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Summary

The thermal energy storage is the advanced technology which is gaining its popularity
constantly in many sectors such including of residential sector due to increasing environ-
mental awareness. It enables to exploit unconventional energy sources such as the waste
heat energy or renewable energies. Although energy-saving and maximizing the use of the
energy resources are major action to environmental footprint, it cannot be neglected that it
is important to satisfy the thermal energy demand most of the time. To tackle the problem
of the energy network system, the right control policy must be chosen and implemented.
However, due to its stochastic nature on the fluctuating thermal energy demand and supply,
and the unpredictable price of the energy, it is not easy to determine how to operate the
energy storage system to exploit the supply of the energy.

This thesis aims to find an effective control policy for the operation of the system
in the presence of uncertainty or random disturbances. This work considered various con-
trol policies such as a simple structured policy, model predictive control(MPC), parametric
modified MPC, and scenario-based MPC. To evaluate these control policies, the mathemat-
ical model and uncertainty models are formulated. Uncertainty models generate sample
paths of disturbances, considering its stochastic nature, based on probability distribution
and Markov chain model. The policies are tuned for their best performances and evaluated
based on their expected total cost which can be obtained by using stochastic optimization.

The expected total costs of the control policies are compared to the deterministic op-
timal cost under the assumption of a perfect forecast and the expected total cost of the
system with thermal energy storage.
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Chapter 1
Introduction

1.1 Project Background

Due to the increasing concerns on climate change and its environmental impact, the max-
imization of resource utilization has been the focus of process sustainability. One of the
most energy-demanding sectors is the residential energy sector. The energy is consumed
largely in domestic homes, for purposes such as heating and lighting, to make the quality
of human life better. The total amount of domestic energy demand will surely increase in
the future because studies show that the world’s population is predicted to continuously
grow. We now have the question of whether there will be adequate supplies of energy
and if energy sources can be sustained, guaranteeing continuous supply for the future. It
is unrealistic for mankind to give up technological advancements by cutting off the usage
of resources. Therefore, to address the need for continuously improving quality of life
through advances in technology and industry while maintaining sustainability, the chal-
lenge of energy and resource utilization must be tackled early on. Through optimization
and control technologies, usage of energy and resources can be maximized and sustained,
allowing the world to use energy without the danger of depletion.

The energy storage system is a critical component in optimizing energy utilization. It
allows for flexible operations, making it possible for energy to be stored at one point in
time and then utilized at another time in the future when needed. Therefore, the systems
enable the utilization of hidden types of unconventional energy, such as waste energy,
which is excessively supplied energy compared to the demand, from the industry(Aneke
and Wang, 2016).

In common conventional energy systems without storage devices, it is not only impos-
sible to exploit the energy supply, but it also costs more to operate. This is because the
peak demand can only be satisfied only by purchasing another type of expensive energy
from the market. Moreover, the excess supply of energy from the primary source is wasted
instead of being used or stored. These problems are easily solved by using an energy stor-
age device which stores energy for future use. It helps to reduce the mismatch between the
energy generation and the energy demand for both short- and long-terms(Kalaiselvam and

1



Chapter 1. Introduction

Parameshwaran, 2014).
With the increasing attention on the utilization of the storage system, many control

policies have been suggested and tested. However, it is difficult to design one control
policy that fits all cases due to uncertainties such as the future demand, the energy price,
and the energy supply.

1.2 Motivation
As discussed above, energy storage is essential to operate an energy system flexibly with
low cost by capitalizing on the primary energy supply and minimizing the purchase of
extra energy from the market. To reap the benefits of energy storage, it is mandatory to
have a robust operating strategy or control system, also called control policy, that considers
the various uncertainties the energy system could be subject to.

A strong control policy for the energy storage system guarantees that the energy de-
mand is satisfied with the minimum operating costs at all times. It also provides the fol-
lowing advantages:

• High peak capacity: The demand usually fluctuates depends on many factors such
as temperature and sometimes the peak demand happens. When it happens, the
stored energy, when generated excessively, can be supplied to satisfied the demand.

• Exploit energy prices from the market: The buy-low and sell-high policy can be
implemented to take advantage of fluctuating energy prices in the market. Energy is
purchased when the price is low and it is then stored for future usage or sold for a
higher price in the future.

• Reject power supply surge: Although energy tends to be supplied consistently,
there may be fluctuations in the energy supply due to unexpected disturbances dur-
ing operation. With energy storage, the reliability of the energy supply can be im-
proved and a consistent flow of energy is guaranteed.

To create an effective policy in the presence of uncertainty, stochastic optimization can
be employed as a tool. Various communities have conducted their research and invented
tools on stochastic optimization for their purposes. Often, these communities would cre-
ate their names and notations. Due to this, it is not easy to perform cross-work. A unified
framework of the stochastic programming has then been suggested. The framework intro-
duces how to model the stochastic problem, how to design different types of policies, and
how to tune the policiesPowell (2019).

1.3 Objectives
The objectives of this thesis paper are to create and evaluate various types of control poli-
cies for the case study based on the unified framework of stochastic programming. Ac-
cordingly, among those policies, the most effective one will be chosen. The case study is
the district heating system with a thermal storage tank at Heimdal. The case study consists
of its uncertainties. Therefore, the following tasks will be implemented in this paper:

2



1.4 Organization

1. Building a mathematical model of the thermal energy storage system for simulations

2. Building uncertainty models/sample paths of the thermal energy demand, supply
and the spot energy price which can be used for the evaluation of the expected cost
of designed control policies.

3. Designing policies based on the unified framework of stochastic programming.

4. Tuning the parameters in control policies

5. Evaluating control policies and comparing them with the optimal operation cost.

1.4 Organization
This master thesis paper consists of six chapters. After chapter one, the introduction, the
next following six chapters are briefly described:

• Chapter 2. The Background on Stochastic Optimization

In this chapter, the background on stochastic optimization is introduced. It will dis-
cuss a universal canonical model from the unified framework of stochastic program-
ming. It will also explain how to model uncertainties. Lastly, the types of policies
and the policy search method for optimizing the policies are discussed briefly.

• Chapter 3. Background on Energy Storage

Chapter 3 introduces the concept of energy storage and its benefits. More specif-
ically, the thermal energy storage is explained in terms of its concept and types.
Lastly, it discusses the control policies of energy storage system such as buy-low
and sell-high, model predictive control, and scenario-based model predictive con-
trol.

• Chapter 4. Case Study: A District Heating Network

This chapter begins by illustrating the case study, the waste solid incineration plant
at Heimdal for a district heating network system. Thereafter, the system of the
thermal energy storage is mathematically modelled according to the guidelines of
the canonical model from the unified framework of stochastic programming. Lastly,
the uncertainty models of the thermal energy supply, the thermal energy demand,
and the spot electricity are introduced based on the sinusoidal and 1st order Markov
chain model with normal distribution function.

• Chapter 5. Control Policies for the Heating Network

In this chapter, some policies are designed and tuned based on the guidelines of
the unified framework of stochastic programming. Other control policies, such as
certainty equivalence model predictive control and scenario-based model predictive
control are implemented. All of the policies designed and introduced are evaluated
and then compared with the apriori optimal operation policy.

3



Chapter 1. Introduction

• Chapter 6. Discussion
The general discussion about the possible issues from the result and the problems
from assumptions are presented. Also, possible future work is briefly discussed.

• Chapter 7. Conclusions
Lastly, the conclusions regarding the result and the objectives of this thesis paper
are presented.

4



Chapter 2
Background on Stochastic
Optimization

2.1 Introduction
Stochastic optimization is defined as a group of methods to minimize or maximize an
objective function under uncertainty. Decision-making under uncertainties is a common
experience of both humans and organizations. There is a broad range of research com-
munities working on the problem setting of sequential decisions under uncertainty. These
communities include: decision analysis; stochastic search; ranking and selection; sim-
ulation optimization; online computation; optimal control; robust optimization; optimal
stopping; Markov decision processes; approximate/adaptive dynamic programming, and
much more.

So much research has been completed and is still continuously performed in these
different fields that they have grown into neighbouring areas. Sometimes, new challenges,
which are unable to be tackled by the original technique, are solved by tools from other
communities. In light of these affairs, the unified framework for stochastic optimization
was introduced to facilitate the cross-fertilization of ideas across communities. Therefore,
techniques from different fields, such as MPC and dynamic programming, can be applied
in solving a single problem by using the framework. Furthermore, the best control policy
can be selected based on the specific characteristics of the data. Combining tools from
various fields can result in a strong hybrid control policy.(Powell, 2019)

2.2 A Universal Canonical Model
Stochastic optimization is often used as a great tool to find an effective or optimal control
policy under uncertainty for the future, instead of finding an optimal control action. How-
ever, sequential decision problems in the presence of uncertainty are much more compli-
cated than deterministic optimization problems. Various types of modelling are required,
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Chapter 2. Background on Stochastic Optimization

not only the sequencing of control variables and complex dynamics governing how the
system evolves over time but also the flows of information. There are five elements to
every sequential decision problem: State variables, control variables, disturbances, system
model, and objective function.(Powell, 2020)

State Variables

Denoted x, the state variables are the most important quantity in every sequential decision
process. It is the set of every captured variable to model the system. More precisely, state
variables are defined in two ways:

• Policy-dependent version:

1. A function of history which is necessary and sufficient with disturbances and a
control policy to calculate the contribution/cost function, and the control policy
(the decision function).

2. Any information needed to model the information evolution for the contribu-
tion/cost function and control policies.

• Optimization version:

1. A history function which is necessary and sufficient to calculate the contribu-
tion/cost function, and the constraints.

2. Any information used to model the information evolution for the cost/contri-
bution function and the constraints

In the definition of state variables, the term “necessary and sufficient” is used to keep
state variables as compact as possible.

The state variables are also distinguished between initial state variables and dynamic
state variables. Initial state variables, denoted x0, are specified initial information such
as deterministic parameters, initial values of any dynamically varying parameters, and
probability distributions about any unknown parameters. Dynamic state variables, denoted
xt for t > 0, are changing variables over time. The deterministic parameters are excluded
from dynamic state variables.

The state variables can be divided into three categories: The physical state, the infor-
mation state, the belief/knowledge state. The physical sate, denoted Rt, is the status of the
managed physical resources. It can be, for example, the water level in a reservoir. The in-
formation state, denoted It, includes any other information required to make a control vari-
able and compute the system model or the objective function. Lastly, the belief/knowledge
state, denoted Bt, is information which determines a probability distribution for unknown
parameters. Therefore, the state variables can be described mathematically as:

xt = (Rt, It, Bt)

These three states have a relationship as shown on Figure 2.1. The physical state is part of
the information state. The information state will be all of the rest of the variables known

6



2.2 A Universal Canonical Model

Figure 2.1: A set of state variables

perfectly after the physical states are chosen. The belief states include the probability
distribution which determines unknown parameters.

Most problems use the state variables of the system as xt = Rt. However, in case that
other unspecified information is required, state variables can become a combination of the
physical state, the information state, and belief state.

State variables can also be classified as the pre-decision state variables and post-
decision state variables based on a history of information process. If the state variables
are defined after new information such as disturbances arrives and before control variables
are made as shown on equation (2.1), the state variables are defined as the pre-decision
state variables.

ht = (x0, u0,W1, x1, u1,W2, x2, u2, ..., ut−1,Wt) (2.1)

where ut and Wt represent control variables and disturbances at time t respectively.
Equation (2.2) shows the sequence of the post-decision state variables which intro-

duces state variables, xut , after control variables are made and before disturbances are
realized.

ht = (x0, u0, x
u
0 ,W1, x1, u1, x

u
1 ,W2, x2, u2, x

u
2 , ..., ut−1, x

u
t−1,Wt, xt) (2.2)

The pre-decision state variables describe the system naturally, while the post-decision
state variables are better suited for dynamic programming in some cases.

Control Variables

In the sequential dynamic programs, control variables u are made over time. A form of
control variables can be either vector or scalar.

Control variables are determined by a control policy π. A control policy is a relation-
ship of how state variables are processed in stochastic programming to determine control
variables. The relationship of a control policy and control variables can be expressed as
equation (2.3).

ut = µπ(xt) (2.3)

Since the purpose of the stochastic optimization is to find an effective policy, it is
important to define right control variables for designing a good control policy.
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Chapter 2. Background on Stochastic Optimization

Disturbances

Disturbances are often called as exogenous information. The arrival of disturbances is an
important feature in the sequential stochastic dynamic problem because it influences the
state variables in the system.

disturbances, denotedWt, are the unknown future information but first becomes known
at time t. For example, the change of the price over time interval, p̂t, can the random
disturbance as described on equation (2.4).

pt+1 = pt + p̂t (2.4)

The disturbance on equation (2.4) is updated based on 1st order Markov chain model. p̂t
can come from probability distribution. Therefore, sample realization is often used. Table
2.1 shows an example of 3 sample paths of the electricity price from sample realization
based on probability distribution. The sequence of sample realization of the process is
referred as a sample path, ω. The set of all of the possible sample realization is denoted Ω,
therefore ω ∈ Ω.

Sample path t = 0 t = 1 t = 2 t = 3
ω p0 p̂1 p1 p̂2 p2 p̂3 p3

1 29.80 2.44 32.24 1.71 33.95 -1.65 32.30
2 29.80 -1.96 27.84 0.47 28.30 1.88 30.18
3 29.80 -1.05 28.75 -0.77 27.98 1.64 29.61

Table 2.1: A set of sample realizations of prices(pt) and the changes in prices (p̂t)

For disturbances, it is essential to know that p̂t′(ω) means a random variable at time
t for t < t′ but pt(ω) is a sample realization, not a random variable. It is because the
information becomes first known at time t.

