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Abstract

The field of chemical engineering provides many examples, such as chemical reactors

or distillation columns, which are hard to control due to their nonlinear nature. The

control of nonlinear systems is a complex task that has attracted a lot of interest

in academia but has not resulted in industry adopting many of the techniques due

to their complexity. This thesis analyses the application of a new nonlinear control

technique, namely Transformed Manipulated Variables, to systems with a relative

order greater than one. The new theory, first developed by Prof. Sigurd Skogestad,

is a simple yet powerful, model-based, method to control nonlinear systems. Differ-

ent control structures are presented and simulated to find the optimum configuration

for a given system.

Four case studies are presented; tanks-in-series, a continuously stirred-tank reactor,

a pH neutralisation problem and a semi-batch polymerisation reactor. It has been

shown that the new theory is robust for a certain level of model error and time delay

for systems with a relative order greater than one. Disturbance rejection and set-

point tracking are compared to PI control throughout; always showing an increase

in performance, without the loss of simplicity. Furthermore, perfect disturbance

rejection is seen for a special case.
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Chapter 1

Introduction

The control of a chemical process is of utmost importance. There will be many dis-

turbances for any given system and keeping all process variables at their prescribed

values is paramount to the expected operation of a plant. Not only for performance-

related factors like temperature control for a specific molecular weight of polymer

production, but it is also used to add a layer of safety to the plant. For example, to

avoid thermal runaway of a reactor. Although it still requires a level of personnel,

it is largely automated if used correctly once set up.

It may be said that every chemical process is nonlinear, some are just able to be rep-

resented by a linear model better than others. In cases where linear approximation

is not accurate, conventional linear PID control cannot be used and the limitations

of this started to be explored in the 1950s (Bequette, 1991). Following on from this,

nonlinear process control started to receive more attention and continues to do so.

Due to the simple nature of PID control, some nonlinear control techniques focus on

creating a nonlinear PID controller in order to control processes. Another example

is feedback linearization, whereby the nonlinear system is transformed into a linear

system (Khalil, 2002, Isidori, 1995). The new nonlinear control theory discussed

in this thesis - Transformed Manipulated Variables (MVs) - has had initial exam-

ples published by Zotică et al. (2020), with a more general paper currently being

written. It may be seen to have similarities to feedback linearization, though also

encompasses the simplicity of a PID controller. This thesis explores the application

of the new nonlinear control theory to complex systems which require cascade con-

trol or other means.

1



INTRODUCTION

1.1 Motivation

From the existing methods in literature, discussed in Chapter 2, it is clear to see

the motivation for a new nonlinear control theory. Existing methods are either com-

plex and rigorous, or simple but lacking performance. Many of the nonlinear control

methods are scarcely applied to chemical systems, let-alone implemented in industry.

A nonlinear control scheme must be as simple as possible if it is to stand a chance

of being applied in reality; in particular, industry is well suited to existing PID con-

trollers. Another point is the reliance on an accurate process model, and therefore

the robustness of the system. A control scheme based solely on a process model

is likely to struggle in the presence of model mis-match and unknown/unmeasured

disturbances. Nevertheless, basing a control scheme on a process model results in

better performance when the system is operating as expected. Therefore, a control

scheme that can cope with both a degree of model mis-match and have good perfor-

mance is the goal. In addition to this, stability is one of the most important parts of

designing a control scheme, and therefore a stable system (i.e. poles in the left-hand

plane of Im vs. Re) is preferred to the marginally stable system (i.e. poles at the

origin) as with feedback linearization.

1.2 Objective

The objective of this thesis was to analyse and compare different control schemes

for different case studies. Both the advantages and limitations of certain control

schemes were identified and the possibilities in terms of disturbance rejection and

set-point changes for both accurate and in-accurate process models were studied.

1.3 Thesis Structure

This thesis is divided into different case studies, each presented as an isolated case.

The case studies presented in this thesis are a Tanks-in-Series problem, a continuous

stirred-tank reactor (CSTR) problem, a pH control problem and the Chylla-Haase

reactor; a benchmark problem from literature. Nomenclature and units in each case

study are isolated. The thesis is structured as follows:

Chapter 2 provides a literature review of the published work in the field of nonlin-

ear process control.

Chapter 3 presents the new transformed MVs (a.k.a. transformed inputs) theory

which is applied in the four case studies.
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Chapter 4 - 8 presents the studied case studies. For each case study, firstly the

process models are presented, followed by the control structures used in simulations,

then the results of the simulations and finally a discussion - a look into where the

results fit into the bigger picture. They are organised as follows:

Chapter 4 : Tanks-in-Series

Chapter 5 : Tanks-in-Series Extension

Chapter 6 : CSTR

Chapter 7 : pH Neutralisation

Chapter 8 : Chylla-Haase Reactor

Chapter 9 presents the conclusion and details possible future work.
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Chapter 2

Background

In this section, a short literature review on some of the methods for nonlinear

control, with a focus on chemical processes, is presented. There is an in-depth

focus on feedback linearization (Section 2.2) due to its similarities to the new input

transformation theory. In addition to this, basic control theory and controller tuning

used is described.

2.1 PID Controllers

2.1.1 Control Theory

For the new nonlinear control theory, a linear PI/PID controller is employed. There-

fore, in this section, some of the available tuning methods are presented and the

chosen tuning technique is described. Also, throughout, the term relative order is

taken to mean the number of times the output must be differentiated in order for

the input to appear directly.1

2.1.1.1 Controller Tuning

PID controllers are widely used to control processes and return them to their set-

points, these can be presented in both the time domain and the Laplacian domain.

The parallel, or ideal, form is used throughout this thesis and takes the form of Eq.

2.1 and 2.2.

u(t) = ū+Kc

[
e(t) +

1

τI

∫ t

0

e(t∗)dt∗ + τD
e(t)

dt

]
(2.1)

1relative degree and relative order are used interchangeably throughout depending on the theory
being used
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C(s) = Kc

[
1 +

1

τIs
+ τDs

]
(2.2)

e(t) = ysp(t)− y(t) (2.3)

Where u(t) is the input, or manipulated variable (MV), to the process, ū is the

nominal steady-state value, t is the time, C(s) is the transfer function of the con-

troller and e(t) is the error entering the controller, as defined by Eq. 2.3, where y(t)

is the output and ysp(t) is the output set-point. Kc, τI & τD are the three tuning

parameters used in a PID controller; the proportional gain, the integral time and

the derivative time respectively. It is shown in block diagram form in Fig. 2.1 for

an error defined in the Laplacian domain, E(s), and the manipulated variable in the

Laplacian domain, U(s) (Seborg et al., 2010).

1
τIs

1

τDs

+
+

+
Kc

E(s) U(s)

Figure 2.1: PID Controller in Parallel Form (Seborg et al., 2010)

There are multiple ways to choose tuning parameters for a PID controller, for ex-

ample;

• Ziegler-Nichols Method : The most common Ziegler-Nichols tuning is based

on a frequency domain method. A P-controller is used and the system is

run with different Kc values until sustained oscillation is achieved. The Kc

at which this is achieved is labelled Kcu and the period of the oscillation is

labelled Pu. This is then used in different relationships, for example for a PI

controller, Kc = 0.45Kcu, τI = Pu/1.2 (Ziegler and Nichols, 1942). However,

this method is known to give an aggressive response (Skogestad, 2003; Tyreus

and Luyben, 1992). It also lacks a definitive tuning parameter for the user.

• Cohen-Coon Method : This is based on a step-response to the open-loop sys-

tem. This is then fitted to first-order-plus-time-delay (FOPTD) model to get

the process gain, K, the process time constant, τ , and any time delay, θ. These

values are then used in simple relationships to give controller parameters (Co-

hen and Coon, 1953). Although, this is based on a decay ratio of 1
4

and results
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are similar to the Ziegler-Nichols method (Van Der Zalm, 2004).

• Internal Model Control (IMC) Controller Design: This is a model-based design

rather than the controller relations as above. The controller is effectively

designed from the invertible part of the process model and an IMC filter,

f = 1
(τcs+1)r

(Rivera et al., 1986; Morari et al., 1989). τc is able to be used as a

tuning parameter in order to be able to control how aggressive the controller

is.

However, the controllers used throughout (except where explicitly stated) were tuned

using SIMC (Simple/ Skogestad Internal Model Control) tuning rules (Skogestad,

2003). These rules provide a simple method to tune PID controllers, similar to the

IMC controller design with a single tuning parameter, τc, which is the closed-loop

time constant. Also, similarly to the Cohen-Coon method, a step response is made

and a model is fitted - this does not have to be FOPTD. For all applicable controllers

in this thesis, the open-loop responses are presented in Appendix A for validation

purposes. The process parameters are then used to calculate controller parameters,

shown in Table 2.1. A small value of τc will lead to a faster response and a larger

value will lead to a more stable and robust response. This analytic approach is

easily applied to numerous systems while allowing the user to tune the system with

a single parameter. This relies on the system having open-loop stability, but this is

the case for all examples where it is used in this thesis.

Table 2.1: PID Tuning Parameters (Skogestad, 2003)

Process g(s) Kc τI τaD
First order k e−θs

τ1s+1
1
k

τ1
τc+θ

min{τ1, 4(τc + θ)} −
Second order k e−θs

(τ1s+1)(τ2s+1)
1
k

τ1
τc+θ

min{τ1, 4(τc + θ)} τ2

Pure Time Delay ke−θs 0 0b −
Integrating k′ e

−θs

s
1
k′

1
(τc+θ)

4(τc + θ) −
Integrating with Lag k′ e−θs

s(τ2s+1)
1
k′

1
(τc+θ)

4(τc + θ) τ2

Double Integrating k′′ e
−θs

s2
1
k′

1
4(τc+θ)2

4(τc + θ) 4(τc + θ)

a series form, b pure integral controller, C(s) = KI/s, KI := Kc

τI
= 1

k(τc+θ)
. g(s) = process model,

k = process gain, θ = process delay, τ1 , τ2 = process time constants, τc = tuning parameter,

k′ = k/τ1, as τ1 →∞, k′′ = k′/τ2 as τ2 →∞.

2.1.2 Using PID for Nonlinear Control

The use of a PID controller is one of the simplest ways to control a process and is,

therefore, a commonly used technique. However, the performance of a conventional

linear PID controller is limited when applied to a nonlinear process. Anandanatara-

jan et al. (2006) show the limitations of a PI controller on the nonlinear level control
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of a conical tank. The performance of their PI controller is adequate for some set-

point changes, but for others it creates an oscillatory response. The controller is

tuned based on a linearized model of the system, but due to the nonlinear nature

the gain and the time constant of the model change as the level changes. Though,

Desoer and Lin (1985) claim that for a “large class of nonlinear plants” a linear PI

controller will be able to provide closed-loop stability. Jha et al. (2017) control a

(nonlinear) crystallization process with a simple PID controller. The concentration

and temperature in the crystallizer must be kept within a given range so that a

uniform crystal size distribution is achieved. The jacket temperature is taken as the

manipulated variable and crystallizer temperature is the controlled variable. The

responses to set-point changes exhibit overshoot and settling times that are not

within acceptable performance limits.

There is no point in complicating a control system that can adequately be controlled

by PI/PID control in the first place. In this sub-section, various common methods

regarding the use of PI/PID controllers for nonlinear processes are discussed.

2.1.2.1 Taylor Series Expansion

The simplest way to linearize a system is to use a Taylor Series expansion. The

steady-state operating point is usually chosen as the reference coordinates. For

a system dy
dt

= f(y, u) with steady-state conditions (ȳ, ū), truncated at first-order

terms, this becomes;

f(y, u) ∼= f(ȳ, ū) +
∂f

∂y

∣∣∣∣∣
ȳ,ū

(y − ȳ) +
∂f

∂u

∣∣∣∣∣
ȳ,ū

(u− ū) (2.4)

This means that simple, classic control techniques can be applied to the linearized

version of the system, for example, PID controller tuning methods (Seborg et al.,

2010). The main problem with this method is the fact that the system is linearized

around a singular point; normally the steady-state operating conditions as this gives

f(ȳ, ū) = 0. Therefore, the further the system deviates from this point the lower the

performance that the control scheme can achieve. This also relies on an accurate

model of the system to begin with.

2.1.2.2 Fuzzy Logic Controller

A fuzzy logic controller, originally by Zadeh (1965), is a class of controllers that are

able to control systems with a lack of information or model. Passino and Yurkovich

(1998) describe fuzzy control as “a formal methodology for representing, manip-

ulating and implementing a human’s heuristic knowledge about how to control a
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system”. This means that the control is less model-based and more based on heuris-

tics and rules that are applied. The system error is fed to the controller, which

analyzes it, compares it to the pre-set ‘rules’, and then calculates the desired MV

required.

Aslam and Kaur (2011) used fuzzy logic control to control the concentration in a

CSTR, a nonlinear system. This was compared to P, PI and PID control and showed

that using a fuzzy controller both the rise and settling times were reduced by almost

ten-fold and did not show an inverse response to the same extent as the P/PI/PID

controllers. Chabni et al. (2016) realised similar results, though not to the same ex-

tent when comparing PI-only control with a fuzzy controller for liquid level control

in a tank. Rise time for a set-point change was reduced by five-fold for the fuzzy

control.

Pitalua-Diaz et al. (2015) compare PI-only control with fuzzy logic PI control for

indoor benzene concentrations, modelled by complex nonlinear models. In these

simulations the response in the benzene concentration showed no real difference be-

tween the two cases. Although, the change in extractor fan speed (MV) was much

more stable for the fuzzy control, whereas for the PI-only case it peaked at 100%

and then quickly went back down to 0.8%.

Although fuzzy control can out-perform P/PI/PID control, it must be used with

caution. If the controller is based on a human’s perspective of the system more than

a process model there is a fear that not all information will be taken into account

(Passino and Yurkovich, 1998). Furthermore, if the process is not well known in

the first place then a (rough) process model will need to be known. Tuning of the

controller may be difficult as there are many parameters to be tuned and there is

no systematic tuning procedure, in comparison to the numerous tuning rules for

PID control that are available (Pivojika, 2000). Moreover, this technique is still

centred around the steady-state values for the system, similar to the Taylor Series

expansion.

2.2 Feedback Linearization

Covered extensively in literature, feedback linearization is a technique widely stud-

ied that transforms a nonlinear system into a fully or partially linear system that is

able to be easily controlled. This comprises of two steps, one to change the coordi-

nates and a second to provide state feedback, the order of which does not matter.

Feedback linearization is summarised below, based on methods from Khalil (2002),
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Isidori (1995) and Nijmeijer and van der Schaft (1990).

For a system described by Eq. 2.5, the idea is to try to find an equivalent linear

system with a change of variables and state feedback control as per Eq. 2.6 and 2.7

respectively. All variables used must be measured or estimated. For systems where

measurements are not available, for economic or practical reasons, methods such as

using a High Gain Observer or using an Extended Kalman Filter (EKF) may be

used to estimate parameters (Khalil, 2002).

ẋ = f(x) + g(x)u (2.5a)

y = h(x) (2.5b)

u = α(x) + β(x)v (2.6)

z = T (x) (2.7)

This can also be described by the concept of Lie Derivatives.

The Lie Derivative of h(x) with respect to f(x) is defined by Eq. 2.8.

Lfh(x) =
∂h

∂x
f(x) (2.8)

Lie Derivatives may be repeated, or applied in a different direction. For example,

Lie Derivatives in the directions of g(x) and f(x) are shown in Eq. 2.8.

Lgh(x) =
∂h

∂x
g(x) (2.9a)

L2
gh(x) = Lg(Lgh(x)) =

∂(Lgh(x))

x
g(x) (2.9b)

LfLgh(x) = Lf (Lgh(x)) =
∂(Lgh(x))

x
f(x) (2.9c)

Therefore, mathematically, for the system in Eq. 2.5, the relative degree r of the

system near a point xo can be defined by Eq. 2.10, where x is in a neighbourhood

of x0 (Isidori, 1995).

LgL
k
fh(x) = 0 ∀k < r − 1 (2.10a)

LgL
r−1
f h(xo) 6= 0 (2.10b)
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2.2.1 Change of Coordinates

Assuming r = n, where n is the order of the system, the system can be transformed

to the z matrix by Eq. 2.11 (if r < n, see Khalil (2002)).

z = T (x) =


φ1(x)

φ2(x)
...

φr(x)

 =


h(x)

Lfh(x)
...

Lr−1
f h(x)

 (2.11)

Therefore, the derivative of z is represented by Eq. 2.12 by applying the chain rule

and taking into account Eq. 2.10. From this, it can be seen that the system becomes

a chain of integrators.

ż =



dφ1
dt

dφ2
dt

...

dφr
dt


=



φ2

φ3

...

b(z) + a(z)u


(2.12)

Where,

a(z) = LgL
n−1
f h(T−1(z))

b(z) = Lrfh(T−1(z))

2.2.2 State Feedback

The introduction of an external reference input v can then be used to implement a

feedback law. This is related to the input variable u as per Eq. 2.13, where a(z)

and b(z) are the same as above. Comparing this to Eq. 2.12, it can be concluded

that dφr/dt = v.

u =
1

a(z)
(b(z) + v) (2.13)

Since the steps of change of coordinates and state feedback can be applied in any

order, this can also be represented in terms of x as in Eq. 2.14.

u = α(x) + β(x)v; (2.14)
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Where,

α(x) = −
Lrfh(x)

LgL
r−1
f h(x)

β(x) =
1

LgL
r−1
f

As dφr/dt = v the system is therefore easily controlled, e.g. using v = Kz where K

is controller gain.

2.2.3 Input-output linearization

Input-output linearization is a technique related to feedback linearization above,

except it only linearizes the input - output equations, leaving some of the internal

states as nonlinear (Isidori, 1995). This is favoured if parts of the system are non-

minimum phase, i.e. contains right-hand plane zeros or time delays, since inverting

these parts in feedback linearization will not give a viable system. It may also

be attractive if the equations are difficult to solve analytically and input-output

linearization gives a sufficient response (Hangos et al., 2006).

