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Abstract 
 
Slug flow is currently a problem in offshore installations. Eliminating slug flow through 
the use of active control is possible and has a potential for large economic gain. 
Simulations, development and testing of control schemes for slug flow are normally 
carried out in rigorous multi phase flow simulators such as OLGA, combined with 
experiments. For design purposes it is often helpful to study system properties. This is 
often hard to do in high dimensional models such as OLGA, leading to the development 
of a much simpler model in Matlab.  
 
The Matlab model is a simplified nonlinear model with three states of gravity induced 
slug flow which is suitable for control purposes. The open loop response of the Matlab 
model closely follows the response in an OLGA model where the same system is studied. 
Closed loop response is also sufficiently accurate when P and PI control is implemented. 
It was found that the process gain is somewhat higher in the OLGA model compared to 
the Matlab model. Generally the simplified Matlab model is accurate enough to be 
suitable for controller design purposes.    
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1 Introduction 
 
Oil, gas and water multi phase transport in offshore installations, either from satellite 
platforms or sub-sea installations, to the processing platform runs through pipelines. 
When the oil/gas/water mix reaches the platform at seabed level it travels through a riser 
to reach the topside processing equipment. Multi phase flow that is forced to travel 
steeply uphill can give rise to a flow regime known as slug flow. In this case the pressure 
drop over the riser and the interphase friction is not sufficient to overcome gravity, and a 
liquid build-up (slug) at the low point will occur. The liquid slug will eventually block 
the gas flow and upstream pressure will rise. Liquid build up will continue until the 
upstream pressure has become high enough to overcome the weight of the slug. The slug 
will then be pushed up the riser into the topside processing equipment, and the process 
will start over. 
 
Being able to eliminate slug flow will have large economic gains. Early solutions to the 
problem was to increase the pressure drop over the topside chokes, installing slug 
catchers topside or injecting lift gas into the riser. All of which are more or less effective, 
but costly. In later years, active control on the topside valves has been found to be able to 
eliminate slug flow. This allows for the system to run at a lower pressure without slugs 
being formed, thus increasing oil production. Also, it eliminates the need for costly slug 
catchers or lift gas injection systems.  
 
Development of control systems for slug elimination is difficult, time consuming and 
therefore costly. Simulations, development and testing of control schemes are normally 
carried out in rigorous multi phase flow simulators such as OLGA, combined with 
experiments. When developing a control scheme it is very valuable for the engineer to be 
able to study the properties of the system. This is often hard to do in simulators such as 
OLGA because the models are of high complexity. With a simpler Matlab model these 
properties are a lot easier to study. Through studies of the system, controllability analysis 
and controller design in this simple model, a lot of valuable information can be obtained 
[1]. 
 
In this paper a comparison between a model in Matlab and one in OLGA for the same 
case will be performed. The goal is to validate that the Matlab model is accurate enough 
to be useful for controller design purposes and to unravel distinct model differences.  
 
 

2 Model Descriptions 

2.1 Matlab Model 
 
The Matlab model developed for simulating and stabilising severe slugging is a low-
dimensional nonlinear model. It was developed because a need for a simple model to 
study the properties of systems with slug behaviour for controller design purposes arose. 
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These properties are hard to study with a PDE (partial differential equation) based model, 
but it is relatively simple to unravel these system characteristics when using a simpler 
model.  
 

 
Figure 1 Geometry of  the system 

 
The model is based on the system shown in figure 1 and includes three states. The 
following assumptions were made in order to develop the model: 
 

•  Constant liquid velocity in “feed” pipeline allowing liquid level dynamics to be 
neglected. This implies: 

o Constant upstream gas volume. Any volume variations arising from liquid 
level variations at the lowpoint can be neglected. 

o Constant liquid feed directly into the riser. 
•  One liquid control volume including parts of the feed pipeline. 
•  Two gas control volumes that are separated by the lowpoint. These are connected 

through a pressure-flow relationship. 
•  Ideal gas law. 
•  Constant temperature. 
•  A stationary pressure balance between the riser and feed section. 
•  A simplified choke model for the gas and liquid leaving the riser. 

