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Abstract

Using topside measurements for stabilizing riser-induced slug flow is hard due to unstable pole and
zero dynamics. At least when trying to use SISO-control. It is well known from linear system
theory that linear combination of measurements can be used for moving zeros. However, there is
a contradiction that two performance limited measurements with unstable zero dynamics, can be
combined, and by this combination remove the limitation completely.

Using linear combinations of measurements is in this report first investigated on a simple process
example with two measurements, both with unstable pole and zero dynamics. This approach worked
well on this process, however it could be concluded that using such a linear combination was ex-
posed to model-uncertainty. In addition to this, it was shown that having very similar measurements
would worsen the exposure of this type of uncertainty. Physical this means that if you have two
measurements that actually measure the same, moving the zeros is impossible.

The two measurements in the simple process had only one zero each. Moving the zero in a linear
combination approach was therefore easy. The topside measurements from the slug flow problem
have two or more zeros. This implicates that controlling how the zeros are moved is much more
difficult. And it is pointed out that this is a limitation in itself.

Using a linear combination of the density (ρT ) and the differential pressure over the choke-valve
(DP ) was unable to move all the zeros into the left half-plane. Using a combination with DP
and W was on the other hand a successful approach in terms of moving all the zeros into the left
half-plane. This was also the case with a linear combination of ρT and W .
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1 Motivation

Slug flow in multiphase pipelines is a severe problem for the oil industry. Slug flow is an unstable
flow regime in which the gas and liquid flows separately through the pipeline. This irregular flow
causes poor separation, limits production capacity and causes flaring. The slugs can be so large
that they even fill up the down stream separator completely. [2]

Slug flow is often subdivided into groups based on which physical phenomena they arise from. These
are hydrodynamic slugging, terrain slugging, transient slugging and riser slugging. [2]

Hydrodynamic slugging is created because of liquid waves forming on the gas-liquid interface. When
these waves grow so large that they fill the cross-section of the pipeline, the slugs are formed. Ter-
rain slugging is formed by rough seafloor, where slug of liquids are formed at low-points. Transient
slugging are induced because of changes in operating conditions.

The focus in this report, however, will be on riser-slugging. Riser-slugging is induced by liquid filling
up at the bottom of the riser, thus preventing the gas from flowing into the riser. The pressure
upstream the liquid is then building up eventually causing the liquid slug to blow up the riser. This
process will repeat itself, causing an oscillatory flow regime. See figure 1.1 for a typical riser.
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Figure 1.1

Often this problem has been dealt with using what is commonly known as a slug-catcher. A slug-
catcher is a physical structure which tries to smooth out the incoming multiphase flow. These
structures can be quite large, and is often unwanted from a weight and size perspective.

Another way to avoid the unwanted oscillatory flow regime is to reduce the opening of the choke
valve below a critical value, z < zcrit. A simple approach would then be to make sure that the
valve-opening would never be larger than this value. However, this is undesirable since a small
opening of the choke-valve would mean poor productivity and lesser income.
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However, another way to address this problem is using control theory and active feedback to control
the choke-valve and by then smooth out the flow variations. This would be an approach which does
not impose large physical structures or limit the economic outcome.

It is already shown by [5] that using the riser base pressure P1 defined in figure 1.1 would stabilize
the flow. However, it would be much more practical to use only topside measurements, such that
installing subsea equipment could be avoided. A problem with most of these topside measurements,
which will be further analyzed in this report, is that controllability is limited because of unstable
zero dynamics (RHP-zeros). The only measurement which does not contain any right half-plane
zeros is the volume flow Q. On the other hand, it is impossible to use this measurement alone,
because of low steady-state gain which would cause drifting.

One approach which has been tried in [3] is cascade control with the volume flow Q in an inner sta-
bilizing loop, and using two alternatives, the position of the choke-valve z and the topside pressure
P2 in an outer loop for performance. P2 would here correspond to the absolute pressure topside, in
stead of DP pressure which is shown in figure 1.1

Another interesting approach is to try to use linear combinations of the topside measurements to
move the performance limiting right half-plane zeros. This has also been analyzed in [3], and this
is the approach which will be investigated further in this report. The topside measurements which
will be analyzed in this report are shown in figure 1.1. The mathematical model which is used for
describing the slug flow is a simplified 3-state model for two-phase flow outlined in [5]. This model
is restated in appendix A.
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2 Theory

This chapter states the theory which will be used in the subsequent chapters. First some control
theory notation will be described, before a mathematical description of the performance limitations
will be presented. Next a method for monitoring the placement of the zeros and some theorems for
bandwidth requirements are stated.

2.1 Block diagram

There will be used typical control theory notation, as the sensitivity S and the complementary
sensitivity T . These transfer functions are defined according to the block-diagram given below.

+

-

y+ +

d

r

n

+

+

Figure 2.1: A typical control structure

where
y(s) = T (s)r(s) + S(s)d(s) − T (s)n(s) (2.1)

and
u(s) = K(s)S(s)(r(s) − d(s) − n(s)) (2.2)

T (s) and S(s) are defined as:

S =
1

1 +GK
,T =

GK

1 +GK
(2.3)

L(s) = GK (2.4)

2.2 Mathematical description of control limitations due to unstable zero dy-
namics

The slugging problematic is exposed to severe performance and stability limitations due to both
unstable pole-and zero dynamics. These limitations can be described mathematical by what is called
the second waterbed formula. The following theorem can be found in [4].
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Theorem 2.1 Suppose that the open-loop transfer function L(s) has a single real RHP-zero or a
complex conjugate pair of zeros z = x± jy, and has Np RHP-poles, pi. Let p̄i denotes the complex
conjugate of pi. Then for closed-loop stability the sensitivity function must satisfy:

∫ ∞

0
ln|S(jω)| · w(z, ω) dω = π ·

Np∏
i=1

∣∣∣∣pi + z

p̄i − z

∣∣∣∣ (2.5)

where

w(z, ω) =
2z

z2 + ω2

The sensitivity (S) is the closed-loop transfer function from disturbance (d) to the output y. For
performance we want the sensitivity to be small at low frequencies for disturbance rejection. A
large peak in the sensitivity is therefore unwanted from a disturbance rejection perspective. The
right hand side of equation (2.5) says that the integral will have a larger value if the RHP zeros and
RHP poles are close to each other. Thus a large peak on the sensitivity is unavoidable. Below are
theorems (given in [4]) which give lower bounds on the sensitivity S, the complementary sensitivity
T and KS.