2.2.4 Disturbance Decoupling

Feedback linearization, as set out above, is based on system stabilisation; any dis-

turbances must be decoupled from the output in order to maintain the system’s

performance (Isidori, 1995). However, if the disturbance is not measured then de-

coupling is only possible if the relative degree of the disturbance is more than, or

equal to, the relative degree of the input (Henson and Seborg, 1997). The relative

degree for a disturbance is the number of times the output needs to be differenti-

ated for the disturbance term to directly appear. This case is investigated later in

Chapter 6. Anyhow, stated by Henson and Kurtz (1995), in a chemical engineering

context this is rarely seen and this means that unpredictable responses may be ex-

perienced.

If the disturbance d is measured then it may be incorporated into the control law

- a variation of Eq. 2.14 - as shown in Eq. 2.15. This, therefore, introduces a

feedforward aspect to the control.

u = α(x) + β(x)v + γ(x)d; (2.15)
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Where,

α(x) = −
Lrfh(x)

LgL
r−1
f h(x)

β(x) =
1

LgL
r−1
f

γ(x) = −
LpL

r−1
f h(x)

LgL
r−1
f h(x)

The reader is referred to Henson and Seborg (1997) and Isidori (1995) for more

information.

2.2.5 Limitations

The main limitations of these methods are that (Isidori, 1995, Khalil, 2002 & Zotică

et al., 2020):

• The initial system equations must be dynamic. Due to the form of Eq. 2.5, the

equations to describe the system are dynamic. This will however be realised

for most chemical processes, but will not always, e.g. for pH calculation in

Chapter 7, fast mixing processes or valves.

• The system is typically transformed into a chain of integrators, from Eq. 2.12.

This means that the poles of the system lie at the origin, and therefore ex-

hibit marginal stability. For many mechanical processes this will be adequate

due to the right-hand-plane (RHP) poles though for the majority of chemical

processes the systems will have left-hand-plane (LHP) poles anyway, so poles

on the axis will not provide any benefit.

• The linearization is based on an accurate process model. Due to the reliance

of the control scheme on a process model, this raises robustness issues if the

actual process doesn’t follow the process model.

2.3 Active Disturbance Rejection Control

Active disturbance rejection control (ADRC), summarised by Sira-Ramirez et al.

(2017), is the theory to control nonlinear systems whereby the disturbances to the

system, whether measured or unmeasured; known or unknown, are lumped into

a single variable, along with unmeasured states. This variable is then estimated

in real-time by an Extended State Observer (ESO) and the system is acted upon

via feedback to cancel out the effect of any disturbance. This is a robust control
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method that simplifies the system dynamics immensely. Although the idea was first

proposed in 1939 by Schipanov (1939)- in Russian - it was not until the early 21st

century that ADRC was written in English by Han (2009) and Huang et al. (2004).

ADRC was first developed outside the chemical engineering field - mainly for robotics

and other mechanical systems (Gao et al., 2001). Nonetheless, it has now attracted

some interest in the process control domain, albeit limited. Chen et al. (2007)

simulate concentration control of two nonlinear CSTR case studies, one isothermal

and one non-isothermal, with time-varying parameters such as heat transfer coef-

ficient and activation energy. For the isothermal CSTR it is shown that ADRC

out-performs feedback linearization, especially in cases of model error. For the non-

isothermal CSTR, the performance of ADRC is compared to that of linear Model

Predictive Control (MPC) and PID control - showing greater performance than

both, in a relatively simple manner.

Brown and Zhang (2014) simulate pH control of a neutralisation process with ADRC;

pH neutralisation is shown later in Chapter 7 to be a highly nonlinear process. The

results show fast set-point tracking and disturbance rejection - though not perfect.

In comparison to PI control, the integral of square errors (ISE) are similar for set-

point tracking, whereas for disturbance rejection the increase in performance by

using ADRC is evident; ISE for ADRC is only 6% of that for PI control.

Wang and Zhu (2004) apply ADRC to temperature control of a batch polypropylene

reactor, both simulation and experimentally on a chemical plant. Simulations are

carried out with modelling errors, and although performance is not as good, the con-

trol is robust to any changes. When tested experimentally, performance compared

to PI control was greatly improved and the authors state that the plant actually

accepted these changes and continued to use ADRC.

For the Chylla-Haase Reactor Case Study, Chapter 8, Li et al. (2014) use an ADRC

approach, this showed very good set-point tracking and is discussed further in Sec-

tion 8.2.2.

The nonlinear ADRC structure has nine parameters that are required to be tuned

(Zheng et al., 2012). Clearly this is not favourable, especially for industrial ap-

plication, where PID is the norm. Zheng et al. (2012) also note that using the

ESO creates a phase lag, which increases with relative order. They propose using

a reduced-order extended state observer (RESO), resulting in reduced-order active

disturbance rejection control (RADRC) but this increases complexity, and deviates

13



BACKGROUND

from the original simplicity of ADRC, relative to feedback linearization. This is sim-

ulated for a distillation column and a CSTR; for both the performance of RADRC

versus ADRC is improved for disturbance rejection and set-point tracking. It also

must be noted that both RADRC and ADRC out-perform MPC.

2.4 Model Reference Adaptive Control

Model reference adaptive control (MRAC) is a type of adaptive control which is

employed to nonlinear systems in order to take into account uncertainty in the

process model. MRAC typically follows a block-diagram shown in Fig. 2.2.

Controller Uncertain Plant
+

−

Reference Model

Adaptive Law

ysp
u y

ym

e

θθ

Figure 2.2: Model Reference Adaptive Control Block Diagram. Diagonal line sym-
bolises the change of parameters. Adapted from (Nguyen, 2018)

.

Where y and ym are the outputs from the actual plant and the reference plant re-

spectively, ysp is the set-point, u is the input and θ is a factor used to change the

controller parameters. This has a cascade structure, whereby the inner loop acts like

a typical feedback loop between the uncertain plant and the controller. The outer

loop is based on the error between the actual output, y, and the reference model

output, ym. The adaptive law takes this into account and adjusts the controller pa-

rameters accordingly (Åström and Wittenmark, 2008). There are multiple options

for the choice of controller and adaptive law, e.g. linear versus nonlinear controller

or linear time-varying versus nonlinear adaptive law (Nguyen, 2018). The design of

the system depends on robustness and performance requirements. For systems with

a relative degree of one, the reference model can be selected to be first order and

then the task is to find a set of controller parameters that makes the system follow
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that model; in a similar manner to the new Transformed MVs theory.

Although first developed for the aerospace domain, Åström and Wittenmark (2008)

label chemical reactors as “potential candidates for adaptive control” due to the

many parameters which change with time, for example catalyst activity. In litera-

ture there are a number of examples of chemical engineering applications of MRAC,

both historically and recently; showing the continued work in the field.

Ahlgren and Stevens (1971) simulate a CSTR with a drifting rate constant: to

simulate changing catalyst activity, and a changing cooling water temperature: to

simulate between day and night temperatures. The application of MRAC provided

a stable system, which was not the case for an unadapted system. However, trial

and error was used for the reference system which would be time consuming and

add extra complexity to already labour-intensive calculations. Though, to this end,

Najim et al. (1985) conclude that MRAC is simpler than linear controllers as not a

lot of process knowledge is required a priori and parameters do not need to be re-

tuned periodically. Furthermore, in 1981 a chemical plant in Germany transitioned

to MRAC and saved 10% in energy, compared to PID control.

Han et al. (2019) presented MRAC applied to proton exchange membrane fuel

cell (PEMFC). Providing a robust control strategy for PEMFCs is difficult due to

changes in parameters, disturbances and lack of an accurate model. Compared to

nominal feedback control, MRAC was simulated to show less control action required,

meaning less wear on the compressor, as well as a lower overshoot. Interestingly,

Patel et al. (2020) also use MRAC to control a fuel cell, though looking at microbial

fuel cells rather than PEMFCs. With no control action, it is shown that at steady-

state there is a constant error between the reference system and the actual system.

Applying MRAC ensured no steady-state offset, and the error was minimised to zero

for both the anode and cathode outlets.

Bastin and Dochain (1990) present a similar approach to MRAC, which also has

similarities to feedback linearization and the transformed MVs theory. They use a

system input-output model, where the derivative order is equal to the relative degree

of the input, and combine this with a stable linear reference model to give a control

law, which linearizes the feedback loop. The reference model is chosen depending

on how the user wishes the tracking error to decrease. Shown by Chen et al. (1995)

is the application of this approach, where a control scheme for the control of ethanol

production during yeast production is presented.

15



BACKGROUND

2.5 Backstepping Control

Backstepping control is a model-based non-linear control technique based on “a

known feedback law for a known Lyapunov function” (Kokotović, 1992). It is a more

systematic method to controlling a system in comparison to nonlinear geometric

techniques, e.g. feedback linearization (Kanellakopoulos et al., 1992). So-called

‘backstepping’ is achieved when a system in form of Eq. 2.16, is represented by Eq.

2.17. where u is the control input and [ηT , ξ]T is the state (Khalil, 2002).

η̇ = f(η) + g(η) ξ (2.16a)

ξ̇ = u (2.16b)

η̇ = [f(η) + g(η)φ(η)] + g(η)z (2.17a)

ż = u− φ̇(η) = v (2.17b)

φ is represented by Eq. 2.18, i.e. it is calculated from known quantities.

φ̇ =
∂φ

∂η
[f(η) + g(η) ξ] (2.18)

The state feedback law is then derived using the Lyapunov function and substitut-

ing in the values from Eq. 2.17 and this creates an asymptotically stable system

(Khalil, 2002 & Vaidyanathan and Azar, 2021). This may be applied multiple times

for higher-order systems.

In literature there are very limited examples of backstepping being used for chemical

engineering applications. Monroy-Loperena and Alvarez-Ramirez (2004) use back-

stepping control in a cascaded manner for batch distillation columns - renowned for

being hard to control due to the flexibility and lack of a steady-state. The control of

the output composition is achieved by cascade control; the outer controller providing

a tray temperature set-point from the output composition and the inner controller

changes the reflux rate in order to minimise the error in tray temperature. The outer

controller is of low-gain type. The inner controller utilises backstepping control with

a model error estimator. Output composition control shows good performance, and

is further enhanced when multiple slave controllers are used on different trays of the

column.

Hua et al. (2009) apply backstepping control to CSTRs in series, with time delay
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and a recycle. The authors claim that this is the only effective method for the

given process model, and the results show a global asymptotically stable system is

achieved for the given nonlinear controller. Bošković and Krstić (2002) use back-

stepping control for control of chemical tubular reactors. This again achieves global

asymptotic stability.
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Chapter 3

New Proposed Method for Input

Transformation

3.1 Theory

3.1.1 New Transformed Input Theory

The new transformed input theory was developed within the Process Systems En-

gineering group at Norwegian University of Science and Technology, culminating

so-far, at the time of writing, with the publication by Zotică et al. (2020). There

is currently a more theoretical paper being prepared. This theory is a powerful tool

that can be used to control nonlinear systems, in particular in the process control

domain. In comparison with previous nonlinear control techniques, this is very sim-

ple and can be implemented to a process with relative ease.

A system with input u, output y, internal variable w and disturbance variable(s) d,

represented by Eq. 3.1, can be transformed into a first-order, linear system which

can offer perfect disturbance rejection and decoupling for multiple-input, multiple-

output (MIMO) systems (Perfect disturbance rejection is defined as y = ysp ∀ t
in the presence of a disturbance). By introducing the transformed input, vL, and

a tuning parameter, A, as per Eq. 3.2 , this is achieved. The transform in this

form is called the general linear transform (GLT) and is often referred to as v due

to its general nature. Fig. 3.1 illustrates the effect of feedback linearization and

the new transformed input theory on the poles of the system; poles on the y-axis

will create a marginally stable system and poles on the left-hand-plane will create

a stable system. If the original system is on the left-hand plane then it is clear that

feedback linearization will not be favoured, whereas for an original system on the

right-hand plane then feedback linearization will provide marginal stability but the

new theory will provide true stability.
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dy

dt
= f(y, u, w, d) (3.1)

vL = f(y, u, w, d)− Ay (3.2)

Re

Im

21

Stable

1

Unstable

3

Figure 3.1: Comparison of Poles. 1: possible locations of original system poles; 2:
location of feedback linearization poles; 3: location of the new theory’s poles.

The value of A is usually chosen such that A =
(
df
dy

)∗
, where the ∗ indicates steady-

state conditions. Choosing A this way means there is no feedback at the nominal

steady-state condition as v is independent of y. Transforming the model into a first-

order system yields the transfer function Eq. 3.3. It can be seen that the gain of the

system is equal to the negative of the reciprocal of A, as is the time constant. This

shows that the choice of value for A will affect the speed of response, i.e. it can be

used as an additional tuning parameter. It is therefore clear that the more negative

the value of A is, the smaller τ is; leading to a faster response, and vice versa for a

less negative value. The value of A must be non-positive to give a realisable time

constant, and the special case of A = 0 is detailed below.

G(s) =
y(s)

v(s)
=

−1/A

(−1/A)s+ 1
=

K

τs+ 1
(3.3)

The assumptions used in the theory are as follows;

Assumption 1: Relative order of the system must be ≤ 1

Assumption 2: All variables required in the process model are measured

Assumption 3: Number of inputs = number of outputs; nu = ny
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Assumption 4: The equation for the transformed input (Eq. 3.2) is invertible

If these assumptions do not hold then the theory can still be used under consider-

ations, as explained in this thesis. If the assumptions hold then the system can be

easily implemented using the block diagram in Fig. 3.2. It is clear to see the ease

with which this is applied in comparison with the feedback linearization method

presented in Section 2.2.

+
− Controller

Input
calculation Process

ysp e v u

d

y

Figure 3.2: Basic Transformed Input Control Scheme

The feedback loop is not necessarily required for a system in the presence of dis-

turbances if there is no model mis-match between the calculation block and the

process. In the case of a mis-match then this is required for the system to return to

the nominal steady-state. The set-point may also be changed with no feedback loop

by calculating the corresponding value of v as an input to the calculation block.

3.1.1.1 Integrating Transformation

As mentioned above there is a special case if A = 0. This means that the transformed

system becomes an integrator, the same as seen in feedback linearization. This is

denoted by a subscript FL on the transformed input vFL. The transformed input

system becomes Eq. 3.4 and has marginal stability.

dy

dt
= f(y, u, w, d) = vFL (3.4)

3.1.1.2 Static Transformation

The static transform can be used for either a static system, for a dynamic system

- the dynamics of the system are simply disregarded (dy/dt = 0) or for a dynamic

system where a steady-state model of the system is known but a dynamic model is

not. The static transformed input is symbolised by subscript 0 as v0. For a system

taken as Eq. 3.5, v0 is calculated by Eq. 3.6, where y = r(u, d) solves Eq. 3.5. At

steady-state v0 = y, but not always dynamically.
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dy

dt
= 0 = f(y, u, w, d) (3.5)

v0 = r(u, d) (3.6)

3.1.1.3 Alternative Form of General Linear Transformation

Another special case is changing the form of the GLT so that it has a gain of 1. For

this case the subscript L0 is used for the transformed input as vL0. This is shown

in Eq. 3.7, where T = −A−1. This would be undefined in the case of A = 0. In this

case y = vL0 at steady-state, and a set-point change is able to be achieved without

the need for additional calculation - the set-point of vL0 is equal to the set-point of y.

Although, the GLT may work better than this special case when using a controller

as there is less dynamic coupling.

T dy
dt

= T f(y, u, w, d) = −y + vL0 (3.7)

3.1.2 Cascade Control

There are a number of reasons to use cascade control versus the basic transformed

input control scheme;

1. The relative order is greater than one - Assumption 1 does not hold.

2. The model equation for dy/dt is not invertible - Assumption 4 does not hold

- or inverting it is not favoured.

3. Using it to numerically invert the transformation to give the input u for a

desired value of v.

Cascade control is achieved either in a general cascade structure, or an alternative

cascade structure; Fig. 3.3 and 3.4 respectively. For the general cascade structure,

Fig. 3.3, the outer controller outputs the set-point for the transformed input, vsp,

from the difference between ysp and y, while the calculation block calculates the

current value of v. The inner controller acts on the difference between vsp and v,

giving the required input to the system, u.
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+
−

Outer
controller

+
− Inner

Controller

Input
Calculation

Process
ysp e vsp e2 u

d

y

w
v

Figure 3.3: General Cascade Structure

For the alternative cascade structure, Fig. 3.4, the outer controller acts in the same

way as the general cascade structure, although this time the vsp enters the calculation

block to give a set-point for the internal variable, wsp. The difference between wsp

and the measured internal variable, w, is acted upon by the inner controller in order

to give the required input to the system, u.

+
−

Outer
Controller

Input
calculation

+
−

Inner
Controller Process

ysp e vsp wsp e2 u y

d

w

Figure 3.4: Alternative Cascade Structure

There should not be any difference in performance between the two different con-

trol structures if the system is invertible - this is investigated in Chapter 4. The

general cascade has to be used for a system that can’t be inverted, and will also be

favoured if it requires a lengthy numerical solver. Though, the alternative cascade

may appear more intuitive, as it has a feedback loop on both the output, y and the

internal variable, w, both of which are normally realisable quantities. In both cases,

using cascade control in this form will see the loss of perfect disturbance rejection.

Furthermore, the cascade system is also safer than the basic transformed system

(Fig. 3.2) if the internal variable, w, depends on the input, u. There is potential

for instability if the transformed input is a function of the internal variable when

using the basic transformed input control scheme. In addition to this, if one chooses

to“cheat”, and does not want to invert the equation for v to find u, the cascade

structure can be used to calculate the input to the system. This assumes that the

inner loop is sufficiently fast, however this comes with the loss of perfect disturbance

rejection.
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An additional benefit of the alternative cascade structure is the possibility that

perfect disturbance rejection can be resurrected. For a system where the disturbance

directly affects the internal variable, w, if an additional inverse calculation block is

introduced, as per Fig. 3.5, then perfect disturbance rejection will be achieved.

