First, SISO systems where only one parameter has a dynamic effect will
be studied, then the complete system will be studied. All the simulations
will be done in Simulink, with the derived non-linear models implemented.
The linearized models found are only used for analysis and controller design.
When calculating the Laplace transform, the initial condition x(t = 0) gives
a contribution to the solution. For stable systems, this transient response
will die out over time. Therefore, this part is omitted when deriving transfer
functions, and the simulations are run long enough prior to defined start time
in order to make this effect die out.

4.1 Modelling and control of pressure in gas tank

In this section, control of the pressure in the gas tank shown in Figure 4.1
will be studied. The in-flow qin is not controlled and viewed as a disturbance.
Even though the volume of the tank (Vtank) is constant, cases where the vol-
ume can change will be studied, while the dynamics will not be considered
(only the steady-state effect of the liquid volume will be considered). The
reason for a variable volume is because the liquid holdup in a multivariable
tank will determine the volume V = Vtank − VL left for the gas. The tem-
perature (T ) is also a variable which can change during operation, but the
temperature dynamics is assumed slow enough to be neglected. The pres-

29
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sure inside the tank is assumed larger than the outflow pressure, P > Pout,
and the outflow pressure (Pout) is assumed constant.

qin [kmol/s] qout [kmol/s]

P, V, T

z

VL

Pout

Figure 4.1: Tank with variable volume due to liquid in the bottom of the
tank.

Assuming an ideal gas, ideal gas law (e.g. Skogestad (2003b))

PV = nRT (4.1)

can be used to derive the material balance for the gas, where P [ Pa] is
pressure, n is moles of gas, R = 8.3144 [ J

K·mol ] is the ideal gas constant and
T [ K] is the temperature of the gas. Differentiate (4.1) with respect to time
gives

Ṗ V + PV̇ = ṅRT + nRṪ

Temperature and volume dynamics are neglected, i.e. Ṫ = 0 and V̇ = 0.
Rearranging and using ṅ = qin − qout [ mol/ s] gives

dP

dt
=
RT

V
(qin − qout) [ Pa/ s] (4.2)

The flow out of the valve can be represented by the equation (Skogestad and
Wolff, 1991)

qout = Cvz
√
P 2 − P 2

out [ mol/ s] (4.3)

where Cv[
mol
Pa·s ] is the valve constant (dependent on type of gas), and z is the

valve opening, z ∈ [0, 1]. It is assumed that the valve nominally has a time
delay θ of 5 s, and not more than 7 s. Inserting the valve equation (4.3) into
(4.2) gives the nonlinear model for the pressure in the tank

f(P, z) =
dP

dt
=
RT

V
qin −

RT

V
Cvz

√
P 2 − P 2

out [ Pa/ s] (4.4)
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In order to derive SIMC-parameters for this model, a linear model is re-
quired. Linearizing (4.4) around an operation point (∗) using the Taylor
expansion and neglecting higher order terms

f(x, u) ≈ f(x∗, u∗) +
∂f

∂x

∣∣∣∣
∗

(x− x∗) +
∂f

∂u

∣∣∣∣
∗

(u− u∗) (4.5)

gives the model in deviation variables

˙̃P = aP̃ + bz̃ (4.6)

where

a =
∂f

∂P

∣∣∣∣
∗

= −RT
V
Cvz

∗ P ∗√
P ∗2 − P 2

out

(4.7)

b =
∂f

∂z

∣∣∣∣
∗

= −RT
V
Cvz

∗ P ∗√
P ∗2 − P 2

out

(4.8)

Calculating the Laplace transform of (4.6), neglecting initial conditions and
including the valve time delay, the first order transfer function is derived

g(s) =
P̃ (s)

z̃(s)
=

− b
a

− 1
as+ 1

=
k

τs+ 1
e−θs (4.9)

To find the more robust tuning parameter τc, k
′
max and θmax will need to be

found. Noting that k′ = k/τ = b, k′max is found as

k′max = −RTmax

Vmin
Cvzmax

√
Pmax

2 − P 2
out (4.10)

where k′max is the largest absolute value of b. The nominal k′ is

k′nom = −RTnom
Vnom

Cvznom

√
Pnom

2 − P 2
out (4.11)

The physical variables which change during operations are based on those
in Skogestad and Wolff (1991) and are given in Table 4.1. The parameters
which are assumed constant are listed in Table 4.2. Inserting the values in
Table 4.1 and 4.2 into (4.11) gives

k′nom = −2.2703 · 105

The original SIMC parameters (2.2) with τc = θnom are

Kc =
1

k′nom

1

τc + θnom
=

1

k′nom

1

2θnom

τI = min(τ1,nom, 8θnom)

(4.12)
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Table 4.1: Operating conditions for the pressure tank.

Variable Minium value Nominal value Maximum value

V [ m3] 20 m3 75 m3 100 m3

P [ Pa] 62 · 105 Pa 70 · 105 Pa 90 · 105 Pa
T [ K] 350 K 400 K 450 K
θ [ s] 4 s 5 s 7 s
z [fraction] 0.1 0.5 0.9

Table 4.2: Parameters in the pressure tank which are assumed constant.