Theorem 2.2 For closed-loop stability the sensitivity function must satisfy for each RHP-zero of
G(s) the following bound on the sensitivity. pi denote the Np RHP-poles of G(s).

‖S‖∞ ≥
Np∏
i=1

|z + pi|
|z − pi|

(2.6)

Theorem 2.3 The complementary sensitivity T must satisfy for each RHP-pole p of G(s)

‖T‖∞ ≥
Nz∏
j=1

|zj + p|
|zj − p|

(2.7)

where zj denote the Nz RHP-zeros of G(s).

Theorem 2.4
‖KS‖∞ ≥ 1

σH(U(G)∗)
(2.8)

where σH denote the smallest Hankel singular value and U(G)∗ is the mirror image of the anti-stable
part of G.

2.3 Algebraic criterion for the placement of zeros

As mentioned earlier, this report investigates the placement of the zeros in the context of linear
combination of measurements. The zero polynomial can be written in the form:

Pz(s) = sn + φn−1s
n−1 + . . .+ φ1s+ φ0 =

n∑
i=0

φis
i (2.9)

The zeros are found by solving:

Pz(s) = 0 (2.10)
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In this context we would like to have all the zeros far into the left half-plane for the purpose of
stabilization and performance of the control system. Routh’s criterion, defined in a theorem below,
helps addressing this problem and gives sufficient condition for making sure that all the zeros are to
the left of the imaginary axis. Usually, Routh’s criterion is in control theory applied for investigation
of closed-loop stability. It is here, however, used for the purpose of monitoring the location of the
zeros of the open-loop system.

Theorem 2.5 Routh’s criterion.
Defining the zero polynomial as Pz(s) =

∑n
i=0 φis

i. A necessary condition for making sure that the
zeros are all negative (in LHP), all φi’s need to have the same sign. A sufficient condition is that
all the coefficients in the left column in the table below have the same sign.

φn φn−2 · · · φ1

φn−1 φn−3 · · · φ0

βn−1 βn−3 · · ·
ξn−1 ξn−3 · · ·
·
·
·

σn−1 σn−3

ηn−1

ωn−1

Table 2.1

The new coefficients in the third row are given by:

βn−1 =
φn−1φn−2 − φnφn−3

φn−1

βn−3 =
φn−1φn−4 − φnφn−5

φn−1

etc.

The new coefficients in the fourth row are given in the same way:

ξn−1 =
βn−1φn−3 − φn−1βn−3

βn−1

ξn−3 =
βn−1φn−5 − φn−1βn−5

βn−1

The first necessary part of Theorem 2.5 will here be used for disproving the ability of moving the
zeros into the left half-plane.

Theorem 2.5 says only if all the zeros are to the left of the imaginary axis or not. It would perhaps
be more useful to set a performance criterion that the zeros should lie a certain distance (say ψ) into
the left half-plane. This is certainly possible and the only thing which needs to be done is performing
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a coordinate transformation before applying theorem 2.5. That means you have to place the new
coordinate system in such a way that s = ψ in the original coordinate system must correspond to
s′ = 0 in the new system. Thus the coordinate transformation will take the form s′ = s − ψ. See
figure 2.2 for a graphical interpretation of the coordinate transformation.

Im'Ω

ψ

's s ψ= −

Re

Im

ψ

Ω

Re

Figure 2.2

2.4 Bandwidth criterion

It is well-known from control theory that stabilizing a system with both unstable zero-and pole
dynamics is very difficult. In [4] there is a set of controllability rules based on the plant dynamics
only. There are two rules concerning RHP-zeros and RHP-poles.

Theorem 2.6 For stabilizing an unstable plant we need high feedback gains, and thus there will be
a certain requirement to the bandwidth.

• wc > 2p for a real unstable pole at s=p

• wc > 0.67(x+
√

4x2 + 3y2) for a pair of unstable complex conjugated poles p = x± jy

• wc > 1.15|p| for a pair of purely imaginary poles p = j|p|

Theorem 2.7 Right half plane (RHP) zeros limit the bandwidth.
Tight control at low frequencies with a RHP-zero z

• wc < z/2 for a real RHP-zero

• wc < 0.86|z| for an imaginary RHP-zero

Theorem 2.6 can be verified if one thinks physically on controlling an unstable system. This con-
trol system must at least be fast enough to avoid the instability to develop. This means that the
bandwidth must be at least greater than some value.

Theorem 2.7 can be supported by the fact that if one use a simple proportional controller, the open-
loop system’s zeros move to the closed-loop poles. In other words, if the open-loop has unstable
zero dynamics, there is an upper limit for K which certainly limit the bandwidth.

Only real zeros will be investigated further. And the following theorem can be stated.
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Theorem 2.8 For performance at low frequencies with both unstable zero-and pole dynamics, the
bandwidth must lie in the interval:

• 2p<wc<
z
2 for a real unstable pole at s=p

• 0.67(x+
√

4x2 + 3y2) < wc <
z
2 for a pair of unstable complex conjugated poles p = x± jy
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3 Example process

For problem concretization, it is here defined an example process with to measurements y1 and
y2 defined in (3.1) and (3.2). By considering the closeness of the zero and the pole in y1 and y2

respectively, controlling either of them alone will be impossible in a practical sense. Designing a
multivariable controller would be a possible approach. However, the question here is whether a
more simple approach is viable (i.e. linear combination of measurements). The linear combination
is defined in (3.3)

y1 = 5
(−1, 5s+ 1)

−s+ 1︸ ︷︷ ︸
G1

u (3.1)

y2 = 5
−0.5s+ 1
−s+ 1︸ ︷︷ ︸

G2

u (3.2)

y = y2 + αy1 (3.3)

3.1 Controllability analysis

Applying theorem 2.8 for performance at low frequencies to the example process defined in (3.1)
and (3.2) yields respectively:

zy1 = 0.67, py1 = 1
2 < wc < 0.335

and

zy2 = 2, py2 = 1
2 < wc < 1

where zyi is the zero for yi and pyi is the pole for yi.