This is named a double-linearized (DL) cascade system due to the presence of two

calculation blocks.

+
−

Outer
Controller

Input
calculation 1

+
−

Inner
Controller

Input
calculation 2 Process

ysp e vsp wsp e2 v2 u y

d

w

Figure 3.5: Double-linearized Cascade System

3.1.3 Chain of Transforms

For systems with a relative order greater than one, the chain of transforms can also

be applied. In a similar configuration to feedback linearization where the system is

transformed into a chain of integrators, the so-called chain of transforms is a system

transformed into a chain of first-order transfer functions, shown in Fig. 3.6. Input

calculation 1 is the same as the transforms above, and vA0 is the internal variable, w,

which satisfies the first transform equation, acting as a type of wsp. Input calculation

2 is in the form of Eq. 3.8 and is solved to give the input to the system with given

controller output v, measured outputs y and w, and disturbances d. Aw is again

used as a tuning parameter.

+
− Controller

Input
Calculation 1

Input
Calculation 2 Process

ysp e v vA0 u y

d

w

Figure 3.6: Chain of Transforms System

dw

dt
= g(y, u, d, w) = Aw(w − vA0) (3.8)

This can be used if the internal variable, w, is known and a model is available.

This also has the possibility of perfect disturbance rejection for disturbances that
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directly affect the internal variable and not the controlled variable as will be shown

in Chapter 6.

3.1.4 Output Transformation

An output transformation can be used when the variable of interest is not known,

or needs to be calculated from other values, but is still important in the control of

the system - shown in Chapter 5. It is applied via a simple calculation block, which

contains any equation the user sees fit to calculate, or estimate in some cases, the

variable of interest. It may also be used in the case of a system nonlinear in the

outputs, seen in Chapter 7. Shown in Fig. 3.7 is the case of a system where the

dynamics for both y and w are known, but the value of w cannot be measured. By

neglecting the dynamics for y, i.e. dy/dt = 0, the value of w can be estimated from

measured values in the output calculation blocks.

Output
Calculation

+
− Controller

Input
calculation Process

Output
Calculation

ysp wsp e v u

d

y w

Figure 3.7: Output Transform Example Case

3.2 Simulation Set-up

All simulations were performed on MATLAB ® and Simulink ® R2020a with an

automatic ODE solver selection, maximum step size selection and minimum step

size selection.

3.2.1 Disturbance Mis-match

In order to test robustness in some of the case studies, a disturbance mis-match is

simulated. In reality, this may happen if a measurement sensor is malfunctioning,

or if there are unmeasured disturbances also affecting the system. To simulate this,

a different value is used in the transformation block to the process model, governed

by Eq. 3.9. The ‘real’ disturbance is represented by dr, this is the value used in the

process model. The measured disturbance is represented by dm, this is the value used

in the transformation block. Gain D serves as a parameter to dictate the relative
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amount of deviation between the measured disturbance value dm and the nominal

disturbance value d∗. This is able to test the robustness of the control systems.

dr = d∗ +D(dm − d∗) (3.9)
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Chapter 4

Case Study A: Outlet

Temperature Control for

Tanks-in-Series

The first case study presented is a two-tanks-in-series model. The aim of this was

to validate the new theory, to show both of the possible cascade control schemes

and also to show the effect of the static and integrating transforms. The goal was

to control the temperature leaving the last tank by changing the temperature of the

flow to the first tank.

4.1 Process Model

The tanks-in-series simulations follow the diagram shown in Fig. 4.1. Nomenclature

and nominal values are shown in Table 4.1.

Derived from mass and energy balances around the tanks, Eq. 4.1 - 4.4, which are bi-

linear, are used to model the process. Full derivations are provided in Appendix B.1.

Assumptions used;

A1 : Perfect mixing in both tanks

A2 : Constant density, ρ, and specific heat, cp.

A3 : Inlet temperature, T0, may be manipulated sufficiently fast by the heat added,

Q.

A4 : Constant pressure and volume
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Q
T0,F0

T1,F1

Fd,Td

T2,F2

h1

h2

A1

A2

Tank 1

Tank 2

Figure 4.1: Tanks-in-Series Model

Table 4.1: Nomenclature and nominal values for Tanks in Series

Variable Symbol Unit Steady-state value
Temperature of inlet flow T0 °C 70
Temperature of tank 1 T1 °C 70
Temperature of tank 2 T2 °C 60
Temperature of disturbance flow Td °C 40
Inlet flow to tank 1 F0 m3min−1 1
Outlet flow of tank 1 F1 m3min−1 1
Outlet flow of tank 2 F2 m3min−1 1.5
Disturbance flow to tank 2 Fd m3min−1 0.5
Level in tank 1 h1 m 1
Level in tank 2 h2 m 0.5
Cross-sectional area of tank 1 A1 m2 4
Cross-sectional area of tank 2 A2 m2 6
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dh1

dt
=

1

A1

(F0 − F1) (4.1)

dh2

dt
=

1

A2

(Fd + F1 − F2) (4.2)

dT1

dt
=
F0(T0 − T1)

h1A1

= g(u, d, w) (4.3)

dT2

dt
=
F1(T1 − T2) + Fd(Td − T2)

A2h2

= f(y, u, d, w) (4.4)

4.2 Control Structure

In this case study, the controlled variable (CV) was the temperature of the second

tank, y = T2. The manipulated variable (MV) was the temperature of the inlet flow,

u = T0. The disturbances to the system (d) are the inlet flow, F0, the disturbance

flow, Fd, and the temperature of the disturbance flow, Td. The internal variable for

this system is the temperature of the flow out of the first tank, w = T1. All states are

x = [T1 T2 h1 h2]. The level in both tanks, h1 & h2 is also to be controlled to ensure

tanks do not become empty or overflow. This was achieved by P-controllers, with

a process gain of the reciprocal of the cross-sectional area of each tank respectively

and the tuning parameter, τc, is taken as one-quarter of the tank residence time.

The relative order of the system is greater than 1, i.e. the output T2 needs to be

differentiated twice before the input T0 appears explicitly. This means that Assump-

tion 1 of the transformed input theory, Section 3.1.1, does not hold true. Therefore

a cascade structure must be used; there are two possible control schemes, Fig. 4.2

and 4.3. The transformed input labels for GLT, integrating case and static case, i.e.

v, vFL & v0, may be used interchangeably in the block diagrams.

+
−

Outer
controller

+
− Inner

Controller

Input
Calculation
(Eq. 4.5)

Process
T2,sp e vsp e2 T0

d

T2

T1v

Figure 4.2: General Cascade Block Diagram
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+
−

Outer
Controller

Input
calculation
(Eq. 4.5)

+
−

Inner
Controller Process

T2,sp e vsp T1,sp e2 T0 T2

d

T1

Figure 4.3: Alternative Cascade Block Diagram

The transformed input, v, is calculated as per Eq. 4.5:

v = f(y, w, u, d)− AT2 =
F1(T1 − T2) + Fd(Td − T2)

A2h2

− AT2 (4.5)

Where, for the general linear transform;

A =

(
df

dT2

)∗
=

(
− F1 + Fd

A2h2

)∗
= −0.5min−1 (4.6)

and f(y, w, u, d) is described in Eq. 4.4. The value of A is the reciprocal of the

negative residence time of the tank which is no coincidence. The transformed system,

f(y, w, u, d) = v + AT2 gives a transfer function G(s) = T2(s)
v(s)

= K
τs+1

, where K =

τ = −1/A. Therefore, intuitively the time constant is equal to the residence time.

For the integrating system A = 0min−1. The static system uses v0 = r(u, d), where

T2 = r(u, d) solves f(y, w, u, d) = 0.

4.2.1 Controller Tuning

The controllers were tuned using SIMC tuning rules (Skogestad, 2003). For the inner

controller of the alternative cascade structure, the transfer function is calculated by

taking the Laplacian of Eq. 4.3, giving Eq. 4.7.

T1(s)

T0(s)
=

1
A1h1
F0

s+ 1
=

1

τs+ 1
(4.7)

Therefore, SIMC rules can easily be applied. This will not always be the case for the

alternative cascade structure and depends on the equations for each specific case.

For the inner controller of the general cascade structure and the outer controllers for

all cascade structures, an open-loop response is used to fit an approximate FOPTD

transfer function to the system. The gain and time constants for all cases (delay is

taken to be zero for all cases) are summarised in Table 4.2 along with the tuning

parameters, where K is the process gain, τ is the process time constant, τc is the

SIMC tuning parameter which results in the proportional gain, Kc and integrating

time τI ; the full open-loop response graphs are shown in Appendix A.1.
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Table 4.2: Process and Tuning Parameters for all Tank-in-Series Cases. († : Inte-
grating process ∴ τ →∞, K = K ′ = ∆y

∆t∆u
. Values with no units are dimensionless)

Case K τ τc Kc τI

Pure Feedback
Inner 1 4 min 3 min 1.3 4 min
Outer 0.66 5.6 min 6 min 1.4 5.6 min

General (GLT)
Inner 0.3 min−1 4.1 min 2.5 min 5.47 min 4.1 min
Outer 2 min 4.4 min 6.5 min 0.34 min−1 4.4 min

Alternative (GLT)
Inner 1 4 min 3 min 1.33 4 min
Outer 2 min 4.9 min 6.5 min 0.38 min−1 4.9 min

Alternative (Static)
Inner 1 4 min 2 min 2 4 min
Outer 2 min 4.2 min 6 min 0.35 min−1 4.2 min

Alternative (Integrating)
Inner 1 4 min 2 min 2 4 min

Outer† 0.48 − 8 min 0.26 min−1 32 min

4.3 Results

4.3.1 Comparison of General Cascade, Alternative Cascade

and Pure Feedback Systems

Results for simulations of the general cascade system and the alternative cascade

system are presented in Fig. 4.4, along with a comparison to an un-transformed

cascade system, i.e. pure feedback. Simulations for disturbances of F0, Fd and Td

and also a set-point change are presented.

Firstly, it must be noted that perfect disturbance rejection is not achieved. The

relative order to the output T2, from both disturbances, is one whereas the relative

order from the input is two. This means that the disturbances affect the system be-

fore the input, so it is physically impossible to achieve perfect disturbance rejection.

For T2 to be controlled, the disturbances require a change in T1 - which subsequently

is achieved by a change in T0. The dynamics in tank 1 slow this down and means

perfect disturbance rejection cannot be achieved. Although, from this it is clear

to see the advantage that the transformation makes to the system, the response is

faster for all three disturbances in comparison to the feedback only case. This is

no surprise as the transformation block delivers feedforward action, in addition to

the feedback aspect achieved from the feedback loop and the two controllers. For

a set-point change it can be seen that the responses for both of the transformed

systems are very similar to that for the feedback only system. This is expected

and is witnessed because the transformation is not a function of the set-point, and

therefore any set-point change is acted upon solely by the outer and inner controllers

- the same as in the feedback only case. The results also show that both the general

cascade structure and the alternative cascade structure behave very similarly and
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any slight differences may be attributed to controller tuning.

Figure 4.4: Comparison of the General Cascade Structure, the Alternative Cascade
Structure, an a Feedback Only Cascade Structure, with no transform. ∆F0 =
+0.2 m3/min at t = 10 min; ∆Fd = +0.2 m3min−1 at t = 30 min; ∆Td = +4 °C
at t = 50 min; ∆T2,sp = +5 °C at t = 70 min.

4.3.2 Comparison of General Linear Transform, Static Trans-

form and Integrating Transform

In order to show the differences of the possible transforms on the cascade control

structure, the general linear (GLT), integrating and static transforms are applied to

the tanks-in-series problem. For these simulations, the alternative cascade structure

is used. Nonetheless, it has been shown above that both the general cascade struc-

ture and the alternative cascade structure will behave similarly anyway.

The integrating transform is the case where the tuning parameter, A in Eq. 4.5,

is chosen to be 0. This means that the pole of the transformed system lies at the

origin and there is marginal stability. This may be seen as a similarity to feedback

linearization, where the system is transformed into integrating processes in series.

The static transform is the case where the dynamics of the system are neglected,

this may be used in a case where the process model is complicated or if the dynamics

of the system are unknown. Furthermore, when the process itself is static, the static

transform is clearly used. The transformed input, v0 is chosen to be equal to r(u, d),
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where T2 = r(u, d) solves Eq. 4.8. At steady-state v0 = T2, but this will not always

hold dynamically.

F1(T1 − T2) + Fd(Td − T2)

A2h2

= f(y, u, d, w) = 0 (4.8)

The results for the three systems can be seen in Fig. 4.5 for the disturbances

described. From this it can be seen that for disturbances, the integrating system

is always the slowest, and the static system is slightly faster at regaining T2 at its

set-point. The general linear transform achieves a similar performance to the static

transform for disturbances, but achieves set-point tracking much faster.

Figure 4.5: Comparison of General Linear Transform, Integrating Transform and
Static Transform for Alternative Cascade System. ∆F0 = +0.2m3/min at t =
10 min; ∆Fd = +0.2m3min−1 at t = 30 min; ∆Td = +4°C at t = 50 min;
∆T2,sp = +5°C at t = 70 min.

4.4 Case Study Discussion

In this case study, simulations have been used to prove multiple facts about the new

input transformation, and possibilities for extension.

Firstly, it has been shown that if Assumption 1 has been broken; if the relative

order of the system is greater than one then a cascade implementation can be used

to control the system. In this case the relative order was 2, if the system was of a

higher-order then the inner loop could be changed to incorporate another transform
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block if required.

Secondly, it has been shown that both of the transformed systems behave better

than a regular, feedback only system, as expected. This shows a key benefit that

the new transformed input theory brings.

Thirdly, both the General Cascade Structure, Fig. 4.2, and the Alternative Cascade

Structure, Fig. 4.3, have been shown to be stable, and have good performance. They

are directly comparable and the user can decide which to chose for a given system.

The advantage of the general system is that it does not require the inversion of the

transform in the calculation block. In this case study the transform is simple to solve

and could be achieved analytically, though some systems may require a numerical

solver, increasing difficulty and computation time. The advantage of the alterna-

tive system may be that it seems more intuitive, both controllers act on realizable

quantities, the controlled variable and the internal variable. This means that tuning

for the inner controller may be easier if a model equation for the internal variable

is known. Nevertheless, depending on a given system’s process model, either can be

chosen.

Fourthly, it has been shown that the general linear transform performs best in gen-

eral, for both disturbance rejection and set-point tracking, compared to the static

and integrating transform. This has also shown that A can be used as a tuning

parameter; the integrating case has A = 0min−1, compared to the general linear

case with A = −0.5min−1. This agrees with the fact expressed in Section 3.1.1,

that the time constant for the transform is equal to −1/A. Therefore increasing A

makes τ larger, until τ →∞ as A→ 0min−1.

Introduced in Section 3.1.3, this example could also be controlled using the chain of

transform, although not simulated in this chapter. No improvement in performance

would be expected for disturbances of Fd or Td as they have a relative order (to

the output) of 1, meaning that perfect disturbance rejection would still not possible

as the relative order of the input, T0 is 2. Nonetheless, better performance may

be achieved for a disturbance of F0 as this also has a relative order of 2, meaning

that the input may be changed before the disturbance affects the system. This

phenomenon is explored in Chapter 6. The chain of transforms for this system

would be implemented as per Fig. 4.6. Input calculation 1 is the same transform as

used above, Eq. 4.5, though it is solved for T1. This gives a desired set-point for T1,

labelled as v1, shown in Eq. 4.9. Input calculation 2 solves Eq. 4.10 for the input to

the system, T0. B is used to replace A as the tuning parameter to avoid confusion.
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v =
F1(v1 − T2) + Fd(Td − T2)

A2h2

− AT2 (4.9)

g(u, d, w) =
F0(T0 − T1)

h1A1

= B(T1 − v1) (4.10)

+
− Controller

Input
Calculation 1
(Eq. 4.9)

Input
Calculation 2
(Eq. 4.10)

Process
T2,sp e v v1 T0 T2

d

T1

Figure 4.6: Chain of Transforms Block Diagram
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Chapter 5

Case Study A: Extension

In Chapter 4 it was shown that the input transformation theory can be applied in a

cascade nature, though this assumed that all quantities were able to be measured;

Assumption 2 in the theory. However, in an industrial setting this will not always be

the case and therefore poses control limitations. It is usually a reasonable assumption

that the input and output to the system are measured. Known disturbances are also

typically able to be measured, whereas unknown, or unmeasured, disturbances, may

be dealt with by the feedback loop. However, if the internal variable w is not

measured, then the cascade structures described in Chapter 4 will not be able to be

implemented directly. In this chapter new methods are applied in order to overcome

this, these are implemented on the tanks-in-series model again, with the same CV

and MV.

5.1 Process Model

For this case study, a similar process model to Case Study A is used. The only

difference is that there is an additional flow into the first tank, this adds an extra

disturbance to the system in the form of T1d. The new system is described by Eq.

5.1 to 5.4, which are derived from mass and energy balances. Full derivations are

found in Appendix B.2. The process is shown in Fig 5.1.

dh1

dt
=

1

A1

(F0 + F1d − F1) (5.1)

dh2

dt
=

1

A2

(F2d + F1 − F2) (5.2)

dT1

dt
=
F0(T0 − T1) + F1d(T1d − T1)

h1A1

(5.3)

dT2

dt
=
F1(T1 − T2) + F2d(T2d − T2)

A2h2

= f(y, u, d, w) (5.4)
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Q
T0,F0

T1,F1

F2d,T2d

F1d,T1d

T2,F2

h1

h2

A1

A2

Tank 1

Tank 2

Figure 5.1: Tanks-in-Series Extension Diagram

The assumptions for this case study are the same as in Chapter 4:

A1 : Perfect mixing in both tanks

A2 : Constant density, ρ, and specific heat, cp.

A3 : Inlet temperature, T0, may be manipulated sufficiently fast by the heat added,

Q.