Variable Value

Cv[
mol
Pa·s ] 1.420 · 10−3 mol

Pa·s
rtank[ m] 3 m

and inserting the value for k′nom into (4.12) gives

Kc = −4.40 · 10−7

τI = 16.3 s
(4.13)

Note that the small gain is due to the pressure is given in [Pa] and not [bar].
The worst case scenario is when V = 20 m3, T = 450 K, P = 90 · 105 Pa and
θ = 7 s. The more robust settings are calculated according to the procedure
in Section 2.2 with τc,worst case = 0. Inserting the values in Tables 4.1 and
4.2 into (4.10) gives

k′max = −1.7820 · 106

which gives the tuning parameter τc = 6.8θnom. The robust controller pa-
rameters is thus

Kc, robust =
1

k′nom

1

τc + θnom
=

1

k′nom

1

6.8θnom
= −1.12 · 10−7

τI = min(τnom, 4(τc + θnom)) = τnom = 16.3 s

(4.14)

Figure 4.2 shows the disturbance rejection (in-stream qin is increased at
t = 500 s) when operating with different process parameters. As expected,
in the nominal case the original SIMC settings are better than the more
conservative robust settings. For the worst case, the robust settings manages
to control the system satisfactory, but the original SIMC settings becomes
oscillatory with sustained oscillations. Figure 4.3 shows the response to a
step in reference at t = 500 s. Since the pressure now changes, the SIMC
settings becomes a little too aggressive also for the nominal case. For the
worst case, the response becomes oscillatory as with the disturbance. The
robust settings manage to control the process satisfactory for both nominal
and worst cases.
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Figure 4.2: Comparison of disturbance rejection for the pressure tank.
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Figure 4.3: Comparison of response for step in reference for the pressure
tank.
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4.2 Modelling and control of level in an open tank

In this section, control of the liquid level in a open tank will be studied,
as shown in Figure 4.4. The liquid stream in (qin) is not controllable, and

qin [m
3/s]

qout [m
3/s]

Pa

VL

PL

Pa

z

Figure 4.4: Level of liquid in an open tank.

viewed as a disturbance. The pressure at the downstream side of the valve
in the out-stream (qout) is atmospheric pressure: P = Pa ≈ 1 bar. The flow
qout is controlled by a valve with opening fraction z between 0 and 1.

The change in volume is the change of material, i.e. difference between
inflow and outflow

V̇L = qin − qout [ m3/s] (4.15)

The outflow of the valve can be represented by the equation (Skogestad and
Wolff, 1991)

qout = Cvz
√
PL − Pout [ m3/s] (4.16)

where Cv[ m3.5 · kg−1/2] is the valve constant (dependent on density ρ), and
z is the valve opening, z ∈ [0, 1]. The time delay θ in the valve is also
here assumed nominally to be 5 s. Assuming that the flow in the tank is
neglectable, Bernoulli’s equation (White, 2008) from the water surface to
the bottom of the tank can be used to calculate the pressure at the bottom

p1
ρ

+
1

2
v21 + gh1 =

p2
ρ

+
1

2
v22 + gh2 = const (4.17)

With Pout = Pa and vi ≈ 0 m/s, (4.17) is simplified to

PL = Pa + ρgh = ρg
VL
A

[ Pa] (4.18)

Inserting (4.18) and (4.16) into (4.15), the nonlinear model for the level in
the tank is derived

f(VL, z) =
dVL
dt

= qin − k1z
√
VL [ m3/s] (4.19)
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where k1 = Cv

√
ρg
A The linearized model around (V ∗L , z∗) is

˙̃VL = aṼL + bz̃ (4.20)

where

a =
∂f

∂VL

∣∣∣∣
∗

= −1

2
k1

z∗√
V ∗L

(4.21)

b =
∂f

∂z

∣∣∣∣
∗

= −k1
√
V ∗L (4.22)

Calculating the Laplace transform of (4.20), neglecting initial conditions and
including time delay in the valve, gives the the first order transfer function

g1(s) =
−2V ∗L/z

∗

2

√
V ∗L

kz∗ s+ 1
e−θs (4.23)

and noting (as in Section 4.1) that k′ = b, the nominal and maximum k′ is
found to be

k′max = −k1
√
V ∗L,max

k′nom = −k1
√
V ∗L, nom

(4.24)

Table 4.3: Operating conditions for the open tank.

Variable Minium value Nominal value Maximum value

VL [ m3] 10 m3 30 m3 90 m3

θ [ s] 4 s 5 s 7 s
T [ K] − 300 K −

Table 4.4: Physical parameters in the open tank which are assumed constant.