When controlling only one loop, performance at low frequencies is certainly desirable. In this case,
however, this is not possible as can be seen from the contradicting bandwidth interval of the two
measurements y1 and y2.

In addition to these theorems, concluding remarks on performance limitations can be drawn from
the waterbed formula given in theorem 2.1. Because of both unstable pole - and zero dynamics this
will give an unwanted peak in the sensitivity function. The peaks of S, T and KS are calculated in
table 3.1 based on the formulas given in theorem 2.2, 2.3 and 2.4.

G1 G2

|S| 5 3
|T| 5 3
|KS| 0.8 0.8

Table 3.1: Bounds on peaks for some closed-loop transfer functions
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From equation (2.1) it can be concluded that the closed-loop transfer functions S and T should be
small to avoid amplifying disturbances and measurement noise. KS on the other hand is defined in
equation (2.2), and says something about input-usage. If the transfer function is properly scaled,
KS should be less than one for all frequencies to avoid input saturation. If the manipulated input
saturates, it means that the control system is effectively open-loop. Saturation is then especially
dangerous when controlling an open-loop unstable system. In this case |KS| is less than 1, and it
means that input-usage is not a problem.

Most of these comments above point out that controlling y1 or y2 alone will almost be impossible.
This can also be verified if one tries to calculate the closed-loop poles using a proportional controller
only. It is then easy to show that for the plant in (3.1) the controller gain K needs to be in the
interval given in (3.4).

− 0.200 < K < −0.133 (3.4)

This interval is small due to the closeness of the unstable zero and pole dynamics. Stabilizing this
plant is certainly hard, and even worse if you want to get an acceptable performance.

3.2 Model-uncertainty

Defining the linear combination αy1 +y2 and the following transfer functions for the measurements:

y1 =
−bs+ c

−s+ 1
u (3.5)

y2 =
−ds+ e

−s+ 1
u (3.6)

This linear combination places the zero at:

s =
αc+ e

αb+ d
(3.7)

If you want the zero to lie in the left half-plane the linear-combination parameter α must be chosen
accordingly. It can be shown that the parameter α must lie in the following interval if −d

b > − e
c

− e

c
< α < −d

b
(3.8)

or if −d
b < − e

c

− d

b
< α < −e

c
(3.9)

In other words if e
c = d

b it is impossible to move the zero into the left half-plane. What this equality
actually means is that if you have two measurements with the same zero (but not necessary the same
gain) it is impossible to move the zero of the linear combination into the left half-plane. Further
says (3.8) and (3.9) that if the two measurements are very similar (similar zeros) you would get a
very small interval to pick an α from. A smaller interval will mean that the system would be even
more exposed to model uncertainty.
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For the plant defined in (3.1) and (3.2) the parameter α must lie in the interval given in (3.10) if
the zero of the linear combination of these two measurements is to lie in the left half-plane.

− 1 < α < −0.33 (3.10)

The zero of the linear combination is also plotted as a function of the parameter α in figure 3.1.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
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Figure 3.1: The movement of the zero of the linear combination as a function of α

The question that arises then is what value of α should be chosen? Certainly in the interval between
-1 and -0.333. But the value should not be too close to -0.33 as can be seen from (3.7) since the
pole goes to minus infinity. Even Matlab gets trouble with simulations when α gets greater than
-0.4. Since the inner-loop is only designed for the purpose of stabilizing, the zero should only lie as
far into the left half-plane as is necessary for robustness against model-uncertainty. Large gain of
the linear combination is not necessary since it is used for stabilizing purpose only. Performance is
not an issue for this inner loop.

3.3 Using theorem 2.5

By using theorem 2.5 it can be shown that it is possible to move the zeros into the left half plane
by adjusting the linear combination parameter α. Using the linear combination y = αy1 + y2 with
y1 and y2 given in (3.5) and (3.6). This gives the following zero polynomial:
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Pn(s) = (−7.5α− 2.5)︸ ︷︷ ︸
>0

s+ 5α+ 5︸ ︷︷ ︸
>0

(3.11)

which gives the following allowable interval for α

− 1 < α < −0.333 (3.12)

Notice that requiring that both the constants in (3.11) are positive is in this case both a necessary
and sufficient condition.

This interval is actually the same as was outlined in (3.10), but this method is much more applicable
to more complex systems with several zeros.

This interval which is outlined here, tells us that it is possible to move the zeros into the left half-
plane, but nothing more. A more interesting approach is to try to investigate if we can move the
zero to left of some desired value. It is possible to use the method outlined in section 2.3 by first
perform a coordinate transformation, and thereafter applying theorem 2.5.

A simple example can illustrate this fact. Let us set a performance criterion that all the zeros should
lie to the left of s = −1. That means φ = −1. The new zero polynomial will take the form:

Pn(s′) = (s′ − 1)(−2.5 − 7.5α) + 5 + 5α

Pn(s′) = (−2, 5 − 7.5α)s′ + 7.5 + 12.5α (3.13)

And the resulting interval to pick an α from is given below:

− 0.6 < α < −0.33 (3.14)

This means that the linear combination parameter α must be chosen to lie in the interval between
−0.6 and −0.33 if the zero is to lie to the left of s = −1.