A4 : Constant pressure and volume

For the extension to this case study, three different sizes of systems were simulated,

these are summarised in Table 5.1. System 1 is the same as the system described

in Chapter 4, with the addition of the disturbance stream, and runs the same at

steady-state. System 2 is a system that has a very small tank 1 relative to tank 2,

with a larger disturbance flow to Tank 2. System 3 is vice versa, where there is a

very small tank 2 relative to tank 1 and a larger disturbance flow to tank 1. System

2 and 3 are used to show the effect of the extremities, changing both the size of

the systems and the dynamics of the systems. System 1 is used as a more realistic

example.
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Table 5.1: Parameters and Steady-State Values for all three sized systems

Parameter Symbol Unit System 1 System 2 System 3
Inlet Temperature T0 °C 70 70 70
Tank 1 Temperature T1 °C 70 70 70
Tank 2 Temperature T2 °C 60 47.5 68.5
Tank 1 Disturbance Temperature T1d °C 70 70 70
Tank 2 Disturbance Temperature T2d °C 40 40 40
Inlet Flow F0 °C 0.8 0.8 0.8
Tank 1 Outlet Flow F1 m3min−1 1 1 3.8
Tank 2 Outlet Flow F2 m3min−1 1.5 4 4
Tank 1 Disturbance Flow F1d m3min−1 0.2 0.2 3
Tank 2 Disturbance Flow F2d m3min−1 0.5 3 0.2
Level in Tank 1 h1 m 1 0.025 5.7
Level in Tank 2 h2 m 0.5 4 0.067
Cross-sectional Area of Tank 1 A1 m2 4 4 4
Cross-sectional Area of Tank 2 A2 m2 6 6 6

5.2 Control Structure

If the internal variable cannot be measured then it must be estimated. To achieve

this there are two cases that can be considered; the dynamics of the temperature

in tank 1 can be disregarded, or the dynamics of the temperature in tank 2 can be

disregarded. For this case study the same CV and MV are used as in Chapter 4;

T2 and T0 respectively. The cascade control structure, similar to that presented in

Chapter 4, is used as a benchmark for this case study. The level control as used in

Chapter 4 is also used here.

5.2.1 Case 1: Fast Dynamics in Tank 1

For Case 1, the dynamics of tank 1 are neglected, i.e. dT1
dt

= 0. This means that,

from Eq. 5.3, T1 can be estimated from measured variables, seen in Eq. 5.5.

T1 =
T0F0 + T1dF1d

F1

(5.5)

The dynamics of the second tank are therefore approximated by Eq. 5.6, replacing

the actual T1 with the approximation of T1. This equation is now in a form that

would be expected for an energy balance over a single tank with inlet streams of F0,

F1d and F2d and the outlet stream F2.

dT2

dt
=
T0F0 + T1dF1d + T2dF2d − T2F2

A2h2

(5.6)

The control scheme can then be arranged in the same way as the basic transformed

37



CASE STUDY A: TANKS-IN-SERIES EXTENSION

input control scheme, shown in Fig. 5.2. The general linear transform is applied to

Eq. 5.6, giving Eq. 5.7, where A = −0.5min−1 as before. This suggests that perfect

disturbance rejection may be possible for disturbances directly affecting tank 1 (F1d,

T1d and F0) since they will be taken into account by a change in T0 before the effect

is passed onto tank 2.

v =
T0F0 + T1dF1d + T2dF2d − T2F2

A2h2

− AT2 (5.7)

+
− Controller

Input
calculation
(Eq. 5.7)

Process
T2,sp e v T0

d

T2

Figure 5.2: Control Scheme for Case 1

5.2.2 Case 2: Fast Dynamics in Tank 2

For Case 2, the dynamics of tank 2 are neglected, i.e. dT2
dt

= 0. Therefore Eq. 5.4

can be re-arranged to approximate T1, as in Eq. 5.8.

T1 =
T2F2 − T2dF2d

F1

(5.8)

Different from the approximation for Case 1, this approximation relies on values

that are themselves affected by T1, i.e. they come ‘after’ T1 in the process. This

acts as an output transformation and can be implemented according to Fig. 5.3.

Output
Calculation
(Eq. 5.8)

+
− Controller

Input
calculation
(Eq. 5.9)

Process

Output
Calculation
(Eq. 5.8)

T2,sp T1,sp e v T0

d

T2 T1

Figure 5.3: Control Scheme for Case 2

The general linear transform, in this case, is applied to the equation for dT1
dt

, Eq. 5.3

and T1 is described by Eq. 5.8. This essentially changes the transformed system from
dT2
dt

= AT2 + v to dT1
dt

= AT1 + v; i.e. acting on the approximated internal variable,

rather than the output variable. The full transform is shown in Eq. 5.9. This
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also suggests that perfect disturbance rejection may be possible for disturbances

directly affecting tank 1 since the internal variable is directly acted upon by the

input transformation.

dT1

dt
=
F0(F1T0 − T2F2 + T2dF2d) + F1d(T1dF1 − T2F2 + T2dF2d)

F1A1h1

= v + AT1 (5.9)

5.2.3 Controller Tuning

Controllers are again tuned using SIMC rules (Skogestad, 2003). As before, for

all three of the cascade structures, the inner controller is tuned using the known

T1(s)/T0(s), as in Eq. 5.10.

T1(s)

T0(s)
=

1
A1h1
F0+F1d

s+ 1
=

1

τs+ 1
(5.10)

For all other controllers, open-loop step responses are used to fit the responses to

an approximate FOPTD equation. All controller parameters are reported in Table

5.2, and detailed open-loop step response graphs can be found in Appendix A.2.

Table 5.2: Process and Tuning Parameters for all Cases and Systems. Case refers
to the control scheme; system refers to the state parameters used. (Cases 1 and 2
only have one controller, values with no units are dimensionless)

Case System Controller K τ τc Kc τI

Cascade

1 Inner 1 4 min 2 min 2 4 min
Outer 2 min 4.87 min 10 min 0.24 min−1 4.87 min

2 Inner 1 0.1 min 2 min 0.05 0.1 min
Outer 6 min 8.93 min 10 min 0.15 min−1 8.93 min

3 Inner 1 6 min 2 min 3 6 min
Outer 0.1 min 9.57 min 10 min 9.52 min−1 9.57 min

Case 1
1 - 2 min 6.19 min 20 min 0.15 min−1 6.19 min
2 - 6 min 6.14 min 5 min 0.20 min−1 6.14 min
3 - 0.1 min 5.95 min 20 min 2.96 min−1 5.95 min

Case 2
1 - 4 min 6.03 min 5 min 0.30 min−1 6.03 min
2 - 0.1 min 6.35 min 5 min 12.7 min−1 6.35 min
3 - 6 min 6.08 min 5 min 0.20 min−1 6.08 min

5.3 Results

The results for each case and system is presented in the form of the integral absolute

error (IAE) in Table 5.3, where IAE =
∫∞

0
| e(t) | dt and e(t) = T2,sp−T2. The unit

for IAE in this case is degree celsius minutes [°C min] but in literature the units for

the IAE are typically omitted by convention, so this will be done from hereon. The
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lower the IAE value for a simulation, the greater the performance. N.B. System

refers to the different size of tanks and Case refers to the different approximation

applied.

Table 5.3: IAE Values for various disturbances applied at t = 10min

Case Number Disturbance
IAE

System 1 System 2 System 3

Case 1
∆F0 = +0.1m3min−1

5.3339 0.1266 2.8824
Case 2 3.1357 2.7454 0.1834
Cascade 1.7444 1.2484 0.2408
Case 1

∆F1d = +0.2m3min−1

10.8573 2.2447 5.7433
Case 2 5.9178 5.3637 0.3589
Cascade 3.9925 3.0522 0.5341
Case 1

∆T1d = +2 °C
0 0 0

Case 2 0 0 0
Cascade 0.6299 0.2286 9.0793
Case 1

∆F2d = +0.1m3min−1

9.3594 1.1447 5.1281
Case 2 6.2763 0.9152 3.4889
Cascade 3.8174 0.4262 5.0742
Case 1

∆T2d = +2 °C
3.49073 0.1006 0.7190

Case 2 3.3341 7.5 0.5
Cascade 1.9540 3.4294 0.7189
Case 1

∆T2,sp = +10% of set-point
119.8626 23.75 136.8823

Case 2 30 23.75 34.25
Cascade 55.9998 47.4990 68.4999

For the disturbances in F0 and F1d, it can be seen that for System 2 that Case 1 is

the best, and for System 3 that Case 2 is the best. This is as expected since System

2 was the system with small tank 1, relative to tank 2 - therefore using the approx-

imations in Case 1, neglecting the dynamics in tank 1, gives the best response. The

system is treated as if it is one big tank, therefore any disturbance to the first tank

is almost immediately fixed by a change in MV. For System 3 (small tank 2 relative

to tank 1) the approximations in Case 2, neglecting dynamics in tank 2, are better

and give lower IAE values, and therefore better performance. For System 1, where

the two tanks are of similar size, neither Case 1 or Case 2 have lower IAE values

than cascade control, though they both remain stable. This is a good outcome con-

sidering they both operate without the measurement of the internal variable, T1, in

comparison to the cascade control which does.

For both Case 1 System 2 and Case 2 System 3, perfect disturbance rejection is

expected from the form of the transform equations. This is not realised as the sys-

tem also has level controllers included, therefore any disturbance which changes the

flow of material through the system will need to be acted upon by the P-controllers.
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In comparison to this, all Systems simulated with either Case 1 and Case 2 for a

disturbance of T1d have perfect disturbance rejection. The system is able to change

T0 as soon as there is a measured T1d change, meaning T1, and consequentially T2,

do not change. Both of the cases presented in this chapter actually perform better

than the cascade system, even though they have one less measurement.

No perfect disturbance rejection can be expected for either F2d or T2d since in both

cases there will be some level of dynamics in tank 1, therefore any change in T0

will need to be propagated through to T1 and ultimately T2, meanwhile F2d and

T2d deviate T2 from its set-point. For Case 1, the transform is modelled on a single

tank, made up of a combined tank 1 and tank 2. This means that a disturbance of

F2d or T2d behave similarly, but not identically, to F0, F1d or T1d. The difference is

caused by the dynamics of the first tank slowing down the response. For Case 2 the

disturbances to tank 2, F2d and T2d, behave considerably differently to those which

directly affect tank 1. For these disturbances, a different T1 is required to get T2

back to set-point, whereas for disturbances directly to tank 1, the same T1 as the

nominal value is required to get T2 back to the set-point. A comparison of the effect

of T1d and T2d on T1 is shown graphically in Fig. 5.4 - a disturbance of T2d or F2d

are actually similar to a direct T1 set-point change. For Case 2, as described in Sec-

tion 5.2.2, it is essentially a transformed system acting on the internal variable T1.

Therefore, for a T1 set-point change the feedback loop is required, which will work

with the transformation to get T2 back to set-point. This is not optimal as normally

the system should not rely on feedback for a disturbance and the transform should

take care of the response. This means the system performance relies greatly on the

controller tuning - seen by the relatively high IAE value of 7.5 for a disturbance of

∆T2d for Case 2 System 2.

Figure 5.4: Comparison of disturbances for Case 2 System 2
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5.4 Case Study Discussion

In the transformed input theory set out in Chapter 3, Assumption 2 states that all

variables required in the process model are measured. In this chapter, Case Study A

has been extended to see if the transformed input theory can be amended to break

this assumption. A conventional cascade control structure could not handle this

since the inner controller acts on the internal variable error, if it is not measured

then this is not possible. Feedback linearization could not handle this either, unless

an estimator, such as a Kalman filter, is used.

There are two possible cases to apply to systems if the internal variable cannot

be measured. One of these disregards the dynamics of the internal variable, i.e.

dw/dt = 0, and the other disregards the dynamics of the controlled variable, i.e.

dy/dt = 0. It has been shown that for systems nearer to extremities than the

nominal model in Chapter 4, the choice of case should be chosen according to which

dynamics, that of the output variable or that of the internal variable, play a bigger

role. In the case of System 1, the same model as Chapter 4, the cascade system

performs better than the two approximation cases for all disturbances, except the

special case of perfect T1d disturbance rejection. This is expected, though without

a key measurement the two approximated cases do perform well, and at least are

stable. For a system that has more realistic parameters it is not as clear about

which case should be used, but both are stable. This chapter has, therefore, shown

that even when Assumption 1 and Assumption 2 of the original transformed input

theory are broken, the system can be easily adapted by using a cascade system and

by approximating the internal variable.
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Chapter 6

Case Study B: Outlet

Concentration Control of a

Continuously Stirred-Tank

Reactor

The second case study was a first-order continuously stirred-tank reactor (CSTR)

model. This is less trivial than the Tanks-in-Series example with an increased com-

plexity, where the concentration of reactant leaving the reactor is to be controlled by

manipulating the heat added. Unlike in Chapter 4, some of the disturbances do not

directly affect the controlled variable and this gives rise to possible improvements

to the cascade structures presented.

6.1 Process Model

The CSTR simulations follow the ODEs described by Eq. 6.1 and 6.2, derived from

molar and energy balances over the tank, Fig. 6.1 with the following assumptions;

B1 : Perfect volume control, i.e. q1 = q2

B2 : Constant density, ρ, and specific heat, cp

B3 : Control of heat added is sufficiently fast

B4 : Perfect mixing within tank

B5 : Constant pressure and volume

B6 : Negligible shaft work
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Full derivations are found in Appendix B.3. The liquid-phase reaction in the tank

is first-order and described by A→ B.

dcA
dt

=
q1

V
cAf −

(q1

V
+ k(T )

)
cA = f(y, d, w) (6.1)

dT

dt
=
q1

V
(T1 − T )− Hrxk(T )cA

ρcp
+

Q

V ρcp
= g(y, d, w, u) (6.2)

Where,

k(T ) = k0e
−E
R

( 1
T
− 1
T0

)

T1, cAf , q1

cA, T
Q

A → B

Figure 6.1: CSTR Model

Parameters and steady-state values can be found in Table 6.1.
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Table 6.1: Nomenclature and nominal values for CSTR

Variable Symbol Unit Steady-state value
Reference Temperature T0 K 400
Inlet Stream Temperature T1 K 350
Tank Temperature T K 400
Volume of Tank V m3 4
Inlet Stream Flowrate q1 m3min−1 1
Outlet Stream Flowrate q2 m3min−1 1
Heat Provided Q kJ min−1 5000
Specific Heat Capacity cp kJ kg−1K−1 0.150
Inlet Stream Concentration of A cAf kmolm−3 2
Outlet Stream Concentration of A cA kmolm−3 2/3
Activation Energy E kJ kmol−1 20000
Heat of Reaction Hrx kJ kmol−1 −1875
Density ρ kg m−3 1000
Reference Rate Constant k0 min−1 0.5
Universal Gas Constant R kJ K−1 kmol−1 8.314

6.2 Control Structure

In this case study, the controlled variable (CV) is the concentration of A in the outlet

flow of the tank, y = cA. The manipulated variable (MV) is the heat supplied to the

tank, u = Q. The disturbances (d) to the system are the temperature, concentration

and flowrate of the inlet stream to the tank; T1, cAf and q1 respectively. The internal

variable for this case study is the temperature of the reactor, w = T .

6.2.1 Possible Configurations

In addition to the general and alternative cascade systems implemented in Chapter

4, introduced in this chapter are simulations of the two closely related structures,

stemming from the alternative cascade structure; namely a ‘double-linearized’ sys-

tem, and a chain of transforms.

6.2.1.1 General and Alternative Cascade Systems

For this system, the transform is applied as per Eq. 6.3 for both the general cascade

and alternative cascade systems, described in Fig. 6.2 and 6.3 respectively. The

alternative cascade structure is also known as the ‘fitted’ case, so that it is not

confused with the variations of the alternative cascade structure below.

v = f(y, d, w)− AcA =
q1

V
cAf −

(
q1

V
+ k(T ) + A

)
cA (6.3)
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Where,

A =

(
df

dcA

)∗
= −

(
q1

V
+ k(T )

)∗
= −0.75min−1

+
−

Outer
controller

+
− Inner

Controller

Input
Calculation
(Eq. 6.3)

Process
cA,sp e vsp e2 Q

d

cA

Tv

Figure 6.2: General Cascade Structure

+
−

Outer
Controller

Input
calculation
(Eq. 6.3)

+
−

Inner
Controller Process

cA,sp e vsp Tsp e2 Q cA

d

T

Figure 6.3: Alternative (Fitted) Cascade Structure

6.2.1.2 Double-Linearized System

For the so-called ‘double-linearized’ system, the transform above, Eq. 6.3, is used in

addition to a second transform on the internal variable - in this case the temperature

of the tank T . The transform is applied as per Eq. 6.4. In this case the variable

B is introduced in place of the usual A tuning parameter to avoid confusion. The

double-linearized system is shown in Fig. 6.4.

v2 = g(y, d, w, u)−BT =
q1

V
(T1 − T )− Hrxk(T )cA

ρcp
+

Q

V ρcp
−BT (6.4)

Where,

B =

(
dg

dT

)∗
= −0.1874min−1
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+
−

Outer
Controller

Input
calculation 1
(Eq. 6.3)

+
−

Inner
Controller

Input
calculation 2
(Eq. 6.4)

Process
cA,sp e vsp Tsp e2 v2 Q cA

d

T

Figure 6.4: Double-Linearized System

6.2.1.3 Chain of Transforms

The chain of transforms, similar in some respects to the chain of integrators in

feedback linearization, is able to control the system with no controller if the model

is perfect and all disturbances are measured. This uses the first transform, Eq.