Variable Value

Cv[ m3.5 · kg−1/2] 7.972 · 10−3 m3.5 · kg−1/2

ρ [ kg/m3] 900 kg/m3

rtank[ m] 3 m

Using the same procedure as in the last section with the parameters and
variable values from Tables 4.3 and 4.4 the values for k′ are calculated to be

k′nom = −0.772

k′max = −1.336



36 CHAPTER 4. A MULTIVARIABLE HIGH PRESSURE VESSEL

which gives the SIMC parameters with τc = θ

Kc = −0.130

τI = 40 s

and the the robust tuning parameter with τc,worst case = 0 is found to be
τc = 1.4θnom giving

Kc, robust = −0.107

τI = 40 s
(4.25)

Here the controller gains differ marginally, as opposed to the pressure tank.
Response to a step change in liquid volume reference of 2 m3 at t = 100 s for
the nominal case and 35 m3 for the worst case is shown in Figure 4.5. The
in-flow is qin = 0.5 m3/s with a step disturbance d = 0.1 m3/s at t = 300 s.
The main problem in the worst case is input saturation causing wind-up,
rather than change in VL. Therefore, the method of retuning will not give
any advantage in this case. This is also expected, by comparing the different
values for Kc which differs marginally, and the values for τI are identical.
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Figure 4.5: Comparison of response for step in reference and a step distur-
bance for the open tank.
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4.3 Modelling and control of level in a closed tank

In Section 4.2 the control of liquid level in an open tank was studied. In
this section the case where the tank is closed with P � Pa will be studied
where Pa is atmospheric pressure. An illustration of the tank is shown in
Figure 4.6.

qin [kmol/s] qout [kmol/s]

P

VL

Figure 4.6: Level of liquid in a closed tank.

Now the pressure difference due to the liquid holdup can be neglected:
PL = P + ρg VLA ≈ P . Inserting this approximation in (4.16) gives

qout = Cvz
√
P − Pout [ m3/s] (4.26)

It is assumed that the pressure inside the tank is larger than the outlet
pressure, and that this pressure is much larger than atmospheric pressure:
PL > Pout � Pa. Doing the same calculations as in Section 4.2, neglecting
initial conditions and including the valve time delay, the transfer function
in deviation variables from z̃ to ṼL is found to be

g2(s) =
ṼL(s)

z̃(s)
=
−Cv
√
P ∗ − Pout

s
e−θs =

k′

s
e−θs (4.27)

where k′ = −Cv
√
P ∗ − Pout. We thus have

k′max = −Cv
√
P ∗max − Pout

k′nom = −Cv
√
P ∗nom − Pout

(4.28)

Comparing g1(s) in (4.23) and g2(s) in (4.27) we can see that the process
has changed from a first order model to a pure integrating model. This is
because the self-regulating effect the liquid level has is so small that it is
neglected in the model.
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The gas inventory is assumed constant, as well as the temperature in the
tank. Thus, using the ideal gas law (4.1) with n and T constant gives

Pmax =
Pnom(Vtank − VL, nom)

Vtank − VL,max
(4.29)

From (4.29) the maximum expected pressure can be calculated, which will
be used to find k′max. The operating conditions are given in Table 4.5. From

Table 4.5: Operating conditions for the closed tank.

Variable Minium value Nominal value Maximum value

VL [ m3] 10 m3 50 m3 65 m3

θ [ s] 4 s 5 s 7 s
T [ K] − 400 K −

these conditions, and a tank size Vtank = 100 m3, the maximum expected
pressure can be calculated

Pmax =
70 · 105 Pa · (100 m3 − 50 m3)

100 m3 − 65 m3
= 100 · 105 Pa

The parameters which are assumed constant are the same as with the open
tank, given in Table 4.4. Inserting the value for Cv, the calculated maximum
pressure and the nominal pressure in (4.28) gives

k′nom = −7.97

k′max = −15.94

The time delay θ is assumed the same as with the open tank, but the liquid
holdup VL is changed to 50 m3 for the nominal case, and 65 m3 for the worst
case. The original SIMC settings with τc = θnom is

Kc = −0.0125

τI = 40 s

Using the procedure from Section 2.2 with τc,wc = 0, τc is found to be
τc = 1.8θnom which gives

Kc = −0.009

τI = 56 s

The tank is simulated with a step in reference for VL of 50 m3 − 52 m3 for
the nominal case and 50 m3 − 60 m3 for the worst case. The disturbance is
the same as with the open tank, and the response is shown in Figure 4.7. As
opposed to the open tank, in this case the detuning has a noticeable effect
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Figure 4.7: Compare response for step in reference and a step disturbance
for the closed tank.

for the worst case. Some signs of oscillations are present (due to τc,wc = 0),
but the response is much better than the case with τc = θnom. At the same
time, the performance for the nominal case is not noticeably reduced. The
reason for both of these properties being fulfilled is that the variation in
conditions for worst case and nominal case is not too large (k′ is doubled for
the worst case, and θ changes from 5 s to 7 s).

This is an integrating process, which can be seen from (4.27). In Section
2.2 it was mentioned that τc,wc = 0 may be a bit too aggressive for inte-
grating processes. In Figure 4.7 this can be seen from the small oscillations
for the worst case. When choosing τc,wc there is a performance trade-off in
nominal and worst case operation. In this case, an increase in τc,wc may
lead to a too slow response for the nominal case, but this will at the same
time reduce oscillations for the worst case.
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4.4 Two-phase tank model

In this section, an analytic model for the two-phase tank in Skogestad and
Wolff (1991) shown in Figure 4.8 will be derived. For ease of modelling, the
inlet streams are modelled as two independent streams containing only gas
and liquid respectively. Further, condensation or vaporization are neglected,
and it is assumed that separation is complete and that the gas stream out
does not contain any liquid and vice versa. This example has also been
briefly discussed in Skogestad and Postlethwaite (2005), but the discussion
in this chapter will be much more thorough, with emphasis on robust control.

q3 [kmol/s]

q1 [m
3/s]

q4 [kmol/s]

q2 [m
3/s]

P, Vg, T

z4

z2

VL

Figure 4.8: The two-phase high pressure vessel.