Disturbance information processes can be distinguished as either state-independent
processes or state/action-dependent information processes based on the level of its com-
plexity. The state-independent processes indicate the processes evolving independently
regardless of the state variables. They are, for example, wind, stock price, and demand
for services or products. State-independent information processes are very useful. They
are often used to test policies simply after they are generated and stored. State/action-
dependent information processes evolves depending on state variables xt or control vari-
ables ut. These processes are, unlike the state-independent information process, unable to
create sample paths in advance for testing control policy.

System Model

In engineering problems, the system model is often considered the first thing to do when
developing a dynamic problem. The system model shows how the system evolves from
one state variables to another based on the control variables and disturbances. Equation
(2.5) shows a general form of system model.

xt+1 = f(xt, µ
π
t (xt),Wt+1) (2.5)
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2.3 Modeling Disturbance

Objective Function

Objective function plays an important role as performance metrics or stage cost for evalu-
ating control variables and evaluating a control policy. It is most widely known as a cost
function or a contribution function to be minimized or maximized.

In stochastic programming, performance metrics are often denoted as g(xt, ut,Wt+1).
It means a cost function is computed based on the state, the control variables, and distur-
bances.

To find the best effective policy, the universal objective function can be formulated as
equation (2.6).

max
π

Ex0
EW1,...,WN |x0

{
N∑
t=0

gt(xt, µ
π
t (xt),Wt)|x0

}
(2.6)

Equation (2.6) covers all range of problems, either state-dependent and state-independent
problems, either final reward or cumulative reward.

2.3 Modeling Disturbance
It is not possible to find an effective control policy without modelling disturbance models.
Although the importance of disturbance models are often underestimated, a practitioner
often faces the challenge to solve a stochastic problem due to disturbance models. There
are several types of disturbances. They are briefly explained below (Powell, 2020):

• Observational errors: It often occurs with the unknown state which can not be ob-
served directly or accurately.

• Exogenous uncertainty: It means exogenous information which is realized at time t.
It includes, for example, demand, prices and weather.

• Prognostic uncertainty: It is defined as the deviation between the forecast of the
information and the realization of the information in the future.

• Inferential uncertainty: It arises when observations are used to estimate another set
of parameters due to the lack of understanding of the system. It could be partially
from noise in the observation and from the model.

• Experimental variability: It is the difference in the results from experiments run in
similar conditions. It can occur in a computer simulation, a laboratory experiment
or a field implementation.

• Model uncertainty: It may come from the transition function or the model of the
stochastic process due to lack of understanding.

• Transitional uncertainty: It happens due to only exogenous shocks under the as-
sumption of the perfect model of transition function.

• Control/implementation uncertainty: It occurs because of the unintended random
perturbation on a controller.

9



Chapter 2. Background on Stochastic Optimization

• Communication errors and biases: It means accidental or intended miscommunica-
tion about states

• Algorithmic instability: Subtle changes of the input data or parameters can lead to
the different path of an algorithm with variability.

• Goal uncertainty: It happens when there are multiple different expected solutions.
For example, when a single model produces the results for different stakeholders.

• Political/regulatory uncertainty: Cost and constraints are influenced by the uncer-
tainty about rules and requirements.

The sequential stochastic optimization problem is driven mainly by two information
processes: control variables and disturbance information. The information sequence of the
stochastic problem looks like:

x0 → u0 = µπ0 (x0)→W1 → x1 → u1 = µπ1 (x1)→W2 → x3 →

The system model, such as equation (2.5), can be computed by using a policy µπt (xt),
the initial state, and disturbances known ahead. However, it is often a challenge to simulate
the disturbance information sequence.

By introducing sample paths for disturbances, the sequential stochastic problem can
be formulated as:

minimize
π

Jπ(ω) =

N∑
t=0

gt(xt(ω), µπt (xt(ω)))

subject to xt+1 = f(xt(ω), µπt (xt(ω)),Wt+1(ω))

(2.7)

By modelling a sample path for disturbance information, stochastic programming can
be easily solved. There are many tools available to model sample paths of disturbances.
For example, Markov chain modelling, Monte Carlo sampling, probability distribution,
numerical simulation, and observational sampling can be performed. Among these tools,
Markov Chain Monte-Carlo sampling and probability distribution are powerful tools and
often applied(Powell, 2020). Especially, Markov Chain Monte–Carlo (MCMC) is a very
useful method for making sample paths of disturbances. It is a computer-driven sampling
method that generates samples randomly based on the distribution information. MCMC is
a combination of two properties: Monte–Carlo and Markov chain. Monte-Carlo exploits
the properties of a distribution and Markov chain gives an idea that random sample is
dependent on the previous one(van Ravenzwaaij et al., 2016).

Also, to apply the tools for modelling distributions it is important to realize the be-
haviours and the distribution shapes of the random variables. The major classes of distri-
butions includes(Powell, 2020):

• Exponential families of random variables: Most of the well-known distributions fall
into this category such as normal distribution.

• Heavy-tailed distributions: As time goes, it does not shows much variance in the
distribution. The price is a good example.
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• Spikes: The distribution displays infrequent but extreme observation. The peak of
electricity price is regarded as a good example.

• Rare events: Rare events such as spikes, however, these are characterized as events
instead of values. A good example of the rare events might be a jet engine failure.

• Burst: A sequence of observations over a short period can be characterized as a
burst. It can be the behaviour of the process due to the extreme condition such as
power outages.

• Regime shifting: A data series shift from one region to another. Data does not
always stay around the mean.

2.4 Designing Control Policies
A control policy is defined as a function or a rule which determines a control variables
based on the state variables. There are two fundamental strategies which create control
policies. One is policy search, and the other is policies based on lookahead approxima-
tions. In policy search, equation (2.8) is directly used to search over policies and parame-
ters.

max
π∈Π

Eπ
{

T∑
t=0

gt(xt, µ
π
t (xt),Wt+1)|x0

}
(2.8)

Policies based on lookahead approximations approximates the states in the future from
the impact of a decision made at present.

Both of the strategies can create optimal policies under specific situations. Each strat-
egy can be classified into two meta policies as Figure 2.2 shows.

Figure 2.2: Four policies identified using two strategies

These four classes of policies can cover most of the communities introduced in chapter
2.1 and can offer a foundation for designing effective policies. Additionally, tuning allows
for the creation of very high-quality results from simple policies(Powell, 2020).

2.4.1 Policy Function Approximations
Policy Function Approximations (PFA) are analytic functions which make feasible control
variables by using the states without optimization. It is often applied to low-dimensional

11



Chapter 2. Background on Stochastic Optimization

vectors or discrete actions. If there is a very well structured idea of how to create a control
variable, effective policy can be designed by PFA. Example cases where policy function
approximations can be applied are control policies for the inventory, the water reservoir
and the dam control.

Policy function approximations can be written as a form of parametric or locally para-
metric function. Depend on the form, classes of PFA can be classified. A few of them are
explained briefly below:

• Lookup table policies:

A lookup table policy can be simply expressed:

u = µπ(x)

It returns to discrete control action, u, from a particular discrete state variables,
x. Therefore, there is one control action parameter stored for each state variable.
Lookup tables are widely used in business because it is easy to understand and to
define. However, it may be very difficult to optimize in practice.

• Affine policies

Affine policies are written in the linear form with the unknown parameters as fol-
lowing:

µπ(xt|θ) = θ0 + θ1φ1(xt) + θ2φ2(xt)

Affine problem is often used in the quadratic control problem. By applying consid-
erable algebra with weighting factors of the quadratic control problem, the optimal
policy is simply expressed as:

u∗t (xt) = Kt · xt

However, the problem must be unconstrained to use this approach, well known as
the Ricatti equation.

• Monotone policies

If the state variables are multidimensional, the control variables change on each
dimension of the state variables in monotone policies. The most common example
of monotone policies is the buy-low and high-sell policy as:

µπ(xt|θ) =


−1 If pt ≤ θmin
0 If θmin < pt < θmax

1 If pt ≥ θmax

where pt is the energy price at time t. In the example policy, it buys energy when
the price goes down below θmin and sells it when the price goes up above θmax.
The action increases monotonically.
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Given a control policy structures, as described above, with parameters θ, there are
multiple ways to optimize the policy by finding the best values of θ for maximizing or
minimizing the objective function as:

max
θ
Jπ(θ) = Eπ

{
T∑
t=0

g(xt, µ
π(xt|θ))|x0

}
(2.9)

where the dynamics evolves according to:

xt+1 = fM (xt, ut,Wt+1)

This process is called policy search. There are two approaches to perform the policy search
as following:

• Batch learning

Equation (2.9) is replaced with an average over N samples as:

minimize
θ

J̄π(θ) =
1

N

N∑
n=1

T∑
t=0

g(xt(ω
n), µπ(xt(ω

n)|θ))

subject to xt+1(ωn) = fM (xt(ω
n), µπ(xt(ω

n)|θ)),Wt+1(ωn))

(2.10)

where the constraint is a system model which generates the sequence of the state
variables generated following sample path ωn. This is a classical statistical estima-
tion problem.

• Adaptive learning

Instead of batch learning, also the logic of updating standard stochastic gradient can
be used as:

θn+1 = θn + αn∇θFπ(θn,Wn+1)

The stochastic gradient Fπ(θn,Wn+1) can be obtained by differentiating equation
(2.9) with respect to θ. By applying the chain rule, the stochastic gradient can be
computed by:

∇θFπ(θ, ω) =

(
∂C0(x0, u0

∂u0

)(
∂µπ0 (x0|θ)

∂θ

)
+

T∑
t′=1

[(
∂Ct′(xt′ , µ

π
t′(xt′))

∂xt′

∂xt′

∂θ

)
+
∂Ct′(xt′ , ut′)

∂ut′

(
∂µπt′(xt′ |θ)

∂xt′

∂xt′

∂θ
+
∂µπt′(xt′ |θ)

∂θ

)(2.11)

where

∂xt′

∂θ
=

∂xt′

∂xt′−1

∂xt′−1

∂θ
+

∂xt′

∂ut′−1

[
∂µπt′−1(xt′−1|θ)

∂xt′−1

∂xt′−1

∂θ
+
∂µπt′−1(xt′−1)

∂θ

]
(2.12)
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The derivative ∂xt′/∂θ at time t = 0 are computed using equation (2.12) where
∂x0/∂θ = 0 and stepping forward in time.

The complexity of the computation of these derivatives is highly problem depen-
dent. The computation of the derivation, using equations (2.11) and (2.12), requires
assumptions that the cost function, the policy and the transition functions can be
differentiated(Powell, 2020).

2.4.2 Cost Function Approximations
Cost Function Approximations (CFA) are widely used in industry, although it is not getting
much attention in academia. In CFA, the approximation of objective function is maximized
or minimized, subject to the approximation of constraints. Equation (2.13) shows the
general form of CFA.

µCFA(xt|θ) = argmax(u)ḡt(xt, u|θ) (2.13)

where ḡt(xt, u|θ) represents a the parametrically modified cost function, subject to a mod-
ified set of constraints.

CFA pulls off the pure exploitation policy by adding an uncertainty bonus as a form of
parameters in a pure problem. CFA is a heuristic approach to adjusting a tradeoff between
exploration and exploitation.

The objective function is modified to achieve desired behaviour by heuristic approaches
such as bonuses and penalties. It helps to get cost-based optimization models which pro-
duce robust behaviour in the presence of uncertainty.

The constraints can be modified by introducing parameters as well to produce more
robust solutions. It is commonly applied practically in real-world problems. Constraint-
modified CFA is given by:

UCon−CFA(xt|θ) = argmax
ut

C(xt, ut)

subject to

Atxt = b(θ)

xt > 0

The policy search of CFA can be easily implemented by generating a set of parameters
θ = {θ1, θ2, . . . , θn}, then using the equation (2.10) which is known as the batch learning
method. Also, the stochastic gradient equations (2.11) and (2.12) can be applied for the
policy search of CFA(Powell, 2020).

2.4.3 Value Function Approximations
The idea of Value Function Approximations (VFA) started from Bellman’s equation. VFA
uses an approximation of the value of being in a state resulting from control variables taken
now. Equation (2.14) shows the general form of VFA(Powell, 2020).

µV FA(xt|θ) = argmax(u)(g(xt, u) + V̄ ut (xt, u|θ)) (2.14)
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where V̄ ut (xt, u|θ) is the approximation of the future impact.

2.4.4 Direct Lookahead Approximations
Direct Lookahead Approximations (DLA) maximize or minimize based on an approximate
model of current and future cost. It is the most brute-force method. When the future
approximation can not be computed by VFA, DLA is often used and equation (2.14) is
converted into equation (2.15), the decision tree problem, to find optimal control variables.