 
Based on these assumptions a set of DAE’s were developed that describes the system in 
figure 1. These are given in appendix 1 together with comments. The model is 
implemented in matlab and simulink, and can be run in both open and closed loop 
configurations. Using matlab tools and control theory the system characteristics can be 
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studied and control schemes can be developed and tested. Details on the model can be 
found in the model documentation [1]. 
 
 

2.2 OLGA Software and Model 
 
The OLGA software is a rigorous multiphase simulation package with the dynamic 
capability being its most important feature. This ability gives the OLGA software an 
advantage over standard steady-state simulators, and an increased range of applications. 
Major fields of application are in pipeline design studies, operational studies and in safety 
analysis. The program also allows process equipment such as compressors, separators 
and/or controllers to be incorporated into a pipeline system that is studied. OLGA uses a 
numerical method that makes the software especially well suited for simulation of flow 
transients. With the semi-implicit time integration that is implemented in the software, 
relatively long time steps are allowed compared to those of an explicit method. This 
allows efficient simulation runs even when modelling long pipelines where simulation 
time is typically from hours to days. 
 
In order to simulate a specific case in OLGA input files must be specified. The input 
system consists of six files where file 1 and 2 always are required. File 1 contains the data 
specific for any given case such as geometry, operational conditions, output data etc. File 
2 contains the fluid properties given as pre-calculated tabulated values. These data are not 
necessarily case specific. The remaining input files are optional and are used if a three-
phase flow is required (e.g. gas, oil, water), the restart option is chosen (allows for the 
user to continue a run done in a previous case) or when either a pump or compressor is 
incorporated into the simulation. 
 
The input file to OLGA used for the simulations presented in this paper, are given in 
appendix 2.  The geometry of the system and other system properties are all similar to 
those in the Matlab model. 
 
 

3 Control Theory - Stabilising Unstable Systems 
 
Most industrial processes are open-loop stable or self-regulating. This means that the 
process will return to the original steady state after a transient (non-sustained) disturbance 
has occurred. Some systems are open-loop unstable as is the case for slug flow. These 
processes are extremely difficult or impossible to control without feedback control.  
A feedback control system is stable if and only if all roots of the characteristic equation 
are negative or have negative real parts. Otherwise the system is unstable.  
 
In this paper the following controllers were used [3]: 
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•  Proportional(P) controller: ( ) ( )cp t p K e t= +  

•  P-Integral(PI) controller: * *

0

1( ) ( ) ( )
t

C
I

p t p K e t e t dt
 

= + + τ 
∫  

•  P-I-Derivative(PID) controller: * *

0

1( ) ( ) ( )
t

C D
I

dep t p K e t e t dt
dt

 
= + + + τ τ 

∫  

 
Here p(t) is the controller output, p the bias (intial controller output) and e(t) is the error 
signal. To achieve a stable system response the parameters KC, τI and τD are tuned. A trial 
and error method is used to obtain the best tuning. 
 
 

4 Fitting Matlab Model to OLGA Data 
 
In order to compare the models for severe slugging developed in OLGA and Matlab it is 
important to tune the Matlab model to achieve a best possible fit to the OLGA model.  
 
The tuning was done by comparing upstream pressure data from both models in a 
bifurcation diagram. Matlab data were obtained by performing an open-loop run of 
sufficient time for stable oscillations to occur at different valve openings. Max and min 
amplitudes were recorded and plotted. The same technique was applied to acquire the 
OLGA data. Stationary data are obtained in the same manner, but with a run time 
approximately equal to 0. The best fit achieved is shown in figure 2 on the following 
page. 
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Figure 2 Bifurcation diagram 

 
There are 4 variables available for tuning the Matlab model. These are the exponent “n” 
in the friction equation (equation (12) in appendix 1), K1 (choke valve constant), K2 (gas 
flow constant) and K3 (friction parameter). When initiating the model experimental 
stationary values for pressures and liquid filling in riser are given. This determines the 
K1, K2 and K3 values. These values can be tuned by altering the upstream liquid fraction, 
FG, and the gas compressibility, M_G (M_G= Mwg*z). Changing these values will alter 
the amplitudes in the bifurcation diagram. Changing the exponent n will alter the poles of 
the system and thus the instability point in the bifurcation diagram.   
 