Table 4.6: Nominal steady-state operating conditions for the two-phase tank.

Variable Value Variable Value

VL 20 m3 z1 0.5
P 70 · 105 Pa z2 0.5
PL 70.07 · 105 Pa q1 4 m3/s
PGO 60 · 105 Pa q3 2.56 kmol/s
PLO 60 · 105 Pa T 400 K
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Table 4.7: Process parameters and constraints for the two-phase tank.

Variable Value

Cv2 7.973 · 10−3

Cv4 1.420 · 10−3

Vtank 100 m3

Pmax 100 · 105 Pa
zi [0, 1]

4.4.1 Material balances

The material balances will be the same as in Sections 4.1 and 4.3 but with
added indices. Thus, they are repeated in the following with correct indices
corresponding to Figure 4.8.

The change in volume for an incompressible fluid is the difference be-
tween flow in and out

dVL
dt

= q1 − q2 [ m3/ s] (4.30)

As in Section 4.3, differentiating the ideal gas law with respect to time gives

Ṗ Vg + PV̇g = ṅgRTg + ngRṪg (4.31)

Neglecting temperature dynamics gives Ṫ = 0. Rearranging, and using that
Vg = Vtank − VL [ m3] and ṅg = q3 − q4 [ mol/ s], gives

dP

dt
=

RT

Vtank − VL
(q3 − q4) +

P

Vtank − VL
(q1 − q2) [ Pa/ s] (4.32)

4.4.2 Valve equations

The valve equations are the same as used in Sections 4.1 and 4.3 but with
added indices. They are given by

q2 = Cv2 · z2
√
PL − PLO [ m3/ s] (4.33)

q4 = Cv4 · z4
√
P 2 − P 2

GO [ mol/ s] (4.34)

where P is the pressure of the gas, PL = P + ρgVL/A is the pressure in
the bottom of the tank, PLO is the downstream liquid pressure and PGO
is downstream gas pressure. Cvi are valve constants, and zi are the valve
openings, zi ∈ [0, 1].
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4.4.3 Linear model of the tank

Given the nonlinear model

ẋ = f(x, u, d) (4.35)

y = h(x, u, d)

the linearized model, given stationary point (x∗, u∗, d∗), is given in deviation
variables

˙̃x = Ax̃+Bũ+Bdd̃ (4.36)

where

A =
∂f

∂x
(x, u, d)

∣∣∣∣
∗

; B =
∂f

∂u
(x, u, d)

∣∣∣∣
∗

; Bd =
∂f

∂d
(x, u, d)

∣∣∣∣
∗

(4.37)

The linearized model of the tank using (4.30) and (4.32) with

x =

[
VL
P

]
, u =

[
z2
z4

]
, d =

[
q1
q3

]
(4.38)

is given by

A11 =
∂f1
∂x1

=
−Cv2ρgu∗1

2A
√
x∗2 − PLO + ρg

A x
∗
1

A12 =
∂f1
∂x2

=
−Cv2u∗1

2
√
x∗2 − PLO + ρg

A x
∗
1

A21 =
∂f2
∂x1

=
RT

(V − x∗1)2

(
d∗2 − Cv4u∗2

√
x∗2

2 − P 2
GO

)
+

x∗2
(V − x∗1)2

(
d∗1 − Cv2u∗1

√
x∗2 − PLO +

ρg

A
x∗1

)
− x∗2
V − x∗1

ρgCv2u
∗
1

2A
√
x∗2 − PLO + ρg

A x
∗
1

A22 =
∂f2
∂x1

= − RTx∗2
V − x∗1

Cv4u
∗
2√

x∗2
2 − P 2

GO

+
1

V − x∗1

(
d∗1 − Cv2u∗1

√
x∗2 − PLO +

ρg

A
x∗1

)
− x∗2
V − x∗1

Cv2u
∗
1

2
√
x∗2 − PLO + ρg

A x
∗
1
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B11 =
∂f1
∂x1

= −Cv2
√
x∗2 − PLO +

ρg

A
x∗1

B12 =
∂f1
∂x2

= 0

B21 =
∂f2
∂x1

= − x∗2
V − x∗1

Cv2
√
x∗2 − PLO

B22 =
∂f2
∂x2

= − RT

V − x∗1
Cv4

√
x∗2

2 − P 2
GO

Bd,11 =
∂f1
∂x1

= 1

Bd,12 =
∂f1
∂x2

= 0

Bd,21 =
∂f2
∂x1

=
x∗2

V − x∗1

Bd,22 =
∂f2
∂x2

=
RT

V − x∗1

where it is assumed that PGO and PLO are constant. Assuming that both
state variables are measurable gives

C =

[
1 0
0 1

]
(4.39)

