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Abstract

In this project assignment control and modelling of a Kaibel distillation

column is taken into a closer look. The main motivation is the potential energy

savings that can be achieved, but this requires good control of the column in

order to achieve acceptable product purities at the same time. It is important

to model the distillation column proper, such that computer simulations of the

column can give results that are close to a real column.

The Kaibel distillation column is modelled in MATLAB / Simulink based on

differential equations for composition, temperature and mass.

The distillation model is extended to include heat loss, which affect the

product purities. A short study on the issue of parameter identification has

been done. The identification problem does not have a straight forward solu-

tion, but a proposed simplification is to use a vapour bypass model together

with a fixed number of stages in the column. The identification itself is not

done in this work.

In the control area, some interaction analysis has been done. This analy-

sis shows that the column can be controlled by a decentralized control strat-

egy since no heavy interactions are present. Decentralized control is simpler

and gives good results if the losses are acceptable. Multivariable control is

implemented with disturbance feed-forward and thus, it gives better distur-

bance rejection than decentralized control. The implementation of a multi-

variable controller generates issues like linearization, model reduction, distur-

bance modelling and observability.



CONTENTS

Preface v

Introduction xi

1 Distillation 1

1.1 The physics of distillation . . . . . . . . . . . . . . . . . . . . . . . . . 1

The equilibrium-stage concept . . . . . . . . . . . . . . . . . . . . . . 1

Material balance on a stage . . . . . . . . . . . . . . . . . . . . . . . . 1

Stage efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Equations used in distillation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Kaibel distillation column . . . . . . . . . . . . . . . . . . . . . . . 4

Laboratory arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modelling 7

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Existing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Extension with heat loss . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Simulation with heat loss . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Adjustment of model parameters . . . . . . . . . . . . . . . . . . . . . 10

2.5 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Control 15

3.1 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Column profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Self-optimizing control . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Analysis of interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Relative Gain Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Decentralized control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

SIMC tuning rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Tuning of decentralized controllers . . . . . . . . . . . . . . . . . . . . 19

SIMC tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Tuning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Multivariable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

MPC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Linear MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



CONTENTS ix

Integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Observer dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Logarithmic transformation . . . . . . . . . . . . . . . . . . . . . . . . 26

Tuning of MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Simulation of the MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Comparison between decentralized and multivariable control . . . . 28

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

A Vectors and matrices from MPC optimization problem 35

B CD 39





INTRODUCTION

Distillation is widely used in the process industry all over the world to separate liq-

uid mixtures. It is a highly energy-consuming technique and this give extra moti-

vation for finding less energy-consuming methods that can be applied. Accord-

ing to Ognisty (1995) distillation columns alone consume around 3 % of all en-

ergy consumed in the US. This give a huge potential for energy saving. This is the

background for the Kaibel distillation column, introduced in 1987 by Gerd Kaibel

(Kaibel, 1987).

A theoretical example in Halvorsen & Skogestad (2006) shows an energy reduction

of 33 % for a Kaibel distillation column compared to a conventional column setup.

Even 50 % energy reduction can be achieved in special cases. These savings are not

achieved without good control of the column, which is the main motivation for this

project assignment.

The project report should give a good understanding of the distillation model and

how it can be controlled to obtain high product purities. The model is based on pre-

vious work done by PhD student Jens Strandberg at Department of Chemical Engi-

neering, NTNU. Jens Strandberg has also been involved in building a pilot plant of

the Kaibel distillation column at Department of Chemical Engineering, which can

be used to compare with a computer model. The given assignment was to have a

look at the following points:

• Extend existing model to include heat loss

• Linearization and model reduction

• Briefly discussion on the issue of model parameter identification

• Interaction analysis

• Decentralized control and tuning

• Multivariabel control

Some theory on distillation is presented in the start to give a basic understanding

of the physics involved. Further, the points listed above are presented in the same

order. The control part has its main focus on stabilizing control, i.e. maintaining

controlled variables at their respective setpoints.

xi
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1
DISTILLATION

1.1 The physics of distillation

Distillation is a physical process that separates boiling liquid mixtures based on

the difference in volatility. Volatility is a measure of the tendency of a substance to

vaporize (Chang, 2006). Figure 1.1 shows a distillation column with feed input and

top and bottom product, D and B respectively. A column have two heat exchangers,

one reboiler at the bottom that generates vapour V going upwards. The other one

is a condenser at the top that cools vapour and generate top product and reflux L.

Reflux is condensated liquid that goes back to the column in the top, and make the

top product more pure.

The equilibrium-stage concept

A distillation column is vertically divided in a number of stages, and at each stage

it is assumed vapour-liquid equilibrium (VLE). The general VLE relation is given

in Equation (1.1). Nc is the number of components to be separated in the column.

y1, y2, . . . , yNc−1 are mole fractions in the vapour phase for Nc−1 components, simi-

lar for the liquid phase; x1, x2, . . . , xNc−1. T and P denotes temperature and pressure

respectively (Halvorsen, 2001).

[y1, y2, . . . , yNc−1,T ] = f (P, x1, x2, . . . , xNc−1) (1.1)

The concept of equilibrium-stage is shown in Figure 1.2.

Material balance on a stage

It is easy to set up a material (mass) balance for each stage in a distillation column.

Let Ni ,k denote the number of moles of component i on stage k, Lk denotes liquid

molar flow from stage k to k − 1 and Vk is the vapour molar flow from stage k to

k +1. This is illustrated in Figure 1.3. The material balance will then be

dNi ,k

dt
= (Lk+1xi ,k+1 −Vk yi ,k )− (Lk xi ,k −Vk−1yi ,k−1) (1.2)

1
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The number of moles of a component on a stage is equal to Mk xi ,k , where Mk is

the total number of moles at stage k. Using this relation a differential equation for

the liquid mole fraction can be derived from Equation (1.2)

dNi ,k

dt
=

d(Mk xi ,k )

dt
= Mk

dxi ,k

dt
+

dMk

dt
xi ,k (1.3)

The time derivative of Mk is

dMk

dt
= Lk+1 −Lk +Vk−1 −Vk (1.4)
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The time derivative of xi ,k can then be found

dxi ,k

dt
=

1

Mk

(
dNi ,k

dt
−

dMk

dt
xi ,k

)

(1.5)

=
1

Mk

(

Lk+1(xi ,k+1 − xi ,k )−Vk (yi ,k − xi ,k )+Vk−1(yi ,k−1 − xi ,k )
)

(1.6)

Stage efficiency

Murphree efficiency is a measure of the efficiency of each stage. The mathematical

definition is (Murphree, 1925)

ηM =
yk − yk−1

yk ,eq − yk−1
(1.7)

where yk ,eq is the vapour in equilibrium with liquid at stage k. An expression for yk

can then be obtained

yk = yk−1 +ηM (yk ,eq − yk−1) (1.8)

Equation (1.8) show that the vapour mole fraction will increase upwards in the col-

umn, when yk ,eq > yk−1. An increasing number of stages in a column will therefore

result in better product purities.
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Equations used in distillation

For ideal mixtures Raoult’s law (1.9) can be used, where the partial pressure pi of

component i equals the product of the liquid mole fraction xi and vapour pressure

p0
i

(T ).

pi = xi p0
i (T ) (1.9)

To determine the vapour pressure p0
i

(T ) Equation (1.10) is common used, where

the constants a, b, c, d , e and f are found in chemical handbooks.

ln p0(T )≈ a +
b

c +T
+d ln(T )+eT f (1.10)

d = e = 0 gives the Antoine equation. Dalton’s law gives the relation between the

partial pressure pi and vapour mole fraction yi in Equation (1.11).

pi = yi P (1.11)

P denotes the total pressure in the vapour phase, the same as in Figure 1.2

(Halvorsen, 2001).