µ∗t (xt) = argmax
ut

(
g(xt, ut) + E

{
max
π

E

{
T∑

t′=t+1

g(xt′ , µ
π
t′(xt′))|xt+1

}
|xt, ut

})
(2.15)

In equation (2.14), the inner term, after maxπ , represents the process of finding the best
action among a class of policies. However, it is not possible to solve. The easiest solution
to compute equation (2.15) is to make an approximation. The deterministic approximation
of the future is the most popular methods for modelling the solvable lookahead problem.
It can be done easily by replacing the end of the horizon from T to t+H , which limits the
size of the matrix(Powell, 2020).
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Chapter 3
Background on Energy Storage

3.1 Introduction
The history of the energy storage system started from the ancient civilization. The oldest
form of energy storage is the storage of natural ice or snow from mountains and lakes
during the wintertime and they often were used for food preservation, cold drinks and
space cooling. However, energy storage is not considered as primitive technology despite
its long history. These days, the energy storage system is considered as an advanced
energy technology with enormous potential economically and environmentally for now
and the future.

Since the development of modern energy storage systems, they have been playing an
essential role in energy management, especially in the matter of satisfying energy demand
by using the minimum amount of energy resources. The benefit of the energy storage
system has become even broader because it also enables the utilization of unpredictable
and intermittent renewable energy resources such as wind and solar power. For example,
the energy generated from the wind power is stored when the wind is strong, then the
energy is used at the peak of energy demand or when the wind does not blow. Not only
because of better utilization of the renewable natural resources but also because the en-
ergy storage can be employed to capture energy waste from other units, it is undeniable
that the energy storage system is an environmentally friendly technology(Kalaiselvam and
Parameshwaran, 2014).

There are plenty of other benefits from energy storage systems, aside from being en-
vironmentally friendly. The installation of the energy storage system will result in the
following advantages(Aneke and Wang, 2016):

• Economic operation from reducing energy costs and consumption.

• Enhanced operation flexibility and reliability.

• Smaller equipment sizes.

• Better efficiency of process equipment.
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• Less usage of fossil fuel and reduced greenhouse gas emission accordingly.

Energy storage consists of substances which can hold energy. The type of energy
storage is identified based on the form of the stored energy such as mechanical, chemical,
biological, magnetic and thermal energy storage(Kalaiselvam and Parameshwaran, 2014).

3.2 Thermal Energy Storage

A thermal energy storage stores heat as sensible heat energy or latent heat energy for
later uses. The operation of thermal energy storage helps to stitch the gap between en-
ergy supply and energy demand. How to operate the thermal energy storage system, in
terms of making decisions about charging, storing, and discharging the thermal energy,
is dependent on factors such as temperature, place, demand and supply at present or in
future(Kalaiselvam and Parameshwaran, 2014).

3.2.1 Concept of Thermal Storage System

The concept of the thermal energy storage system is distinguished as active or passive ones
as shown on Figure 3.1.

Figure 3.1: Scheme of classification of different storage systems according the storage concept

The forced convection heat transfer into the storage substance is the feature of active
systems. In active storage, the storage medium, where the heat is stored, flows through a
heat exchanger. Active systems are classified as direct or indirect systems. The difference
between direct and indirect system is whether the heat transfer fluid is used as the storage
medium as well or not. If the heat transfer fluid is also used as the storage medium, the
thermal energy storage system is the direct active system. If the different medium for
storing the heat, then the system is defined as an indirect active system.

In passive storage systems, the heat transfer fluid flows around only storage for charg-
ing and discharging the system. Therefore, the storage medium does not circulate itself to
transfer the heat. The storage medium of a passive storage system is often solid such as
concrete and PCM(Gil et al., 2010).
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3.2.2 Types of Thermal Energy Storage
Thermal energy storage is categorized into three types: sensible heat storage, latent heat
storage, and thermochemical storage.

Sensible Heat Storage

When heat is stored in sensible heat storage, the temperature of the storage medium
changes, either increasing or decreasing. There are plenty of available storage mediums
with its own advantages and disadvantages for sensible heat storage: water, air, oil, brick,
brick, concrete, etc. The material of the storage medium is chosen depending on the heat
capacity and the available space for the storage. (Cabeza et al., 2015)

Generally, the material used for sensible heat storage tends to have a high thermal
capacity and is cheap and easy to obtain. When choosing the material, its properties must
be considered such as density, specific heat, thermal conductivity and diffusivity, vapour
pressure, compressibility, and chemical stability.(Fernandez et al., 2010)

Latent Heat Storage

Latent heat storage utilizes the huge energy transfer from the phase transition of a ma-
terial, latent heat. Solid-liquid phase transition, by melting and solidifying a material, is
commonly applied for latent heat storage technology. The benefit of this storage is that it
can store and release a large amount of thermal energy at a constant temperature. There
are also many materials available for latent heat storage. They are called phase change
materials (PCM). However, only a few of PCMs are available in the industrial area due
to problems such as phase separation, subcooling, corrosion, long-term stability, and low
heat conductivity. When choosing a proper PCM for the system, melting enthalpy and
temperature, availability and cost must be considered(Cabeza et al., 2015).

Thermochemical Energy Storage

Many chemical reactions are either exothermic and endothermic. Thermochemical energy
storage utilizes these reactions, but only reversible reactions. Although chemical energy
conversion has better performance efficiency than sensible and latent heat storage, it is
difficult to find the appropriate reversible chemical reaction.

Thermochemical energy storage consists of chemical reactions and the sorption sys-
tem. There are several chemical reactions studied for thermochemical energy storage such
as hydration reaction, carbonation reaction, ammonia decomposition, metal oxidation re-
actions and sulfur cycles. As sorption system, there are adsorption on solid materials or
liquids(Orosz and Dickes, 2017).

Thermal Storage Using Water

It is ideal to use a material with a large heat storage density per volume as the storage
medium of sensible heat storage. The material should have high specific heat value and
high density. Among all the available materials for sensible storage, water shows a very
high heat storage density. Not only that, but water also has many other advantages: cheaper
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price, better availability, and less reactivity. Therefore, water is often considered as the
most suitable material as storage medium if the operation temperature is between 0◦C and
100◦C. The material used for the storage tank must be watertight and highly insulating to
minimize the heat losses from the storage. It becomes often more critical when operating at
higher temperatures because the higher temperature is, the larger the heat loss that occurs.
Moreover, it is better to have the charging and discharging rate as high as possible for
better operation(Furbo, 2015).

3.3 Control Policy of Energy Storage System
To choose a good control policy for the operation is as important as to select the right
energy storage device for the purpose and the unique situation of the system. This section
briefly discusses the control policies applied in the energy management system.

Buy-Low and Sell-High

Buy-low and sell-high is one of the simple investment strategies used by many investors
or business area(Zervos et al., 2013). This strategy is designed to obtain benefits from
energy storage. As the energy price does not stay constant and fluctuates, energy can be
purchased from the market then stored into the energy storage system when the price is
low. The stored energy can then be used or discharged when the energy price is high. By
doing so, the operation cost of energy storage will be reduced, which leads to maximum
profit(Berrada and Loudiyi, 2019).

Model Predictive Control

The idea of Model Predictive Control (MPC) was raised by (Richalet et al., 1978) and
(Cutler and Ramaker, 1979). MPC has a strong advantage in that it applies the optimization
theory in control. It uses the mathematical models of the system to predict the future
states and control variables, at each discrete time step, based on the current states. It
then applies the first control variables into the system. It enables the system to achieve
the control objective. The optimization problem is updated at each time step because of
the feedback. Therefore, it is fixed automatically when the system is driven away from
the model prediction. This procedure of MPC is implemented repeatedly on each time
stepFoss (2013).

The MPC strategy is well explained by Mayne as(Mayne et al., 2000):

Model predictive control is a form of control in which the current control action is
obtained by solving, at each sampling instant, a finite horizon open-loop optimal control
problem, using the current state of the plant as the initial state; the optimization yields an

optimal control sequence and the first control in this sequence is applied to the plant.

Table 3.1 shows the algorithm of MPC. A prediction horizon is how far the model pre-
dicts the future through optimization. The prediction horizon moves forward accordingly
as the optimal solution is computed for each step. This technique is called the moving
horizon approach and shown on Figure 3.2.
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Algortihm: State feedback MPC procedure
for

t = 0,1,2,. . . do
Get the current state xt
Solve a dynamic optimization problem on the prediction horizon
from t to t+N with xt as initial condition.
Apply the first control move ut from the solution above.

end for

Table 3.1: Basic MPC algorithm

Figure 3.2: Illustration of MPC principle

A sequence of optimal control variables is obtained by computing the optimization
problem (3.2), over and over again. The first variable of the sequence is then applied to
the system(Foss, 2013).

minimize
x, u

φ(x, u)

subject to F (ẋ, x, u) = 0,

xlow ≤ x ≤ xhigh,
ulow ≤ u ≤ uhigh

(3.1)
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Multistage Model Predictive Control

Model predictive control (MPC) handles multi inputs and multi outputs (MIMO) system
which is highly coupled. However, standard MPC can not deal properly with uncertainty
because the optimisation technique does not consider uncertainty (Birge, 1997)(Shapiro
et al., 2009).

After many years of research, multi-stage MPC is presented by (Lucia et al., 2013).
The main idea of this approach is to apply a scenario tree which describes the growth of
uncertainty with each discrete time step. Therefore, multi-stage MPC is often represented
as scenario-based MPC.

The principal assumption is that the uncertainty can be properly modelled by a scenario
tree. The scenario tree that is employed in multi-stage MPC is shown on Figure 3.3.

Figure 3.3: Scenario tree representation of uncertainty evolution for multi-stage MPC

It describes the uncertainty evolution by branching out at each node. Every node rep-
resents expected states by uncertain events and the control inputs according to the events.
The tree describes the future control actions according to the previous uncertainty realisa-
tion obtained from measurement information. Therefore, future control input sequences
are used to cancel out the effect of future uncertainty. It guarantees that multi-stage MPC
has a lower degree of conservativeness compared to other approaches under uncertainty.

However, the problem size increases exponentially as the number of uncertainty reali-
sation and prediction horizon length increases. Therefore, it is important to build a proper
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scenario tree for the desired system. To keep the problem size compact, the uncertainty
must remain constant after a certain point in time called the robust horizon as described on
Figure 3.4.

Figure 3.4: Scenario tree representation of the uncertainty evolution for multi-stage MPC with
robust horizon

To formulate the scenario-based MPC mathematically, the discrete-time transition func-
tion as:

xt+1,j = f(xt,j , ut,j , dt,j)

where, the subscription (·)t,j means the jth scenario at time t.
Firstly, the scenario tree such as Figure 3.4 is built by the uncertainty realisation. Each

scenario is formulated as the path from the root node to the leaf node.

23



Chapter 3. Background on Energy Storage

Then, optimization problem for the scenario-based MPC is:

minimize
xt,j , ut,j

S∑
j=1

[
ωj

N∑
t=1

J(xt,j , ut,j)

]
subject to f(xt,j , ut,j , dt,j) = xt+1,j ,

g(xt,j , ut,j) ≤ 0,

S∑
j=1

Ējuj = 0 ∀j ∈ 1, ..., S

(3.2)

where ω represents the probability or weight for each scenario, J(xk,j , uk,j) is the cost
function, g(xk,j , uk,j) is the constraints. The last constraint in problem (3.2) is known as
the non-anticipativity constraints which make sure that the future control variables cannot
anticipate the realisation of the uncertainty. It also guarantees that the states from the same
parent node must have the same control input.

p = nu

S−1∑
j=1

nc,(j,j+1) (3.3)

where nc,(j,j+1) is the number of common nodes for two consecutive scenarios j and j+1
in the scenario tree. The matrices Ēj,j is given as:

Ē =


E1,2 −E1,2

E2,3 −E2,3

. . . . . .
ES−1,S −ES−1,S

 (3.4)
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Chapter 4
Case Study: A District Heating
Network

4.1 Case Study
As a case study, we will analyze a district heating network with a thermal storage device.
An incineration plant at Heimdal burns municipal solid waste to heat up water that runs
in pipes to large parts of the city of Trondheim. Most residential areas in the city are
connected to the district heating network. In addition, institutions such as St. Olav’s
Hospital, the Norwegian University of Science and Technology, Lerkendal Stadium and
Nidaros Cathedral also receive district heating.

The waste incineration plant is designed to provide the base-load of the heating de-
mand. Without storage, peak heating would have to be supplied by backup electric boilers.
This peaking/backup system is expensive and its operating cost depends on the spot elec-
tricity prices, which are highly stochastic. As an alternative, a thermal storage device has
been installed. It consists of a hot water tank that can be charged/discharged on-demand.
The main idea is to store the excess heat from the waste incineration plant when demand
is low and use it at a later time when demand is high. However, we can also benefit from
fluctuations in spot electricity prices. For example, we can use electric boilers to charge
the hot water tank when electricity prices are low and use the hot water tank to satisfy
demand when electricity prices are high. This gives great flexibility, but we need to design
a control policy to operate the system.

4.2 Mathematical Model
We consider the problem of controlling the heat flows in the district heating network with
a thermal storage device over a finite-time horizon t = 0, 1, . . . , T , where t is the time
index and T is the horizon or number of times control is applied. The goal is to find a
policy, or control law, that minimizes the total expected cost.

25



Chapter 4. Case Study: A District Heating Network

The possible heat flows within the system are illustrated in Figure 4.1. The heat pro-
duction plant may send heat to satisfy the demand or to charge the storage device. Simi-
larly, heat can be purchased from the grid on-demand at the spot electricity price by using
the electric boilers to either satisfy the demand or to charge the storage device. The energy
stored in the device may be used to satisfy the demand at any time. All of these decisions
have to be made in the face of uncertain demand and highly stochastic spot electricity
prices.

Figure 4.1: Heat flows in the system. QIJ
t is the amount of heat transferred from I to J at time t.