Calculating the Laplace transform and neglecting initial conditions as in
Sections 4.1−4.3, the system can be written on the form

y = G(s)u+Gd(s)d (4.40)

where

G(s) = C(sI −A)−1B; Gd(s) = C(sI −A)−1Bd (4.41)

Inserting the steady-state values from Table 4.6 and process constants from
Table 4.7 in addition to include the time delays of the valves gives

G(s) =
e−5s

(s+ 1.73 · 10−4)(s+ 0.232)

[
−8.0s− 0.4584 0.4227
−7.0 · 105s− 1.942 −2.128 · 105s− 146.7

]
(4.42)

Gd(s) =
e−5s

(s+ 1.73 · 10−4)(s+ 0.232)

[
s+ 0.0573 −8.257 · 10−5

8.75 · 104s+ 0.2428 41.57s+ 0.02865

]
(4.43)
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where minimal realization (minreal) in MATLAB is used. The rank of the
controllability and observability matrices are 2, meaning that the linearized
models are both controllable and observable (Chen, 1999).

To calculate the SIMC settings for a PI controller, the elements in the
linearized model (4.42) need to be reduced to a first order plus time de-
lay process, or a pure integrating plus time delay process. The half-rule
described in Section 2.1 is a systematic way to find the model reductions,
but the frequency domain where the reduction is most correct may not lie
inside the bandwidth ωB where the models needs to be most correct, be-
cause ω < ωB is loosely speaking the frequency where control is effective
(Skogestad and Postlethwaite, 2005). Thus, the reduction is altered some,
in order to get a good model for these frequencies. Dependent of the choice
of controllers ki(s), ωB will lie around 10−3 (this will be discussed later).
With this requirement the reduced model is found to be

G(s) ≈

[
−1.72
s e−5s 1.79

s e−7.10s

−3.01·106
4.31s+1 e

−5s −3.67·106
17.24s+1 e

−5s

]
(4.44)

For the worst case conditions given in Table 4.8, the linearized model
around the new operating point with z∗i = 0.35 is given by

Gwc(s) =
e−5s

(s+ 5.28 · 10−6)(s+ 0.313)

[
−11.34s− 1.00 0.8755

−2.59 · 106s+ 328.4 −8.93 · 105s− 303.8

]
(4.45)

which is reduced, in the same way as above, to

Gwc(s) ≈

[
−3.16
s e−7s 2.80

s e−8.60s

9.37·106
3.195s+1e

−8.60s −2.858·106
3.195s+1 e

−7s

]
(4.46)

4.4.4 Decentralized control of the tank

The setpoint changes and disturbances for the nominal and worst case, are
listed in Table 4.8. As mentioned, to use the SIMC tuning rules, the reduced

Table 4.8: Setpoint changes and disturbances.

Variable Nominal case Worst case Time of occurrence

VL [ m3] 20− 21 m3 60− 65 m3 100 s
P [ Pa] 70 · 105 Pa 70 · 105 − 80 · 105 Pa 600 s
d1 [ m3/ s] 0.4 m3/ s 0.4 m3/ s 300 s
d2 [ mol/ s] 0.5 kmol/ s 0.5 kmol/ s 900 s
T [ K] 400 K 450 K -
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model in (4.44) must be used. If τci = θ is used for the diagonal pairing,
loop 1 will get a crossover frequency of ωc = 0.4. With a phase margin of
30◦ and a delay θ = 5 s, the maximum ωc is bounded by ωc ≤ 0.5

θ ≈ 0.1,
see Appendix A.2. This is obtained by using τc1 = 3θ. For loop 2, this
bound is obtained with τc2 = θ. Plotting the singular values, ωB, which is
the frequency where σ̄(S(jω)) crosses 1√

2
from below (see Appendix A.2),

is found from Figure 4.9 to be ωB = 0.0002.
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Figure 4.9: Singular values for S(jω) when τc1 = 3θ and τc2 = θ.

When choosing paring, Skogestad and Postlethwaite (2005) recommends
to pair such that the RGA is close to identity at the frequencies around the
closed-loop bandwidth. The magnitude of the RGA elements for the nominal
case is shown in Figure 4.10 (the gains will be similar for the worst case,
but with a larger magnitude of |λ11| = |λ22| for small frequencies).
For the nominal case with ωB = 0.0002 the RGA is

Λnom(jωB) =

[
0.564− 0.365i 0.436 + 0.365i
0.436 + 0.365i 0.564− 0.365i

]
so pairing on the diagonal elements is probably slightly better since these
elements are closest to 1. The RGA for the worst case at ωB = 0.0002 is
(the bandwidth is not changed any significantly from nominal to worst case)

Λwc(jωB) =

[
0.374− 0.310i 0.626 + 0.310i
0.626 + 0.310i 0.374− 0.310i

]
so apparently, pairing on the off-diagonal might be a better choice overall.
In practice, this means that the pressure is controlled by level measurements
and vice versa. The pairing will still be done on the diagonal elements, since
this will make it possible to compare this example with the SISO examples
in the last sections.
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Figure 4.10: Magnitude of RGA elements in the nominal case.