1.2 The Kaibel distillation column

The Kaibel distillation column was introduced in 1987 (Kaibel, 1987). Normally a

distillation column separates the input mixture (feed) into two products, which is

a binary distillation column (See Figure 1.1). Generally if you want to separate a

mixture into n products, you will need n − 1 binary columns. This requires n − 1

reboilers. The Kaibel column can separate the feed into four products in the same

column shell, using only a single reboiler. These are the main reasons for using a

Kaibel column, it require less investment capital and it is more energy efficient. An

extra advantage is that the space required in a process plant is less for a Kaibel col-

umn than for conventional binary columns.

To obtain good product specifications; high product purities, the Kaibel column re-

quire good control. Figure 1.4 show a Kaibel column with the four product streams

D, S1, S2 and B and where the input feed is a mixture of the four products. D is the

lightest product and B is the heaviest. The left part of the column is the prefrac-

tionator and the right is the main column where the products are drained. Another

version of the Kaibel column is shown in Figure 1.5. This dividing wall column is

built only of a single column shell. Figure 1.6 show a Kaibel column similar to the

laboratory column at the Department of Chemical Engineering, mentioned in the

introduction. This column is built to do more research on the Kaibel column be-

cause of its potential energy savings.

The four products D, S1, S2 and B and the purities xD , xS1 , xS2 and xB respectively.

F denotes feed stream in at the middle of the column. The feed has a mole fraction

zF and a liquid fraction q . When the liquid fraction equals 1, all feed is liquid. The

feed mole fraction zF is a vector for three of the four components in the feed, thus

zF =
[
zD zS1 zS2

]>
(1.12)

Since the mole fractions always sum to 1, it is only needed to include three of them

in the model.

The column has valves for controlling reflux and vapour to each middle part of the

column. The liquid split, RL , controls the reflux and the vapour split, RV , controls

vapour.
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Laboratory arrangement

Figure 1.6 show that the column consists of seven sections (numbered). Each sec-

tion consists of a number of stages as discussed in Section 1.1. The laboratory col-

umn uses the alcohols methanol, ethanol, propanol and butanol as feed. The light-

est product is methanol and is therefore the top product denoted D. The heaviest

alcohol used is butanol, thus the bottom product, B . Side stream 1 (S1) is ethanol

and side stream 2 (S2) is propanol.

The column has 7 degrees of freedom. These degrees of freedom are the four output

product streams, reflux and vapour and the liquid split RL . The laboratory column

have 24 temperature sensors that can be used by controllers (Strandberg & Skoges-

tad, 2006). Temperature measurements are used in distillation because it gives a

good indication of the product composition.

The condenser has an open vent, i.e. pressure inside the column will always go to

the atmospheric pressure (Strandberg & Skogestad, 2006).
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2
MODELLING

2.1 Model

The Kaibel column from Figure 1.6 is implemented in MATLAB / Simulink by Jens

Strandberg at Department of Chemical Engineering and is further developed in this

project work. The CD attached to this report (Appendix B) includes MATLAB and

Simulink files that are used in the work. The column model have 13 inputs, shown

in Table 2.1. The table also show values for nominal operating points when totally

64 stages in the distillation column are used. Some of the inputs from Table 2.1

can not be controlled and must be considered as disturbances in the model. These

inputs are the the feed stream, feed mole fractions and liquid fraction in the feed

stream. One of the main challenges in control of the Kaibel column is to control

the vapour split, RV . This split is supposed to control the amount of vapour that

should go into the main column and the prefractionator. This has shown to be very

Variable Explanation Nominal value Unit

L Reflux 2.8492 mol/min

V Vapour boilup 3.0000 mol/min

S1 Sidestream 1 0.2494 mol/min

S2 Sidestream 2 0.2497 mol/min

RL Liquid split 0.2572 <ratio>

RV Vapour split 0.3770 <ratio>

F Feed stream 1.0000 mol/min

zD Mole fraction of D in feed stream 0.2500 <ratio>

zS1 Mole fraction of S1 in feed stream 0.2500 <ratio>

zS2 Mole fraction of S2 in feed stream 0.2500 <ratio>

q Liquid fraction of feed stream 0.9000 <ratio>

D Top product 0.2508 mol/min

B Bottom product 0.2503 mol/min

Table 2.1: Inputs for column model, see Figure 1.6 for further explanation

7
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difficult to do in practice, therefore RV is also considered as a disturbance in this

assignment. Vectors for controllable inputs, u, and disturbances, d , are then

u =
[
RL L V S1 S2 D B

]>
(2.1a)

d =
[
RV F zD zS1 zS2 q

]>
(2.1b)

As mentioned above, the nominal operating points given in Table 2.1 is when 64

stages are used as the total number of stages in the column. Column section 1 and

2 from Figure 1.6 are longer than the other sections and have some more stages

in the model. These sections are modelled with 12 stages and the other ones have

8, which give totally 64 stages. Notice that these numbers can be adjusted in the

model.

All stages are numbered in the same order as the sections, i.e. T1 is the temperature

in the top stage of section 1. If section 1 have 12 stages, T12 will be the temperature

in the bottom stage of section 1 and next; T13 will be the temperature in the top

stage of section 2.

2.2 Existing model

A material balance is set up for each stage in the column. To find the vapour com-

position used in the material balance, the Antoine equation from Section 1.1 is

used. This equation computes the vapour pressure and then an extended version

of Raoult’s law (2.2) is used to find mole fractions in vapour phase.

P yi = xiγi p0
i (T ) (2.2)

γi is the activity coefficient, to find it Wilson’s model1 is used. Wilson’s model is

a nonlinear model. When vapour mole fraction is computed the whole material

balance can be computed since liquid and vapour flows and liquid mole fractions

are known from initial conditions.

Equation (2.2) can be summed over for all components and the pressure can be

computed (the sum of all mole fractions is 1).