6.3 to solve for vA0, where vA0 = T , so this gives a type of set-point for the tank

temperature. This is then used in the second transformation block to give the input,

Q, in Eq. 6.5. The value of B is chosen to be the same as above. The system is

described in Fig. 6.5.

dT

dt
=
q1

V
(T1 − T )− Hrxk(T )cA

ρcp
+

Q

V ρcp
= B(T − vA0) (6.5)

+
− Controller

Input
Calculation 1
(Eq. 6.3)

Input
Calculation 2
(Eq. 6.5)

Process
cA,sp e v vA0 Q cA

d

T

Figure 6.5: Chain of Transform System

6.2.2 Controller Tuning

All controllers are tuned using SIMC tuning rules (Skogestad, 2003). Process pa-

rameters from open-loop step responses and controller tuning parameters are found

in Table 6.2, all graphs can be found in Appendix A.3.
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CASE STUDY B: CSTR

6.3 Results

6.3.1 Comparison of Control Structures

The results for disturbances of ∆T1 = +17.5K, ∆cAf = +0.1 kmolm−3 and ∆q1 =

+0.1m3min−1 and a set-point change of ∆cA,sp = +2/15 kmolm−3 are presented

separately in Fig. 6.6. In Fig. 6.7 the same disturbances and set-point changes have

been simulated, except without an outer controller. Open-loop (O-L) responses have

been added to show the effect on the system with no control scheme in place.

For the first disturbance (Figs. 6.6a and 6.7a), it can be seen that perfect distur-

bance rejection is achieved for both the chain of transforms and the double-linearized

systems. This is achieved by the step-change in input, Q, which the system uses to

offset the effect of the disturbance. For the general cascade structure and the origi-

nal alternative cascade structure, named ‘fitted’ here, perfect disturbance rejection

is not achieved and results are almost identical to that for a feedback only system.

For the second and third disturbances (Figs. 6.6b, 6.6c, 6.7b and 6.7c) the advantage

of the transformed systems is very clear, even though perfect disturbance rejection

is not achieved. The responses from all transformed systems are faster than that of

feedback only. The general cascade structure, fitted alternative cascade structure

and double-linearized alternative cascade structure all behave very similarly, with

the double-linearized simulation behaving slightly faster for disturbance 3. The chain

of transforms is the slowest of the transformed systems for both disturbances 2 and 3.

As seen in Chapter 4, all systems behave very similarly to set-point changes, seen

in Fig. 6.6d and 6.7d. This is expected since the transforms are only functions of

measured process variables, rather than the set-point variables. N.B. for a change

in set-point for the systems with no outer controller, the controller bias is controlled

directly to reflect the same change.

Comparing Fig. 6.6 to Fig. 6.7, i.e. cascade structure versus only an inner con-

troller, it can be seen that the systems respond differently. For all the disturbance

simulations with the cascade, where perfect disturbance is not achieved, the con-

centration overshoots the set-point. Whereas, for an inner controller only, the con-

centration always settles to the set-point with no overshoot and is usually faster to

reach steady-state, even though the time for a response is typically longer.
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CASE STUDY B: CSTR

(a) Disturbance Rejection 1: ∆T1 = +17.5K at t = 10min

(b) Disturbance Rejection 2: ∆cAf = +0.1 kmolm−3 at t = 10min

(c) Disturbance Rejection 3: ∆q1 = +0.1m3min−1 at t = 10min

(d) Set-point Tracking: ∆cA,sp = +2/15 kmolm−3 at t = 10min (note time-scale)

Figure 6.6: Results for Cascaded Control Structures on CSTR. (DL = double-
linearized) 50
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(a) Disturbance Rejection 1: ∆T1 = +17.5K at t = 10min

(b) Disturbance Rejection 2: ∆cAf = +0.1 kmolm−3 at t = 10min

(c) Disturbance Rejection 3: ∆q1 = +0.1m3min−1 at t = 10min

(d) Set-point Tracking: ∆cA,sp = +2/15 kmolm−3 at t = 10min (note time-scale)

Figure 6.7: Results for Control Structures on CSTR with No Outer Controller. (DL
= double-linearized) 51
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6.3.2 Disturbance Mis-match

It was shown above that systems with no outer controller respond to disturbances

better, though this assumes a perfect process model. In reality, this will not always

be the case, for example due to unmeasured disturbances. As shown in Fig. 6.8, the

double-linearized system is used to simulate disturbance mis-match, as described in

Section 3.2.1. The gain D is used as a measure of the amount of disturbance error

relative to the nominal value.

D=1

D=1.5

D=2

D=2.5

(a) Disturbance Mis-match for Cascade System

D=1

D=1.5

D=2

D=2.5

(b) Disturbance Mis-match for Inner controller only

Figure 6.8: Results for Disturbance Mis-match on CSTR with Double-Linearized
System: ∆cAf = +0.1 kmolm−3 at t = 10 min; ∆T1 = +17.5 K at t = 60 min;
∆q1 = +0.1 m3min−1 at t = 110 min.

From Fig. 6.8a, it can clearly be seen that the system is able to hand with dis-

turbance mis-matches of reasonable proportion. Obviously the case with D = 1

responds fastest to the disturbances since the actual disturbance value is the same

as the measured disturbance value, and this is used in the transformation calcula-

tion. It is shown that the control scheme still works for D = 1.5 and D = 2, albeit

slower than the nominal case as expected. Unfortunately, saturation of the system

occurs at 60 mins when D = 2.5, and subsequently the system winds up. This is an

extreme case and is not due to the control scheme. An anti-wind-up PI controller
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may be implemented if the real system constantly undergoes this behaviour.

In Section 6.3.1, it was seen that a system that did not have the outer controller

responded better to disturbances; both faster and with no overshooting. However, it

can be seen in Fig. 6.8b that the system cannot handle disturbance mis-match when

there is no outer controller present. The systems merely settle at a new steady-state

value, determined by the value of the nominal value of the transformed input, v,

and the value of the wrongly measured disturbances. From this it can be seen that

in the case of disturbance mis-match the outer control loop is of utmost importance;

the transformation cannot work solely.

6.4 Case Study Discussion

In this case study, it is seen that for certain disturbances perfect disturbance rejec-

tion can be achieved. But what is required for this to be the case and why not all

the time? It was seen that perfect disturbance rejection was only achieved for a dis-

turbance of T1, and not for cAf or q1. This is explained by the fact that T1 appears

only in the ODE representing the internal variable, T , Eq. 6.2. Mathematically,

the relative order for the disturbance is the same as the relative order for the input.

Therefore, a disturbance of T1 does not directly affect the controlled variable, cA,

immediately. This means that the set-point of T remains constant for a disturbance

of T1. Therefore the second transformation block for the double-linearized and chain

of transform systems is able to handle this disturbance before it impacts cA. These

are the only two transformed systems which make use of the dT/dt equation in a

calculation block.

The disturbance q1 appears in both the ODE for the controlled variable, cA, and

the ODE for the internal variable, T . This means that Tsp changes, and T itself is

also directly affected. The second calculation block in the double-linearized system

is able to handle the variation in T , owing to the faster response for a disturbance

of q1 in Fig. 6.6c and 6.7c. The chain of transforms does not handle this as well

since there is a lack of inner controller acting on the error between Tsp and T .

The disturbance cAf appears only in the ODE for the controlled variable, cA, and

therefore all systems, except for the chain of transforms, act almost identically. This

is due to the fact that the second transform plays a minimal role in the response.

The chain of transforms slower again due to the lack of an inner controller.

It was presented that a perfect system with no outer controller is better than one
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with a full cascade structure, though it was also shown that an outer controller does

not handle any sort of mis-match. For a real-life industrial system the chance that a

model is completely known, and acts perfectly throughout operation, is very slim. A

model describing dynamics completely correctly may be very complex too, increasing

complexity of the transform and the calculations required. If a transformed system

uses an outer feedback loop then this opens the possibility of using a simplified model

for the transform and letting the feedback loop settle any mis-match that there is.

An example of this in use is shown by Zotică et al. (2020) for a heat exchanger.

This robustness is something that feedback linearization lacks and cannot handle

well.
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Chapter 7

Case Study C: pH Control of a

Reactor

This case study is an example of a system that is nonlinear in the output, since pH

is not a linear measurement. Therefore, the standard cascade structures which have

been used in previous chapters will not work. The pH is manipulated by controlling

the flowrate of a basic stream into the reactor.

7.1 Process Model

All nominal values and equations used for this case study are by Henson and Seborg

(1994) and Hall and Seborg (1989). The system is presented in Fig. 7.1. The ma-

nipulated variable is the input flow of base stream q3 (0.003M NaOH and 0.0005M

NaHCO3) and the controlled variable is the pH of the tank - measured in q4 with the

assumption of perfect mixing in the tank. The flowrates of acid stream q1 (0.003M

HNO3) and buffer stream q2 (0.03M NaHCO3) are measured disturbances to the

system.

The equations to describe the system are derived from conservation equations and

the equilibrium relations from reactions in Eq. 7.1. The two reaction invariants for

each stream (i ∈ [1 4]) are defined by Eq. 7.2.

H2CO3 
 HCO−3 +H+ (7.1a)

HCO−3 
 CO2−
3 +H+ (7.1b)

H2O 
 H+ +OH− (7.1c)

Wai = [H+]i − [OH−]i − [HCO−3 ]i − 2[CO2−
3 ]i (7.2a)
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Wbi = [H2CO3]i + [HCO3]i + [CO2−
3 ]i (7.2b)

q1

Tank 2 q1e

Tank 1 q4

q2

q3

Figure 7.1: pH Neutralisation System. Adapted from Henson and Seborg (1994).

Wa is a charge related quantity, whereas Wb represents the concentration of CO2−
3

ions. The values of the reaction invariants for streams 1-3 are constant as the con-

centration of ions within these streams does not change throughout the simulation.

The values of Wa4 and Wb4 are described by the following equations;

dWa4

dt
=

1

A1h1

(
q1e(Wa1−Wa4)+q2(Wa2−Wa4)+q3(Wa3−Wa4)

)
= f(u,w, d) (7.3a)

dWb4

dt
=

1

A1h1

(
q1e(Wb1−Wb4)+q2(Wb2−Wb4)+q3(Wb3−Wb4)

)
= g(u,w, d) (7.3b)

The concentration of [H+] in stream i, and subsequently the pH, is calculated by

solving the equation below;

Wbi

Ka1
[H+]

+ 2Ka1Ka2
[H+]2

1 + Ka1
[H+]

+ Ka1Ka2
[H+]2

+Wai +
Kw

[H+]
− [H+] = 0 (7.4)

The flowrate of the stream leaving tank 2, q1e is calculated by Eq. 7.5, where h2 is

described by the ODE in Eq. 7.6.

q1e = Cv1h
0.5
2 (7.5)
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A2
dh2

dt
= q1 − q1e (7.6)

Nomenclature and steady-state values are shown in Table 7.1.

Table 7.1: Nomenclature and nominal values for pH Neutralisation. (Henson and
Seborg, 1994)

Variable Symbol Unit Steady-state value
Concentration of Stream 1 [q1] M 0.003 HNO3

Concentration of Stream 2 [q2] M 0.03 NaHCO3

Concentrations of Stream 3 [q3] M 0.003 NaOH and 0.0005 NaHCO3

Cross-sectional Area of Tank 1 A1 cm2 207
Cross-sectional Area of Tank 2 A2 cm2 42
Equilibrium Constant for Reaction 1 Ka1 − 4.47× 10−7

Equilibrium Constant for Reaction 2 Ka2 − 5.62× 10−11

Equilibrium Constant for Reaction 3 Kw − 1.00× 10−14

Delay in pH Measurement θ s 10.0
Flowrate of Stream 1 q1 ml s−1 16.6
Flowrate of Stream 2 q2 ml s−1 0.55
Flowrate of Stream 3 q3 ml s−1 15.6
Flowrate of Stream 1e (from Tank 2) q1e ml s−1 16.6
Flowrate of Stream 4 q4 ml s−1 32.8
Reaction Invariant A - Stream 1 Wa1 M 3.00× 10−3

Reaction Invariant B - Stream 1 Wb1 M 0.00
Reaction Invariant A - Stream 2 Wa2 M 0.03
Reaction Invariant B - Stream 2 Wb2 M 0.03
Reaction Invariant A - Stream 3 Wa3 M −3.05× 10−3

Reaction Invariant B - Stream 3 Wb3 M 5.00× 10−5

Reaction Invariant A - Stream 4 Wa4 M 4.32× 10−4

Reaction Invariant B - Stream 4 Wb4 M 5.28× 10−4

Level in Tank 1 h1 cm 14.0
Level in Tank 2 h2 cm 3.0
pH of Stream 4 (& Tank) pH − 7.0
Valve Coefficient Cv1 ml0.5 s−1 9.58

7.2 Control Structure

As mentioned previously, in this case study the controlled variable is the pH of the

system, and the manipulated variable is the flowrate of stream 3, q3. The distur-

bances to the system are the flowrate of stream 1, q1, and the flowrate of stream 2, q2.

Firstly, as pH is a nonlinear measurement, it is not easy, nor desirable, to base the

control structure on the pH. It is much easier to transform it to a linear measurement,

such as the hydrogen ion concentration, [H+]. This is an output transformation
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rather than the normal input transform for linearization which is defined as v. In

this case the output transform is simple and described by Eq. 7.7.

[H+] = 10−pH (7.7)

7.2.1 Standard Transformed System

If the transform is applied in the same manner as in previous case studies, i.e. in a

cascade manner, it is realised that there are two internal variables for which there are

ODEs for, and appear in the equation for the output; both Wa4 and Wb4. Therefore

for the general cascade, alternative cascade and the chain of transform structures

there is no ‘correct’ way to apply the transformation theory. For the general cascade

and alternative cascade the static transform must follow Eq. 7.4 with i = 4, where

v = [H+]. This is solved by using an I-controller with a small τc; a sub-system with

set-point of 0, which loops, changing the value of [H+],Wa4 or Wb4 (depending on

the control scheme chosen) until f([H+]) = 0, as per Eq. 7.4. This is also known

as dynamic inversion and is very fast compared to the other controllers and the

system dynamics. The output can be chosen to be either Wa4 or Wb4, resulting in

the general linear transform Eq. 7.8 or 7.9 respectively, solved to give q3.

v2 = f(u,w, d)−AWa4 =
q1e(Wa1 −Wa4) + q2(Wa2 −Wa4) + q3(Wa3 −Wa4)

A1h1

−AWa4

(7.8)

or

v2 = g(u,w, d)−AWb4 =
q1e(Wb1 −Wb4) + q2(Wb2 −Wb4) + q3(Wb3 −Wb4)

A1h1

−AWb4

(7.9)

Where,

A =

(
df

dWa4

)
=

(
dg

dWb4

)
= −q1e + q2 + q3

A1h1

= −0.0113 s−1

For the chain of transforms, the static transform, Eq. 7.4 is again used to give a

transformed variable v2, by solving for either Wa4 or Wb4. This is then used in the

transform in either Eq. 7.10 or 7.11 to give the input, q3.

dWa4

dt
=
q1e(Wa1 −Wa4) + q2(Wa2 −Wa4) + q3(Wa3 −Wa4)

A1h1

= A(Wa4 − v2) (7.10)
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dWb4

dt
=
q1e(Wb1 −Wb4) + q2(Wb2 −Wb4) + q3(Wb3 −Wb4)

A1h1

= A(Wb4 − v2) (7.11)

The three configurations may be arranged according to Fig. 7.2 - 7.4. Clearly in

simulations all variables are known, and this may look like the block diagrams are

converting [H]+ to pH, just to change it back again. For this reason, it has been

marked on the diagram which variables would actually be known in a real scenario,

which would be calculated and which are unknown.
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7.2.2 Special Case

Due to the form of the equations describing the system, they can be manipulated

and arranged in a different form. Considering Eq. 7.4 to calculate [H+]; if the first

two terms, containing Wai and Wbi are grouped together to create a new variable

Wi, defined by Eq. 7.12. To exactly reproduce the equations, the coefficient c1

must contain the actual [H+], but the effect of using the set-point for [H+] is also

simulated for this case study.

Wi = Wbi

Ka1
[H+]

+ 2Ka1Ka2
[H+]2

1 + Ka1
[H+]

+ Ka1Ka2
[H+]2

+Wai = c1Wbi +Wai (7.12)

This means that Eq. 7.3a and 7.3b may be combined to give Eq. 7.13.

A1h1
dW4

dt
= q1e(W1 −W4) + q2(W2 −W4) + q3(W3 −W4) (7.13)

This, therefore, gives a single internal variable to which a general linear transform

can act on, rather than having both Wa4 and Wb4. The static transform may also be

removed due to the fact that it has no dynamics. The system can then be arranged

as Fig. 7.5, where the general linear transform is described by Eq. 7.14; T = −1/A

and A is the same as above. The alternative form of the general linear transform is

used as this allows easier set-point manipulation with no controller. This is a much

simpler implementation than the generic transformed structures in Fig. 7.2 and 7.4.

From hereon it is defined as the ‘combined’ system.

vL0 = T dW4

dt
+W4 = T q1e(W1 −W4) + q2(W2 −W4) + q3(W3 −W4)

A1h1

+W4 (7.14)

Output
Transform
(Eq. 7.7)

+
− Controller

General Linear
Transformation

(Eq. 7.14)
Process

Eq. 7.7θ

Output
Transform
(Eq. 7.7)

pHsp [H+]sp e vL0 q3

d

[H+]

pH
(unmeasured)

pH
(measured)

[H+]
(calculated)

Wa4,Wb4

Figure 7.5: Special Case Block Diagram
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7.2.3 Controller Tuning

Controllers were tuned using SIMC rules (Skogestad, 2003). All fitted models from

open-loop responses and tuning parameters can be seen summarised in Table 7.2.

All open-loop response graphs can be found in Appendix A.4.

Table 7.2: Process and Tuning Parameters for all pH Cases. (Chain and Combina-
tion require only one controller, values with no units are dimensionless)

Case Controller K τ τc Kc τI

General
Inner 0.12 s−1 78.07 s 85 s 7.65 s−1 78.07 s
Outer 1 93.4 s 150 s 0.58 93.4 s

Alternative on Wa4
Inner 88.62 s 88.62 s 105 s 9.5× 10−3 s−1 88.62 s
Outer 1 90.4 s 500 s 0.18 90.4 s

Alternative on Wb4
Inner 88.62 s 88.62 s 105 s 9.5× 10−3 s−1 88.62 s
Outer 1 24.2 s 500 s 9.5× 10−3 24.2 s

Chain - 1 131.81 s 100 s 1.32 131.81 s
Combination - 0.24 91 s 75 s 5.06 91 s

7.3 Results

The results for the standard transformed simulations, that is those set out in Section

7.2.1, can be seen in Fig. 7.6.