With the tuning settings found above

τc1 = 3θ

τc2 = θ

the SIMC PI controller parameters, using the diagonal elements of (4.42),
is found to be

Kc1 = −0.0285

τi1 = 80 s

Kc2 = −4.70 · 10−7

τi2 = 17.2 s

(4.47)

and the simulations for the nominal and worst case is shown in Figures 4.11
and 4.12, labeled SIMC. The selected tuning is based on the nominal case
without consideration for the worst case. Hence, the response is good for
the nominal case, but for the worst case the response becomes unsatisfactory
oscillatory. Especially after the step in pressure reference at t = 600 s where
there are sustained oscillations in both level and pressure.

To find the robust settings, the procedure from Section 2.2 is used on
the diagonal elements of the nominal reduced model (4.44) and the worst
case reduced model (4.46). The worst case-tuning parameters are chosen to
be

τc1,wc = 2θnom

τc2,wc = 0

based on the tuning parameters of τc1 = 3θnom and τc2 = θnom for the regular
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Figure 4.11: Comparison of regular SIMC settings and robust settings for
nominal operation of the tank.

0 500 1000 1500
50

55

60

65

70

75
worst case

Time [s]

V
L [m

3 ]

 

 

robust settings
SIMC

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

Time [s]

u1
 [f

ra
ct

io
n]

 

 

robust settings
SIMC

0 500 1000 1500
60

65

70

75

80

85

90

95

Time [s]

P
 [b

ar
]

 

 

robust settings
SIMC

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Time [s]

u2
 [f

ra
ct

io
n]

 

 

robust settings
SIMC

Figure 4.12: Comparison of regular SIMC settings and robust settings for
worst case operation of the tank.
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SIMC-tunings. These parameters gives the tuning parameters

τc1 = 5.12θnom

τc2 = 4.88θnom

which gives the PI controller parameters

Kc1 = −0.0186

τi1 = 122.5 s

Kc2 = −1.60 · 10−7

τi2 = 17.2 s

(4.48)

The response of the parameters in (4.48) and (4.47) are shown in Figures 4.11
and 4.12. From these figures, the robust settings are little slower with poorer
disturbance rejection than the regular tunings for the nominal case, but for
the worst case the regular tuning settings makes the process oscillatory as
mentioned earlier. When there is a step change in pressure reference (from
70 bar to 80 bar), both loops gets large sustained oscillations for the regular
tunings, while the robust tunings has a good response for both loops (though
the level control is a bit slow when counteracting influences from pressure).
By including information about the worst case, this shows that it is possible
to design controllers which handles both cases satisfactory. Even if the
control is good in sense of robustness for changes in operating conditions,
the interactions are still quite large. This can especially be seen by the
effect a pressure step reference and a disturbance in the gas inflow has on
the level. In the following section, this effect will be tried to be reduced
using a one-way decoupler.

4.4.5 Reducing interactions with a one-way decoupler

To minimize the effect of interactions, decoupling was found to be a good
method in Chapter 3. In particular, inverted decoupling and one-way de-
coupling seemed to be the best alternatives for the robustness requirements.
Since the one-way decoupler is the simplest, but yet a good decoupling tech-
nique, it will be used on the tank. From Figures 4.11 and 4.12 pressure
seems to affect level more than vice versa, thus a one-way decoupler will be
used from u2 (valve opening for the gas-stream out) to the controller c1 in
loop 1 (the level controller). In this section, only the robust tuning settings
(4.48) will be used.

Using the one-way decoupler described in Section 2.4.4 from u2 to c1 (i.e.
setting D21 = 0 in Figure 2.4), the decoupler element based on the model
(4.42) from the nominal case is

D12(s) = −G12(s)

G22(s)
=

0.922

17.2s+ 1
(4.49)
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To test the decoupler, the conditions used as nominal case conditions in the
last sections are used, but a step pressure reference from 70 bar to 80 bar is
added. This is to best illustrate the effect the decoupling has. The one-way
decoupler is compared with decentralized control in Figure 4.13. At the step
in pressure reference (t = 600 s) the decoupler manage to counteract much
of the influence of the pressure change, whereas with decentralized control
there is a large drop in the level. At t = 900 s there is a load disturbance in
the gas inflow. The effect of this disturbance is not reduced by the one-way
decoupler because the disturbance enters the process outside the scope of
the decoupler. If it is important to reduce the effect of this disturbance, one
solution is to use feed-forward from the disturbance d2 to the level controller
output c1.
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Figure 4.13: Compare one-way decoupler with decentralized control.

4.4.6 The effect of input saturation

In Section 4.3 it was found that the liquid level in a high-pressure tank
behaves like an integrating process. Therefore, if the level control is taken
out of service the tank will either fill up or be drained assumed that the inflow
is kept constant. The pressure on the other hand, was found in Section
4.1 to be self-regulating. In this section the effect of input saturation in
both the level control valve and the pressure control valve for decentralized
control and the one-way decoupler will be studied. In the simulations in the
previous sections, the valves were limited to ui ∈ [0, 1] which will be labeled
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‘no decoupler’ in the figures in this section. This is because these limits were
not met in the simulations in the previous chapters.
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Figure 4.14: Input saturation in the level control valve u1 with decentralized
control.