The best fit obtained by method of trial and error has the following values given in table 
1 below: 
 
Table 1 Tuning parameters 

Variable Value 
n 2.17 

FG 0.72 
M_G 35 

 
 



Kristian Svendsen  Gloeshaugen, 25. November 2002   
Student no.: 628876   

 9

5 Comparison of open-loop response of Matlab and 
OLGA models 
 
Open-loop comparison between the two models is best done through studying the model 
data in a bifurcation diagram and the frequency of the response. The bifurcation diagram 
allows comparison of max and min amplitudes at different valve openings, while the 
frequency study compares the pressure oscillation periods of the two models. Information 
on the fit of the stationary pressure data are also given in the diagram. This is sufficient to 
judge whether the Matlab model mimics the OLGA model in enough detail for it to be 
useful for controller design purposes. 
 
A bifurcation diagram containing open-loop data both from the Matlab and OLGA 
models is given in figure 2. It is clear from the diagram that the two models are in good 
agreement for valve openings that are less than the instability point of z = 0.15. The 
OLGA curve has a small error causing it not to be totally smooth in this interval. If a 
small change in the choice of data points was made this error would be removed.  
 
The Matlab model fits the OLGA data reasonably well for medium to low valve 
openings, z = 0.15-0.5, while the fit is less accurate for higher z-values. This is 
reasonable since a very simple choke model has been used, resulting in the model having 
to be tuned for a chosen valve interval, namely the low to medium range.  
 
The current tuning will cause the Matlab model to display a better fit on the max pressure 
amplitudes than the min amplitudes. The fit of the stationary data are very good. 
 

Frequency analysis
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Figure 3 Frequency analysis 
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Table 2 Frequency analysis data 

Valve opening Frequency, Matlab Frequency, OLGA Deviation 
% 

Deviation 

z 
delta t, 

min Frequency delta t, s Frequency  
0.18 16 1.04E-03 1200 8.33E-04 2.08E-04 25.00 
0.2 16 1.04E-03 1050 9.52E-04 8.93E-05 9.38 

0.26 14 1.19E-03 1000 1.00E-03 1.90E-04 19.05 
0.3 13 1.28E-03 950 1.05E-03 2.29E-04 21.79 
0.5 10 1.67E-03 900 1.11E-03 5.56E-04 50.00 
0.7 9 1.85E-03 850 1.18E-03 6.75E-04 57.41 

 
In figure 3 a plot of frequency versus valve opening for both models is given. It is clear 
from the figure that the Matlab model predicts a lower frequency than the OLGA model. 
Also, the fit of the frequency data are better for low to medium valve openings as 
expected since the model is tuned for a best fit in this region. In general, the frequency 
deviation of the Matlab model is relatively low, as can be seen from table 2. The reason 
there is a deviation between the data is probably that upstream liquid level dynamics have 
been neglected in the Matlab model, as stated in the assumptions earlier. To get a god fit 
for the amplitude data a relatively small, constant upstream gas volume is used. In reality 
this volume will vary with time. These variations would reduce the frequency. If these 
were included into the model a better agreement of the frequency data would probably be 
seen.  
 
 

6 Comparison of closed-loop response of Matlab and 
OLGA models 
 

6.1 Basis for comparison 
 
In order to compare the closed loop behaviour of the two models, controllers with 
proportional- (P), P and integral (PI) and PI and derivative (D) action were developed. 
Through studies of the Matlab model’s properties the best variables to measure was 
decided. It was found that the best control scheme to stabilise slug behaviour was to have 
upstream pressure as controller input [1]. Through the rest of this section all controllers 
has upstream pressure as the measured variable unless otherwise noted.  
 