Figure 7.6: Response to disturbances and set-point changes for regular transformed
systems. ∆q1 = −2 ml s−1 at t = 1000 s; ∆q2 = 0.65 ml s−1 at t = 3000 s;
∆pHsp = −0.5 at t = 5000 s.
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It can be seen that for the disturbance of q1 at t = 1000 s the pH in all systems

is perturbed, though the MV, q3, has a step-like response. A perfect step is what

would have been expected for perfect disturbance rejection. For the disturbance of

q2, a base with a stronger concentration than the acid of q1, the response in the pH

is not acceptable, particularly for the alternative cascade on Wb4. The MV response

like-wise; a valve controlling this flow would not handle well. All systems do however

return to steady-state. For a set-point change the systems respond well and more

as expected in comparison to the disturbances.

For this system, perfect disturbance rejection would be expected since the distur-

bance directly affects only Wa4 and Wb4, and not [H+] directly. This is the same

effect as seen for disturbance T1 in the CSTR case study - it only directly affected

T and not cA. Therefore, if q1 and q2 are measured then the control scheme should

be able to change q3 before any effects are propagated to the pH. However, this is

not what is seen in these results. This is due to the fact that for all three systems

the transforms specify values for the input, not taking into account other process

variables will change. This is easiest explained when considering the alternative

cascade structure, Fig. 7.3. The static equation outputs a set-point for Wa4, that

is the value that Wa4 must be in order to keep the system at pH 7, assuming all

other values in the static transform remain constant. Though all other values do

not remain constant, as soon as q3 changes in response to a disturbance, the value

of Wb4 changes as well, and therefore changing the value of Wa4,sp from the static

equation. The hydrogen ion concentration also changes, affecting the static equa-

tion once again. The system, therefore, needs to rely more on the feedback loops in

order to correct this, rather than the transform as desired. This also happens for

the general cascade structure and the chain of transforms. The CV and MV vary

more for the second disturbance, q2, due to two reasons. The first is the fact that

stream 1 enters a holding tank before entering the main tank, therefore q1e does not

change in a perfect step. The second, and more important, is the fact that q2 has

a concentration ten times that of q1. Therefore the system is more perturbed. The

set-point change is dealt with well as this uses the feedback system rather than the

transformed inputs in order to create a change.

The results for the cases where the equations are combined, as set out in Section

7.2.2, can be seen in Fig. 7.7. It can be seen that for all three cases there is perfect

disturbance rejection. This is due to the fact that both q1 and q2 appear in the gen-

eral linear transform for W4. This encompasses both Wa4 and Wb4 and means that

neither need be explicitly selected. This means that the MV makes step-changes in

response to the disturbances, maintaining the pH at 7 as desired.
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Figure 7.7: Response to disturbances and set-point changes for the combination
transformed systems. ∆q1 = −2 ml/s at t = 1000 s; ∆q2 = 0.65 ml/s at t = 3000 s;
∆pHsp = −0.5 at t = 5000 s.

For a set-point change, the two systems with c = f([H+
sp]) respond better than the

case where c = f([H+]). The case where c = f([H+]), with a controller, is oscilla-

tory and doesn’t settle until t = 3× 105s . The cases where c = f([H+]) don’t work

well for the same reason as explained for the ‘standard’ transformed systems; as the

value of c changes, the output of the general linear transform changes, even if the

input would remain constant. Therefore the feedback loop needs to compensate for

this, which is not desired. It is also interesting that the case with no controller at all,

i.e. changing set-point by changing the value of the transformed input directly, has

an identical response to the system that does have a controller. Therefore this shows

that the controller is theoretically not required for this system at all, assuming it

is perfectly modelled. Though, due to the model mis-match problems as discussed

in Chapter 6, a controller would be used in order to complete the feedback loop if

required. This is confirmed in Fig 7.8c and 7.8d; these represent an unmeasured

disturbance, i.e. the change in q1 and q2 does not enter the transform block, but

still enters the process model. This means that the feedback loop is required. It is

seen that for both cases the simulations with a controller perform better, and also

when c = f([H+]sp).

From Fig. 7.8a and 7.8b it can be seen that most systems perform well for time

delay in the measurements of Wa4, Wb4 and h2. Perfect disturbance rejection is
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almost achieved, the pH is kept within 4×10−5 of set-point, for all cases except that

for c = f([H+]) with the controller. This system becomes unstable in the presence

of the delay for the disturbance of q1, which is not acceptable.
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(a) Delay of 500s: ∆q1 = −2 ml/s at t = 1000 s

(b) Delay of 500s: ∆q2 = +0.65 ml/s at t = 1000 s

(c) Unmeasured Disturbance:∆q1 = −2 ml/s at t = 1000 s

(d) Unmeasured Disturbance: ∆q2 = +0.65 ml s−1 at t = 1000 s

Figure 7.8: Results for error and delay for pH system
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7.4 Case Study Discussion

For this system, perfect disturbance rejection is expected as the disturbances only

affect the internal variables. Applying the standard transformation procedure to the

system does not satisfy this as there are multiple internal variables and one must be

selected to base the system on. In this case, both Wa4 and Wb4. At nominal condi-

tions, these are both of the order of magnitude 10−4 and therefore neither will have

a substantially greater effect. Furthermore, if one of them had a stronger impact

on the CV, i.e. a greater coefficient or order then it may be favourable to control

this one and allow the other to ‘catch-up’. In this case study, the CV is described

by a static equation and the disturbances only directly affect the internal variables.

The equations are also such that both internal variables may be combined to give

another variable. These factors mean that perfect disturbance rejection is able to be

achieved. Though, this is will not always be the case. From this it can be concluded

that the transformation theory cannot be blindly applied to a system, it must be

studied and understood properly in order to create a favourable control scheme.

Critically, this case study was originally simulated in order to study the possibility

of using an ‘output transform’. This was used since the measurement of pH is a

nonlinear measurement, whereas this is easily converted to a linear measure, the

hydrogen ion concentration. In this case, the output transform is well-known and

simple to apply, but it can easily be extended to a more complex measurement. This

simplifies the system, allowing the existing transformation theory to be applied and

satisfactory control of the system.
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Chapter 8

Case Study D: Chylla-Haase

Reactor

This case study is an example of an applied industrial control problem. The Chylla-

Haase Reactor is a multi-product semi-batch polymerization reactor set as a bench-

mark problem in order to compare different control schemes for this nonlinear system

(Chylla and Haase, 1993). The aim of the benchmark problem is to keep the reactor

temperature within a defined range (±0.6K) by manipulating the valve position,

which leads to the heating or cooling of the reactor jacket temperature. A short lit-

erature review of previously proposed methods is presented after the process model

is introduced.

8.1 Process Model

Due to the abundance of equations to describe this system, only the key relations

are presented in the main body, to provide an understanding of the process. Further

relations and all nominal values are presented in Appendix C.

The system follows the flowsheet presented in Fig. 8.1, the symbols used are sum-

marised in Table 8.1. Monomer is fed to the system at t = 1800 s and stopped at

t = 6000 s. The monomer reacts to form a polymer; a simple kinetic model is used as

the temperature dynamics are the key aspect in this case study (Chylla and Haase,

1993). The polymerization reactor is heated/cooled by a jacket which is filled with

either cooling water or steam, depending on the calculated valve position, c, which

dictates the position of valve 1 and 2. The mass of monomer mM , the mass of poly-

mer mP , the reactor temperature T , the jacket inlet temperature T inj and the jacket

outlet temperature T outj are described by the ODEs in Eq. 8.1 - 8.5. Nomenclature

used in these ODEs, and the corresponding equations are summarised in Table 8.1.
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These models are based on data from an industrial pilot plant (Chylla and Haase,

1993).

ṁin
M (t)

T out
j , ṁc

T in
j

Steam In

Dump

CW In

mM

mP

mW

T

2

1

Figure 8.1: Chylla-Haase reactor (CW = cooling water). Adapted from (Graichen
et al., 2006)

dmM

dt
= ṁin

M(t) +
Qrea

∆H
(8.1)

dmP

dt
= −Qrea

∆H
(8.2)

dT

dt
=

1∑
i

micP,i
[ṁin

M(t)cp,M(Tamb − T )− UA(T − Tj)

−(UA)loss(T − Tamb) +Qrea] (i = M,P,W )

(8.3)

dT inj
dt

=
dT outj (t− θ2)

dt
+
T outj (t− θ2)− T inj

τp
+
Kp(c)

τp
(8.4)

dT outj

dt
=

1

mCcp,C
[ṁCcp,C(T inj (t− θ1)− T outj ) + UA(T − Tj)] (8.5)
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Table 8.1: Nomenclature and equations (if applicable) for Chylla-Haase Reactor
ODEs.

Variable Symbol Unit Equation
Mass of monomer in reactor mM kg 8.1
Mass of polymer in reactor mP kg 8.2
Mass of water in reactor mW kg −
Temperature of reactor T K 8.3
Temperature of jacket inlet T inj K 8.4
Temperature of jacket outlet T outj K 8.5
Average jacket temperature Tj K C.1
Ambient temperature Tamb K −
Heating/Cooling Function Kp(c) K 8.6
Heat of reaction Qrea kW C.2
Overall heat transfer coefficient U kW m−2K−1 C.9
Jacket heat transfer area A m2 C.8
Heat of polymerization ∆H kJ kg−1 −
Monomer inlet flow ṁin

M(t) kg s−1 −
Coolant inlet flow ṁC kg s−1 −
Specific heat capacity

cp,i kJ kg−1K−1 −
(i=monomer, polymer, coolant or water)
Heat loss to surroundings coefficient (UA)loss kW K−1 −
Time delay 1 θ1 s −
Time delay 2 θ2 s −
Time constant for cooling/heating τp s −

Special attention must be brought to the heating/cooling function, Eq. 8.6. Due to

the fact that the jacket on the reactor is used for heating and cooling, depending if

steam or cooling water is passed through it; the equation cannot be expressed as a

single function over c = [0, 100].

Kp(c) =


0.8× 30(−c/50)(Tinlet − T inj (t)) c < 50%

0 c = 50%

0.15× 30((c/50)−2)(Tsteam − T inj (t)) c > 50%

(8.6)

8.2 Control Scheme

The controlled variable in this case study was the reactor temperature, the manipu-

lated variable is the valve position for the cooling/heating jacket. The disturbances

to the system are not as explicit as previous case studies, but these are identified as;

• Initial monomer feed entry; the monomer feed enters the reactor at t = 1800 s

and at ambient summer temperature. This cools the reactor since Tamb,S <

Tset.
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• Polymerization reaction; the exothermic polymerization reaction will heat the

reactor. Meanwhile, the mass within the reactor is increasing due to monomer

feed. The overall heat capacity is changing since quantities of monomer and

polymer are changing, which both have different heat capacity.

• Monomer feed cessation; the monomer feed stops being fed to the reactor at

t = 6000 s. This stream has a cooling effect on the reactor as it enters at

ambient temperature. The exothermic reaction will also cease shortly after

this when all monomer is converted.

The reactor starts from the ambient summer temperature, Tamb,S, and follows the

set-point governed by Eq. 8.7. This is supposed to guide the reactor to the correct

temperature before the monomer starts being fed to the reactor. This benchmark

problem states that the temperature is to stay within ±0.6K of T ∗set at all times.

T ∗set =

Tamb,S + (Tset − Tamb,S)
∑5

i=3 ai(
t

1800
)i t ≤ 1800s

Tset t > 1800s
(8.7)

8.2.1 Robustness

In the literature for this case study, there are a number of suggestions of possible

parameter changes, or parameters that may not be accurately known, in order to

test a system’s robustness, these include;

• Time delays; there are already time delays incorporated into the measurement

of the jacket temperatures, seen in Eqs. 8.4 and 8.5. Both θ1 and θ2 are

predicted to change up to ±25 % from the nominal values of θ1 = 22.8 s and

θ2 = 15 s.

• Feed impurity factor; the feed impurity affects the rate of reaction within the

reactor, indirectly affecting the temperature due to the exothermic reaction.

This is expected to range from 0.8 to 1.2, where i = 1 is the nominal value. The

value of i is directly proportional to the rate of polymerisation and therefore

also the reaction heat.

• Fouling factors; the reactor is proposed to be run five times before it is

cleaned. After each batch there will be a degree of fouling on the walls of

the reactor, impacting the heat transfer from the jacket. The fouling factor,

1/hf [m2K kW−1], takes values of [0.000, 0.176, 0.352, 0.528, 0.704] for batches

1-5 respectively.

• Ambient temperature; in the calculation for transformation it is assumed that

the ambient temperature is the summer ambient temperature, Tamb,S. Clearly
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this will not always be the case, and this will affect heat transfer to surround-

ings. The ambient temperature in summer, Tamb,S = 305.282 K, and the

ambient temperature in winter, Tamb,W = 280.382 K.

8.2.2 Literature Review

This problem has been attempted many times in literature, many of which achieve

the ±0.6 K error threshold, though they often bring a high degree of complexity

to the problem. Most of the literature only covers the robustness in terms of a

comparison between the first and fifth (most fouled) batch.

Helbig et al. (1996) make use of nonlinear MPC and an EKF to estimate the heat

generated and the heat transfer coefficient. In a nominal case, both nonlinear MPC

on its own and with an EKF kept the system within the error bounds. Although,

even with the EKF added the reactor temperature varied outwith ±0.6 K when the

process time constants are changed +25%.

Clarke-Pringle and MacGregor (1997) proposed the use of a non-linear adaptive con-

troller to adjust the jacket temperature, this controlled the system well at nominal

conditions and then with an EKF robustness was provided and the system could

deal with a fouled reactor.

Vasanthi et al. (2011) used a PI controller based on the jacket temperature error

and also an artificial neural network (ANN) in order to estimate the heat generated

and the heat transfer coefficient. This is used to give an estimate of the jacket tem-

perature and is compared to the actual jacket temperature before corrective action

is made. This was shown to stay within error bounds for both the first and the fifth

batch. Furthermore, the same authors later proposed using the same control struc-

ture except using an Unscented Kalman filter (UKF) instead of the ANN (Vasanthi

et al., 2012). Results for both ANN and UKF cases stay within ±0.6 K of reactor

temperature error for the first and fifth batch. The UKF case had a lower IAE than

the ANN for both the first batch and the fifth batch.

Li et al. (2014) achieve the best results seen in the literature for the Chylla-Haase

benchmark problems in terms of error minimization. They use an ADRC method,

along with an ESO, whereby they say the controller is model-free meaning a precise

system model is not required. This, therefore, means that the robustness tests pose

less of a threat. One of the proposed controllers is able to achieve below ±0.2 K

reactor temperature error for both the clean reactor and the fouled reactor for batch
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5. However, this method is more complicated, relative to the transformed input the-

ory presented in this chapter and it appears that the control valve oscillates around

c = 50% at all times, never reaching a steady value and alternating between heating

and cooling.

Finkler et al. (2013) compare nonlinear MPC and a so-called “simple and effi-

cient” optimizing control scheme are compared. The optimizing control scheme is

an additional PI controller which alters the monomer flow into the reactor, which

is indirectly able to control the temperature of the reactor. This is a change to the

original benchmark problem as in all other literature the monomer flow is taken to

be constant. The new control scheme keeps the reactor temperature within error

bounds during the reaction, however once the monomer feed stops, and this degree

of freedom is not available to control the system the reactor temperature deviates

outwith the stipulated bounds. Similarly, Beyer et al. (2008) also state that a dif-

ferent monomer feed trajectory may improve control performance. However, they

use the original stepped trajectory in simulations. They simulate a system using

exact input/output linearization and a Sigma-Point Kalman filter to estimate the

heat produced and the heat transfer coefficient online. Errors for both batches 1

and 5, in both summer and winter fall below ±0.6 K.

Graichen et al. (2006) proposed an approach with some similarities to the theory

used in this chapter. A feed-forward extension of cascade control was used along

with an EKF to achieve online state estimation of the heat transfer coefficient and

the reaction heat. The feed-forward aspect is inversion-based which incorporates the

trajectories of the monomer and polymer flows into a numerically solvable equation

to give a desired trajectory for the jacket temperature. This is shown to keep the

temperature within the stipulated bound at all times for the nominal case. With

the addition of the EKF, the system reaches the ±0.6 K error bound but does not

cross it when all the robustness tests are applied.

8.2.3 Input Transformation Theory

8.2.3.1 General Linear Transform

For this case study, the general cascade is used to control the system so that inversion

of the transform is avoided. The control scheme follows Fig. 8.2.
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+
−

Outer
controller

+
− Inner

Controller

Input
Calculation
(Eq. 8.8, 8.9

or 8.10)

Process
Tsp e vsp e2 c

ṁM (t)

T

Tj

v

Figure 8.2: Control Scheme for Chylla-Haase Reactor

For the general linear transform, the calculation block contains Eq. 8.8. A second

calculation block is not used in this case as the main disturbance to the system, ṁM

appears in the ODE for the output to the system, i.e. dT
dt

, and as one of the key

benefits of the transform is keeping the control scheme simple, this is unnecessary.

For this case study, the tuning parameter for the transform is labelled Atr rather

than A as in previous cases, this is due to the fact A is used in the original literature

as the jacket heat transfer area.

v =
1∑

i

micP,i
[ṁin

M(t)cp,M(Tamb − T )− UA(T − Tj)

−(UA)loss(T − Tamb) +Qrea]− AtrT (i = M,P,W )

(8.8)

Where,

Atr =

(
df

dT

)∗
= 0.61 s−1

In all other case studies, the value of A when calculated as (df/dy)∗ has been negative

- which is not the case here. As it is unknown if the system will be able to cope

with this, another system is simulated, where Atr = −1/220 s−1, that is the negative

reciprocal of ten times the largest delay in the system.