P
Nc∑

i=1

yi =

Nc∑

i=1

xiγi p0
i (T ) (2.3)

P (x,T ) =
Nc∑

i=1

xiγi p0
i (T ) (2.4)

The pressure from Equation (2.4) can be different from the initial pressure in the

column P0. The pressure in the vapour phase on a stage does not change while the

column is in operation, therefore the real pressure on each stage equals P0 (1 atm)

all the time. Therefore we want to drive P (x,T ) from Equation (2.4) to the correct

pressure P0. The pressure is changed by temperature, and this gives a simple up-

date law for the temperature in Equation (2.5).

dT

dt
= k(P0 −P (x,T )) (2.5)

1For further information about Wilson’s model, see Gmehling & Onken (1977)
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Where k is a positive constant that makes the units on each side of the equation

to be the same. In the implementation this constant equals one. It is important to

notice that Equation (2.5) does not come from any physical laws, it is just a numer-

ical update law that assures the pressure computed using Raoult’s law and Wilson’s

model to converge to the correct pressure P0.

2.3 Extension with heat loss

One of the objectives of this project was to extend the model to include heat loss.

Heat loss is caused by the temperature difference inside and outside the column

wall and can make a considerable difference in the product purities. Heat loss can

be found by applying Newton’s law of cooling:

dQ

dt
=U A(T −Ts ) (2.6)

where Ts is the temperature in the surroundings. For a distillation column the heat

loss for stage k with temperature Tk can be written as

∆Qk ,loss =Uk Ak (Tk −Ts ) (2.7)

Ak is the surface area for the stage. If the column shell is circular with diameter d

and the height of one stage is h, area equals πdh. Uk (W/m2K) is the heat transfer

coefficient.

Considering a single stage some of the vapour condense into liquid because of the

heat loss. This is why heat loss should be included in the model; some reflux is

added at each stage downwards the column. Taking heat loss into account the ma-

terial balance introduced in Section 1.1 must be modified. Assume the extra reflux

caused by the heat loss at each stage is ∆Lk , and that this extra reflux is condensed

from ∆Vk . The new material balance will then be

dNi ,k

dt
= ((Lk+1 +∆Lk+1)xi ,k+1 − (Vk −∆Vk )yi ,k ) (2.8)

− ((Lk +∆Lk )xi ,k − (Vk−1−∆Vk−1)yi ,k−1)

Since Lk and Vk are molar flows, ∆Vk equals −∆Lk . To obtain how much of the

vapour inside a stage that is condensed using the known heat loss, we need to use

the molar enthalpy of vapourization, ∆vap H(T ). The molar enthalpy of vapouriza-

tion is the enthalpy that is required to transfer 1 mol of liquid into vapour for a given

temperature T (Aylward & Findlay, 2008). The relationship between heat loss and

amount of condensed vapour is given in Equation (2.9).

∆Vk =
∆Qk ,loss

∆vap H(T )
(2.9)

∆vap H(T ) is given in chemical handbooks2 for each component.

Simulation with heat loss

Figure 2.1 shows the product compositions of a MATLAB simulation with heat loss

included in the model. The simulation starts with nominal values for the original

2E.g. Aylward & Findlay (2008)
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model. These nominal values are 0.9703, 0.9361, 0.9589 and 0.9949 for xD , xS1 , xS2

and xB respectively. The heat transfer coefficient was chosen for different values

as shown in the figure. These values were based on heat transfer coefficient for

glass, which is the construction material for the laboratory column at Department

of Chemical Engineering. An average of molar enthalpy of vapourisation for the

four components is used in the implementation, i.e.

∆vap Hused =
∆vap Hmeth +∆vap Heth +∆vap Hprop +∆vap Hbut

4

=
38+43+47+52

4
kJ/mol = 45kJ/mol

The same heat transfer coefficient was used for all sections. The figure shows that

less is vapourized when the column gets cooler and the top product get a higher

mole fraction. The products beneath will get an extra amount of the products

that are above and their compositions goes down. The overall composition will

get worse when heat loss is included.

2.4 Adjustment of model parameters

An important thing is to compare laboratory tests at the real column at Depart-

ment of Chemical Engineering with MATLAB simulations. Section 1.1 introduces

the equilibrium-stage concept for distillation columns. Most of industrial distilla-

tion towers have such physical stages or trays, like Figure 2.2a. The Kaibel column

at Department of Chemical Engineering is a packed column; it is filled with small

glass rings (Raschig rings) or small cylinders to have much surface area (Strandberg

& Skogestad, 2006). This concept is shown in Figure 2.2b. To simulate a packed col-

umn on a computer it is desirable to approximate it to an ordinary stage column in
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(b) Packed column

Figure 2.2: Different column content

order to use the different equations from Chapter 1. Figure 2.3 and 2.4 show some

plots from MATLAB simulations of the product compositions for different num-

ber of stages in the Kaibel model. The figures clearly show that a higher number

of stages give higher purities, which corresponds to the Murphree efficiency in-

troduced in Section 1.1. In the simulations initial purities were 0.25 on all stages,

initial temperature was 340K. The simulations were performed without heat loss.

Steady state values were achieved after some time. The final purities are shown in

Table 2.2. Table 2.2 also show measured mole fractions from the laboratory col-

umn during steady state operation. These measurements are done by Jens Strand-

berg at Department of Chemical Engineering. The idea is to find the number of
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Figure 2.3: Different number of stages, — xD , · · · xS1 , . - . xS2 , - - - xB

stages together with a heat transfer coefficient that make the laboratory test result

fit the computer simulations as good as possible. The identification problem can

be mathematically be written as a least square problem

min
θ

(y − ŷ(θ))2 (2.10)

where y is measured data from laboratory tests and ŷ(θ) is simulation data. θ is

the parameters that is supposed to be adjusted. These parameters are number of
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Figure 2.4: Different number of stages, — xD , · · · xS1 , . - . xS2 , - - - xB

16 stages 32 stages 64 stages 128 stages Lab. column

xD 0.7408 0.8685 0.9703 0.9993 0.80 - 0.85

xS1 0.5102 0.7258 0.9361 0.9960 0.60 - 0.70

xS2 0.5975 0.8042 0.9591 0.9982 0.60 - 0.65

xB 0.8633 0.9522 0.9947 0.9974 0.90 - 0.95

Table 2.2: Steady state purities for different number of stages

stages for the 7 sections and a heat transfer coefficient for the whole column, hence

θ =
[
N1 N2 N3 N4 N5 N6 N7 U

]>
(2.11)

The N’s are integer variables and they also affect the number of states (See next

section). Since Wilson’s model is used the full distillation model becomes nonlinear

and together with the integer number of stages, the identification problem will be

hard to solve. Standard methods like least square estimation presented in Ljung

(1999) can not be used here.

One approach to this problem is to use a brute force identification strategy to iden-

tify the best fitting integer parameters, and afterwards optimize this solution fur-

ther by adjusting the heat transfer coefficient that is a continuously parameter. The

problem with this solution is that the identification is divided into two parts. I.e.

the model output can be a good fit to the real data, but it can return parameter val-

ues that are wrong. A brute force strategy will also be very time consuming when

the simulations take long time to finish.