To compare the two models, P, PI and PID controllers were implemented in OLGA and 
tuned to give as rapid and good response as possible. The same tuning parameters, Kc 
(controller gain), τI (integral action) and τD (derivative action) were implemented in the 
Matlab model and a comparison of the responses was performed. It is also important to 
take into account when the controller action is switched on. Initiation of the controller 
should always be when the open-loop pressure has a rising trend, preferably at max 
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amplitude. When initiation is done at a different point in time it is far more difficult to 
stabilise the system. The optimal controller tuning will be different, as will be shown. In 
general, it is not really of importance whether the Matlab model fit the OLGA model in 
this case since controller initiation is usually never done at this point.  
 
 

6.2 P-Control 
 
In figure 4 and 5 on the following page the response of the OLGA and Matlab model to 
P-control is shown. In both cases a controller gain of Kc=-0.3 is used and the loop is 
closed when the pressure has an upwards trend. Some differences are obvious: 
 

1. The response of the OLGA model is generally more oscillatory in nature, giving 
rise to more controller usage. 

2. The overshoot in the OLGA model is higher than that of the Matlab model. 
3. The system is stabilised more rapidly in the Matlab model, ~600s, compared to 

the OLGA model, ~1500s. 
4. The system is stabilised closer to the set point, e.g. less offset, with the Matlab 

model, compared to the OLGA model.   
 
These differences are all related to the higher complexity of the OLGA model. 
Neglecting upstream liquid dynamics and reducing the number of states studied (no high 
order dynamics, e.g. no high frequency response) is done in the Matlab model while not 
in the OLGA model. This leads to a simpler less complex system and therefore less 
complex response. This explains that more oscillations and a higher overshoot are seen in 
the OLGA model. Also, the time required to stabilise the system is related to the above 
mentioned. 
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Figure 4 OLGA model response to P-control, Kc=-0.3 
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Figure 5 Matlab model reponse to P-control, Kc=-0.3 
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6.3 PI-control 
 
Figure 6 below and 7 on the following page shows the response of the models to PI-
controllers. Initiation of the controllers is done when the open loop response has an 
upwards trend. Again some differences between the models are obvious: 
 

1. Points 1 and 2 regarding oscillations in the response and overshoot in the previous 
section, also apply for PI-control. 

2. In both models introducing integral action in the controller brings the system 
down to the set point. However, this is done much faster and with no oscillations 
in the Matlab model compared to the results from the OLGA model. 

 
The same reasons that explain the model differences in the previous section applies here.  
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Figure 6 OLGA response to PI-control, Kc=-0.3 and TauI=300. 
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Figure 7 Matlab model response to PI-control, Kc=-0.3 and TauI=300. 

 
 

6.4 PID-control and cascade control 
 
When derivative action is introduced in the controller, the response from the OLGA 
model is smoothed to a certain degree. This can be seen in figure 8 on the next page. 
Ideally, modified derivative action should be used [1]. This is not possible to simulate in 
OLGA so standard derivative action is used. Because the system does not really tolerate 
normal derivative action, the value and range available for τD are both very low. Having a 
derivative action with τD=0.005 does not have a visual effect in the Matlab model, and 
the response is similar to that in figure 7. In the OLGA model the response is slightly 
smoother, but the system is highly unstable and would not tolerate disturbances of 
significant size. In general, given that modified derivative action cannot be applied, a 
comparison of the response of the models to PID-control is not possible.  
 
In some cases it is not possible to have upstream pressure as the measured variable for 
various reasons. Earlier studies have shown that it is possible to stabilise the system with 
cascade control [1]. In this case liquid volume flow and pressure measured in the vertical 
pipe section downstream from the riser is used as controller input for the controller input. 
Implementation of a cascade controller in OLGA is difficult, and a functioning control 
scheme could not be achieved. Therefore, a comparison of model responses to cascade 
control has not been done.  
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Figure 8 OLGA model response to PID-control, Kc=-0.3, TauI=350 and TauD=0.005 

 
 

6.5 Model responses to P- PI- and PID control when initiation of 
the controller is on a downwards trend of the open loop 
response. 
 