We make the following assumptions:

• We do not model the heat loss in the storage device. However, we account for losses
indirectly by introducing the round-trip efficiency as a model parameter.

• We consider that we are a small player in the electricity market and we can purchase
unlimited energy from the grid. Furthermore, our actions do not affect the spot
electricity prices.

4.2.1 Static Parameters
The thermal energy storage device can be characterized by the following static parameters:

• Smax: Maximum energy capacity of the device in MWh.

• ηc, ηd: Charging and discharging efficiency of the storage device, respectively.

• γc, γd: Maximum charging and discharging rate of the storage device, respectively,
given as MWh per time period.

For this case study, we will consider the following numerical values for the static
parameters:

26



4.2 Mathematical Model

Smax 500 [MWh]
ηc 0.9
ηd 0.9
γc 50 [MWh per time]
γd 50 [MWh per time]

Table 4.1: Values for the static parameters.

4.2.2 State Variables

The state of the system at time t is given by the vector

xt = (St, Et, Dt, pt), (4.1)

which includes all the information that is necessary and sufficient to compute control ac-
tions, calculate costs and simulate the process over time:

• St: Amount of heat in the storage device at time t in MWh.

• Et: Amount of heat produced by the waste incineration plant at time t in MWh.

• Dt: Aggregate heat demand at time t in MWh.

• pt: Spot electricity price at time t in NOK/MWh.

For this case study, we will consider the following values for the initial state:

S0 0 [MWh]
D0 200 [MWh per time]
E0 200 [MWh per time]
p0 210 [NOK/MWh]

Table 4.2: Values for the initial state, x0.

4.2.3 Decision Variables

The decision or control variables at time t are given by the vector

ut = (QWD
t , QGDt , QSDt , QWS

t , QGSt ), (4.2)

where QIJt represents the amount of thermal energy transferred from I to J at time t. The
superscript W stands for waste incineration plant, D for demand, S for storage and G for
grid. Arguably, the main decision we must make is whether to use the energy from storage
now or hold it for a later time when we anticipate the demand will exceed the supply or
the electricity prices may go up.
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4.2.4 Constraints
In our model, the control actions are subject to several constraints. We require that all
components of ut be nonnegative for all t:

QWD
t , QGDt , QSDt , QWS

t , QGSt ≥ 0. (4.3)

Furthermore, the total amount of energy stored in the device at time t must not exceed the
energy capacity available:

QWS
t +QGSt ≤ Smax − St. (4.4)

We also make the assumption that all demand at time t must be satisfied:

QWD
t + ηdQ

SD
t +QGDt = Dt. (4.5)

Additionally, the amount of energy drawn from the storage device to satisfy the demand
must not exceed the amount of energy that is available in the device at time t:

QSDt ≤ St. (4.6)

The total amount of energy charged to or withdrawn from the device is also constrained
by the maximum charging and discharging rates:

QWS
t +QGSt ≤ γc, (4.7)

QSDt ≤ γd. (4.8)

Finally, flow conservation requires that:

QWS
t +QWD

t ≤ Et. (4.9)

The control ut is constrained to take values in a given subset Ut(xt) defined by (4.3)-(4.9),
which depends on the current state xt. We assume that decisions are made with a policy
(also called control law) that consists of a sequence of functions π = {µ0, . . . , µT−1},
where µt maps states xt into controls ut = µt(xt), and satisfies the control constraints,
i.e., is such that µt(xt) ∈ Ut(xt).

4.2.5 Exogenous Information
We denote by ωt the vector of exogenous information (also known as random variables or
disturbances), which denote all the variables that arrive enxogenously to the system be-
tween t and t+ 1. When modeling specific variables, we use ”hats” to indicate exogenous
information. In our model,

ωt = (Êt, D̂t, p̂t), (4.10)

where:

• Êt: Amount of energy supply by the waste incineration plant between times t and
t+ 1.
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• D̂t: Amount of aggregated heat demand between times t and t+ 1.

• p̂t: The spot electricity price between times t and t+ 1.

To complete the model, we would have to either provide the probability distribution
for the exogenous variables or to specify the source for actual observations. In Section 4.3
we describe the stochastic models we use for the exogenous information processes.

4.2.6 System Model
The mapping from a state xt to the next state xt+1, given our control action ut and a
random disturbance ωt is given by the following transition function:

xt+1 = ft(xt, ut, ωt). (4.11)

The dynamics in our energy system are described by the following equations:

St+1 = St + ηc(Q
WS
t +QGSt )−QSDt , (4.12)

Et+1 = Êt+1, (4.13)

Dt+1 = D̂t+1, (4.14)

pt+1 = p̂t+1. (4.15)

Equation (4.12) is an energy balance in the storage device, while equations (4.13)-
(4.15) update the heat supply, the aggregate heat demand and the spot electricity price
based on the realization of the random disturbance.

4.2.7 Cost Function
Every time we purchase electricity from the grid at a price pt (using the electric boilers)
to either satisfy the demand or charge the storage device, we incur in the following stage
cost:

gt(xt, ut, ωt) = pt(Q
GS
t +QGDt ). (4.16)

Given an initial state x0, the total expected cost of a policy π = {µ0, . . . , µT−1} over
a finite-time horizon t = 0, 1, . . . , T is given by

Jπ(x0) = E

{
gT (xT ) +

T−1∑
t=0

gt(xt, µt(xt), ωt)

}
, (4.17)

where the expected value operator E {·} is over all the random variables ωt and xt. There-
fore, our goal is to find a policy π that minimizes this cost. Mathematically, we can write
our problem in a compact form as

min
π∈Π

Jπ(x0), (4.18)
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where Π is the set of all admissible policies (i.e., policies that satisfy the constraints). Note
that this problem requires optimizing a functional over functions, which is a mathematical
problem with roots on calculus of variations. This is the main point of departure from
deterministic optimal control problems, where we optimize a cost function over a set of
real values (mathematical programming).

If the problem above was deterministic and the exogenous information was known a
priori, we could solve the control problem using a standard batch linear program (LP):

min
u0,...,uT

T∑
t=0

gt(xt, ut), (4.19)

such that ut ∈ Ut(xt) for each time t and subject to transition dynamics expressed as a set
of constraints linking all time points. This formulation is only valid if we can make exact
predictions about the energy produced in the waste incineration plant, demand and spot
electricity prices. This is hardly ever the case with physical processes that are intrinsically
stochastic. However, this formulation is useful as a performance bound to benchmark
policies.

4.3 Exogenous Information Processes

In this section, we present the models of the exogenous information processes. These
include the heat supply by the waste incineration plant, the aggregated heat demand, and
the spot electricity prices.

4.3.1 Heat Supply

The heat is generated by burning solid waste in the incinerator. The amount of heat supply
depends on the amount of waste available and the maximum capacity of the incinerator.
Assuming that the waste arrives every morning, the incinerator is most likely to operate at
steady-state. Therefore, the heat supply is assumed deterministic:

Êt = 210 [MWh] (4.20)

The heat energy supply is shown as a red line on Figure 4.2.

4.3.2 Heat Demand

The heat demand follows a daily pattern characterized by peaks in the morning (6-7am)
and in the evening (7-8pm). We model this predictable variability as a sinusoidal func-
tion. To account for stochastic uncertainty, we introduce Gaussian noise in this function.
Therefore, the stochastic model is as follows:

D̂t = min

{
max

{
µ0 +A0 sin

(
4πt

T
− π

2

)
+ εD, Dmin

}
, Dmax

}
[MWh] (4.21)
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Figure 4.2: Demand model: Sinusoidal

Where Dmin is the minimum heat demand, Dmax is the maximum heat demand, and εD
is random noise. The parameters used in (4.21) for the case study are:

Dmin = 100, Dmax = 300, µ0 = 200 A0 = 50, εD ∼ N(0, 20)

A sample realization of this stochastic model is shown (blue line) in Figure 4.2.

4.3.3 Electricity Prices
Real-time electricity prices are spiky and highly stochastic. We model them using a first
order Markov chain in combination with a jump diffusion model:

p̂t = min
{

max
{
p0 + p1 + 1{ut≤p}p2, pmin

}
, pmax

}
[NOK/MWh] (4.22)

where p0 is the average price, p1 captures Gaussian noise and p2 models sudden jumps in
prices, which occur according to:

1{ut≤p} =

{
0 if ut ≤ p,
1 if ut ≥ p.

Here, ut is a continuous uniform random variable between 0 and 1. In our case study, the
parameters for (4.22) are set as:

pmin = 0, pmax = 2500, p0 = 200

p1 ∼ N(0, 50), p2 ∼ N(0, 500), ut ∼ U(0, 1) p = 0.0031

A sample realization of this stochastic model is shown in Figure 4.3.
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Figure 4.3: Price model: First-order Markov chain + jump
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Chapter 5
Designing Control Policies

This chapter is devoted to the design of control policies. We consider four different poli-
cies: a simple policy given by a closed-form expression, a certainty equivalence model
predictive control, a parametric modified model predictive control, and a scenario-based
stochastic model predictive control. Each policy will be presented in detail in the following
sections.

Our goal in this chapter is to test these policies on the case study presented in the pre-
vious chapter. We will benchmark their relative performance against the posterior optimal
solution, i.e., deterministic bound when we assume perfect knowledge of the future. We
also examine the total expected cost we incur to when storage is not considered.

5.1 Case without Thermal Energy Storage
We first consider the case without the storage device. In this case, electric boilers have to be
used as a backup to supply the peak heating, purchasing electricity at the spot electricity
price. A diagram of the system in this case is shown in Figure 5.1. We compute the
total expected cost for this case by simulating 500 uncertainty scenarios. The result is
7.7016e+05 NOK.

Figure 5.1: The diagram of the district heat network without the thermal energy storage device.
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5.2 Simple Policy
In this section, we derive a simple policy given by a closed-form expression based on PFA.
It follows the philosophy of “buy low, sell high”, meaning that it searches for opportunities
to charge the storage device when electricity prices are low and use the storage device
when prices are high. The structure of the policy is given below:

µt(xt|θ) =



QWD
t = min{Dt, Et}

QSDt =

{
min{Dt −QWD

t ,min{St, γd}} If pt > θhigh

0 If pt ≤ θhigh

QGDt = Dt −QWD
t −QSDt

QWS
t = min{Et −QWD

t ,min{Smax − St, γc}}

QGSt =

{
min{γc, Smax − St −QWS

t } If pt < θlow

0 If pt ≥ θlow

(5.1)

The policy is a parametric function which depends on the parameters θ = (θhigh, θlow),
which are related to the spot electricity prices. The policy is guided by the following prin-
ciples:

• Use the heat from the waste incineration plant first to satisfy the demand.

• If supply exceeds demand, store the surplus heat in the storage device, respecting
the capacity constraint and the maximum charging rate.

• Only use the electric boilers (grid) to satisfy the demand as the last resource, when
the demand cannot be met in any other way.

• Charge the storage device with energy from the grid when electricity prices are
low (below some value θlow), respecting the capacity constraint and the maximum
charging rate.

• Use the storage device to satisfy the demand when electricity prices are high (above
θhigh), respecting the capacity constraint and the maximum discharging rate.

The performance of the policy under uncertainty depends on the parameters θ =
(θhigh, θlow), which must be properly tuned.

5.2.1 Policy Tuning
To tune the policy, we perform an exhaustive search over all possible combinations of
parameters. Exhaustive search is feasible in this problem because we only have two pa-
rameters. For a larger number of parameters, stochastic search algorithms can be used.
The total expected cost for each set of parameters is computed by averaging the result of
500 simulations corresponding to different uncertainty scenarios.

We start by discretizing the parameter space defined by θ = (θlow, θhigh) as follows:
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5.2 Simple Policy

θlow = {0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300},

θplus = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Then, the parameter θhigh is determined by

θhigh = θlow + θplus.

The result of the exhaustive search is shown in Figure 5.2.

Figure 5.2: Total expected cost as a function of the policy parameters. Each point is the average of
500 simulations corresponding to different uncertainty scenarios.

The set of parameters that minimize the total expected cost is

θ = (θlow, θplus) = (120, 70),

which is marked with a red point in Figure 5.2. This corresponds with the following set:

θ = (θlow, θhigh) = (120, 190).

The total expected cost of this simple policy for the optimal tuning parameters is
4.5397e+05 NOK.

During the operation of the simple policy with the optimal parameters, the energy
level of the storage device is shown in Figure 5.3 and the corresponding heat flows in the
system are shown in Figure 5.4. As the policy is intended, it is observed that the rest of
the thermal energy generated from the plan after meeting the demand is stored and used
it when the electricity price is higher than θhigh. The electricity is purchased rarely only
when its price is lower than θlow.
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Figure 5.3: The storage level changes during the operation with the the simple policy
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Figure 5.4: The heat flows during the operation with the simple policy
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5.3 Certainty Equivalence MPC
Certainty equivalence MPC is applied in the same manner as the described algorithm in
Table 3.1. However, the realization of disturbances and their forecast processes must be
included additionally in the algorithm. The structure of the certainty equivalence MPC
follows Figure 5.5.

Figure 5.5: The scheme of certainty equivalence MPC

Each time step t, the realization of disturbances Wt occurs. The disturbance Wt is
converted into the sequence of disturbance forecast Ww,f by forecast models. Combined
with the objective function and the constraints, the state variable xt and the sequence of
disturbance forecast Wt,f are delivered to the optimizer to determine the control variables
ut. The state variables are updated by the system model with control variables ut and state
variables xt. This process repeats over and over on every time step.