Another approach is to fix a number of stages in the column based on physical anal-

ysis, computer simulations or laboratory experiments and use a modified model

for the vapour flow. This modified model is referred to as a vapour bypass model,

where the vapour coming in at stage k for component i is written as

Vk yi ,k = (1−α)Vk−1yi ,k−1 +αVk−2yi ,k−2 (2.12)

where α (0 ≤ α ≤ 1) is a continuous parameter that decide how much vapour that

is bypassed from the second stage below and how much that comes directly from

the first stage below. When the number of stages is fixed, the only parameters that

needs to be found are the bypass parameter α and the heat transfer coefficient U .

Hence

θ =
[
α U

]>
(2.13)
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This bypassing of the vapour simplifies the identification to some extent when we

are assuming a fixed number of stages, since it will be only two parameters that are

needed to be found.

The identification itself is not done in this project since it is require a considerable

amount of work. The laboratory column at Department of Chemical Engineering

have not been operative during the project work, thus, no measurement data could

have been collected. Therefore, a fixed number of stages are used in the simulations

in the rest of this report. This number is 64 stages and is frequently used in earlier

work done by Jens Strandberg.

2.5 State space model

Three differential equations give the state space model for the whole column. These

are differential equations for composition, temperature and mass, given in Equa-

tions (1.2), (1.4) and (2.5) respectively. The nonlinear state space model can be

written as:

ẋ = f (x,u,d) (2.14a)

y = g (x,u,d) (2.14b)

In the nonlinear system for the Kaibel column the inputs does not directly affect

the measurements, i.e. y = g (x,u,d) = h(x). This property is used in the rest of this

assignment.

The nonlinear model from Equation (2.14) can easily be linearized in MATLAB by

using the command linmod. This command compute a linear model from the non-

linear model around a specified operating point by doing small perturbations on

the inputs. This gives

d

dt
∆x = A∆x +B∆u+E∆d (2.15a)

∆y =C∆x (2.15b)

where the ∆-variables are deviations from nominal (steady state) values that are

those points where the linearization were performed around. Linearization is im-

portant for development of a multivariable controller later in Chapter 3.

2.6 Model reduction

When simulating with 64 stages in the Kaibel column model, the number of states

becomes 341. The model can be reduced quite a lot without affecting its dynamic

behaviour for relevant frequencies. The motivation behind model reduction is to

get a smaller optimization problem for a multivariable controller. A reduction from

341 to 10 states reduces the size of the Hessian matrix3 from the optimization prob-

lem with a factor of almost 20, which is essentially for the running time of the op-

timization solver. The singular values for the systems gives information about the

gains of the plant (Skogestad & Postlethwaite, 2005). Therefore by plotting the sin-

gular values around closed loop frequency for different models gives a good indi-

cation of how good approximation the reduced models are. Figure 2.5 shows that a

3The Hessian matrix is what you are left with when you take the second-order partial derivative

of a function f . In this context f is the objective function of the optimization problem. Hence, for a

quadratic problem with objective function f =
1
2 x>Hx + f >x, the Hessian matrix is H
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Figure 2.5: Singular values, — original linearized model, · · · reduced linear model

(order = 10)

model with order 10 can be a good enough approximation for relevant frequencies.

In MATLAB balred can be used to reduce models. The model was reduced using

the truncation method. It consists of two steps (Green & Limebeer, 1994):

1. Transform the state-space model to

x(t) =

[
x1(t)

x2(t)

]

(2.16)

where x2(t) are the states that is discarded. The corresponding Hankel sin-

gular values4 and the specified order of the reduced system decides which

states that are discarded and not. When the states have changed their order,

the state space matrices becomes

Ā =

[
Ā11 Ā12

Ā21 Ā22

]

, B̄ =

[
B̄1

B̄2

]

(2.17a)

C̄ =
[
C̄1 C̄2

]

, D̄ = D (2.17b)

2. The reduced model is then given by

Ar = Ā11, Br = B̄1 (2.18a)

Cr = C̄1, Dr = D̄ (2.18b)

4Hankel singular values is a measure of energy for each state in the system. It is closer described in

Skogestad & Postlethwaite (2005)
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CONTROL

As pointed out in the introduction, good control of the Kaibel column is essential to

achieve the potential energy savings. It was also mentioned in the introduction that

the control part of this assignment focuses on stabilization of the column. Previous

work done in Strandberg & Skogestad (2006) uses this approach and is continued

in this project.

3.1 Stabilization

The degrees of freedom are L, V , S1, S2, RL , D and B as discussed in Chapter 2. To

avoid saturation in the condenser and reboiler levels, control is needed for those. D

is therefore used to control condenser level and B for reboiler level. These levels are

controlled by PI-controllers and are assumed to be working. Since the pressure in-

side the column equals the atmospheric pressure (1 atm) it is not necessary to con-

trol the pressure. The vapour V is fixed to its nominal value like done in previous

work (Strandberg & Skogestad, 2006). The degrees of freedom left to decentralized

and multivariable control are then

u =
[
RL L S1 S2

]>
(3.1)

Column profile

In order to get high product purities it is necessary to stabilize the column profile1

(Skogestad, 2007). In an ordinary distillation column condenser and reboiler levels

and column pressure are first stabilized by some degrees of freedom and the rest are

used for composition control, i.e. stabilization of the column profile. If the degrees

of freedom that are left for composition control are reflux L and vapour V (most

common), the column is said to have a LV -configuration. The degrees of freedom

that are not used for level stabilization in this case are L, V , S1, S2 and RL . To sta-

bilize the column profile, four of these have to be used (Strandberg & Skogestad,

1The column profile for a product shows how the composition is for each stage in the column. It is

desirable to have the product outlet where its composition profile has its maximum value.

15
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2006). In Strandberg & Skogestad (2006), L, S1, S2 and RL are chosen to control the

composition, since V is assumed to be fixed. The same manipulating variables are

chosen in this project work, thus, the input vector is given by Equation (3.1).

Measurements

Temperature measurements are most used in distillation to control composition.

An online gas chromatograph can be used to measure exact mole fraction of the

products, but it is a very expensive instrument and the measurements will arrive

to the controller with quite much delay. Temperature measurements are therefore

taken along the column.

Self-optimizing control

The following definition is taken from Skogestad & Postlethwaite (2005)

Definition 1 Self-optimizing control is when we can achieve an acceptable loss with

constant setpoint values for the controlled variables without the need to reoptimize

when disturbances occurs.

In Strandberg & Skogestad (2006), self-optimizing control is used to control the

Kaibel column using constant setpoints on some of the temperatures measured.