8.2.3.2 Integrating and Static Transform

An integrating or static transform on this system follows the same block diagram

as the general linear transform, Fig. 8.2, except for the substitution of vFL and v0

respectively, and with a different calculation block. The calculation block for the

integrating system follows Eq. 8.9 rather than Eq. 8.8, and the static system solves

Eq. 8.10 for v0
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vFL =
1∑

i

micP,i
[ṁin

M(t)cp,M(Tamb − T )− UA(T − Tj)

−(UA)loss(T − Tamb) +Qrea] (i = M,P,W )

(8.9)

0 =
1∑

i

micP,i
[ṁin

M(t)cp,M(Tamb − v0)− UA(v0 − Tj)

−(UA)loss(v0 − Tamb) +Qrea] (i = M,P,W )

(8.10)

8.2.4 Controller Parameters

This system never reaches a true steady-state until the feed is stopped, at which

point it is essentially a static single tank. The three key stages to the process occur at

start-up, at the point of monomer flow and at the point of the cessation of monomer

flow. Trying to undertake a step-response at any of these stages is not possible since

there will always be dynamics, and all three would give different results. For this

reason, it was decided to use a trial-and-error approach for controller parameters,

tuning for each simulation until the best case is found. For the simple feedback-only

case the controller parameters from Graichen et al. (2006) were used in order to

validate simulations were running correctly. All controller parameters can be found

in Table 8.2.

Table 8.2: Process and Tuning Parameters for all Chylla-Haase Reactor Simulations
(Values with no units are dimensionless)

Case Controller Kc τI

General (Atr = 0.61 s−1)
Inner 50 sK−1 500 s
Outer 120 s−1 6× 104 s

General (Atr = −1/220 s−1)
Inner 7.22× 103 sK−1 160 s
Outer 2× 10−3 s−1 220 s

Static
Inner 116K−1 475 s
Outer 80 0.3 s

Integrating
Inner 6× 104 sK−1 5× 103 s
Outer 3.3× 10−2 s−1 120 s

Feedback Only
Inner 20K−1 40 s
Outer 4 20 s
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8.3 Results

8.3.1 Normal Operation

The results for the case where only feedback is used to control the system can be seen

in Fig. 8.3. From the valve position, Fig. 8.3b, and jacket temperature, Fig. 8.3c,

the two points of monomer feed entry and cessation, at t = 1800 s and t = 6000 s,

can clearly be seen to disturb the system. It can be seen that the system never

reaches a steady-state until the reaction has stopped at t = 9000 s. From Fig. 8.3a

the temperature appears to track the set-point reasonably well, although the prob-

lem states that the temperature must never move outwith ±0.6K of the set-point.

It can clearly be seen in Fig. 8.3d that this is not the case and peaks at almost

1.5K twice. Therefore this control scheme is not satisfactory.
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Figure 8.3: Results for Chylla-Haase Reactor with Feedback Only Cascade Control
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The results for the general linear transform using the regular method to calculate

the tuning parameter Atr, i.e. Atr = (df/dT )∗ = 0.61 s−1, can be seen in Fig. 8.4.

The error stays within the ±0.6K band until t = 6000 s, when the monomer feed

ceases. From this point the system becomes unstable and the reactor temperature

oscillates around 355 K. This is clearly not acceptable and means that this control

scheme cannot be used. Before the oscillation the valve position follows a similar

shape to the valve position for the feedback-only system, albeit with some extra

oscillation which kept the error lower.
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Figure 8.4: Results for Chylla-Haase Reactor with General Linear Transform (Atr =
0.61 s−1)

78



CASE STUDY D: CHYLLA-HAASE REACTOR

The results for simulations with the static transform can be seen in Fig. 8.5. This

is the first simulation that stays within the ±0.6 K limit, and peaks at an error of

0.4 K. This does however come at the cost of heavy valve oscillation after t = 6000 s,

though this settles after 2000 s, unlike the general linear transform. Throughout

the reaction period (1800 s to 6000 s) the error is kept close to 0 too.
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Figure 8.5: Results for Chylla-Haase Reactor with Static Transform
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The results for the simulations with the integrating transform can be seen in Fig.

8.6. The error peaks at a value of 0.34K, within the provided bounds by almost

half. For this case there is a lot less oscillation seen in the valve position and the

jacket temperature after the monomer feed has ceased. The error settles to 0 by

t = 6700 s too.
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Figure 8.6: Results for Chylla-Haase Reactor with Integrating Transform
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The simulation results for the general linear transform where the Atr = −1/220 s−1

can be seen in Fig. 8.7. For this case it can clearly be seen from the reactor

temperature graph, Fig. 8.7a, the system does not track the set-point as accurately

as the other systems. This is reflected in the error graph, Fig. 8.7d, where the error

peaks at 19K - clearly outwith the desired ±0.6K range and therefore unacceptable.

A zoomed-in version of the error graph, with the accepted error bound as the y-axis,

can be seen in Fig. 8.8. From this it can clearly be seen that for the general linear

transform with Atr = −1/220 s−1 that the system actually still responds well to the

cessation of monomer flow at t = 6000 s, which acts as a disturbance. Therefore for

this system, it can be seen that it responds well to disturbances but does not track

a set-point change as accurately as required.
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Figure 8.7: Results for Chylla-Haase Reactor with General Linear Transform (Atr =
−1/220)

The errors for all cases are summarised in Fig. 8.8. For the system to be ‘acceptable’,

the error must stay within the plotted y-axis limits at all times. Therefore, by this

measure the cascade control and both general linear transforms are not acceptable.

Both the static and integrating systems fulfil requirements. However, it must be
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noted that for the general linear transform with Atr = −1/220 s−1 that for a similar

error around t = 6000 s, there is much less valve oscillation - clearly also a desirable

outcome. Out of the static and integrating systems, the integrating transform had

the least oscillation.

Figure 8.8: Summary of errors. (±0.6 K is the accepted error bound)

8.3.2 Robustness

In order to measure the robustness of the systems, the integral absolute error (IAE)

is used. This is calculated by IAE =
∫∞

0
| e(t) | dt, where e(t) = T ∗set − T . IAE

values for the robustness tests set out in Section 8.2.1 can be seen in Table 8.3.

The GLT case has Atr = −1/220 s−1 rather than Atr = 0.61 s−1 due to the stability

concerns seen above.

Table 8.3: IAE Values for Robustness Tests. († symbolises an unstable system)

Case Parameter Value Change Unit
IAE

Static Int. GLT
Base Case − − − 331.8 444.4 2.52× 104

1 θ1 22.8→ 17.1 s 331.8 444.4 2.52× 104

2 θ1 22.8→ 28.5 s 331.8 444.4 2.52× 104

3 θ2 15→ 11.25 s 331.8 444.4 2.52× 104

4 θ2 15→ 18.75 s 331.8 444.4 2.52× 104

5 i 1.0→ 0.8 − 278.4 443.6 2.62× 104

6 i 1.0→ 1.2 − 381.0 484.6 2.50× 104

7 1/hf 0.000→ 0.176 m2K kW−1 365.1 527.0 2.50× 104

8 1/hf 0.000→ 0.352 m2K kW−1 348.7 609.8 2.50× 104

9 1/hf 0.000→ 0.528 m2K kW−1 409.3 695.1 2.55× 104

10 1/hf 0.000→ 0.704 m2K kW−1 431.3 781.8 2.64× 104

11 Tamb 305.382→ 280.382 K 2.45× 105† 1.20× 105† 9.02× 104

A lower value of IAE symbolises better performance. It can be seen that for all sys-

tems a change in delay, Cases 1-4, does not affect the IAE. This is thought to be due
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to the fact that neither delay terms, θ1 or θ2, appear in the transform. Furthermore,

as these are small delays relative to the time the system runs for, i.e. 10000 s, they

do not have much impact on the feedback loop either.

For all feed impurities and the fouling factors cases, except Case 5, the IAE for the

static and integrating cases increase compared to the base case. Increasing the foul-

ing factor means that the overall heat transfer coefficient will decrease, and therefore

less heat will be conducted from the jacket to the reactor. The transform will calcu-

late the amount of heat required at ‘clean’ conditions, and therefore under-calculate

the amount actually required. This will be corrected by the feedback loop. Inter-

estingly, in Case 5 it is seen that the IAE decreases for the static and integrating

systems. Decreasing the impurity factor for the system means that the reaction rate

in the reactor is lower, and therefore the rate that heat is expelled from the reaction

is lower too. It is expected that this makes the most impact at the point where the

monomer feed ceases. A lower rate of heat production by the reaction is equivalent

to a smaller disturbance impacting the system when it is withdrawn, and therefore

it is easier for the control system to correct it.

Some of the IAE results for the general linear transform are the opposite of what

is expected; an increase from the Base Case in Case 5, and a decrease in Cases

6-8. The IAE values are around two orders of magnitude larger than the other two

transforms, and from Figs. 8.7d and 8.8 it can be seen that around t = 6000 s the

error is low. Therefore, it may be concluded that the majority of the error contri-

bution takes place during the start-up and reaction phases, rather than during the

monomer cessation period of the other two transforms and therefore it is hard to

compare them. For example, for Case 6 the IAE value is seen to decrease from the

Base Case, meaning that the error is lower. This may be explained by the fact that a

larger value of i means that the rate of heat expelled from the reaction is higher. The

GLT case struggled to match the set-point in the initial stages when the monomer is

added, seen in Fig. 8.7a, and therefore if more heat is produced, the reactor heats up

faster and assists the control scheme reach the set-point, reducing the error and IAE.

The change in the ambient temperature has the most profound effect on all three

systems, although interestingly the general linear transform still remains stable. The

ambient temperature appears directly in the transformed equation and therefore has

an important impact. Although, in a real-life scenario out of the four robustness

tests the ambient temperature is the easiest to measure. Therefore the measurement

could possibly be included in the transform in order to avoid the instability.
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8.4 Case Study Discussion

From this more applied, industrial case study some limitations have been identified.

Firstly, choosing Atr = (df/dy)∗ will not always work. In this case, applying this

gave a positive Atr value - in the past case studies, where ODEs were derived from

mass and energy balances where the controlled variable for the system was always

the ‘out’ term. This meant that when the ODE was differentiated with respect to

y it was always negative. In Chapter 3 it was shown that for the transfer function

G(s) = y(s)/v(s) the gain and time constant of the system were equal to −1/Atr.

Therefore with a positive value of Atr a right-hand plane pole is created - giving

rise to an unstable system. This is exactly what was seen in the simulations with

instability after t = 6000 s. This is the reason a negative value of Atr was chosen -

giving rise to a stable system. This value of A is also able to be used as a tuning

parameter for the system.

The complexity in the process model for this system resulted in extra complexity in

trying the transform the inputs to the system. The jacket temperature, i.e. the in-

ternal variable, was not able to be directly controlled and meant the general cascade

control structure had to be used rather than the alternative cascade control struc-

ture. The fact that the jacket was able to both heat and cool the reactor also caused

problems - meaning at valve positions less than 50% steam was injected whereas at

valve positions more than 50% cooling water was injected. This means that, ideally,

separate transforms would be required depending if the system required heating or

cooling - though this deviates from the simplicity of the theory in the first place.

It has been seen for this case study that the transformation theory has not worked as

well as for other case studies, though it has still been shown to perform better than

the basic cascade control, and in a much simpler manner than other cases which are

seen in literature. Both the static and integrating transforms have been able to stay

within the ±0.6 K limit and may be seen as viable alternatives for systems with

A > 0.
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Chapter 9

Conclusion

This thesis has shown the application of the new input transformation method for

controlling nonlinear processes in a cascaded manner. If the previous assumptions

of the theory are breached, i.e. if the system has a relative order greater than one

and/or the system is not invertible, then the new input transformation method can

still be used if applied with cascade control. This has been achieved in a simple

manner that is easy to implement, especially in comparison to other nonlinear con-

trol techniques.

Throughout, different control configurations have been simulated, namely the gen-

eral cascade structure, the alternative cascade structure, the ‘double-linearized’ cas-

cade structure and the chain of transforms - comparisons have been shown in Chapter

4 and 6. All have proved to give a stable system, and will give similar results for

most systems - especially the general cascade structure and the alternative cascade

structures, which were directly compared in Chapter 4 (Fig. 4.4). The choice be-

tween the general or alternative structure depends on the system. For a system that

is not invertible, and to avoid numerical solvers the general structure should be used.

However, the alternative cascade is a more intuitive option, with both controllers

acting on realisable variables. This means that controller tuning may be easier if a

model is known.

In Chapter 5 it was shown that the theory is able to be adapted to suit systems where

not all process variables are known - namely the internal variable which the cascade

usually relies on. This was a key assumption in the original theory. In industry this

may be a common occurrence for variables that cannot be measured, or it is not eco-

nomical to measure them, and therefore being able to adapt the control structure to

suit this is important - a problem that not all other nonlinear techniques can handle.

Both the double-linearized structure and the chain of transforms were shown, in
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Chapter 6 (Fig. 6.6), to have the capability of perfect disturbance rejection for

special cases where the disturbance appears directly in the model equation for the

internal variable, rather than that of the controlled variable. For this case, the

general cascade structure and the alternative cascade structures are able to tend

towards perfect disturbance rejection for a fast inner loop. If the special case is not

met then the simpler option of the general or alternative cascade may be used over

the chain of transforms or double-linearized structures.

This control method is model-based but not completely model-reliant as it has ro-

bustness to model mis-match. As shown in Chapter 6 and 7, the new input transfor-

mation theory is able to handle cases of unmeasured disturbances and unexpected

time delay when the outer controller is used (Fig. 6.8 and 7.8). This is an important

factor as it means that the control structure is able to operate without a completely

accurate process model - which is not normally known. For this to be achieved the

outer feedback loop must be utilised so that the outer PI controller is able to correct

the system back to its set-point. The cascade control works for all cases, and is more

robust than the simple case which only has one calculation block and one feedback

loop.

Although mainly focused on systems that are nonlinear in the inputs, the new

theory has also been shown to work for systems that are nonlinear in the outputs.

pH control, shown in Chapter 8, is a difficult task due to the nonlinearities of its

measurement. Through the use of a simple output transformation, the existing

transformed input theory is able to be easily applied and achieve both disturbance

rejection and set-point tracking.

9.1 Future Work

This thesis has studied single-input single-output (SISO) systems with a relative

order greater than one. In reality, many systems will be multiple-input multiple-

output (MIMO). Bjorvand (2020) has previously studied transformed manipulated

variables for MIMO systems which had relative orders of one, which showed the pos-

sibility of decoupling between variables. Perfect disturbance rejection was exhibited

for perfect models too. The natural progression for this thesis would be to assess the

capability of the application of Transformed Manipulated Variables to MIMO sys-

tems that have relative order(s) greater than one. It is anticipated that there would

be a degree of interference between the variables and perfect disturbance would be

lost. Decoupling may be possible, depending on the system.
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Appendix A

Open-Loop Step Responses

A.1 Tanks-in-Series Tuning

Figure A.1: Open-loop Response to Step-Changes in T1 at t = 10min for a Pure
Feedback System
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OPEN-LOOP STEP RESPONSES

Figure A.2: Open-loop Response to Step-Changes in T0 at t = 10min for General
Cascade System

Figure A.3: Open-loop Response to Step-Changes in v at t = 10min for General
Cascade System
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OPEN-LOOP STEP RESPONSES

Figure A.4: Open-loop Response to Step-Changes in v at t = 10min for Alternative
Cascade System

Figure A.5: Open-loop Response to Step-Changes in v at t = 10min for Static
Alternative Cascade System
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OPEN-LOOP STEP RESPONSES

Figure A.6: Open-loop Response to Step-Changes in v at t = 10min for Integrating
Alternative Cascade System

A.2 Tanks-in-Series Extension Tuning

Figure A.7: Open-loop Response to Step-Changes in v at t = 10min for Cascade
System 1
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OPEN-LOOP STEP RESPONSES

Figure A.8: Open-loop Response to Step-Changes in v at t = 10min for Cascade
System 2

Figure A.9: Open-loop Response to Step-Changes in v at t = 10min for Cascade
System 3
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OPEN-LOOP STEP RESPONSES

Figure A.10: Open-loop Response to Step-Changes in v at t = 10min for Case 1
System 1

Figure A.11: Open-loop Response to Step-Changes in v at t = 10min for Case 1
System 2
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OPEN-LOOP STEP RESPONSES

Figure A.12: Open-loop Response to Step-Changes in v at t = 10min for Case 1
System 3

Figure A.13: Open-loop Response to Step-Changes in v at t = 10min for Case 2
System 1
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OPEN-LOOP STEP RESPONSES

Figure A.14: Open-loop Response to Step-Changes in v at t = 10min for Case 2
System 2

Figure A.15: Open-loop Response to Step-Changes in v at t = 10min for Case 2
System 3
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OPEN-LOOP STEP RESPONSES

A.3 CSTR Tuning

Figure A.16: Open-loop Response to Step-Changes in v at t = 10min for Chain of
Transforms

Figure A.17: Open-loop Response to Step-Changes in v2 at t = 10min for Double-
Linearized Alternative Cascade System. (limited to 5% to avoid saturation)
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OPEN-LOOP STEP RESPONSES

Figure A.18: Open-loop Response to Step-Changes in v at t = 10min for Double-
Linearized Alternative Cascade System

Figure A.19: Open-loop Response to Step-Changes in Q at t = 10min for General
Cascade System
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OPEN-LOOP STEP RESPONSES

Figure A.20: Open-loop Response to Step-Changes in v at t = 10min for General
Cascade System

Figure A.21: Open-loop Response to Step-Changes in Q at t = 10min for Feedback
Only System
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OPEN-LOOP STEP RESPONSES

Figure A.22: Open-loop Response to Step-Changes in T at t = 10min for Feedback
Only System. (Limited to 5% to avoid saturation)

Figure A.23: Open-loop Response to Step-Changes in Q at t = 10min for Alterna-
tive Fitted Cascade System
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OPEN-LOOP STEP RESPONSES

Figure A.24: Open-loop Response to Step-Changes in v at t = 10min for Alternative
Fitted Cascade System

A.4 pH Neutralisation Tuning

Figure A.25: Open-loop Response to Step-Changes in v2 at t = 10min for General
Cascade System
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OPEN-LOOP STEP RESPONSES

Figure A.26: Open-loop Response to Step-Changes in v at t = 10min for General
Cascade System

Figure A.27: Open-loop Response to Step-Changes in v at t = 10min for Alternative
Cascade on Wa4 system
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OPEN-LOOP STEP RESPONSES

Figure A.28: Open-loop Response to Step-Changes in v2 at t = 10min for Alterna-
tive Cascade on Wa4 system

Figure A.29: Open-loop Response to Step-Changes in v at t = 10min for Alternative
Cascade on Wb4 system
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OPEN-LOOP STEP RESPONSES

Figure A.30: Open-loop Response to Step-Changes in v2 at t = 10min for Alterna-
tive Cascade on Wb4 system

Figure A.31: Open-loop Response to Step-Changes in v at t = 10min for Chain of
Transforms System
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OPEN-LOOP STEP RESPONSES

Figure A.32: Open-loop Response to Step-Changes in v at t = 10min for Combina-
tion System
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Appendix B

Derivations

B.1 Case Study A Derivations

Assumptions used;

A1 : Perfect mixing in both tanks

A2 : Constant density, ρ, and specific heat, cp.