The forecast models, which generates the sequence of disturbance forecast Wt,f from
the relaization og disturbances Wt, are formulated as follows:

Dt,f = min

{
max

{
µ0 +A0 sin

(
4πt

T
− π

2

)
, Dmin

}
, Dmax

}
[MWh] (5.2)

Where Dmin and Dmax are the minimum and maximum of the possible thermal energy
demand and are set as 100 and 300, respectively. Model coefficients µ0 and A0 are set as
200 and 50 respectively.

pt+1,f = min
{

max
{
pt + P̂1, pmin

}
, pmax

}
(5.3)

Where pmin and pmax represent the minimum and maximum of the possible spot electric-
ity prices and are set as 0 and 2500 respectively. P̂1 is the probability distribution which
can be expressed as P̂1 ∼ ν(0, 50)

Equation (5.2) is a forecast model of thermal energy demand. It generates the sequence
of the demand forecast, Dt,f . The demand forecast model has the same sinusoidal model
as the thermal demand model, equation (4.21), which generates a sample path of the ther-
mal energy demand. Only difference between equations (5.2) and (4.21) is that equation
(5.2) does not have stochastic noise εD. Thus, the demand forecast model, equation (4.21),
reflects the daily trend of thermal energy demand only.
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Equation (5.3) is a model which forecasts the spot electricity price from the previous
one. It generates the sequence of the spot electricity price forecast, pt,f . This model
is similar to the model of the spot electricity price, equation (4.22). However, equation
(5.3) does not include the price jump and spike term. So, equation (5.3) consider a casual
fluctuation of the spot electricity price.

The disturbance forecast models, equations (5.2) and (5.3), are projected on Figure
5.6. The red dots represents the the future forecast of disturbances and the the blue line
before t = 0 describes the historical disturbances. Figure 5.6 (a) is the history and forecast
of demand. Figure 5.6 (b) is the history and forecast of the spot electricity price.

Figure 5.6: The history and the future prediction trajectories of the heat demand (a) and the spot
electricity price (b)

With the sequence of the disturbance forecasts Wt,f = {Dt,f , pt,f} and the state
variables, the open loop optimization problem is solved in the optimizer as:
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minimize
u

t′+H∑
t=t′

pt,f (QGDt +QGSt )

subject to St + ηc(Q
WS
t +QGSt )−QSDt = St+1, t = t′, . . . , t′ +H,

QWD
t + ηdQ

SD
t +QGDt = Dt,f , t = t′, . . . , t′ +H,

QWS
t +QGSt + St ≤ Smax, t = t′, . . . , t′ +H,

QSDt ≤ St, t = t′, . . . , t′ +H,

QWS
t +QWD

t ≤ Et, t = t′, . . . , t′ +H,

QWS
t +QGSt ≤ γc, t = t′, . . . , t′ +H,

QSDt ≤ γd, t = t′, . . . , t′ +H,

xt, ut ≥ 0, t = t′, . . . , t′ +H

(5.4)

where H indicates the length of the prediction horizon for the open loop optimization. In
the case study, the length of the prediction horizon H is set as 20. As a result of the open
loop optimization, the sequence of the control variables u = {u1, , uH} is obtained. The
first control variable of the control sequence u1 is applied to the system.

The procedure described above is repeated on each time step during the operation
time T . As the result, The energy level change of TES during the operation is described
on Figure 5.7 and the heat flows during the operation is shown Figure 5.8. The energy
level change during the operation by the certainty equivalence MPC seems more unstable
and fluctuating compared to the operation by the simple policy. The heat flows from the
certainty equivalence MPC shows ironical behaviour that QGD is used instead of QWD to
satisfy the demand a few times during the operation. The expected cost of the operation
by certainty equivalence MPC is 6.8444e+05[NOK].
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Figure 5.7: The storage level changes during the heat network operation with MPC
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Figure 5.8: The heat flows during the heat network operation with MPC
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5.4 Parametric Modified MPC

Certainty equivalence MPC can be converted to Parametric modified MPC by using cost
function approximations (CFA). It introduces parameters on either objective function or
constraints to get desired behaviour on the system. In this thesis work, three cases of
parametric modified MPC are considered such as:

1. modification of the maximum capacity of TES Smax by a parameter θS

2. modification of the demand forecast Dt,f by a parameter θD

3. modification of the maximum charging and discharging rates, γc and γd, by a pa-
rameter θR

Parametric modified MPC is tuned, by adjusting an introduced parameter, to achieve
the minimum total expected cost of control policy. The array of a parameter must be first
defined depend on what value of the parameter is desired to be searched for tuning. The
total expected cost of control policy, parametric modified MPC, can be computed with
each parameter by the batch learning method, equation (2.10). A parameter which has
the minimum total expected cost is chosen as the best tuning parameter for the parametric
modified MPC.

5.4.1 Modification of the Maximum Capacity of TES

There are two main reasons to modify the maximum capacity of TES. The first reason is
due to safety. In reality, it is often prohibited to charge the storage to the maximum level
due to the safety reasons. If the surge of the energy supply occurred and there was not
enough space in TES, the hot water could overflow. This accident can be dangerous. It is
important to know how a total expected cost changes when the maximum capacity of TES
is limited.

The second reason is because of potential projects for increasing capacity. It is recom-
mended to know how a total expected cost changes as the capacity of TES increases for
a potential project of increasing the capacity. If the information is known, it is easier to
decide on the investment for the projects.

The two reasons make it worth to adjust and manipulate the maximum capacity of TES
by introducing a parameter θS .

Policy Structure

The problem of parametric modified MPC is easily formulated on this case by introducing
a parameter θS on the constraint of the maximum capacity of TES on the optimization
problem of the certainty equivalence MPC, the optimization problem (5.4). The optimiza-
tion problem of the parametric modified MPC can be written as the optimization problem
(5.9). The parameter θS is marked in red colour. The algorithms and other variables are as
same as the certainty equivalence MPC.
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minimize
u

t′+H∑
t=t′

pt,f (QGDt +QGSt )

subject to St + ηc(Q
WS
t +QGSt )−QSDt = St+1, t = t′, . . . , t′ +H,

QWD
t + ηdQ

SD
t +QGDt = Dt,f , t = t′, . . . , t′ +H,

QWS
t +QGSt + St ≤ θSSmax, t = t′, . . . , t′ +H,

QSDt ≤ St, t = t′, . . . , t′ +H,

QWS
t +QWD

t ≤ Et, t = t′, . . . , t′ +H,

QWS
t +QGSt ≤ γc, t = t′, . . . , t′ +H,

QSDt ≤ γd, t = t′, . . . , t′ +H,

xt, ut ≥ 0, t = t′, . . . , t′ +H

(5.5)

Policy Search

An array of the parameter, which is applied for parametric modified MPC on the maximum
capcity of TES, is specified as:

θS = {0.5, 0.6, . . . , 1.4, 1.5}

Using each value of the parameters, each total expected cost is calculated. The result
is described on Figure 5.9.

Figure 5.9: Policy search of CFA on θR

The total expected cost decreases in general as the parameter θS increases. It shows a
trend such that the larger TES is, the less total expected cost is obtained. However, when
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the parameter θS is more than 1, the gradient of the expected cost over the parameter θS
does not seem constant. When considering to increase the size of TES, more investigation
and consideration must be required.

5.4.2 Modification of the Demand Constraint
The demand forecast is computed by equation (5.2) which reflect the hourly trend of ther-
mal energy demand. However, the demand forecast cannot include the actual variation.
To operate more conservatively and to satisfy the demand easily, the demand forecast can
be manipulated by introducing a parameter θD on it. For example, when the parameter
θD is set as 1.0 and 1.5, the demand forecasts are described on Figure 5.10. It shows the
history of the demand before time t = 0 and the demand forecasts afterwards. The blue
colour line with circles is the demand forecast when the parameter θD is set as 1.5. The
red colour line with crosses is the demand forecast the parameter θD is set as 1.0.

Figure 5.10: The future trajectory of the demand depend on θD

As the parameter θD increase, the demand forecast is overestimated. It leads to store
more thermal energy in TES for future use. It can be done by either buying more electricity
when the electricity is relatively cheaper or storing the thermal energy from the plant when
the energy is excessively supplied compared to the demand.

Policy Structure

The certainty equivalence MPC, equation (5.4), is converted to the parametric modified
MPC for this case by introducing a parameter θD on the energy demand satisfaction con-
straint. The optimization problem of the parametric modified MPC can be written as (5.6).
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The parameter θD is marked in red color. The other information is treated in the manner
with the certainty equivalence MPC.

minimize
u

t′+H∑
t=t′

pt,f (QGDt +QGSt )

subject to St + ηc(Q
WS
t +QGSt )−QSDt = St+1, t = t′, . . . , t′ +H,

QWD
t + ηdQ

SD
t +QGDt = θDDt,f , t = t′, . . . , t′ +H,

QWS
t +QGSt + St ≤ Smax, t = t′, . . . , t′ +H,

QSDt ≤ St, t = t′, . . . , t′ +H,

QWS
t +QWD

t ≤ Et, t = t′, . . . , t′ +H,

QWS
t +QGSt ≤ γc, t = t′, . . . , t′ +H,

QSDt ≤ γd, t = t′, . . . , t′ +H,

xt, ut ≥ 0, t = t′, . . . , t′ +H

(5.6)

Policy Search

In order to search through the policy, the array of the parameter θD is specified as:

θD = {0.5, 0.6, . . . , 1.4, 1.5}

The total expected costs are calculated by the batch learning method, equation (2.10)
with every parameter. The result is plotted on Figure. 5.11.

Figure 5.11: Policy search of CFA on θD

The minimum total expected cost is obtained when the parameter θD is set as 1.0.
Although the total expected cost increases due to more consumption of electricity, the
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energy level of TES can be controlled as desired by setting the parameter θD as described
on Figure. 5.12. The blue line represents the energy change of TES during the operation
for θD = 0.7, The red line is for θD = 1.0, and the yellow line is for θD = 1.3 The higher
the parameter θD is, the more contingency level of energy is kept in TES.

Figure 5.12: The storage level changes depend on the parameter θD

5.4.3 Modification of the Charging and Discharging Rate

Initially, the charging rate and discharging rate on the thermal energy storage device is
limited by their maximum charging and discharging rates, γC and γd, respectively. Tuning
of these constraints can give more flexibility in the utilization of TES.

Policy Structure

The parametric modified MPC can be generated for this case by putting a parameter θR
on the charging and discharging rate constraints. The optimization problem is written as
problem (5.7). The introduced parameters for the rates θR are marked in red colour.
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minimize
u

t′+H∑
t=t′

pt,f (QGDt +QGSt )

subject to St + ηc(Q
WS
t +QGSt )−QSDt = St+1, t = t′, . . . , t′ +H,

QWD
t + ηdQ

SD
t +QGDt = Dt,f , t = t′, . . . , t′ +H,

QWS
t +QGSt + St ≤ Smax, t = t′, . . . , t′ +H,

QSDt ≤ St, t = t′, . . . , t′ +H,

QWS
t +QWD

t ≤ Et, t = t′, . . . , t′ +H,

QWS
t +QGSt ≤ θRγc, t = t′, . . . , t′ +H,

QSDt ≤ θRγd, t = t′, . . . , t′ +H,

xt, ut ≥ 0, t = t′, . . . , t′ +H

(5.7)

Policy Search

In order to perform the policy search on this case, the array of the parameter θR is set as:

θrate = {0.1, 0.2, . . . , 1.9, 2.0}

The parameter θR shows what percentage of the heat transfer rates is utilized on the
thermal energy storage device. For example, if the parameter θR is set as 0.5, the maximum
charging and discharging rates, γc and γd, is limited by their 50%.

The expected costs are computed throughout all elements of the parameter array θR by
using the batch learning method, equation (2.10). The result is shown on Figure 5.13.

Figure 5.13: Policy search of CFA on θR
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It describes that the total expected cost of the operation with this policy is the minimum
when the parameter θR is set as 0.7.

5.4.4 Overall of the Parametric Modified MPC
In this work, three types of parametric modified MPC are performed. The total expected
cost did not get lowered by adjusting parameters to manipulate the maximum capacity of
TES and the demand forecast. However, it is meaningful to know how the total expected
cost changes along with tuning the parameter because the information can play an essential
role when making certain types of decisions such as the size of TES when installing or
increasing the size, safety bounds for operation, and how to control the energy level of
TES.

When performing the policy search over the maximum charging and discharging rates,
the minimum total expected cost is found when the parameter θR is set to 0.7. The total
expected cost of the operation with the control policy is computed as 6.6977e+05[NOK].
During this operation, the energy level of TES changes as described on Figure 5.14 and
the heat flows are controlled as shown on Figure 5.15. Although the energy level change is
less stable than the operation by the simple policy, it is less fluctuating than the operation
by the certainty equivalence MPC. The heat flows are operated no longer ironically as
the operated by the certainty equivalence MPC. Unlike the operation controlled by the
certainty equivalence MPC, OnlyQGD is not used completely to satisfy the demand during
the operation.

Figure 5.14: The storage level changes during the heat network operation by CFA with the limited
maximum charging and discharging rate
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Figure 5.15: The heat flows during the heat network operation by CFA with the limited maximum
charging and discharging rate
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5.5 Scenario-Based MPC

In this section, two scenario-based MPCs are considered and implemented to counteract
the presence of uncertainty such as the future demand or the spot electricity price on the
district heating network system. The scenario-based MPC offers conservative operation.
Both of the scenario-based MPCs employ a scenario tree described on Figure 5.16.