These setpoints are found by minimization of an overall objective function that

weighs the impurity flows:

J = D(1− xD )+S1(1− xS1 )+S2(1− xS2 )+B(1− xB ) (3.2)

This objective function is the loss as described in the definition above. By mini-

mization of this objective function it is possible to find the values for the setpoints

used for the self-optimizing control. Then, by holding the controlled variables at

these setpoints by adjusting the degrees of freedom from Equation (3.1), the col-

umn should operate optimal. The controlled variables are found in earlier work

(Strandberg & Skogestad, 2006) and are further used throughout this assignment:

y =
[
T17 T30 T59 T49

]>
(3.3)

The control configuration is shown in Figure 3.3.

3.2 Analysis of interaction

When controlling a system with multiple inputs and multiple outputs it is impor-

tant to look closer to interactions in the system. E.g. what effect does side stream 1

have on the outputs that is supposed to control other inputs? From a physical point

of view the Kaibel column must be an interactive process because of the different

vapour and reflux connections that arise from the connection of the prefractiona-

tor and the main column. These interactions can give challenges in achieving good

control of the column. A useful tool to analyze interactions is to use the Relative

Gain Array (RGA).
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g11

g12

g21

g22

y1u1

u2 y2

C2

−

Figure 3.1: System with interaction

Relative Gain Array

Consider a 2×2 system shown in Figure 3.1. When u2 equals zero, the open loop

transfer function from u1 to y1 is
(

y1

u1

)

open loop, u2=0

= g11 (3.4)

If y2 is controlled ”tight”, it equals zero and u2 can be computed

u2 =−
g21

g22
u1 (3.5)

y1 then becomes

y1 = g11u1 + g12u2 = g11

(

1−
g12g21

g11g22

)

u1 (3.6)

and the closed loop transfer function from u1 to y1 becomes
(

y1

u1

)

closed loop, y2=0

= g11

(

1−
g12g21

g11g22

)

(3.7)

The relative gain (Bristol, 1966) is defined as

λ11 =

(
y1

u1

)

open loop, u2=0
(

y1

u1

)

closed loop, y2=0

(3.8)

It is desirable to have the relative gain close to 1 when u1 is controlling y1. When

it is close to 1 y1 is not affected much by u2. A general definition of the RGA for a

ny ×nu system is

RG A(G)=Λ(G) ≡G × (G−1)> (3.9)

=






λ11 · · · λ1nu

...
. . .

...

λny 1 · · · λny nu





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Figure 3.2: Magnitude of diagonal RGA-elements

where G is the transfer function matrix from the input to output. ny is number of

outputs and nu is number of inputs. Skogestad & Postlethwaite (2005), states that

inputs should control outputs where the corresponding RGA elements are close to

1 when using decentralized control.2

Interaction

Use of RGA as an analysis tool requires the model to be linearized, then for the

Kaibel model, the linearized model given by Equation (2.15) must be used. The

transfer function matrix G can easily be computed

G =C (sI − A)−1 B (3.10)

The RGA is frequency dependent and the elements can be plotted as a function of

frequency. Figure 3.2 shows the absolute value of relevant RGA-elements around

closed loop frequencies for the control configuration showed in Figure 3.3. The

RGA-plot in figure 3.2 is for the pairings3 done in Figure 3.3. They seem to be the

correct ones since the corresponding RGA-elements are close to 1.

3.3 Decentralized control

Decentralized control is the simplest multivariable control that can be done. It re-

quires the interactions to be small, i.e. diagonal elements of RGA-matrix to be close

2Decentralized control is when a plant G(s) is controlled by a diagonal controller K (s), i.e. the ma-

trix K (s) consists of only diagonal elements. The corresponding open loop transfer function matrix is

G(s)K (s) (Skogestad & Postlethwaite, 2005).
3Pairing tells which inputs that are chosen to control which measurements in a decentralized con-

troller, i.e. each input is paired with a measurement
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Figure 3.3: Example of decentralized control structure

to 1. Strandberg & Skogestad (2006), have proposed a decentralized control struc-

ture similar to the one in Figure 3.3. Thus, four PI-controllers have been used to

control the composition in the column. These controllers need to be tuned. A sim-

ple and good way to find the controller parameters is to use the Simple / Skogestad

internal model tuning (SIMC) rules from Skogestad (2003).

SIMC tuning rules

SIMC-PID tuning rules from Skogestad (2003) for first- and second-order processes

are given in Table 3.1. k is process gain, θ denotes its delay and τ1 and τ2 are time

constants. τc is the closed loop time constant, and is the only tuning parameter.

Skogestad (2003), suggests τc = θ to obtain a fast response with good robustness.

Tuning of decentralized controllers

Tuning of a decentralized controlled plant can be done in three different ways (Sko-

gestad & Postlethwaite, 2005):
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PID-gains

Process g (s) Kc τI τD

First-order k e−θs

(τ1s+1)
1
k

τ1

τc+θ
min(τ1,4(τc +θ)) -

Second-order k e−θs

(τ1s+1)(τ2s+1)
1
k

τ1

τc+θ
min(τ1,4(τc +θ)) τ2

Table 3.1: SIMC-PID tuning rules

• Fully coordinated design

• Independent design

• Sequential design

A fully coordinated design requires the controllers to be designed simultaneously

based on the complete model G(s). This requires the full model, and a multivari-

able controller can be used instead. In the sequential design each controller is de-

signed and putted in operation when the next one is designed. The simplest design

method is to design each controller based on the corresponding element in G(s),

this is called independent design. In this assignment independent design is cho-

sen.

SIMC tuning

From the RGA-analysis we know that the pairings are along the diagonal, i.e. u1

controls y1, u2 controls y2 etc. This gives a controller matrix K (s) that is diagonal.

Each diagonal element gi i (s) in the transfer function matrix can be approximated

by simple step-testing in the simulator. Table 3.2 shows transfer function coeffi-

cients for first order approximations and the corresponding controller gain and in-

tegral time. Closed loop time constant τc is chosen to be the same as time delay.

Figure 3.4 show the response of a positive step on RL and its approximation.

Step on variable ∆u k τ1 θ Kc τI

RL
+0.01 −694.6 37.2 20.7 −0.0013 37.2

−0.01 −459.6 33.4 17.5 −0.0021 33.4

L
+0.01 −114.0 114.2 25.5 −0.0196 114.2

−0.01 −178.9 186.2 25.5 −0.0205 186.2

S1
+0.01 201.7 34.8 22.2 0.0039 34.8

−0.01 145.6 38.8 17.3 0.0077 38.8

S2
+0.01 694.7 121.8 48.8 0.0018 121.8

−0.01 488.1 79.6 23.9 0.0077 179.6

Table 3.2: SIMC tuning rules applied on step test results

Tuning results

In the simulation an average of the different values for Kc and τI from positive and

negative step were used. I.e. for the liquid split controller, controller gain was set

to −0.0017 and integral time to 35.3. The figures 3.5 and 3.6 shows different dis-

turbance responses for the 4 controlled temperatures before and after tuning. The
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Figure 3.4: Response when stepping on RL , — T17, - - - first order approximation

Disturbance variable Change from nominal value

Feed flow (F ) + 10 %

Ethanol composition in feed (zS1 ) + 20 %

Vapour split (RV ) + 10 % and + 50 %

Table 3.3: Disturbance tests

response for the original tunings from previous work are plotted to have something

to compare the new tunings with. The control configuration is the same as shown

in Figure 3.3. The different disturbances (shown in Table 3.3) tested are based on

earlier work done by Jens Strandberg, which he have used for comparison between

different control configurations. The figures show a good improvement in the con-

trol compared to old tuning parameters; less oscillatory behaviour and less settling

time.