Starting with the input saturation

u1 ∈ [0, 0.52]

in the liquid control valve, the response for decentralized control is shown in
Figure 4.14 and for one-way decoupler in Figure 4.15. In order to get loop
2 to be robust against input saturation in u1, the effect of the saturation
should be small. For the one-way decoupler this is almost satisfied (Figure
4.15). The control works good until u2 goes into saturation around t = 700 s,
but control is never lost and for t > 1500 s pressure follows the reference.
The decentralized controllers (Figure 4.14) more or less looses control of the
pressure with a peak-value of around 160 bar, which is much larger than the
specified max pressure of 100 bar. The main problem with saturation in level
control valve is that, as mentioned above, the level is an integrating process,
thus the tank is either filled or drained when there is loss of control. Note
that the one-way decoupler managed to control the system even if there were
no decoupling from the saturated u1 to pressure control c2.
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Figure 4.15: Input saturation in the level control valve u1 with one-way
decoupler.

Next, the effect of the input saturation

u2 ∈ [0, 0.45]

in the pressure control valve will be studied. For decentralized control, the
response is shown in Figure 4.16. Saturation in u2 actually reduces the effect
changes in pressure reference has on the level. This is because the pressure
changes much slower due to the saturation, as can be seen in the pressure
plot in Figure 4.16. Since the pressure is self-regulating, the process will not
be destabilized by setting u2 in open loop, as long as the valve is not closed
(or nearly closed) and that this does not make u1 go into saturation. The
response with the one-way decoupler is shown in Figure 4.17. Here there is
no noticeable effect of saturation in u2 on the response for VL. There is still
a problem with the disturbance d2 in gas inflow as described above.

In this section, it is shown that input saturation can be handled by
decentralized control when independent design is used, for the cases when
the processes are self-regulating, but not for integrating processes. The
one-way decoupler manages to control the system satisfactory even if the
saturated input is not the one which is decoupled. Also, the decoupling
element (4.49) is quite simple.
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Figure 4.16: Input saturation in the pressure control valve u2 with decen-
tralized control.

4.5 Use of cascade control

Inspecting (4.30) and (4.33) it is evident that the interaction from pressure
to level is due to the flow through the liquid out-stream q2, which is both
dependent on valve opening z2 and pressure P in the tank. By using a flow
controller in cascade with the level controller, the process becomes lower
triangular since (4.30) no longer is depend on P . This is a similar case the
the apparent process with one-way decoupler. This illustrates that a smart
selection of controllers can ease control of the system. Since the scope of
this report is to look into how to tune controllers in multivariable interactive
systems in general rather than finding the best controller structure for this
specific example, the use of cascade control will not be studied any further
in this report.
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Figure 4.17: Input saturation in the level control valve u2 with one-way
decoupler.
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Chapter 5

Conclusions and further
work

5.1 Conclusions

In this project, an extension of the SIMC tuning rules which finds τc based
on worst case expected conditions, has been proposed. This robust tuning
rule has been tested on several cases and has proved to work very well for
the different examples. This SISO rule is combined with decouplers to make
a controller scheme for a multivariable coupled system which proves to be
robust against changes in parameters, opening and closing loops and input
saturation. In particular, one-way decouplers was concluded to be a good
trade-off between simplicity and performance.

In Chapter 2 it was studied how a parameter change in the off-diagonal
element in a 2 × 2-system would effect control with decentralized control
paired on the diagonal elements. The three different decoupler methods
presented in Chapter 1 was studied and tested with respect to the robustness
criteria. The effect of model errors in decouplers was included as part of the
worst case cases and controllers were designed based on the actual gains. For
the one-way decoupler, the RGA-elements were used to find the worst case
gain. With respect to the robustness criteria, only the inverted decoupler
and the one-way decoupler (which is a partial inverted decoupler) managed
to control the system for all cases. In particular, the ideal and simplified
decouplers fail with input saturation. It was concluded that a one-way
decoupler was sufficient to control the system, which is favourable because
of the reduced complexity.

In Chapter 3, the robust tuning settings were first tested on three SISO
cases based on a tank. For the cases sensitive to changes in operating con-
ditions, the robust tuning parameters managed to control the systems satis-
factory for all operating conditions, whereas the regular SIMC setting τc = θ
was too aggressive and failed in the worst case. The idea of detuning for
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robustness was here applied in a systematic manner which proved to work
well. Next, a multivariable interactive model of a high-pressure two-phase
vessel was studied. First, a decentralized control structure was designed
and the robust settings was obtained. Also in this case, the robust settings
manage to control the system satisfactory for all operating conditions. By
using a one-way decoupler, the system becomes robust with respect to all
the robustness criteria. Thus, both the multivariable systems in Chapter 2
and 3 was controlled satisfactory with decentralized control together with a
one-way decoupler.

5.2 Further work

The suggested further work is

• Include the disturbance model when designing controllers. In this
project this is not handled, and the problem is just addressed.

• Try to formulate a general multivariable decentralized control tuning
rule which is robust against the defined robustness criteria.

• Study systems larger than the 2× 2 examples in this project.

• Study which cases a one-way decoupler is not sufficient compared to
inverted decoupler.

• Compare performance of decouplers and decentralized control with
MPC.