Figure 5.16: The scheme of the scenario tree applied on the case study

The scenario tree is set to evolve based on the parameters θ = {θup, θmid, θdown}.
Each node makes three branches to capture the uncertainty according to the parameters.
The robust horizonNR is set as 2. After the robust horizon, the predictions remain constant
until the end of the prediction horizon Np which is set as 20. Consequently, the nine
scenarios are created and evaluated to make a decision for the control action through the
following optimization process:
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minimize
u

NS∑
j=1

pωj

t′+Np∑
t=t′

p̂t,j,f (QGDt,j +QGSt,j )

subject to St,j + ηc(Q
WS
t,j +QGSt,j )−QSDt,j = St+1,j , t = t′, . . . , t′ +H,

QWD
t,j + ηdQ

SD
t,j +QGDt,j = D̂t,j,f , t = t′, . . . , t′ +H,

QWS
t,j +QGSt,j + St,j ≤ Smax, t = t′, . . . , t′ +H,

QSDt,j ≤ St,j , t = t′, . . . , t′ +H,

QWS
t,j +QWD

t,j ≤ Et,j , t = t′, . . . , t′ +H,

QWS
t,j +QGSt,j ≤ γc, t = t′, . . . , t′ +H,

QSDt,j ≤ γd, t = t′, . . . , t′ +H,

xt,j , t, jt ≥ 0, t = t′, . . . , t′ +H

(5.8)

where j represent a sample path such as j = {1, 2, . . . , NS}, pωj means the probability or
weight factor of a scenario j. In the case, pωj is equally set as 1/NS for all j. When the
optimization is done one more constraint called the non-anticipativity constraint must be
considered in order to make the unique control input. The non-anticipativity constraints
must be written in form of equation (3.4) including of the following terms:

1,1 = u1,2 = u1,3 = u1,4 = u1,5 = u1,6 = u1,7 = u1,8 = u1,9

u2,1 = u2,2 = u2,3, u2,4 = u2,5 = u2,6, u2,7 = u2,8 = u2,9
(5.9)

Scenario-Based MPC of the Electricity Price

In the price scenario MPC, a scenario tree evolves from the electricity price prediction
dependent on the parameters θ = {θup, θmid, θdown}. In this case study, θup is considered
as 30% increase from the prediction, θmid allows the prediction to stay constant, and θdown

means 30% decrease from the prediction. The prediction of the price is obtained from the
price model (4.22). The example of the scenario evolution of the spot electricity price is
described on Figure 5.17. The electricity is realized on time t = 1 and the future scenarios
of the disturbance are projected.

The possible decisions of the heat flows are diversified according to the evolution of
the electricity price. The first input is applied to the system. As a result, the heat flow for
the whole operation is described on Figure 5.19 and the level change of the storage device
is shown on Figure 5.18. The energy level is tended to be kept higher for the conservative
operation than certainty equivalence MPC. The expected cost of the price scenario MPC
is 6.9666e+05[NOK].
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Figure 5.17: The evolution of the electricity price

Figure 5.18: The storage level changes during the heat network operation with scenario MPC on
the electricity price
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Figure 5.19: The heat flows during the heat network operation with scenario MPC on the electricity
price
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Scenario-Based MPC of the Thermal Energy Demand

A scenario tree considers the variation of the thermal energy demand in the scenario MPC
of thermal energy demand. It evolves from the current thermal demand and the future
prediction based on the parameters θ = {θup, θmid, θdown}. In the case study, θup is
set as +20MWh, θmid is no change and θdown means −20MWh from the prediction
of demand. The prediction of the thermal energy demand is computed from the demand
model (4.21). The thermal energy demand is evolved into nine scenarios as described on
Figure 5.20.

Figure 5.20: The evolution of the thermal energy demand

The possible decisions of the heat flows are diversified according to the evolution of
the electricity price. The first input is applied to the system. As a result, the heat flow for
the whole operation is described on Figure 5.22 and the level change of the storage device
is shown on Figure 5.21. The thermal energy storage is operated more conservatively by
keeping some energy always high in the storage for more conservative operation. The heat
flow QGS is more often used than other policies to keep the storage level. The expected
cost of the price scenario MPC is 7.3122e+05[NOK].
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Figure 5.21: The storage level changes during the heat network operation with scenario MPC on
demand
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Figure 5.22: The heat flows during the heat network operation with scenario MPC on the demand
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5.6 Optimal Operation of the District Heating System
To compare the policies implemented above, the deterministic optimal solution must be
calculated. It is assumed, for the calculation, that all of the current and future disturbances
are perfectly and precisely realized in advance. It can be computed by a standard batch
linear program (LP), equation (??), over each simulation. the energy level change of TES
in the optimal control policy can be described on Figure 5.23 and the heat flows during
the optimal operation is shown on Figure 5.24.

Figure 5.23: The storage level changes during the optimal heat network operation

The optimal total expected cost is computed by averaging out all of the costs on every
simulation. It is 4.2467e+05[NOK]
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Figure 5.24: The heat flows during the optimal heat network operation
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5.7 Comparison of Policies
The previous sections show the evaluation of four policies such as the simple policy, the
certainty equivalence MPC, the parametric modified MPC, and scenario-based MPC by
the batch learning method with 500 simulations. Each simulation adopts disturbance from
a sample path generated from equations (4.20) - (4.22). As the number of simulation
increases, the total expected costs of the policies are converged to certain numbers as
described on Figure 5.25. It shows that it is beneficial to have a TES in the system.

The expected cost on each policy is shown on Table 5.1. The deterministic optimum
with a perfect forecast has the lowest expected cost. The second-lowest expected cost
comes from PFA. The expected cost increases in the following order: CFA on MPC, stan-
dard MPC, scenario MPC on price, and scenario MPC on demand. Lastly, the biggest
total expected cost is required for the operation on the system without TES. It is shown
the comparison value on each policy with the optimum. This result shows that the simple
policy can provide near-optimal control policy than others in the presence of uncertainty.

Expected Cost
[NOK](·105)

Relative value to optimal solution
[Jπ/Jπ∗ ]

System
without TES 7.7016 1.8135

Simple
Policy 4.5397 1.0690

Certainty equivalence
MPC 6.8444 1.6117

Parametric modified
MPC [θR = 0.7] 6.6977 1.5771

Scenario-based
MPC [Price] 6.9666 1.6405

Scenario-based
MPC [Demand] 7.3122 1.7219

Determistic optimal solution
(Perfect forecast) 4.2467 1

Table 5.1: Comparison of the expected costs on all polices
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Figure 5.25: The converged costs of the implemented policies
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Chapter 6
Discussion

This chapter includes the general discussion about issues from the result of this work and
possible future work for improvement.

6.1 Performance of MPC
Although it is profitable to employ thermal energy storage (TES) by all of the control
policies suggested in this work, the MPC control strategies such as certainty equivalence,
parametric modified MPC and scenario-based MPC have quite higher operation cost com-
pared to the simple policy. It is because the forecast model is not reflecting reality enough.
If the spot electricity was described more precisely for the future by updating its forecast
model or making a certain contract with the supplier, the expected cost is lower than the
MPC control policies implemented in this work. For example, the expected total cost of
MPC, with the existing demand forecast, equation (5.2), and the perfect price forecast
assumed, is computed 4.3833e+05[NOK]. It is approximately 35% deduction of the op-
erating cost of the certainty equivalence MPC implemented in this work. It even shows a
better result than the simple policy. This example emphasizes the importance of correct
forecast models.

6.2 Issues with Assumptions
There are a few assumptions made for modelling the district heat network system. One of
them is the capability to generate infinite amount of thermal energy by the electric boiler.
This assumption simplifies the case study overall. Without the presumption, it becomes
very difficult that the buy-low use-high policy satisfies the fluctuating demand for the
entire operation. However, due to this assumption, sometimes it becomes disadvantageous
to utilize the heat flow QGS . It is because the charging and discharging efficiencies are set
to 0.9, which means the electricity purchased to store the thermal energy in TES is reduced
by approximately 20% in use, meanwhile, the shortage of the demand can be fulfilled by
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the heat flowQGD instantly. This causes a tiny problem on simulation which is the system
without TES can be cheaper sometimes than the operation with TES by some policies. It
is described on Figure 6.1.

Figure 6.1: The operation cost of certain simulations

If the assumption was annulled so that the amount of thermal energy which the electric
boiler can generate is limited and there was a large penalty cost for not satisfying demand,
the heat flow QGS would become more valuable economically. The operation of the sys-
tem without TES would become more expensive due to the failure to satisfy demand and
the usage of TES will be even more advantageous by reducing the mismatch between the
thermal energy supply and demand.
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6.3 Possible Future Work
In this work, the simple policy such as buy-low use-high policy is chosen as the nearest
policy to optimal operation. However, there are many potentials to change these evalua-
tions for improvement after performing:

• Reformulate the TES model. In this work, the model is designed under the assump-
tion that there is no heat loss over time on the temperature gradient, no cost to hold
up the energy in storage, and the infinity capacity of electric boiler. For future work,
a more rigorous model can be formulated.

• Apply the adaptive learning method for policy search online instead of keeping the
parameters fixed on certain values. With varying parameters for better performance
at each time, an interesting result may be observed.

• Upgrade the uncertainty models. For example, there are many forms of electricity
subscriptions such as cheaper electricity price during the night or before a certain
amount of consumption. It will give insight that which policy is more effective on
which electricity subscription.

• Upgrade the disturbance forecast model. It would make MPC more competitive.

• To consider more various types of control policies, control policy based on Looka-
head can be employed to formulate more types of control policies.

In general, future work on finding the most effective policy for the operation of a
district heating system can be implemented from the upgrade of the TES modelling and
the uncertainty models, and from formulating the policies.
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Chapter 7
Conclusion

The conclusions and discussion regarding the objectives of this thesis are presented in this
chapter.

The mathematical model for the district heating network system with one thermal en-
ergy storage device has been formulated with a few assumptions which simplify the case
study. Static parameters, state variables, control variables, disturbances, constraints, sys-
tem model, and objective function are defined for modelling. The formulated mathemat-
ical model is a linear programming problem because all constraints, system model, and
the objective function are linear function, which made the case study easy to solve. The
mathematical model is well explained out through Chapter 4.2

The uncertainty models, such as the thermal energy generated from the waste incin-
eration plant, the thermal energy demand in the city, and the spot electricity price, are
formulated to reflect the stochastic nature. The energy generation model, equation (4.20),
is made based on assumption that the plant operates constantly. The energy demand model,
equation (4.21), is forged based on sinusoidal equation and the noise is added in the form
of normal distribution function with a fixed value of standard deviation and constraints
on possible maximum and minimum demand amount. Lastly, the spot electricity price
model, equation (4.22), is designed by Markov 1st order chain. The initial price is given
from the previous data. The noise is added by normal distribution function and the jumps
and spikes, which rarely happens, in the price is considered by the combination of normal
distribution and condition with random number generation. As a result, 500 sample paths
are created by using the three model mentioned above.

Various types of control policies are considered and implemented in this work. Firstly,
the simple policy, which is formulated based on policy function approximation, is gen-
erated. It has the principal of the buy-low and high-use policy as described on equation
(5.1). Secondly, the certainty equivalence MPC is formulated and implemented for the dis-
trict heating network system. To run the optimization, the disturbance forecast models are
created. The demand forecast model, equation (5.2), is made in form sinusoidal which re-
flects the hourly trend of the thermal energy demand without stochastic noise. The forecast
model of the spot electricity price, equation (5.3), is formulated by using 1st order Markov
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chain model. It considers the random variation from the previous price but does not in-
volves the occurrences of jump and spike in the price. Equation (5.4) shows the optimiza-
tion problem of the certainty equivalence MPC to determine the control variables. Thirdly,
the parametric modified MPC is structured based on the certainty equivalence MPC by us-
ing the cost function approximation (CFA). The parameters are introduced into constraints
of the certainty equivalence MPC. In this work, three following parametric modified MPCs
are implemented by manipulating: the maximum capacity of TES; estimation of the de-
mand forecast; the maximum charging and discharging rates. The optimization problems
of three parametric modified MPCs are written as equations (5.6), (5.5), and (5.7). Lastly,
two scenario-based MPCs are created with the evolution of the scenario tree on either the
electricity price or the energy demand. The optimization problem of the scenario-based
MPC is presented on equation (5.8) with its non-anticipative constraint, equation (5.9).

The parameters in policies, such as the simple policy and parametric modified MPC,
are tuned for the lower expected total costs during the operation of the system. For the
simple policy, possible sets of the parameter θ = {θlow, θhigh} are specified. The ex-
pected total costs are estimated on the possible sets of the parameter by the batch learning
method, equation (2.10). The best parameters are determined as a set of parameters which
exhibits the minimum expected total cost after comparing all of the calculated expected
total costs. Similarly, the best parameters are found on the parametric modified MPC af-
ter computing expected total costs on specified parameters by the batch learning method,
equation (2.10). Although two of all the parametric modified MPCs, which manipulate the
maximum capacity of TES with a parameter θS and the demand forecast with a parameter
θD, do not display the benefits in the expected total costs, the parametric modified MPC,
adjusting the maximum charging and discharging rates with a parameter θR, showed the
maximum reduction on the expected total cost when the parameter θR is tuned as 0.7.