3.4 Multivariable control

The design of a model predictive controller (MPC) can be done in a ”simple” way

using software that imports the model with constraints and generate a controller

to the user. Such software can be MPC toolbox for MATLAB or Unisim Profit Design

Studio made by Honeywell. These software packages can be very useful for fast de-

sign of an MPC controller, but it does not give much insight in the interesting theory

behind MPC. The author has therefore chosen to make the MPC controller ”from

scratch” to obtain more knowledge on MPC theory and meet the different issues

that arises in the design of an MPC controller.

The self-optimizing control way of thinking is also used here, by using the MPC to

control the four temperatures to their setpoints. The MPC could have been used

to optimize the overall objective function given in Equation (3.2) and then give
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Figure 3.5: Disturbance in feed flow and feed composition, · · · old tuning, — new

tuning
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Figure 3.6: Disturbance in vapour split, · · · old tuning, — new tuning

setpoints to the original PI-controllers for optimal disturbance rejection. This ap-

proach would give a layered control structure (Skogestad & Postlethwaite, 2005)

with the MPC on the top. The MPC made in this project does not use this struc-

ture, it minimizes the deviation from the given setpoints and optimizes the control

inputs (u) directly.

MPC introduction

A model predictive controller is a controller which (Imsland, 2007)

1. Uses a multivariable process model to predict future behaviour

2. Optimizes predicted future performance with mathematical programming

3. Handles constraints on inputs and states

MPC is known as the advanced process control method in chemical process indus-

try and has been used in chemical plants and oil refineries since the 1980s. The

basic idea of predictive control is shown in Figure 3.7. The MPC optimizes at ev-

ery time instant and calculates optimal inputs and states for Hp time samples into

the future. Hp is called prediction horizon. To save computations when optimizing

it is possible to have a separate prediction horizon for the inputs, Hu , that is less
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Figure 3.7: Basic idea of predictive control

than the state prediction horizon (Maciejowski, 2002). This approach is not taken

in consideration here. The optimization problem done at each time step k in the

MPC can be formulated as

min

Hp−1
∑

i=0

(

||xk+i − xref
k+i ||

2
Q +||uk+i −uref

k+i ||
2
R

)

+||xk+Hp
− xref

k+Hp
||

2
S (3.11)

subject to constraints on inputs and states

where Q , R and S are weight matrices. S is the terminal weight (Muske & Rawl-

ings, 1993) for the state deviations after the prediction horizon and must be chosen

sufficiently large. It can be found by solving a discrete Lyapunov equation (Hovd,

2008):

S − (A+BK )>S(A+BK ) =Q (3.12)

where K is a the stabilizing feedback. K and S can be calculated in MATLAB usingdlqr.

Another optimization formulation that is more preferred in practice according to

Borrelli & Morari (2007) is

min

Hp−1
∑

i=0

(

||xk+i − xref
k+i ||

2
Q +||δuk+i ||

2
R

)

+||xk+Hp
− xref

k+Hp
||

2
S (3.13)

subject to constraints on inputs and states

where δuk is the change in the input at time step k, i.e. uk+1 = uk +δuk . Using

this formulation avoids computation of uref
k

from Equation (3.11) at each time step.

uref
k

will change when disturbances occurs and therefore the formulation in Equa-

tion (3.13) is preferable. The MPC will use the following sequence at each time step

k:

1. Solve the optimization problem and find an optimal sequence of inputs
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2. Apply the first input of the sequence to the process

3. Set k = k +1 and go to step 1

Linear MPC

A linear MPC uses a linear model and the optimization is a quadratic problem.

The linear model is the discrete version of the state space model given in Equa-

tion (2.15).

∆xk+1 = Ad∆xk +Bd∆uk +Ed∆dk (3.14a)

∆yk =Cd∆xk (3.14b)

Model reduction was presented in Chapter 2 to reduce the MPC optimization prob-

lem without removing to much dynamic behaviour. States that are controlled by

the level controllers are removed before the reduction.

The ∆-notation is now dropped and the reduced state space model is written as

xk+1 = Axk +Buk +E dk (3.15a)

yk =C xk (3.15b)

The formulation from Equation (3.13) is used and the quadratic optimization prob-

lem for step k can now be written as

min

Hp−1
∑

i=0

(

x>
k+i Qxk+i +δu>

k+i Rδuk+i

)

+ x>
k+Hp

Sxk+Hp
(3.16a)

subject to

xk+i+1 = Axk+i +Buk+i +E dk+i ,∀i = 0. . . Hp −1 (3.16b)

uk+i+1 = uk+i +δuk+i ,∀i = 0. . . Hp −2 (3.16c)

xmin,k+i ≤ xk+i ≤ xmax,k+i ,∀i = 0. . . Hp (3.16d)

umin,k+i ≤ uk+i ≤ umax,k+i ,∀i = 0. . . Hp −1 (3.16e)

δumin,k+i ≤ δuk+i ≤ δumax,k+i ,∀i = 0. . . Hp −1 (3.16f)

The constraint (3.16f) arises from maximal change in the valves that are the physical

inputs.

Implementation

Using quadprog in MATLAB, it is desirable to have the optimization problem in the

following form

min
1

2
ν>Hν (3.17a)

subject to

Aeqν= beq (3.17b)

νmin ≤ ν≤ νmax (3.17c)

where ν is a vector containing all input and state predictions. Derivations of these

matrices are left to Appendix A.
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Integral action

Hovd (2008) describes two approaches to add integral action to the MPC. One ap-

proach is to use the input change as a free variable in the optimization, using for-

mulation given by Equation (3.13), this is already added. To test whether this would

work or not, a simple linear MPC was made in MATLAB to test it. The process

simulated on was the reduced model given in Equation (3.15). The simulations

show that when applying steps in the disturbances the MPC give a stationary de-

viation. To avoid this stationary deviation it is possible to add integral action by

using the other approach described by Hovd (2008). This method is to include the

disturbance model in the MPC predictions, i.e. by using the constraint given in

Equation (3.16b). This adds feed-forward from the disturbances to the MPC. This

constraint requires that the disturbances and states are known (measured) or es-

timated. In a real column arrangement like the laboratory column at Department

of Chemical Engineering the states and disturbances have to be estimated. In a

real column arrangement it is possible to use the linearized and nonreduced model

and estimate the real states for the column, but if the number of states are large

it is difficult to estimate all the states without adding a lot of new measurements.