Generally speaking, the same points made in the three previous sections with regards to 
model differences also apply when the initiation is at a different point in time. Some 
differences are however obvious, and are discussed below. 
 
The nature of the system makes it harder to stabilise when controllers are turned on when 
the open loop response has a downwards trend [1]. The system behaves in a more 
complex manner which gives rise to more oscillations in the controller response. This is 
demonstrated clearly in figure 9 on the next page. As can be seen from figure 10, the 
Matlab model does not show this oscillatory nature at all.  
 
The OLGA model has a very low value for τI=40. This is necessary to reach the set point. 
From the plot, figure 9, one can see that a lot of controller action is required to stabilise 
the system, and that it takes relatively long time to reach the set point. This trend is not 
obvious in Matlab at all, which stabilises very rapidly with no oscillations. Again, this is 
caused by the higher complexity of the OLGA model.  
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The relatively low similarity of the models in this case is not of high importance since 
initiation when the open loop pressure is decreasing will never be done in reality. 
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Figure 9 OLGA model response to PI-control, Kc=-0.4 and TauI=40 
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Figure 10 Matlab model response to PI-control, Kc=-0.4 and TauI=40 
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6.6 General considerations and summary 
 
In the process of devising the controllers used in the comparison above several runs were 
made with different controller tunings than those given above. From this information and 
the earlier discussion some general points can be made: 
 

1. It seems that the process gain is somewhat larger in the OLGA model compared 
to the Matlab model. This results in the need for using a slightly higher value for 
Kc when a controller developed in Matlab is transferred to OLGA. 

2. The Kc range that stabilises the system is wider in Matlab. The lower boundary in 
OLGA is slightly higher due to point 1. The upper boundary is considerably lower 
because higher order dynamics neglected in the Matlab model makes the system 
unstable. 

3. When integral action is included in the controller in Matlab, no significant 
oscillation occurs in the response. This is not the case in OLGA, where 
oscillations in the response can be high. 

4. The OLGA model takes significantly longer time and much more valve action to 
stabilise at a new set point compared to the Matlab model, especially for PI-
control.  

5. The figures earlier shows that the controller output in the OLGA model often goes 
to saturation. This indicates that the gain margin of a controller is smaller in the 
OLGA model than it is in Matlab. 

 
The reasons for the deviations demonstrated in point 3-5 are all related to the higher 
complexity of the OLGA model compared to the Matlab model. 
 
 

7 Conclusion 
 
The open loop response of both models are similar and in good agreement. Both 
stationary pressure and pressure amplitudes in the models follow each other closely for 
the valve opening interval the models are tuned for. Pressure oscillation frequency is not 
in especially good agreement, but this does not prevent the Matlab model from being 
useful. Care should be taken when tuning the model to obtain the best results. 
 
The closed loop response is generally also in sufficiently good agreement between the 
models. The Matlab model relatively accurately follows the OLGA model response when 
P- and PI-control is implemented. It was found that the process gain is somewhat larger 
in the OLGA model.  
 
Controller initiation should always be done when the open loop pressure trend is rising. 
The Matlab model does not accurately predict the complex response experienced in the 
OLGA model for this case.  
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PID- and cascade control could not be studied because of difficulties with implementing 
these controller schemes in the OLGA software. However, given the Matlab model’s 
good agreement for PI- and P-control one would expect a relatively reasonable similarity 
of the model responses.  
 