A3 : Inlet temperature, T0, may be manipulated sufficiently fast by the heat added,

Q.

A4 : Constant pressure and volume

In the derivations below, subscript i = [0, 1, 2, d], where subscript 0 symbolises

stream into tank 1, subscript 1 symbolises the stream out of tank 1, subscript 2

symbolises the stream out of tank 2 and subscript d symbolises the disturbance

stream into tank 2.

B.1.1 Mass Balances

From a mass balance around tank 1;

dm1

dt
= w0 − w1

Where, m1 [kg] is the mass hold-up in tank 1, and wi [kg min−1] is the mass flow of

stream i. Substituting m1 = ρV1, V1 = A1h1 and wi = ρFi, where ρ is the density of

the fluid [kg m−3], V1 is the volume of tank 1, A1 [m2] is the cross-sectional area of

tank 1, h1 [m] is the level of the fluid in tank 1 and Fi [m3min−1] is the volumetric

flow of stream i.

d(ρA1h1)

dt
= ρ(F0 − F1)
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DERIVATIONS

Dividing by ρA1, as neither vary with time gives the mass balance over tank 1;

dh1

dt
=

1

A1

(F0 − F1) (B.1)

In a similar manner for tank 2, including the flow in of the disturbance stream, the

mass balance becomes;

dm2

dt
= w1 + wd − w2

Where, m2 [kg] is the mass hold-up in tank 2 [kg]. Substituting m2 = ρV2, V2 = A2h2

and wi = ρFi, where V2 [m3] is the volume of tank 2, A2 [m2] is the cross-sectional

area of tank 2 and h2 [m] is the level of the fluid in tank 2 and dividing by ρA2 gives

the mass balance over tank 2, Eq. B.2.

dh2

dt
=

1

A2

(Fd + F1 − F2) (B.2)

B.1.2 Energy Balances

From an energy balance around tank 1, with no heat or shaft work;

d(m1H1)

dt
= w0H0 − w1H1

Where H0 and H1 [J kg−1] are the specific enthalpies of the inlet stream to tank 1

and outlet stream of tank 1 respectively, and other parameters have same meanings

as above. For an absence of phase change the two equations below hold:

Hi = H(Tref ) +

∫ Ti

Tref

cp dT

dHi

dt
= cp

dTi
dt

Where, cp [J K−1 kg−1] is the specific heat capacity, and H(Tref ) [J kg−1] is the

enthalpy at reference temperature (both are assumed constant). Enthalpy of mixing

is assumed negligible. Therefore, using the equations for Hi and dHi/dt in the

original energy balance and product rule on LHS;

m1cp
dT1

dt
+
(
H(Tref ) +

∫ T1

Tref

cp dT
)dm1

dt
=

w0

(
H(Tref ) +

∫ T0

Tref

cp dT
)
− w1

(
H(Tref ) +

∫ T1

Tref

cp dT
)

Noting that dm1/dt = w0 − w1 and m1 = ρA1h1 , where parameters have same
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meanings as above. Performing the integration gives;

ρA1h1cp
dT1

dt
+
(
H(Tref ) + cp(T1 − Tref )

)
(w0 − w1) =

w0

(
H(Tref ) + cp(T0 − Tref )

)
− w1

(
H(Tref ) + cp(T1 − Tref )

)
Multiplying out brackets gives;

ρA1h1cp
dT1

dt
+H(Tref )w0−H(Tref )w1 + cpT1w0− cpTrefw0− cpT1w1 + cpTrefw1 =

w0H(Tref ) + w0cpT0 − w0cpTref − w1H(Tref )− w1cpT1 + w1cpTref

Which, after cancelling out like terms, gives;

ρA1h1cp
dT1

dt
= w0cp(T0 − T1)

Noting that w0 = ρF0, this gives the energy balance over tank 1 after rearranging;

Eq. B.3.

dT1

dt
=
F0cp(T0 − T )

A1h1

(B.3)

Similarly for tank 2, but with the addition of the disturbance stream, applying a

mass balance over tank 2 gives;

d(m2H2)

dt
= w1H1 + wdHd − w2H2

Using the same procedure as above;

m2cp
dT2

dt
+
(
H(Tref ) + cp(T2 − Tref )

)dm2

dt
= w1

(
H(Tref ) + cp(T1 − Tref )

)
+

wd
(
H(Tref ) + cp(Td − Tref )

)
− w2

(
H(Tref ) + cp(T2 − Tref )

)
Noting that dm2/dt = w1 + wd − w2 and cancelling like terms, as in tank 1 energy

balance derivation, gives;

m2cp
dT2

dt
= w1cp(T1 − T2) + wdcp(Td − T2)

Noting that m2 = ρA2h2 and wi = ρFi, then dividing through by ρA2h2cp gives the

energy balance over tank 2, Eq. B.4.
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dT2

dt
=
F1(T1 − T2) + Fd(Td − T2)

A2h2

(B.4)

B.2 Case Study A Extension Derivations

For the Case Study A extension the same assumptions as Case Study A, above,

are made. In this section however, subscript i = [0, 1, 2, 1d, 2d], where subscript 0

symbolises the stream into tank 1, subscript 1 symbolises the stream out of tank

1, 2 symbolises the stream out of tank 2, subscript 1d symbolises the disturbance

stream to tank 1 and 2d symbolises the disturbance stream to tank 2.

B.2.1 Mass Balances

For a mass balance over tank 1;

dm1

dt
= w0 + w1d − w1

Using the same nomenclature as Section B.1.1, subbing in m1 = ρA1h1 and wi = ρFi;

d(ρA1h1)

dt
= ρ(F0 + F1d − F1)

Dividing by ρA1 gives us the mass balance over tank 1;

dh1

dt
=

1

A1

(F0 + F1d − F1) (B.5)

The mass balance for tank 2 is exactly the same as the mass balance derivation for

tank 2 in Section B.1.1 except for substitute of d with 2d, giving;

dh2

dt
=

1

A2

(F2d + F1 − F2) (B.6)

B.2.2 Energy Balances

For an energy balance over tank 1;

d(m1H1)

dt
= w0H0 + w1dH1d − w1H1

Using the same method as Section B.1.2;

m1
dH1

dt
+H1

dm1

dt
= w0H0 + w1dH1d − w1H1

Applying the equations for Hi and dHi/dt as above;
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m1cp
dT1

dt
+
(
H(Tref ) +

∫ T1

Tref

cp dT
)dm1

dt
=

w0

(
H(Tref )+cp

∫ T0

Tref

dT
)

+w1d

(
H(Tref )+cp

∫ T1d

Tref

dT
)
−w1

(
H(Tref )+cp

∫ T1

Tref

dT
)

Performing the integration, noting that m1 = ρA1h1 and wi = ρFi and dividing

through by ρA1h1cp gives the energy balance for over tank 1, Eq. B.7;

dT1

dt
=
F0(T0 − T1) + F1d(T1d − T1)

A1h1

(B.7)

The energy balance over tank 2 is exactly the same as described in Section B.1.2,

except for the substitute of d with 2d, giving Eq. B.8.

dT2

dt
=
F1(T1 − T2) + Fd(T2d − T2)

A2h2

(B.8)

B.3 Case Study B Derivations

The molar balance and energy balance for the CSTR case study are derived here

with the following assumptions;

B1 : Perfect volume control, i.e. q1 = q2

B2 : Constant density, ρ, and specific heat, cp

B3 : Control of heat added is sufficiently fast

B4 : Perfect mixing within tank

B5 : Constant pressure and volume

B6 : Negligible shaft work

B.3.1 Component Molar Balance

For a component molar balance of A over a reactor;

dNA

dt
= q1cAf − q2cA − rV (B.9)

Where, NA [kmol] is the number of moles in the reactor, q1 and q2 [m3min−1]are the

inlet and outlet flowrates respectively, cAf and cA [kmolm−3] are the concentrations

of the inlet and outlet respectively, r [kmolm−3min−1] is the rate of reaction and
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V [m3] is the volume of the reactor. From the assumptions, q1 = q2. Using this and

the fact that NA = cAV the balance becomes;

d(cAV )

dt
= q1(cAf − cA)− rV

As the reaction is first order, A → B, r = k(T )cA, where k(T ) [min−1] is the reac-

tion rate constant and calculated by the Arrhenius equation, k(T ) = k0e
−E
R

( 1
T
− 1
T0

)
.

Taking V out of the derivative as it is constant and dividing by V gives the final

equation;

dcA
dt

=
q1

V
cAf −

(q1

V
+ k(T )

)
cA (B.10)

B.3.2 Energy Balance

For an energy balance over a reactor with constant pressure and volume with neg-

ligible work done/added (Fogler, 2016);

d(
∑

(miHi))

dt
= Q+

∑
(FioHio)−

∑
(FiHi)

Where
∑

=
∑n

i=1 for brevity and i = [1, 2], corresponding to species A and B

respectively. mi [kg] is the mass in the reactor, Q [kJ min−1] is the heat added to

the reactor, Fi0 and Fi [kg min−1] are the inlet and outlet mass flows of species i

and hi0 and h0 [kJ kg−1] are the specific enthalpies, on a mass basis, of species i in

the inlet and outlet flows. Applying product rule to the left-hand side differential

gives;

∑(
mi
dHi

dt

)
+
∑(

Hi
dmi

dt

)
= Q+

∑
(FioHio)−

∑
(FiHi)

For an absence of phase change;

Hi = H(Tref ) +

∫ T

Tref

cpi dT

dHi

dt
= cpi

dT

dt

Where cpi [kJ kg−1K−1] is the specific heat capacity of species i and T [K] is the

temperature of the reactor. Substituting this into the energy balance equation gives;

∑(
micpi

dT

dt

)
+
∑(

Hi
dmi

dt

)
= Q+

∑
(FioHio)−

∑
(FiHi)

From a component mass balance over the tank, similar to Eq. B.9 but on a mass

basis;
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dmi

dt
= −νirAV + Fio − Fi

Where, mi [kg] is the mass of species i in the reactor, νi [-] is the stoiciometric

coefficient of species i in the reaction, rA [kmolm−3min−1] is the reaction rate of

species A and V [m3] is the volume of the reactor. Substituting this into the energy

balance equation gives;

∑(
micpi

dT

dt

)
+
∑(

νiHi(−rAV )
)

+
∑

(Fi0Hi)−
∑

(FiHi) = Q+
∑

(FioHio)−
∑

(FiHi)

Collecting like terms, noting that
∑

(νihi) = ∆Hrx, where ∆Hrx [kJ kmol−1] is the

heat of reaction, and dividing by
∑
micpi gives;

dT

dt
=
Q−∑(Fi0(Hi −Hio))−∆Hrx(−rAV )∑

micpi

With the assumption that cpi [kJ kg−1K−1] is constant for all species in the liquid

phase A → B reaction, i.e. cpi = cp ∀ i, and there is no mass accumulation in

the reactor since density is constant and there is perfect volume control, it can be

said that
∑

(micpi) = mcp, where m [kg] is the mass in the reactor. Also, the

reaction rate, −rA [kmolm−3min−1] can be described by −rA = k(T )cA for the

first-order reaction, where k(T ) [min−1] follows the Arrenhius equation. Applying

these equations reduces the energy balance to;

dT

dt
=
Q−∑(Fi0(Hi −Hio))−∆Hrxk(T )cAV

mcp

For a constant heat capacity, Hi − Hio = cp(T − Tio), and as the inlet stream will

only contain reactant, Fi0 = FA0 [kg min−1], then
∑

(Fi0(Hi − Hio)) = FA0cp(T −
T1), where T1 [K] is the temperature of the feed stream and the outlet stream

temperature, T [K] is the same as the tank temperature and FA0 [kg min−1] is the

mass flowrate of the inlet stream. Giving;

dT

dt
=
Q− FA0cp(T − T1)−∆Hrxk(T )cAV

mcp

Using m = ρV , splitting the fraction up and cancelling terms gives the energy

balance for the reactor;

dT

dt
=

Q

ρV cp
− q1

V
(T − T1)− ∆HrxcAk(T )

ρcp
(B.11)

Where,
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DERIVATIONS

k(T ) = k0e
−E
R

( 1
T
− 1
T0

)

and where q1 [m3min−1] is the volumetric flowrate into of the reactor, k0 [min−1]

is the reference rate constant, T0 [K] is the temperature at which the reference rate

constant is taken, E [kJ kmol−1] is the activation energy of the reaction and R

[kJ K−1 kmol−1] is the universal gas constant.
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Appendix C

Chylla-Haase Reactor Full Model

Tj =
T inj + T outj

2
(C.1)

Qrea = −∆H Rp (C.2)

Rp = ikmM (C.3)

∆H =
∆Hp

MWM

(C.4)

k = k0 exp

(
− E

RT

)
(k1µ)k2 (C.5)

µ = c0 exp(c1f) 10

(
c2(

a0
T
−c3)
)

(C.6)

f =
mP

mM +mP +mW

(C.7)

A =

(
mM

ρM
+
mp

ρP
+
mW

ρW

)
P

B1

+B2 (C.8)

U =
1

h−1 + h−1
f

(C.9)

h = d0 exp(d1µwall) (C.10)

µwall = c0 exp(c1f) 10

(
c2(

a0
Twall

−c3)
)

(C.11)
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CHYLLA-HAASE REACTOR FULL MODEL

Twall =
T + Tj

2
(C.12)
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CHYLLA-HAASE REACTOR FULL MODEL

Table C.1: Chylla-Haase Reactor Full Process Parameters

Variable Symbol Unit Value
Initial mass of monomer mM,0 kg 0
Initial mass of molymer mP,0 kg 11.227
Initial mass of water mW,0 kg 42.75
Density of monomer ρM kg m−3 900
Density of polymer ρP kg m−3 1040
Density of water ρW kg m−3 1000
Heat capacity of monomer cp,M kJ kg−1K−1 1.675
Heat capacity of polymer cp,P kJ kg−1K−1 3.14
Heat capacity of water cp,W kJ kg−1K−1 4.187
Molecular weight of monomer MWM kg kmol−1 104
Mass of coolant in jacket mC kg 21.455
Mass flowrate of coolant in jacket ṁC kg/s 0.9412
Heat capacity of coolant cp,C kJ kg−1K−1 4.187
Pre-exponential rate constant k0 s−1 55
Rate constant correction k1 mskg−1 1000
Rate constant correction k2 - 0.4
Activation energy E kJ kmol−1 29560.89
Batch viscosity correction c0 kg m−1 s−1 0.000052
Batch viscosity correction c1 - 16.4
Batch viscosity correction c2 - 2.3
Batch viscosity correction c3 - 1.563
Batch viscosity correction a0 K 555.556
Heat of polymerization -∆Hp kJ kmol−1 −70152.16
Heat transfer coefficient correction d0 kW m−2K−1 0.814
Heat transfer coefficient correction d1 mskg−1 −5.13
Mass flowrate of monomer ṁin

M kg s−1 0.00756
Monomer flow schedule [tinM,0, t

in
M,1] s [1800, 6000]

Set point of reactor temperature Tset K 355.382
Universal gas constant R kJ kmol−1K−1 8.314
Heat loss to surroundings (UA)loss kW K−1 0.00567567
Time constant for heating/cooling τp s 40.2
Time delay 1 θ1 s 22.8
Time delay 2 θ2 s 15
Impurity range i - [0.8, 1.2]
Fouling factors 1/hf m2K kW−1 [0.000, 0.176, 0.352, 0.528, 0.704]
Summer ambient temperature Tamb,S K 305.382
Winter ambient temperature Tamb,W K 280.382
Inlet cooling water temperature Tinlet K 294.26
Inlet steam temperature Tsteam K 449.82
Temperature set-point parameter a3 - 10
Temperature set-point parameter a4 - −15
Temperature set-point parameter a5 - 6
Reactor bottom area B1 m2 0.193
Jacket perimeter P m 1.594
Jacket bottom area B2 m2 0.167
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Appendix D

Roles and Responsibilities

(At the request of University of Edinburgh)

Throughout the placement at NTNU I worked both independently and collabora-

tively with Prof. Sigurd Skogestad and Cristina Zotică. The original transformed

input theory had previously been studied and worked on and my main contribution

was the process modelling and simulation for case studies, which did not fit into

previous assumptions, i.e. relative order greater than 1, and identifying any prob-

lems or opportunities. For the case studies, the main procedure was that Cristina

and/or Sigurd supplied me with an outline of the case study to get started, e.g. for

the CSTR it was a list of steady-state parameters.

I then spent the next week deriving equations where applicable, and then moving

onto MATLAB and Simulink to code the simulations. I had weekly meetings with

Cristina, which were mainly used to troubleshoot case study problems, e.g. with

some code or some theory, which I could not overcome myself. Frequent meetings

were held with Sigurd too to discuss progress and sometimes go over my monthly

reports.
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