Therefore we want to use the reduced model in the observer.

Observability

The following definition of observability is taken from Chen (1999):

Definition 2 The state space model ẋ = Ax +Bu, y = C x +Du is said to be observ-

able if for any unknown initial state x(0), there exists a finite t1 > 0 such that the

knowledge of the input u and the output y over [0 t1] suffices to determine uniquely

the initial state x(0). Otherwise, the equation is said to be unobservable.

To check whether the system is observable or not the rank of the observability ma-

trix (given in Equation (3.18)) can be computed. If it has full rank, the n ×n state

space system is observable and the states can be estimated (Chen, 1999).

O =









C

C A
...

C An−1









(3.18)

The rank of the observability matrix can easily be checked in MATLAB using the

commands rank and obsv. (A,C ) from the linearized model (3.15) is observable.

As mentioned above, if both states and disturbances are needed to be estimated

because of the integral action, it is necessary for this system to be observable. To

check that, the disturbances can be augmented into the states:

[
xk+1

dk+1

]

=

[
A E

0 I

]

︸ ︷︷ ︸

Ã

[
xk

dk

]

+

[
B

0

]

uk (3.19a)

yk =
[
C 0

]

︸ ︷︷ ︸

C̃

[
xk

dk

]

(3.19b)
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u ẋreal= f (xreal,u)

y = g (xreal,u)
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Figure 3.8: Continous closed loop observer

Notice that the property, dk = dk+1 = dk+2 = . . ., is used in the augmentation. (Ã,C̃ )

must now be observable, but this is unfortunately not the case for the Kaibel model.

Borrelli & Morari (2007) remarks that for the system (3.19) the number of distur-

bances needs to be smaller or equal to the number of measurements for the system

to be observable. 6 disturbances are modelled into the linear Kaibel model (See

Section 2.1) and only 4 measurements. Hence, at least 2 measurements must be

added to make it observable. In the simulations performed in this chapter the dis-

turbances are assumed to be known to simplify the problem, i.e. only the states are

estimated.

Observer dynamics

Figure 3.8 show a continuous closed loop observer similar to the one used in the

MPC implementation. The observer is based on the linear and reduced model and

the process is the nonlinear distillation process with different states. The real /

physical states are denoted xreal. L denotes the observer gain and should be chosen

such that the error dynamics, (A −LC ), is stable. In the implementation this gain

was chosen using pole placement, such that the poles of (A−LC ) were putted inside

the unit circle. The equations for the observer are

˙̂x = Ax̂ +Bu+L(y − ŷ ) (3.20a)

ŷ =C x̂ (3.20b)

Logarithmic transformation

Distillation columns are known to have nonlinear dynamics (Skogestad, 1997) and

the linearized model used in an MPC controller can be a poor approximation to
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the nonlinear model. A common trick to deal with this problem is to make the

measurements more linear with respect to the inputs. Mejdell & Skogestad (1991)

define the logarithmic temperature as

T log
= ln

(
TH ,ref −T

T −TL,ref

)

(3.21)

where TH ,ref is the boiling point of the heavy component and TL,ref for the light

component. This transformation is used for the temperature feedback in the MPC

implementation. I.e. the temperature measurements ”seen” by the MPC are trans-

formed via the logarithmic function flog, such that yMPC = flog(y). The MPC tries

to control yMPC to the transformed setpoints ys
MPC

= flog(ys). To visualize the dif-

ference between the linear and nonlinear responses, a step in the feed flow (F ) was

applied. Figure 3.9 show the response of y4 (T49) for the two different models. The

linear response is a poor approximation to the nonlinear response and the non-

linear dynamics of the column can be seen pretty clear. The use of logarithmic

transformation on the linear response gives a better approximation for use in the

MPC.
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Figure 3.9: Response of y4 (T49) after a step in feed flow (F + 10%), — nonlinear

model response, - - - linear model response

Tuning of MPC

Maciejowski (2002) presents different parameters that can be used to tune the re-

sponses of an MPC:

• Weights

• Prediction horizon

• Disturbance model and observer dynamics
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Variable Value

Input weight matrix (R) 1000 · I

State weight matrix (Q) C> ·100 · I ·C

Prediction horizon (Hp ) 5

Sampling time of discrete model used

in the MPC and observer 10min

Miniumum input umin =
[
0 0 0 0

]>

Maximum input umax =
[
1 3 1 1

]>

Minimum change in input δumin =
[
−10 −10 −10 −10

]>

Maximum change in input δumax =
[
10 10 10 10

]>

Table 3.4: Simulation parameters used for MPC simulation (I is the identity matrix).

Minimum and maximum constraint for the states x were simply set to negative

infinity and infinity respectively.

The weights are the input change weight matrix R and state deviation weight matrix

Q . These matrices are chosen by trial and error in the simulations and their values

are shown in Table 3.4. The choice of prediction horizon is based on the closed-

loop response time constant. The prediction horizon should be chosen sufficiently

large, but an increasing value increases the size of the optimization problem quite

much.

Simulation of the MPC

To compare decentralized control with multivariable control the disturbances from

Table 3.3 was tested using MPC and plotted in the same figures. These plots are

shown in Figure 3.10 and 3.11. The responses are significantly better for the MPC,

but it is important to notice that the included disturbance model given by the con-

straint (3.16b) in the optimization problem, give a feed-forward from the distur-

bances. There is no feed-forward from the disturbances in the decentralized con-

troller. It should also be noticed again that the disturbances are assumed to be

known (measured) in the MPC simulations. In a real application it is likely that

they must be estimated. It is reason to believe that the disturbance responses will

get some worse than the responses in the figures when the disturbances must be

estimated caused by limited observer dynamics.

3.5 Comparison between decentralized and multivariable

control

The results shown from simulations using decentralized and multivariable control

have focused on the temperatures and not the real objective; the product purities.

To repeat, the overall objective function that we want to minimize is the total im-

purity flow:

J = D(1− xD )+S1(1− xS1 )+S2(1− xS2 )+B(1− xB ) (3.22)

The impurity flow can be plotted as a function of time for decentralized and multi-

variable control, see Figure 3.12 and 3.13. It is difficult to compare the two control

approaches to much since the implemented MPC have a clear benefit with the dis-

turbance feed-forward and not the decentralized controller. A feed-forward for the
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Figure 3.10: Disturbance in feed flow and feed composition, · · · Tuned decentral-

ized PI-controllers, — MPC
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Figure 3.11: Disturbance in vapour split, · · · Tuned decentralized PI-controllers, —

MPC

decentralized control approach would probably result in much less peaks for the

impurities after the occurring disturbance as seen in the figures. Considering the

amount of work to implement the two different control approaches, decentralized

control is implemented quite fast and the tuning is straight forward when using

SIMC tuning. It does not require any model since the tuning is based only on step

tests. The decentralized controller need to know which manipulated variables that

shall control which controlled variables, in an MPC it is no need to think of this.