After all of the policies are implemented with their best tuning, the expected total costs
of every control policy are obtained by the batch learning method, equation (2.10). These
expected total costs are compared with the cost of deterministic optimal solution and the
heating network system without TES as shown on Table 5.1.

As a result of this work, the expected total cost of the simple policy is the lowest as the
near-optimal operation. It shows that the simple policy can perform well in the presence
of uncertainty if the policy is well structured. The parametric modified MPC policy shows
the second-lowest. The certainty equivalence MPC policy has the third-lowest expected
total cost. The scenario-based MPC policies on the spot electricity price and the demand
come the next. As, lastly, the operation of the system without TES is the most expensive,
it elucidates that it is advantageous to have TES as well.
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Appendix A
MATLAB code

This section contains some important pieces of source code developed in this project. The
code is written in MATLAB.

A.1 Static parameters Initial states

The function s0.m gives inputs of static parameters and initial state variables for the
system.

1 function S0 = S0()
2 % Static parameters
3 S0.R_max = 500; % The energy capacity of TES in MWh
4 S0.eff_c = 0.9; % The charging efficiency of TES
5 S0.eff_d = 0.9; % The discharging efficiency of TES
6 S0.rate_c = 50; % The maximum charging rate of TES, given as MWh per

time period
7 S0.rate_d = 50; % The maximum discharging rate of TES, given as MWh

per time period
8

9 % Initial states
10 S0.S.R = 0; % Energy level of TES
11 S0.S.E = 210; % Energy supply
12 S0.S.D = 200; % Energy demand
13 S0.S.P = 200; % Spot electricity price
14 end

A.2 Disturbances

The file Exogenous gen.m creates sample paths of disturbance from the demand and
the spot electricity price model, the functions Demand.m and Electricity price
respectively.
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Exogenous gen.m

1 clear
2 clc
3 close all
4 tic
5

6

7 T = 300; % Time
8 n_scenario = 500; %Number of desired sample paths
9

10 %Demand parameter
11 mean = 200;
12 amplitude = 50;
13 Dmin = 100;
14 Dmax = 300;
15

16 %Electricity price parameter
17 Pmin = 0;
18 Pmax = 2500;
19 P0 = 200;
20 P1std = 50;
21 P2std = 500;
22 %Exogenous information storage.
23 sample_path.D = [];
24 sample_path.P = [];
25 sample_path.E = ones(1,T+1)*210;
26

27 for i = 1:n_scenario
28 %Disturbance functions
29 D_one = Demand(mean,amplitude,Dmin,Dmax,T);
30 P_one = Electricity_price(Pmin,Pmax,P0,P1std,P2std,T);
31

32 sample_path.D = [sample_path.D; D_one];
33 sample_path.P = [sample_path.P; P_one];
34 end
35

36 save(’sample_path’,’sample_path’)

Demand.m

1 function D = Demand(mean,amplitude,Dmin,Dmax,T)
2 t = 0:T;
3 D = mean + amplitude * sin(2*2*pi*t/T -pi/2) + normrnd(0,20,[1,T+1]);
4 D = min(max(D,Dmin),Dmax);
5 end

Electricity price.m

1 function P = Electricity_price(Pmin,Pmax,P0,P1std,P2std,T)
2 P1 = normrnd(0,P1std,1,T+1);%P1std=50
3 P2 = normrnd(0,P2std,1,T+1);%P2std=500
4 a = unifrnd(0,1,1,T+1);
5 p = 0.031;
6 for i = 1:length(a)
7 if a(i)>p
8 a(i) = 0;
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9 else
10 a(i) = 1;
11 end
12 end
13 P = P0 + P1 + a.*P2;
14 P = min(max(P,Pmin),Pmax);
15 end

A.3 Expected cost of the system without TES
The file P00 woTES main.m computes the expected total cost of the system without
TES.

1 Clear
2 clc
3 close all
4 %% Load
5 addpath(’../Exogenous_information’)
6 load(’sample_path.mat’)
7 plot_settings
8

9 %%
10 Elec_use = sample_path.D - 210; % Demand - Supply
11 Unsat_Demand = Elec_use > 0; % If Demand - Supply > 0, then 1, or 0.
12 Elec_use = Elec_use.*Unsat_Demand; % Required heat to satisfy the demand
13 spot_cost = Elec_use.*sample_path.P; %The cost to satisfy the demand on

each time
14

15 operation_cost = sum(spot_cost,2); %The cost to satisfy the demand on each
operation

16 Expected_cost = mean(operation_cost);

A.4 Simple policy
The file P01 SP xyz.m performs the policy search and shows the plots of the result. The
expected total cost is computed by the function PFA a cost.m.

P01 SP xyz

1 clear all
2 close all
3 clc
4

5 %% Load
6 addpath(’../Exogenous_information’)
7 load(’sample_path.mat’)
8 plot_settings
9

10 %% Simple policy
11

12 %parameter array
13 low_price = linspace(0,300,11)
14 plus_price = linspace(10,100,10)
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15

16 %Computation of expected total cost
17 for i = 1:size(low_price,2)
18 for k = 1:size(plus_price,2)
19 P_low = low_price(i);
20 P_plus = plus_price(k);
21 P_high = P_low + P_plus;
22 Avg_Cost(i,k) = PFA_a_cost(S0,sample_path,P_high,P_low);
23 end
24 end
25 %% Policy search
26 mini = min(min(Avg_Cost)) %minimum expected total cost
27 [x,y]=find(Avg_Cost==mini);
28 plus = plus_price(y);
29 low = low_price(x); % theta low
30 high = low + plus; % theta high
31

32 %% Ploting
33 Font = 30;
34

35 plot_settings
36 figure()
37 surf(plus_price,low_price,Avg_Cost);
38 hold on
39 plot3(plus_price(y),low_price(x),min(min(Avg_Cost)),’-o’,’Color’,’r’,’

MarkerSize’,20,’MarkerFaceColor’,’r’)
40

41 xlabel(’$\thetaˆ{plus}$’,’FontSize’,Font)
42 ylabel(’$\thetaˆ{low}$’,’FontSize’,Font)
43 zlabel(’Expected Cost[NOK]’,’FontSize’,Font)
44 set(gca,’FontSize’,Font)

PFA a cost.m

1 function Avg_Cost = PFA_a_cost(S0,sample_path,P_high,P_low)
2

3 % number of scenario & time horizon
4 n_scenario = size(sample_path.D,1);
5 time = size(sample_path.D,2);
6

7 % Initial state
8 S = S0.S;
9 rate_d = S0.rate_d*ones(n_scenario,1);

10 rate_c = S0.rate_c*ones(n_scenario,1);
11 R_max = S0.R_max;
12 %initial states
13 R = S.R*ones(n_scenario,1);
14 D = S.D*ones(n_scenario,1);
15 E = S.E*ones(n_scenario,1);
16 P = S.P*ones(n_scenario,1);
17

18 %% The simple policy based on specific parameters for low and high prices.
19

20 u.WD = [];
21 u.GD = [];
22 u.RD = [];
23 u.WR = [];
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24 u.GR = [];
25 x.R = [];
26 x.D = [];
27 x.E = [];
28 x.P = [];
29 x.C = [];
30 for t = 1:time
31

32 %policy => control variable
33 WD = min(D,E);
34 comp_h = P>P_high;
35 RD = comp_h.*min(min(D-WD,rate_d),R)*S0.eff_d;
36 GD = D-WD-RD;
37 WR = min(min(E-WD,rate_c),R_max-R);
38 comp_l = P<P_low;
39 GR = comp_l.*min(rate_c-WR,R_max-R-WR);
40 C = P.*(GD+GR);
41

42 %Data storage
43 u.WD = [u.WD, WD];
44 u.GD = [u.GD, GD];
45 u.RD = [u.RD, RD];
46 u.WR = [u.WR, WR];
47 u.GR = [u.GR, GR];
48 x.R = [x.R, R];
49 x.D = [x.D, D];
50 x.E = [x.E, E];
51 x.P = [x.P, P];
52 x.C = [x.C, C];
53

54 %update states
55 R = R+S0.eff_c*(WR+GR)-RD;
56 D = sample_path.D(1:n_scenario,t);
57 E = sample_path.E(1,t)*ones(n_scenario,1);
58 P = sample_path.P(1:n_scenario,t);
59 end
60 % Cost
61 Cost = sum(x.P.*(u.GD+u.GR),2);
62 for k = 1:n_scenario
63 Avg_Cost_cum(k) = mean(Cost(1:k));
64 end
65 Avg_Cost = mean(Cost);
66

67 end

A.5 Certainty equivalence MPC
The file P02 CEMPC main.m runs the simulation of the certainty equivalence MPC.

1 close all
2 clear all
3 clc
4 tic
5

6 %% Load
7 addpath(’../P05_Apriori_optimal’)
8 addpath(’../Exogenous_information’)
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9 addpath(’../P01_PFA’)
10 load(’sample_path.mat’)
11

12 %% Settings
13

14 S0 = S0();
15 S = S0.S;
16

17 %Scenario number
18 n_scenario = size(sample_path.D,1);
19 %total time horizon
20 N = size(sample_path.D,2);
21

22 %Open loop optimization time horizon
23 t = 20;
24

25 %Extention of sample path
26 sample_path.E = [S.E sample_path.E sample_path.E(1,1:t+1)];
27 sample_path.D = [sample_path.D]; %sample_path.D(1:n_scenario,1:t+1)];
28 sample_path.P = [sample_path.P]; %sample_path.P(1:n_scenario,1:t+1)];
29

30 %Demand model without stochastic value used for prediction
31 z = 0:N-1;
32 D_mean = 200;
33 amplitude = 50;
34 Dmin = 100;
35 Dmax = 300;
36 D = D_mean + amplitude * sin(2*2*pi*z/(N-1) -pi/2);
37 D = min(max(D,Dmin),Dmax);
38 D = [S.D D D(1,1:t+1)];
39

40 %% simulation
41

42 Cost2 =[];
43 for w = 1:n_scenario
44 ss
45 %Initial setup
46 S0 = S0();
47 S = S0.S;
48

49 %Plotting Arrays
50 xSim = [];
51 uSim = [];
52 timeSim = [];
53

54

55 for k = 1:N
56

57 %exogenous information model
58 Price_horizon = normrnd(0,50,1,t) + S.P;
59 %Price_horizon = S.P*ones(1,t);
60 Demand_horizon = [S.D D(1,k+1:k+t-1)];
61 Energy_horizon = sample_path.E(1,k:k+t-1);
62

63 %optimize the system
64 %%% EQUALITY CONSTRAINT
65 %Demand constraint
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66 Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
67 Beq_D = Demand_horizon’;
68 %Transition function
69 Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(eye

(t),[0 0 0 0 0 1]);
70 Beq_T = S.R*ones(t,1);
71 % Aeq & Beq integration
72 Aeq = [Aeq_D;Aeq_T];
73 Beq = [Beq_D;Beq_T];
74

75 %%% INEQUALITY CONSTRAINTS : Ax<=b
76 %Charging limitation : WS+GS+S <=R.max
77 A_1 = kron(eye(t), [0 0 0 1 1 1]);
78 B_1 = S0.R_max*ones(t,1);
79 %Discharging limitation : Q,SD < amount in Storage
80 A_2 = kron(eye(t),[0 0 1 0 0 -1]);
81 B_2 = zeros(t,1);
82 %Charing rate limitation
83 A_3 = kron(eye(t),[0 0 0 1 1 0]);
84 B_3 = S0.rate_c*ones(t,1);
85 %Discharing rate limitation
86 A_4 = kron(eye(t),[0 0 1 0 0 0]);
87 B_4 = S0.rate_d*ones(t,1);
88 %Waste incinerator : Heat supply amount
89 A_5 = kron(eye(t),[1 0 0 1 0 0]);
90 B_5 = Energy_horizon’;
91 % A&B integration
92 A = [A_1;A_2;A_3;A_4;A_5];
93 B = [B_1;B_2;B_3;B_4;B_5];
94

95 %%% Objective function
96 f = kron(Price_horizon,[-0.02 1 0 -0.01 1 0]);
97

98 %%% Boundaries - lower and upper
99 lb = zeros(6*t,1);

100 ub = ones(6*t,1)*inf;
101

102 %%% Optimization
103 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
104

105 % Data store from openloop optimization
106 u.WD = w_opt(1:t:6*t);
107 u.GD = w_opt(2:t:6*t);
108 u.SD = w_opt(3:t:6*t);
109 u.WS = w_opt(4:t:6*t);
110 u.GS = w_opt(5:t:6*t);
111

112 % Take an action
113 uk = [u.WD(1);u.GD(1);u.SD(1);u.WS(1);u.GS(1)];
114

115 %Simulating the plant behavior during dt
116 S.R = S.R + [0 0 -1 S0.eff_c S0.eff_c]*uk;
117

118 %realization
119 S.P = sample_path.P(w,k);
120 S.D = sample_path.D(w,k);
121 %Energy_horizon = sample_path.E(1,k);
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122

123 %For plotting
124 xSim = [xSim, S.R];
125 uSim = [uSim, uk];
126

127 end
128 Cost1 = sum(sample_path.P(w,1:N).*(uSim(2,1:N) + uSim(5,1:N)));
129 Cost2 = [Cost2; Cost1];
130 end
131 Cost = mean(Cost2);
132

133 for i = 1:size(Cost2,1)
134 Avg_cost_cum(i) = mean(Cost2(1:i));
135 end
136

137 % save
138 name = strcat(date,’_st_MPC_’,num2str(w),’itr_’,num2str(t),’_hz’);
139 save(name)

A.6 Parametric modified MPC
The files P03 theta D MPC main.m, P03 theta S MPC main.m,
and P03 theta R MPC main.m runs the simulations for policy search on the parametic
modified MPC.