 
 
 
 
 

Gloeshaugen, 25. November 2002 
 
 
 
 

_______________________________ 
Kristian Svendsen 
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Appendix 1 – Matlab Model Equations 
 
The equations given on the following pages are the ones used to describe and implement 
the dynamic slug model in Matlab. Symbols used in the equations are defined below. 
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Equations 1 through 10 plus 13, 14, 18 and 19 are normal straight forward equations 
describing pressures, densities, volumes etc. Equation 11 is a stationary pressure balance 
connecting the two gas control volumes. It neglects dynamic effects, acceleration and 
wall friction.  
 
Equation 12 is an entrainment equation. It describes the liquid fraction in the gas filled 
part of the riser related to the gas velocity. Obviously it is not valid when the riser is 
completely filled with liquid. Therefore an equality constraint is incorporated into the 
equation.   
 
Equation 15 describes the gas velocity at the low point. Stating that the pressure drop 
between the two gas control volumes has a quadratic dependency on the relative opening 
at the low point equation 15 can be developed. Clearly, there can be no gas flow if the 
low point is liquid filled, resulting in the equality constraint. This equation then gives rise 
to equation 16 which describes the mass flow. 
 
Equation 17 is a simple valve equation assuming constant mass fraction through the 
valve. The remaining equations are also straight forward equations regarding geometric 
calculations and mass conservation. Further details on the equations used in the Matlab 
model can be found in reference [1]. 
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Appendix 2 – OLGA Model Parameters 
 
 
!******************************************************************************* 
!-    CASE Definition 
!------------------------------------------------------------------------------- 
CASE  AUTHOR="Scandpower A/S", \ 
    PROJECT="OLGA Sample cases", \ 
    TITLE="Verification of severe slugging" 
 
! 
!******************************************************************************* 
!-    OPTIONS Definition 
!------------------------------------------------------------------------------- 
OPTIONS  COMPOSITIONAL=OFF, DEBUG=OFF, PHASE=TWO, POSTPROCESSOR=OFF, 
SLUGVOID=SINTEF, STEADYSTATE=ON, TEMPERATURE=WALL,  \ 
       WAXDEPOSITION=OFF 
 
! 
!******************************************************************************* 
!-    FILES Definition 
!------------------------------------------------------------------------------- 
FILES  PVTFILE="ol-terslug-1.tab" 
 
! 
!******************************************************************************* 
!-    INTEGRATION Definition 
!------------------------------------------------------------------------------- 
INTEGRATION  CPULIMIT=1000 s, DTSTART=0.01 s, ENDTIME=18000 s, MAXDT=5 s, 
MAXTIME=0 s, MINDT=0.01 s, MINTIME=0 s,  \ 
           NSIMINFO=10, STARTTIME=0 s 
 
! 
!******************************************************************************* 
!-    MATERIAL Definition 
!------------------------------------------------------------------------------- 
MATERIAL  LABEL=MATER-1, CAPACITY=500 J/kg-C, CONDUCTIVITY=50 W/m-K, 
DENSITY=7850 kg/m3, TYPE=SOLID 
MATERIAL  LABEL=MATER-2, CAPACITY=880 J/kg-C, CONDUCTIVITY=1 W/m-K, 
DENSITY=2500 kg/m3, TYPE=SOLID 
 
! 
!******************************************************************************* 
!-    WALL Definition 
!------------------------------------------------------------------------------- 
WALL  LABEL=WALL-1, ELECTRICHEAT=OFF, MATERIAL=( MATER-1, MATER-2, MATER-2 ), 
POWERCONTROL=OFF, THICKNESS=( 0.009,  \ 
        2:0.02 ) m 
WALL  LABEL=WALL-2, ELECTRICHEAT=OFF, MATERIAL=( MATER-1, MATER-2, MATER-2 ), 
POWERCONTROL=OFF, THICKNESS=( 0.0075,  \ 
        2:0.02 ) m 
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!*************************************************************************************
******************* 
!      GEOMETRY Definition 
!*************************************************************************************
******************* 
GEOMETRY  LABEL=GEOM-1, XSTART=0 m, YSTART=0 m, ZSTART=0 m 
 