One of the main motivations for using MPC compared to a decentralized controller

is the ability to handle constraints. The only constraints that were used in these

simulations were input constraints.

A probably better way to build the multivariable controller would be to use the MPC

on top of the PI-controllers already implemented in the decentralized control. As

mentioned in the introduction of Section 3.4 this would give a layered control struc-

ture that give the ability for the MPC to optimize the real loss function; the impurity

flows in this case. The MPC would then give optimal setpoints to the PI-controllers

in the layer beneath with respect to this optimization objective. The MPC should

then be more easy to tune and it would not be necessary to find the self-optimizing

control variables (Skogestad & Postlethwaite, 2005).
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Figure 3.12: Disturbance in feed flow and feed composition, · · · decentralized con-

trol, — multivariable control
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Figure 3.13: Disturbance in vapour split, · · · decentralized control, — multivariable

control



Conclusion and further work

3.6 Conclusion

The main objective of this project work was to do some modelling of the Kaibel

distillation column based on earlier work and do a study regarding control of the

column. The Kaibel distillation column has potential energy savings compared

to conventional distillation column arrangements, which is the motivation of this

work. The control objective is to maintain acceptable product purities during dis-

turbances. The distillation model is implemented in MATLAB / Simulink.

Including heat loss in the distillation model can be essential to make the results

generated by the model to be more correct when comparing with a real distillation

column. Heat loss make the top product more pure because less is vapourized, but

the products beneath will be less pure. The overall purity get worse with heat loss

included.

Adjusting the model parameters to make the model output fit to real plant mea-

surements is a difficult problem because it involves a nonlinear model of which

the number of states is dependent of the model parameters, and in addition, some

of these model parameters are required to be integer numbers. By introducing a

bypass vapour model and assuming a fixed number of stages in the distillation col-

umn, the identification problem can be simplified.

The Kaibel column is an interactive process and this may result in difficulties re-

garding control, but the RGA-analysis does not indicate heavy interactions and de-

centralized control is therefore possible. The PI-controllers in the decentralized

control approach are tuned using Simple / Skogestad internal model tuning (Sko-

gestad, 2003) and this give a fair disturbance rejection for the disturbances tested.

Implementation of a multivariable controller involves several issues. A linear MPC

require a linear model and the nonlinear model has to be linearized. Because of the

large number of states it is an advantage to reduce this linear model into a smaller

one so the size of the optimization problem gets reduced. A quite significant reduc-

tion can be done for the Kaibel model without removing too much of the dynamic

behaviour. The MPC is made with feed-forward from the disturbances in order

to avoid stationary error. This feed-forward require a disturbance model for the

column. An observer is also needed to estimate the states in the reduced model.

Because of its advantage with feed-forward, the MPC give much better disturbance

rejection compared to conventional decentralized control.

3.7 Further work

The model parameter identification problem is presented in this report, but the

identification itself has not been done. Therefore, laboratory experiments should

31
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be done to collect measurement data for use in the identification. Unfortunately,

the laboratory column at Department of Chemical Engineering has not been oper-

ative during this work.

The proposed controllers presented in the report should also be tested on the real

column in order to determine if it really would work or not.

A more sophisticated way to implement a multivariable would be to put it on top

of the regulatory layer which consists of PI-controllers as discussed in the report.

This will result in easier tuning of the MPC and ability to optimize over the real

objective.
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Appendix A

Vectors and matrices from MPC

optimization problem

The different vectors and matrices from Equation (3.17) are derived here. The opti-

mization variable ν contains all input and state predictions:

ν=





























xk+1 − xk+1,ref

xk+2 − xk+2,ref

...

xk+Hp
− xk+Hp ,ref

uk

uk+1

...

uk+Hp−1

δuk

δuk+1

...

δuk+Hp−1





























(A.1)

xk+i ,ref is the desired value of the state xk+i in time step k. The H-matrix becomes

H = diag(Q , . . . ,Q ,S,0, . . . ,0,R, . . . ,R) (A.2)

The weight matrices Q , S and R are positive definite. It is difficult to know how

much each state should be weighted, therefore a weight matrix, Q̃, is introduced so

the weighing is performed on the measurements. Q is then given by

Q =C>Q̃C (A.3)

The equality constraints arises from the linearized state space model (Equation (3.15)):

xk+1 = Axk +Buk +E dk

xk+2 = Axk+1 +Buk+1 +E dk+1

...

xk+Hp
= Axk+Hp−1 +Buk+Hp−1 +E dk+Hp−1
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and the constraint on δu:

uk+1 = uk +δuk

uk+2 = uk+1 +δuk+1

...

uk+Hp−1 = uk+Hp−2 +δuk+Hp−2

In matrix form this becomes

Aeq =

[
Aeq,11 Aeq,12 Aeq,13

Aeq,21 Aeq,22 Aeq,23

]

(A.4)

where these submatrices are given by

Aeq,11 =












−I 0 0 · · · 0

A −I 0 · · · 0

0 A −I · · ·
...

...
...

. . .
. . .

...

0 0 0 A −I












(A.5a)

Aeq,12 = diag(B) (A.5b)

Aeq,13 = 0 (A.5c)

Aeq,21 = 0 (A.5d)

Aeq,22 =












−I 0 0 · · · 0

A −I 0 · · · 0

0 A −I · · ·
...

...
...

. . .
. . .

...

0 0 0 A −I












(A.5e)

Aeq,23 =










I 0 · · · 0 0

0 I · · ·
...

...
...

. . .
. . .

...
...

0 0 · · · I 0










(A.5f)
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The optimization variableν contains the state references xk+i ,ref and must be added

to beq to get the correct state space equations

beq =−




















−I 0 0 · · · 0

A −I 0 · · · 0

0 A −I · · ·
...

...
...

. . .
. . .

...

0 0 0 A −I

0 0 · · · · · · 0
...

... · · · · · ·
...

0 0 · · · · · · 0




























xk+1,ref

xk+2,ref

...

xk+Hp ,ref









(A.6)

−














E · · · 0
...

. . .
...

0 · · · E

0 · · · 0
...

. . .
...

0 · · · 0






















dk

dk+1

...

dk+Hp−1









−









Axk

0
...

0









(A.7)

The inequality constaints are just minimal and maximal constraints and are placed

in the vectors νmin and νmax. For further understanding of these matrices and vec-

tors it is recommended to have a look at the MATLAB files included in the CD at-

tached to this report.





Appendix B

CD

The CD attached to this report contains the MATLAB and Simulink files that are

used in the project work, together with some saved data files. A file description

named description.pdf and an electronic version of this report is on the CD as

well.
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