3.4 Stabilizing the plant with cascade control

Consider the case where y1 is the measurement we actually want to control, and y2 is an extra
measurement used for achieving the overall control objective. The idea is to control y1 in a cascade
manner, where a linear combination of y1 and y2 is used for stabilization in an inner loop. The
outer control loop takes care of the set-point tracking for y1. Figure 3.2 shows the control structure
in a block diagram.
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Figure 3.2

In this example the idea is to try to control y1 with an acceptable performance. As commented in
the controllability analysis of this simple example in section 3.1, it was concluded that controlling
y1 alone is hopeless because of the closeness of the unstable pole and zero. The idea is then to
make use of another measurement (which in this case is y2) and make use of this measurement in
a linear combination with a measurement of y1. The reason for this is to try to move the unstable
zero into the left half-plane, because it is then easier to stabilize the system. After the system is
stabilized, it is possible to wrap another feedback loop around to control y1 in a cascade manner.
When designing a cascade controller it is important to make sure that the inner loop is much faster
than the outer loop. In other words, the inner control loop must have a greater bandwidth than
the outer control loop.

When designing a cascade controller for this system it was only used a simple proportional controller
for the inner stabilizing control loop. No set-point tracking is necessary for this inner loop because
it is designed for only one purpose, namely stabilizing. Integral action in this inner loop would
actually only make it worse to stabilize. Since the purpose is to control y1 only, it is enough to
include integral action in the outer control-loop.
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The controller design for the inner loop was based on the nyquist- and bode diagram given in figure
3.3 and 3.4. Since the linear combination system still has one right half-plane pole, the locus of
the open-loop transfer function GK must encircle the critical point (−1, 0) one time anticlockwise
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if the closed-loop is to be stable.

As can be seen from the nyquist diagram, the lower bound on the controller gain is K = 0.24. If
the controller gain was less than this value, the critical point would be outside the locus of GK,
and the closed-loop would become unstable.

The closed-loop from y1

r :

y1

r
=

G1K1K2

1 +G2K2 +G1K1K2 +G1K2α
(3.15)

The closed-loop transfer function y1

r given in equation (3.15) indicates that any potential right half-
plane zeros in G1 will still be a limitation in the closed-loop transfer function. This is somewhat
interesting. The zero of the linear combination is changed and it is no longer a fundamental con-
trollability limitation for the inner loop. However y1 will still be limited by inverse response. This
means that the outer loop has an upper limitation in bandwidth, because of this RHP-zero. This
could be a limitation if we want fast control in the outer loop.

3.5 Simulations of process example

Simulations are done with a unit-step change in the reference signal at t=10. See figure 3.5. The
control structure is given in figure 3.2. Notice that the linear combination is NOT exposed to inverse
response. However y1, which is controlled in an outer loop, is still limited with inverse response.
Note that the responses are somewhat unphysical. This is because the two transfer functions defined
in equation (3.1) and (3.2) are semi-proper, and will amplify for fast frequencies.

The following controllers were used corresponding to figure 3.2.

K2 = 20 (3.16)

K1 = Kytre(1 +
1
Tis

) = 0.1(1 +
1

10s
) (3.17)

α = −0.9 (3.18)
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4 Slugging example

The linear combination approach was shown to work well for the example process in section 3. The
example process, however, has much simpler dynamics than most of the slugging related topside
measurements. It will here be defined transfer functions from the choke-valve opening z to several
topside-measurements. First it will be performed a controllability analysis of these transfer func-
tions, before it is proposed a linear combination of them for the purpose of stabilization. But first
of all a short description of how these transfer functions are developed will be given.

4.1 Linearization of a simplified two-phase flow model

The model which is used here is developed in [5] and is restated in appendix A. A Simulink imple-
mentation of this model developed by [5] was used as a basis for linearization. This was done instead
of trying to linearize the system in appendix A analytical. The linearization was performed by de-
signing a controller which stabilized the system at a desired choke-valve opening for the Simulink
model. This was done because it is then easy to find the unstable stationary point. The lineariza-
tion was performed around the choke-valve openings of 17.5% and 30%, and transfer functions were
found between the disturbances wG,in, wL,in and P0 in addition to the manipulated variable z to
several measurements. These transfer functions can be found in appendix B.

4.2 Transfer functions from z to the measurements

The transfer functions which will be analyzed further are restated here. These are the transfer
functions between the manipulated variable z and the measurements.

DP = −4.45
(0.9020s− 1)(83.51s− 1)

(0.494s+ 1)(9009s2 − 71.8s+ 1)
z (4.1)

ρT = −14.73
(253.5s− 1)(2321s+ 1)

(0.494s+ 1)(9009s2 − 71.8s+ 1)
z (4.2)

W = −1.03 · 10−7 (0.393s+ 1)(2681s+ 1)(1.02 · 1010s− 1)
(0.494s+ 1)(9009s2 − 71.8s+ 1)

z (4.3)

αLM = −2.85 · 10−10 (273.48s− 1)(2.94 · 1010s+ 1)
(0.494s+ 1)(9009s2 − 71.8s+ 1)

z (4.4)

αLT = −0.0188
(255.71s− 1)(2642s+ 1)

(0.494s+ 1)(9009s2 − 71.8s+ 1)
z (4.5)

Q = 4.59 · 10−4 (0.688s+ 1)(353.1s+ 1)(2227s+ 1)
(0.494s+ 1)(9009s2 − 71.8s+ 1)

z (4.6)

4.3 Controllability analysis

The poles of the system are given in below. The poles of the system are obviously observable
through all of the measurements given in (4.1)-(4.6).
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p1 = −2.0247
p2 = 0.0040 + 0.0098i
p3 = 0.0040 − 0.0098i

For a system with a pair of complex RHP-poles p = x ± jy we require a bandwidth according to
theorem 2.6:

wc > 0.0153 (4.7)

Because of the complex conjugated pair of poles, there is a lower bound on the bandwidth which
must p̊a achieved. This is because the control system must be able to react fast enough to avoid the
instability to develop. The question is then if the RHP-zeros in the measurement transfer functions
given in (4.1)-(4.6) will give a consistent interval as defined in theorem 2.8

4.3.1 Controllability of y=DP

From equation (4.1) it can be seen that the measurement has a high steady-state gain (|DP (0) =
4.45|) which is good for tight control at low frequencies. With a low steady-state gain it would be
problematic to keep the controlled variable at the set-point. The system would drift away.