PIPE  LABEL=PIPE-1, DIAMETER=0.12 m, ELEVATION=0 m, LENGTH=2000 m, NSEGMENTS=5, 
ROUGHNESS=2.8e-005 m, WALL=WALL-1 
PIPE  LABEL=PIPE-2, DIAMETER=0.12 m, ELEVATION=-34.9 m, LENGTH=2000 m, 
NSEGMENTS=5, ROUGHNESS=2.8e-005 m,  \ 
    WALL=WALL-1 
PIPE  LABEL=PIPE-3, DIAMETER=0.12 m, ELEVATION=-5.24 m, LENGTH=300 m, LSEGMENT=( 
200, 100 ) m, NSEGMENTS=2,  \ 
    ROUGHNESS=2.8e-005 m, WALL=WALL-1 
PIPE  LABEL=PIPE-4, DIAMETER=0.1 m, ELEVATION=300 m, LENGTH=300 m, NSEGMENTS=4, 
ROUGHNESS=2.8e-005 m, WALL=WALL-2 
PIPE  LABEL=PIPE-5, DIAMETER=0.1 m, ELEVATION=0 m, LENGTH=100 m, NSEGMENTS=2, 
ROUGHNESS=2.8e-005 m, WALL=WALL-2 
 
! 
!******************************************************************************* 
!-    NODE Definition 
!------------------------------------------------------------------------------- 
NODE  LABEL=INLET, TYPE=TERMINAL, X=0 m, Y=0 m, Z=0 m 
NODE  LABEL=OUTLET, TYPE=TERMINAL, X=4399.65 m, Y=259.86 m, Z=0 m 
 
 
!*************************************************************************************
******************* 
!      BRANCH Definition 
!*************************************************************************************
******************* 
BRANCH  LABEL=BRAN-1, FLOAT=ON, FLUID="1", FROM=INLET, GEOMETRY=GEOM-1, 
TO=OUTLET 
 
! 
!******************************************************************************* 
!-    BOUNDARY Definition 
!------------------------------------------------------------------------------- 
BOUNDARY  NODE=INLET, TYPE=CLOSED 
BOUNDARY  GASFRACTION=2:1 -, NODE=OUTLET, PRESSURE=2:5000000 Pa, 
TEMPERATURE=2:22 C, TIME=( 0, 1000000 ) s,  \ 
        TYPE=PRESSURE, WATERFRACTION=2:0 - 
 
! 
!******************************************************************************* 
!-    HEATTRANSFER Definition 
!------------------------------------------------------------------------------- 
HEATTRANSFER  BRANCH=BRAN-1, HAMBIENT=5:6.5 W/m2-C, HMININNERWALL=500 W/m2-
C, HOUTEROPTION=HGIVEN, PIPE=PIPE-1,  \ 
            TAMBIENT=5:6 C 
HEATTRANSFER  BRANCH=BRAN-1, HAMBIENT=5:6.5 W/m2-C, HMININNERWALL=500 W/m2-
C, HOUTEROPTION=HGIVEN, PIPE=PIPE-2,  \ 
            TAMBIENT=5:6 C 
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HEATTRANSFER  BRANCH=BRAN-1, HAMBIENT=2:6.5 W/m2-C, HMININNERWALL=500 W/m2-
C, HOUTEROPTION=HGIVEN, PIPE=PIPE-3,  \ 
            TAMBIENT=2:6 C 
HEATTRANSFER  BRANCH=BRAN-1, HAMBIENT=4:6.5 W/m2-C, HMININNERWALL=500 W/m2-
C, HOUTEROPTION=HGIVEN, PIPE=PIPE-4,  \ 
            TAMBIENT=4:6 C 
HEATTRANSFER  BRANCH=BRAN-1, HAMBIENT=2:6.5 W/m2-C, HMININNERWALL=500 W/m2-
C, HOUTEROPTION=HGIVEN, PIPE=PIPE-5,  \ 
            TAMBIENT=2:6 C 
 