Appendix A

Sensitivity functions and
stability margins

A.1 Sensitivity functions

The sensitivity function for a SISO system is defined as

S(s) =
1

1 +G(s)K(s)
(A.1)

where G(s) is the process and K(s) is the controller (e.g. Skogestad and
Postlethwaite (2005)). The sensitivity function can be used as a measure for
robustness and stability margins. The complementary sensitivity function
T is also of interest

T (s) =
G(s)K(s)

1 +G(s)K(s)
(A.2)

where S + T = 1. Together they describe how much changes in the process
will affect the the closed-loop system. In Seborg et al. (2004) it is shown
that

dT/T

dG/G
= S (A.3)

In other words, the sensitivity function describes the ratio of change in T
compared to change in G, and it is therefore desireable to have |S| small
(less than 1). Ideally, |S| = 0 is desirable, but this is not possible as can be
seen from the Bode sensitivity integral Goodwin et al. (2001)∫ ∞

0
ln |S(jω)|dω = 0 (A.4)

Since |S| usually is small for low frequencies and S → 1 for high frequen-
cies, it must be larger than 1 for intermediate frequencies (Skogestad and
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Postlethwaite, 2005). The maximum peaks of the sensitivity and comple-
mentary sensitivity functions are

MS = ‖S‖∞ = max
ω
|S(jω)|; MT = ‖T‖∞ = max

ω
|T (jω)| (A.5)

In Seborg et al. (2004) the following guidelines for MS and MT are given

Guidelines For a satisfactory control system, MT should be in the range
1.0− 1.5 and MS should be in the range 1.2− 2.0.

A.2 Frequency definitions and stability margins

A.2.1 Bandwidth

The bandwidth region for a multivariable system is the frequency region
from the frequency where σ̄(S(jω)) crosses 1√

2
≈ −3 dB from below to the

frequency σ(S(jω)) crosses 1√
2

from below (Skogestad and Postlethwaite,

2005), where S(s) is the sensitivity function defined in the last section.
Further, if only one frequency is desired as a bound, the bandwidth ωB is
defined as the frequency where σ̄(S(jω)) crosses 1√

2
from below.

A.2.2 Crossover frequency

The crossover frequency ωc is defined as the frequency where |L(jωc)| first
crosses 1 from above (Skogestad and Postlethwaite, 2005) where

L(s) = G(s)K(s)

A.2.3 Gain margin

The gain margin (GM) is defined as (Skogestad and Postlethwaite, 2005)

GM =
1

|L(jω180)|
(A.6)

where ω180 is the frequency where the Nyquist curve of L(jω) crosses the
negative real axis between −1 and 0. The lower bound on GM in terms of
MS is (Skogestad and Postlethwaite, 2005)

GM ≥ MS

MS − 1
(A.7)
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A.2.4 Phase margin

Phase margin (PM) is defined as (Skogestad and Postlethwaite, 2005)

PM = 6 L(jωc) + 180◦ (A.8)

where ωc is the crossover frequency. For systems with time delay, the maxi-
mum delay before the system becomes unstable is (Skogestad and Postleth-
waite, 2005)

θmax =
PM

ωc
(A.9)

where PM is the phase margin. The lower bound on PM in terms of MS is
(Skogestad and Postlethwaite, 2005)

PM ≥ 2 arcsin

(
1

2MS

)
≥ 1

MS
[rad] (A.10)

A.3 MS calculations

With the process

g(s) =
k

τ1s+ 1
e−θs (A.11)

and τ1 ≤ 4(τc + θ) the SIMC PI controller becomes

k(s) = Kc
τIs+ 1

τIs
=

1

k

τ1s+ 1

τ1s
(A.12)

which gives

g(s)k(s) =
1

s(τc + θ)
e−θs (A.13)

The equation for |S(jω)| is thus

|S(jω)| = 1

|1 + g(jω)k(jω)|
=

1∣∣∣1 + 1
jω(τc+θ)

e−jωθ
∣∣∣ (A.14)

where S(s) is the sensitivity function.
Repeating the calculations for the process

g(s) =
k′

s
e−θs (A.15)

and the controller

k(s) = Kc
τIs+ 1

τIs
=

1

k′
4(τc + θ)s+ 1

4(τcs+ θ)s
(A.16)

gives

g(s)k(s) =
4(τc + θ)s+ 1

4(τc + θ)s2
e−θs (A.17)
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This gives the equation for |S(jω)|

|S(jω)| = 1

|1 + g(jω)k(jω)|
=

1∣∣∣1 + j4ω(τc+θ)+1
4(τc+θ)w2 e−jωθ

∣∣∣ (A.18)

Using MATLAB, the vales for MS given by (A.5) are calculated for (A.14)
and (A.18). The values are listed in Table A.1.

Table A.1: Ms values, gain margins and phase margins.

Process g(s) τc Ms lower bound GM lower bound PM

k
τ1s+1e

−θs

θ 1.59 2.69 36.7◦

0.5θ 1.92 2.09 30.2◦

0.2θ 2.39 1.72 24.2◦

0 3.13 1.47 18.4◦

k′

s e
−θs

θ 1.70 2.43 34.2◦

0.5θ 2.17 1.85 26.6◦

0.2θ 2.99 1.50 19.3◦

0 4.41 1.29 12.2◦
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