It is then necessary to investigate the system with respect to the closeness of the RHP-zeros and
the RHP complex conjugated poles. The transfer function between the measurement of DP and
the choke valve z, which is given in (4.1), has two RHP-zeros. The worst zero (that means the zero
closest to the origin) gives the following upper bound on the bandwidth according to theorem 2.7.

wc < 0.0060 (4.8)

which together with (4.7) give an unattainable interval for the bandwidth.

In addition to this, it can be seen from the nyquist diagram how hopeless it actually is to stabilize
the system (see figure 4.1). For stabilizing the system in closed-loop, the locus of the open loop
GK must encircle the critical point two times anticlockwise. When analyzing stability for open-
loop unstable system, one has to be very careful when using bode diagram for concluding if the
closed-loop is stable. However, one can use the nyquist plot and see how it corresponds to the bode
diagram. And after this comparison, conclusions can be made from the bode diagram.
For closed-loop stability there are two requirements that can be drawn from the nyquist and bode
diagram. The first is a requirement to the steady-state gain. This has to be lower than 1, which in
the bode-diagram means that the amplitude must be lower than 0-dB at steady-state. The second
requirement is that the amplitude has to be greater than 1 when the phase hits 180 degrees for the
second time. This is very hard to see from the bode-diagram, but the phase starts at 180 degrees,
before it’s decreasing a bit, before it again turns and hits 180 degrees.

Figure 4.1 is an open-loop plot of k ∗DP where k is a simple proportional controller. The nyquist
diagram is plotted for k = 0.1, k = 0.2 and k = 0.3. The only k which gives a stable closed-loop is
k = 0.2. This interval is certainly not very large, and indicates that stabilizing DP in a single loop
is hopeless in a practical sense.
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4.3.2 Controllability of y=ρT

Equation (4.2) defines the transfer function from z to ρT . |ρT (0)| = 14.73 which is a high steady
state gain indicating that drifting will not be a problem.

However there is one RHP-zero. By using theorem 2.7 for performance at low frequencies the lower
bound on the achievable bandwidth is

wc < 0.0020 (4.9)

which together with (4.7) gives an unattainable interval for the bandwidth. Figure 4.3 shows the
nyquist diagram for the open-loop with at proportional controller. The nyquist plot shows that it
is impossible to stabilize this process with any proportional controller.
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Figure 4.3

4.3.3 Controllability of y=W

Using y = W as the controlled variable in a SISO-loop would be problematic because of the ex-
tremely low steady-state gain (|W (0)| = −1.03 · 10−7). In addition to this will the RHP-zero close
to the imaginary axis be a problem for performance and give a very low bound on the bandwidth.
This bound will according to theorem 2.7 be

wc < 4.90 · 10−11 (4.10)

which together with (4.7) give an unattainable interval for the bandwidth.

4.3.4 Controllability of y = αLM

As with the measurement of y = W , y = αLM has a very low steady-state gain which will cause
drifting and bad performance |αLM | = −2.85 · 10−10. In addition to this the RHP-zero will cause a
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bandwidth limitation according to theorem 2.7 be:

wc < 0.00183 (4.11)

which together with (4.7) give an unattainable interval for the bandwidth.

4.3.5 Controllability of y = αLT

The transfer function from z to αLT also has a low steady-state gain (|αLT | = 0.0188) which would
cause drifting. In addition to this the RHP-zero will cause a bandwidth limitation according to
theorem 2.7 :

wc < 0.0020 (4.12)

which together with (4.7) give an unattainable interval for the bandwidth.

4.3.6 Controllability of y=Q

The problem with using y = Q as a controlled variable in a SISO loop is its low steady-state gain,
which would cause drifting (|Q(0)| = 4.59 · 10−4). However, the transfer function from z to y = Q
does not contain any RHP zeros which cause any fundamental control performance limitations.
Therefore y = Q has been tried using as a stabilizing inner loop, using another measurement in an
outer loop for performance. This approach has been taken by [3].

4.4 Linear combinations

In section 4.3 the focus was on controllability of various measurements in a SISO-loop. This control-
lability analysis was done for showing how hopeless it is to use only a single loop for stabilizing slug
flow when considering topside measurements only. Now the idea is to use the linear combination
approach in the same way as with the example process in section 3. It will here be focused on three
linear combinations of measurements. DP and ρT , DP and W , ρT and W .

4.4.1 Linear combination of measurements - DP and ρT

Considering the linear combination y = ρT + αDP . Theorem 2.5 is used for trying to find out if it
is possible to move all the right half-plane zeros into the left half-plane. Below is the resulting zero
polynomial.

Pz(α, s) = (−8670000 − 335α)︸ ︷︷ ︸
>0

s2 + (30500 + 368α)︸ ︷︷ ︸
>0

s+ 14.73 − 4.45α︸ ︷︷ ︸
>0

(4.13)

Theorem 2.5 says that a necessary condition for ensuring that the zeros of this polynomial are all
to the left of the imaginary axis is that all the constants must have the same sign, as shown in
equation (4.13).

α < −25880
α > −82.88
α < 3.31
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The α must be chosen in such a way that these constants have the same sign. As can be seen above,
there are contradicting requirements for the linear combination parameter α, which means that it
is not possible to move all the zeros into the left half-plane.

4.4.2 Linear combination of measurements - DP and W

Considering the linear combination y = W + αDP . Theorem 2.5 is used for trying to find out if it
is possible to move all the right half-plane zeros into the left half-plane. Below is the resulting zero
polynomial.