!******************************************************************************* 
!      CONTROLLER Definition 
!******************************************************************************* 
CONTROLLER  LABEL=CONTROLLER-1, AMPLIFICATION=0.5  , BIAS=0.175  , 
BRANCH=BRAN-1, COMBINEVARIABLES=OFF, DERIVATIVECONST=0 s,  \ 
          EXTENDED=OFF, INTEGRALCONST=500 s, MAXCHANGE=0.2  , MAXSIGNAL=1  , 
MINSIGNAL=0  , NORMRANGE=1  ,  \ 
          PIPE=PIPE-1, REFCONDITION=IN-SITU, SAMPLETIME=10 s, SECTIONBOUNDARY=1, 
SETPOINT=( 70, 69, 70 )  ,  \ 
          STROKETIME=60 s, TIME=( 0, 1, 2 ) h, TYPE=PID, VARIABLE=PT BARA 
 
! 
!******************************************************************************* 
!-    SOURCE Definition 
!------------------------------------------------------------------------------- 
SOURCE  LABEL=SOUR-1-1, BRANCH=BRAN-1, CRITFLOWMODEL=FROZEN, 
GASFRACTION=4:-1 -, MASSFLOW=4:9 kg/s, PIPE=PIPE-1,  \ 
      SECTION=1, TEMPERATURE=4:63 C, TIME=4:0 s, WATERFRACTION=4:0 - 
 
! 
!******************************************************************************* 
!-    VALVE Definition 
!------------------------------------------------------------------------------- 
VALVE  LABEL=CHOKE-1-1, BRANCH=BRAN-1, CD=0.75  , CRITFLOWMODEL=FROZEN, 
DIAMETER=0.075 m, OPENING=0.15  ,  \ 
     PIPE=PIPE-5, SECTIONBOUNDARY=2 
 
! 
!******************************************************************************* 
!-    PRINTINPUT Definition 
!------------------------------------------------------------------------------- 
PRINTINPUT  KEYWORD=GEOMETRY 
 
! 
!******************************************************************************* 
!-    OUTPUT Definition 
!------------------------------------------------------------------------------- 
OUTPUT  COLUMNS=4, DELETEPREVIOUS=OFF, DTOUT=18000 s 
OUTPUT  BRANCH=BRAN-1, COLUMNS=4, DELETEPREVIOUS=OFF 
OUTPUT  COLUMNS=4, DELETEPREVIOUS=OFF, VARIABLE=( UL, UG, UD, USL, USG, USD, 
AL, PT, DPT, BE, GA, PSI, ID,  \ 
          RMTOT, BOU, MG, ML, MD, TM, VOL ) 
 
! 
!******************************************************************************* 
!-    TREND Definition 
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!------------------------------------------------------------------------------- 
TREND  DELETEPREVIOUS=OFF, DTPLOT=10 s, TIME=0 s 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, PIPE=PIPE-1, SECTION=1, TIME=0 s, 
VARIABLE=PT BARA 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, PIPE=PIPE-1, SECTION=1, TIME=0 s, 
VARIABLE=GT 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, PIPE=PIPE-5, SECTION=3, TIME=0 s, 
VARIABLE=( QLT, QG, ACCLIQ ) 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, PIPE=PIPE-4, SECTION=1, TIME=0 s, 
VARIABLE=AL 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, PIPE=PIPE-5, SECTION=2, TIME=0 s, 
VARIABLE=AL 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, TIME=0 s, VARIABLE=( NINTGR, 
VOLGBL ) 
TREND  BRANCH=BRAN-1, DELETEPREVIOUS=OFF, PIPE=PIPE-5, SECTION=1, TIME=0 s, 
VARIABLE=PT BARA 
 
! 
!******************************************************************************* 
!-    PROFILE Definition 
!------------------------------------------------------------------------------- 
PROFILE  DELETEPREVIOUS=OFF, DTPLOT=400 s, VARIABLE=HOL 
! 
ENDCASE 
 