Pz(α, s) = 1.102 · 106︸ ︷︷ ︸
φ3

s3 + (2.805 · 106 + 335.1α)︸ ︷︷ ︸
φ2

s2 + (1046 − 375.6α)︸ ︷︷ ︸
φ1

s+ 4.45α︸ ︷︷ ︸
φ0

(4.14)

1.102 · 106 > 0
α > −8370.6
α < 2.78
α > 0

0 < α < 2.78 (4.15)

Based on the equations above, using a linear combination with these two measurements looks
promising. To prove that it is actually possible to move the zeros, one would need to apply the rest
of Routh’s criterion. In this case, this means that the following parameters defined under should
have the same sign as the parameters in the root-polynomial. (which in this case means positive).

β2 =
φ2φ1 − φ3φ0

φ2
=

−1.259 · 105a2 − 1.054 · 109a+ 2.934 · 109

2.805 · 106 + 335.1α
(4.16)

δ2 =
β2φ0

β2
= φ0 (4.17)

Equation (4.17) does not impose any extra requirements. However, the polynomial given in (4.16)
might. Having equation (4.15) in mind it is only necessary to investigate (4.16) for α’s in this
interval

− 8413 < α < 2.77 (4.18)

which together with equation (4.15) give the following allowable interval for α:

0 < α < 2.77 (4.19)

Simulations were done using the control structure given in figure 3.2 where G1 = DP and G2 = W .
The differential pressure DP is used in the outer cascade. Below is the specification of the controller
gains and integral time used in the simulations.

K2 = 10 (4.20)
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K1 = Kytre(1 +
1
Tis

) = 0.01(1 +
1

100s
) (4.21)

α = 1.0 (4.22)
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Figure 4.4: Response to a unit step in the reference for y = DP

To the left in figure 4.4 the response to a unit step in the reference of DP of the linear combination
is shown. To the right the response of y = DP is shown.

4.4.3 Linear combination of measurements - ρT and W

Considering the linear combination y = W + αρT . Theorem 2.5 is used for trying to find out if it
is possible to move all the right half-plane zeros into the left half-plane. Below is the resulting zero
polynomial.

Pz(α, s) = 1.102 · 106s3 + (8.67 · 106α+ 2.805 · 106)s2 + (−3.05 · 104α+ 1046)s− 14.73α (4.23)

1.102 · 106 > 0
α > −0.324
α < 0.034
α < 0
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which give the following interval for α

− 0.324 < α < 0 (4.24)

Based on the equations above, using a linear combination with these two measurements looks
promising. To prove that it is actually possible to move the zeros, one would need to apply the rest
of Routh’s criterion. In this case, this means that the following parameters defined under should
have the same sign as the parameters in the root-polynomial. (which in this case means positive).

β2 =
φ2φ1 − φ3φ0

φ2
=

−2.644 · 104a2 − 7.64 · 1010α+ 2.934 · 109

8.67 · 106α+ 2.805 · 106
(4.25)

δ2 =
β2φ0

β2
= φ0 (4.26)

It can be shown that neither equation (4.25) nor equation (4.26) does impose any extra requirements
on α. This means that the interval already found in equation (4.24) is an interval for the linear
combination parameter (α) which is able to move the zero of the linear combination into the left
half-plane.

Simulations were done only with the linear combination of these two measurements (without the
outer cascade).

K2 = 5 (4.27)

α = −0.2 (4.28)
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4.4.4 Comments on the choice of linear combinations

The idea was to use linear combinations which had right half-plane zeros. Therefore linear combina-
tions with a measurement of the volume flow Q are not considered. Neither are linear combinations
with αLM and αLT (See notation in appendix A.5). The reason for this is that they are so similar to
the measurement of ρT . αLM is the liquid fraction upstream the valve (mass basis) and αLT is the
liquid fraction upstream the valve (volume basis). ρT on the other hand, is the density upstream
the valve. Since the density of the liquid is so dominating compared to the density of the gas, these
measurements measure qualitatively the same.

4.4.5 Comments on the simulations

There were done some simulations on the two linear combination approaches which were able to
move all the zeros into the left half-plane. However, these simulations were only done on the linear
model of the plant, because applying these control structures to the non-linear plant seemed to fail.



5 DISCUSSION AND CONCLUDING REMARKS 25

5 Discussion and concluding remarks

Using topside measurements for diminishing riser-induced slug flow is wanted from an economic
perspective to avoid installing new subsea equipment. However, most of these measurements are
performance limited due to unstable zero dynamics.

Example process
The limitations using topside measurements were in this report first addressed using a simple pro-
cess example with two measurements. These measurements contained one RHP-zero each. Using
any of these measurements in a single loop and at the same time get an acceptable performance
was shown to be impossible in a practical sense.

Therefore an approach using a linear combination of these to measurements to move the zero into
the left half-plane was tried. This worked fine for the example process. However, such a linear
combination was shown to be exposed to model-uncertainty. If the measurements were very similar
in their placements of zeros, the exposure of model-uncertainty would even worsen.

It was also shown that even though it was possible to move the zero of the linear combination
into the left half-plane, the outer feedback loop would still contain a RHP-zero. This could be a
limitation if fast control is needed in the outer loop.

Slugging example
These problems would also come in to play for the more complex dynamic occurring from models
of slug flow. But another problem occurred when the transfer functions had several zeros. A linear
combination of these more complex transfer functions could fail to move the zeros of the linear
combination into the left half-plane. Only two of three proposed linear combinations were shown
to move all the zeros into the left half-plane. And the two linear combination that did, consisted of
the measurement W where the RHP-zero almost lay at the origin.

It was here only confirmed if one was able to move the zeros into the left half-plane. This was done
because it is then easy to conclude that there are no longer any limitations because of RHP-zeros.
But the actual problem exists when the RHP-pole and RHP-zero are very close. There could very
well be a possible approach to try to move the zeros in such a way that the criterion would be to
ensure that the zeros were a certain distance from the pole (on either side of the RHP-pole). But
to give a general performance criterion and a way to make sure that a good solution to the problem
exists, would be much more difficult. And given that one is exposed to model-uncertainty, the work
trying to find such a solution would perhaps be useless, because it would perhaps not work on the
real system.

Comments to simulations on the non-linear plant
Applying the linear combination controller for the slugging example to the non-linear model did
not seem to work. It can certainly well be that such a controller based on linear combination is
not robust enough for coping with the non-linear plant. However, it should be mentioned that the
implementation of this plant unfortunately can not be said to be fault free.
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A Model Equations

A.1 Conservation equations

d

dt
mL = wL,in − wL,out (A.1)

d

dt
mG1 = wG,in − wG1 (A.2)

d

dt
mG2 = wG1 − wG,out (A.3)

A.2 Calculation of state-dependent internal variables

P1 =
mG1RT

VG1MG
(A.4)

ρG1 =
mG1

VG1
(A.5)

VL =
mL

ρL
(A.6)

h1A1 + VLR = VL (A.7)

VT = A2(H2 + L3) (A.8)

VG2 = VT − VLR (A.9)

ρG2 =
mG2

VG2
(A.10)

αL =
VLR

VT
(A.11)

P2 =
mG2RT

VG2MG
(A.12)

ρ̄ =
mG2 + VLRρL

VT
(A.13)

ρ̄g(H2 +H3) − ρLgh1 = P1 − P2 (A.14)

αLT = (VLR > H2A2)α∗LT +
wn

1 + wn
(αL − (VLR > H2A2)α∗LT ) (A.15)

α∗LT =
VLR −A2H2

A2L3
(A.16)

w =
K3ρG1v

2
G1

ρL − ρG1
(A.17)

ρT = αLT ρL + (1 − αLT )ρG2 (A.18)

αm
L =

αLT ρL

αLT ρL + (1 − αLT )ρG2
(A.19)



II

A.3 Flow equations

vG1 = (h1 < H1)K2
H1 − h1

H1

√
P1 − P2 − ρLgαLH2

ρG1
(A.20)

wG1 = vG1ρG1Â (A.21)

mmix,out = K1z
√
ρT (P2 − P0) (A.22)

wG,out = (1 − αm
L )mmix,out (A.23)

wL,out = αm
Lmmix,out (A.24)

A.4 Geometric equations

H1 =
2r

cos(θ)
(A.25)

A1 =
A2

sin(θ)
(A.26)

φ =
(
π − acos

(
1 − (H1 − h1)cos(θ

r

))
(A.27)

Â = r2(π − φ− cos(π − φ)sin(π − φ)) (A.28)
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A.5 Notation

Symbol Description Unit Remarks

mGi Mass of gas in volume i Kg State variable
mL Mass of liquid Kg State variable
VGi Gas volume i m3 VG1 = const
VL Volume occupied by liquid m3

VLR Volume of liquid in riser m3

VT Total volume in riser m3

Pi Pressure in volume i N
M2

ρGi Gas density in volume i kg
m3

ρL Liquid density kg
m3 Constant

ρ̄ Average density in riser kg
m3

ρT Density upstream valve kg
m3

vG1 Gas velocity at lowpoint m
s

vmix,out Liquid velocity through choke valve m
s

wG1 Internal gas mass flowrate Kg
s

wG,out Gas mass flowrate through choke valve Kg
s

wL,out Liq.mass flowrate through choke valve Kg
s

αL Average liq. frac. in riser, volume basis -
αLT Liq. frac. upstream valve, volume basis -
αm

L Liq. frac. upstream valve, mass basis -
α∗LT Liq. frac. upstream valve, without entr. -
h1 Liquid level upstream the dip m
H1 Critical liquid level m Constant
H2 Height of riser m Constant
r Radius of pipe m Constant
A1 Area in the horizontal plane, V1 m2 Constant
A2 Cross section area, V2 m2 Constant
Â Gas flow area at lowpoint m2

L3 Length of horizontal top section m Constant
θ Feed pipe inclination rad Constant
R Gas constant 8314 J

K·Kmol Constant
g Spesific gravity 9.81 m

s2 Constant
T System temperature K Constant
MG Molecular weight of gas Kg

Kmol Constant
wG,in Mass rate of gas into system Kg

s Disturbance
wL,in Mass rate of liquid into system Kg

s Disturbance
P0 Pressure after choke valve N

M2 Disturbance
z Valve position - Input
K1 Choke valve constant - Tuning parameter
K2 Gas flow constant - Tuning parameter
K3 Friction parameter - Tuning parameter
n wn in the friction expression - Tuning parameter

Table A.1: Notation
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B Transfer functions

Transfer functions when z = 30%
Obtained from Espen Storkaas 3-state model for two-phase flow. [5]

The transfer functions are not scale.

Manipulated variable z and disturbance wG,in

z wG,in

P1 −4.74 (324s+1)
(0.494s+1)(9002s2−71.8s+1) −23.95 (0.513s+1)(21.79s−1)

(0.494s+1)(9002s2−71.8s+1)

DP −4.45 (0.9020s−1)(83.51s−1)
(0.494s+1)(9002s2−71.8s+1) 0.6494 (0.480s+1)(786.4s+1)

(0.494s+1)(9002s2−71.8s+1)

ρT −14.73 (253.5s−1)(2321s+1)
(0.494s+1)(9002s2−71.8s+1) −401.59 (1.524s−1)(278.8s+1)

(0.494s+1)(9002s2−71.8s+1)

W −1.03 · 10−7 (1.02·1010s−1)(2681s+1)(0.393s+1)
(0.494s+1)(9002s2−71.8s+1) 1.00 (0.705s+1)(4364s+1)

(0.494s+1)(9002s2−71.8s+1)

Q 4.59 · 10−4 (0.688s+1)(353.1s+1)(2227s+1)
(0.494s+1)(9002s2−71.8s+1) 0.014 (0.0876s+1)(323.6s+1)

(0.494s+1)(9002s2−71.8s+1)

αLM −2.85 · 10−10 (273.48s−1)(2.94·1010s+1)
(0.494s+1)(9002s2−71.8s+1) −0.1066 (273.14s−1)(1.54s+1)

(0.494s+1)(9002s2−71.8s+1)

αLT −0.0188 (255.71s−1)(2642s+1)
(0.494s+1)(9002s2−71.8s+1) −0.5903 (278.06s−1)(1.526s+1)

(0.494s+1)(9002s2−71.8s+1)

Table B.1: Linearized around a choke-valve of 30 %

Disturbances wL,in and P0

wL,in P0

P1 0.6970 (53.96s+1)
(0.494s+1)(9002s2−71.8s+1) 1.0613 · 10−5 (3.44·10−9s+1)(324.4s+1)

(0.494s+1)(9002s2−71.8s+1)

DP 0.1273 (0.041s−1)(185.5s−1)
(0.494s+1)(9002s2−71.8s+1) −4.070 · 10−8 (0.500s+1)(1081s+1)(1983s+1)

(0.494s+1)(9002s2−71.8s+1)

ρT 17.34 (65.29s+1)(188.7s−1)
(0.494s+1)(9002s2−71.8s+1) 3.30 · 10−5 (253.5s+1)(2321s+1)

(0.494s+1)(9002s2−71.8s+1)

W 1.00 (9.509s+1)(185.8s−1)
(0.494s+1)(9002s2−71.8s+1) 6.11 · 10−10 (3.40·106s−1)(2679s+1)(0.393s+1)

(0.494s+1)(9002s2−71.8s+1)

Q 0.0013 (13.55s−1)(185.0s−1)
(0.494s+1)(9002s2−71.8s+1) −1.023 · 10−9 (0.688s+1)(353.3s+1)(2220s+1)

(0.494s+1)(9002s2−71.8s+1)

αLM 0.0045 (187.12s−1)(66.91s+1)
(0.494s+1)(9002s2−71.8s+1) 2.37 · 10−12 (273.47s−1)(7.92·106s+1)

(0.494s+1)(9002s2−71.8s+1)

αLT 0.025 (187.10s−1)(65.50s+1)
(0.494s+1)(9002s2−71.8s+1) 4.22 · 10−8 (255.71s−1)(2641s+1)

(0.494s+1)(9002s2−71.8s+1)

Table B.2: Linearized around a choke-valve of 30 %



B TRANSFER FUNCTIONS V

Transfer functions when z = 17.5%
Obtained from Espen Storkaas 3-state model for two-phase flow. [5]

The transfer functions are not scale.

Manipulated variable z and disturbance wG,in

z wG,in

P1 23.47 (326.6s+1)
(0.508∗s+1)(25504s2−38.96s+1) −22.27 (0.533s+1)(65.58s−1)

(0.508∗s+1)(25504s2−38.96s+1)

DP −22.07 (0.994s−1)(74.55s−1)
(0.508∗s+1)(25504s2−38.96s+1) 1.85 (0.491s+1)(787.96s+1)

(0.508s+1)(25504s2−38.96s+1)

ρT 70.609 (252.9s−1)(2374s−1)
(0.508∗s+1)(25504s2−38.96s+1) −392.95 (4.151s+1)(288.6s−1)

(0.508s+1)(25504s2−38.96s+1)

W 3.842 · 10−7 (0.401s+1)(2677s+1)(2.51·109s−1)
(0.508∗s+1)(25504s2−38.96s+1) 1.00 (1.296s+1)(4290s+1)

(0.508s+1)(25504s2−38.96s+1)

Q 0.0022 (0.699s+1)(354.0s+1)(2294s−1)
(0.508∗s+1)(25504s2−38.96s+1) 0.0139 (0.927s−1)(324.16s+1)

(0.508s+1)(25504s2−38.96s+1)

αLM −1.49 · 10−9 (273.3s−1)(2.79·1010s+1)
(0.508∗s+1)(25504s2−38.96s+1) −0.107 (272.9s−1)(4.31s+1)

(0.508∗s+1)(25504s2−38.96s+1)

αLT −0.090 (255.2s−1)(2707s+1)
(0.508s+1)(25504s2−38.96s+1) −0.580 (286.54s−1)(4.17s+1)

(0.508s+1)(25504s2−38.96s+1)

Table B.3: Linearized around a choke-valve of 17.5 %

Manipulated variable z and disturbance wL,in

wL,in P0

P1 −0.947 (116.23s+1)
(0.508∗s+1)(25504s2−38.96s+1) 1.05 · 10−5 (326.60s+1)

(0.508∗s+1)(25504s2−38.96s+1)

DP 0.370 (0.0439s+1)(174.3s+1)
(0.508∗s+1)(25504s2−38.96s+1) −1.15 · 10−7 (0.510s+1)(1054s+1)(2095s+1)

(0.508s+1)(25504s2−38.96s+1)

ρT 17.89 (182.93s+1)(185.72s−1)
(0.508∗s+1)(25504s2−38.96s+1) 3.16 · 10−5 (252.87s+1)(2374s+1)

(0.508s+1)(25504s2−38.96s+1)

W 1.00 (28.46s+1)(177.3s−1)
(0.508∗s+1)(25504s2−38.96s+1) −1.03 · 10−9 (0.401s+1)(2705s+1)(2.65·105s+1)

(0.508s+1)(25504s2−38.96s+1)

Q 0.0013 (42.93s−1)(167.68s−1)
(0.508∗s+1)(25504s2−38.96s+1) −9.73 · 10−10 (0.699s+1)(354.35s+1)(2282s+1)

(0.508s+1)(25504s2−38.96s+1)

αLM 0.0045 (186.1s−1)(195.5s+1)
(0.508∗s+1)(25504s2−38.96s+1) 5.22 · 10−13 (273.3s−1)(3.55·107s+1)

(0.508∗s+1)(25504s2−38.96s+1)

αLT 0.026 (184.48s+1)(185.78s−1)
(0.508∗s+1)(25504s2−38.96s+1) 4.047 · 10−8 (255.17s−1)(2707s+1)

(0.508∗s+1)(25504s2−38.96s+1)

Table B.4: Linearized around a choke-valve of 17.5 %
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