P03 theta D MPC main.m

1 close all
2 clear all
3 clc
4

5 %% Load
6 addpath(’../P05_Apriori_optimal’)
7 addpath(’../Exogenous_information’)
8 addpath(’../P01_PFA’)
9 load(’sample_path.mat’)

10

11 %% Optimum calculation
12

13 S0 = S0();
14 S = S0.S;
15

16 %Scenario number
17 n_scenario = size(sample_path.D,1);
18 %total time horizon
19 N = size(sample_path.D,2);
20

21 %Open loop optimization time horizon
22 t = 20;
23

24 %Extention of sample path
25 sample_path.E = [S.E sample_path.E sample_path.E(1,1:t+1)];
26 sample_path.D = [sample_path.D];
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27 sample_path.P = [sample_path.P];
28

29 %Demand model without stochastic value used for prediction
30 z = 0:N-1;
31 D_mean = 200;
32 amplitude = 50;
33 Dmin = 100;
34 Dmax = 300;
35 D = D_mean + amplitude * sin(2*2*pi*z/(N-1) -pi/2);
36 D = min(max(D,Dmin),Dmax);
37 D = [S.D D D(1,1:t+1)];
38

39 % parameter tuning for D
40 theta_array = linspace(0.5, 1.5, 11)
41

42 %% simulation
43

44 Modified_cost = [];
45 for kk = 1:size(theta_array,2)
46 theta = theta_array(kk);
47 Cost2 =[];
48 for w = 1:n_scenario
49 ss
50 %Initial setup
51 S0 = S0();
52 S = S0.S;
53

54 %Plotting Arrays
55 xSim = [];
56 uSim = [];
57 timeSim = [];
58

59 for k = 1:N
60

61 %exogenous information model
62 Price_horizon = normrnd(0,50,1,t) + S.P;
63 Demand_horizon = [S.D D(1,k+1:k+t-1)*theta];
64 Energy_horizon = sample_path.E(1,k:k+t-1);
65

66 %optimize the system
67 %%% EQUALITY CONSTRAINT
68 %Demand constraint
69 Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
70 Beq_D = Demand_horizon’;
71 %Transition function
72 Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(eye

(t),[0 0 0 0 0 1]);
73 Beq_T = S.R*ones(t,1);
74 % Aeq & Beq integration
75 Aeq = [Aeq_D;Aeq_T];
76 Beq = [Beq_D;Beq_T];
77

78 %%% INEQUALITY CONSTRAINTS : Ax<=b
79 %Charging limitation : WS+GS+S <=R.max
80 A_1 = kron(eye(t), [0 0 0 1 1 1]);
81 B_1 = S0.R_max*ones(t,1);
82 %Discharging limitation : Q,SD < amount in Storage
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83 A_2 = kron(eye(t),[0 0 1 0 0 -1]);
84 B_2 = zeros(t,1);
85 %Charing rate limitation
86 A_3 = kron(eye(t),[0 0 0 1 1 0]);
87 B_3 = S0.rate_c*ones(t,1);
88 %Discharing rate limitation
89 A_4 = kron(eye(t),[0 0 1 0 0 0]);
90 B_4 = S0.rate_d*ones(t,1);
91 %Waste incinerator : Heat supply amount
92 A_5 = kron(eye(t),[1 0 0 1 0 0]);
93 B_5 = Energy_horizon’;
94 % A&B integration
95 A = [A_1;A_2;A_3;A_4;A_5];
96 B = [B_1;B_2;B_3;B_4;B_5];
97

98 %%% Objective function
99 f = kron(Price_horizon,[-0.02 1 0 -0.01 1 0]);

100

101 %%% Boundaries - lower and upper
102 lb = zeros(6*t,1);
103 ub = ones(6*t,1)*inf;
104

105 %%% Optimization
106 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
107

108 % Data store from openloop optimization
109 u.WD = w_opt(1:t:6*t);
110 u.GD = w_opt(2:t:6*t);
111 u.SD = w_opt(3:t:6*t);
112 u.WS = w_opt(4:t:6*t);
113 u.GS = w_opt(5:t:6*t);
114

115 %realization
116 S.P = sample_path.P(w,k);
117 S.D = sample_path.D(w,k);
118

119 %Energy_horizon = sample_path.E(1,k);
120

121 % Take an action
122 uk = [u.WD(1);u.GD(1);u.SD(1);u.WS(1);u.GS(1)];
123

124 %Simulating the plant behavior during dt
125 S.R = S.R + [0 0 -1 S0.eff_c S0.eff_c]*uk;
126

127 %For plotting
128 xSim = [xSim, S.R];
129 uSim = [uSim, uk];
130

131 end
132

133 Cost1 = sum(sample_path.P(w,1:N).*(uSim(2,1:N) + uSim(5,1:N)));
134 Cost2 = [Cost2; Cost1];
135 end
136 Cost = mean(Cost2);
137 Modified_cost = [Modified_cost, Cost];
138 end
139
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140 for i = 1:size(Cost2,1)
141 Avg_cost_cum(i) = mean(Cost2(1:i));
142 end
143

144 name = strcat(date,’_D_MPC_’,num2str(w),’itr_’,num2str(t),’_hz’);
145 save(name)
146

147 %% plot
148 plot_settings
149 close all
150

151 figure()
152 plot(theta_array,Modified_cost,’LineWidth’,1.5)
153 axis([min(theta_array) max(theta_array) min(Modified_cost) max(

Modified_cost)])
154 xlabel(’A parameter for the demand forecast, $\theta_{D}$’,’FontSize’,33)
155 ylabel(’Expected Cost [NOK]’,’FontSize’,33)
156 set(gca,’FontSize’,33)

P03 theta S MPC main.m

1 close all
2 clear all
3 clc
4

5 %% Load
6 addpath(’../P05_Apriori_optimal’)
7 addpath(’../Exogenous_information’)
8 addpath(’../P01_PFA’)
9 load(’sample_path.mat’)

10

11 %% Optimum calculation
12

13 S0 = S0();
14 S = S0.S;
15

16 %Scenario number
17 n_scenario = size(sample_path.D,1);
18 %total time horizon
19 N = size(sample_path.D,2);
20

21 %Open loop optimization time horizon
22 t = 20;
23

24 %Extention of sample path
25 sample_path.E = [S.E sample_path.E sample_path.E(1,1:t+1)];
26 sample_path.D = [sample_path.D];
27 sample_path.P = [sample_path.P];
28

29

30 %Demand model without stochastic value used for prediction
31 z = 0:N-1;
32 D_mean = 200;
33 amplitude = 50;
34 Dmin = 100;
35 Dmax = 300;
36 D = D_mean + amplitude * sin(2*2*pi*z/(N-1) -pi/2);
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37 D = min(max(D,Dmin),Dmax);
38 D = [S.D D D(1,1:t+1)];
39

40 % parameter tuning for D
41 theta_array = linspace(0.5, 1.5, 11)
42

43 %% simulation
44

45 Modified_cost = [];
46 for kk = 1:size(theta_array,2)
47 theta = theta_array(kk);
48 Cost2 =[];
49 for w = 1:n_scenario
50

51 %Initial setup
52 S0 = S0();
53 S = S0.S;
54

55 %Plotting Arrays
56 xSim = [];
57 uSim = [];
58 timeSim = [];
59

60 for k = 1:N
61

62 %exogenous information model
63 Price_horizon = normrnd(0,50,1,t) + S.P;
64 Demand_horizon = [S.D D(1,k+1:k+t-1)];
65 Energy_horizon = sample_path.E(1,k:k+t-1);
66

67 %optimize the system
68 %%% EQUALITY CONSTRAINT
69 %Demand constraint
70 Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
71 Beq_D = Demand_horizon’;
72 %Transition function
73 Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(eye

(t),[0 0 0 0 0 1]);
74 Beq_T = S.R*ones(t,1);
75 % Aeq & Beq integration
76 Aeq = [Aeq_D;Aeq_T];
77 Beq = [Beq_D;Beq_T];
78

79 %%% INEQUALITY CONSTRAINTS : Ax<=b
80 %Charging limitation : WS+GS+S <=R.max
81 A_1 = kron(eye(t), [0 0 0 1 1 1]);
82 B_1 = S0.R_max*ones(t,1)*theta;
83 %Discharging limitation : Q,SD < amount in Storage
84 A_2 = kron(eye(t),[0 0 1 0 0 -1]);
85 B_2 = zeros(t,1);
86 %Charing rate limitation
87 A_3 = kron(eye(t),[0 0 0 1 1 0]);
88 B_3 = S0.rate_c*ones(t,1);
89 %Discharing rate limitation
90 A_4 = kron(eye(t),[0 0 1 0 0 0]);
91 B_4 = S0.rate_d*ones(t,1);
92 %Waste incinerator : Heat supply amount
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93 A_5 = kron(eye(t),[1 0 0 1 0 0]);
94 B_5 = Energy_horizon’;
95 % A&B integration
96 A = [A_1;A_2;A_3;A_4;A_5];
97 B = [B_1;B_2;B_3;B_4;B_5];
98

99 %%% Objective function
100 f = kron(Price_horizon,[-0.02 1 0 -0.01 1 0]);
101

102 %%% Boundaries - lower and upper
103 lb = zeros(6*t,1);
104 ub = ones(6*t,1)*inf;
105

106 %%% Optimization
107 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
108

109 % Data store from openloop optimization
110 u.WD = w_opt(1:t:6*t);
111 u.GD = w_opt(2:t:6*t);
112 u.SD = w_opt(3:t:6*t);
113 u.WS = w_opt(4:t:6*t);
114 u.GS = w_opt(5:t:6*t);
115

116 %realization
117 S.P = sample_path.P(w,k);
118 S.D = sample_path.D(w,k);
119 %Energy_horizon = sample_path.E(1,k);
120

121 % Take an action
122 uk = [u.WD(1);u.GD(1);u.SD(1);u.WS(1);u.GS(1)];
123

124 %Simulating the plant behavior during dt
125 S.R = S.R + [0 0 -1 S0.eff_c S0.eff_c]*uk;
126

127 %For plotting
128 xSim = [xSim, S.R];
129 uSim = [uSim, uk];
130

131 end
132

133 Cost1 = sum(sample_path.P(w,1:N).*(uSim(2,1:N) + uSim(5,1:N)));
134 Cost2 = [Cost2; Cost1];
135 end
136 Cost = mean(Cost2);
137 Modified_cost = [Modified_cost, Cost];
138 end
139

140 for i = 1:size(Cost2,1)
141 Avg_cost_cum(i) = mean(Cost2(1:i));
142 end
143

144 %% Plot
145 plot_settings
146 close all
147

148 figure()
149 plot(theta_array,Modified_cost,’LineWidth’,1.5)
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150 axis([min(theta_array) max(theta_array) min(Modified_cost) max(
Modified_cost)])

151 xlabel(’A parameter for the maximum capcity of TES, $\theta_{S}$’,’
FontSize’,33)

152 ylabel(’Expected Cost [NOK]’,’FontSize’,33)
153 set(gca,’FontSize’,33)

P03 theta R MPC main.m

1 close all
2 clear all
3 clc
4

5

6 %% Load
7 addpath(’../P05_Apriori_optimal’)
8 addpath(’../Exogenous_information’)
9 addpath(’../P01_PFA’)

10 load(’sample_path.mat’)
11

12 %% Optimum calculation
13

14 S0 = S0();
15 S = S0.S;
16

17 %Scenario number
18 n_scenario = size(sample_path.D,1);
19 %total time horizon
20 N = size(sample_path.D,2);
21

22 %Open loop optimization time horizon
23 t = 20;
24

25 %Extention of sample path
26 sample_path.E = [S.E sample_path.E sample_path.E(1,1:t+1)];
27 sample_path.D = [sample_path.D];
28 sample_path.P = [sample_path.P];
29

30 %Demand model without stochastic value used for prediction
31 z = 0:N-1;
32 D_mean = 200;
33 amplitude = 50;
34 Dmin = 100;
35 Dmax = 300;
36 D = D_mean + amplitude * sin(2*2*pi*z/(N-1) -pi/2);
37 D = min(max(D,Dmin),Dmax);
38 D = [S.D D D(1,1:t+1)];
39

40 % parameter tuning for D
41 theta_array = linspace(0.1, 2.0, 20)
42

43 %% simulation
44

45 Modified_cost = [];
46 for kk = 1:size(theta_array,2)
47 theta = theta_array(kk);
48 Cost2 =[];
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49 for w = 1:n_scenario
50 ss
51 %Initial setup
52 S0 = S0();
53 S = S0.S;
54

55 %Plotting Arrays
56 xSim = [];
57 uSim = [];
58 timeSim = [];
59

60 for k = 1:N
61

62 %exogenous information model
63 Price_horizon = normrnd(0,50,1,t) + S.P;
64 Demand_horizon = [S.D D(1,k+1:k+t-1)];
65 Energy_horizon = sample_path.E(1,k:k+t-1);
66

67 %optimize the system
68 %%% EQUALITY CONSTRAINT
69 %Demand constraint
70 Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
71 Beq_D = Demand_horizon’;
72 %Transition function
73 Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(eye

(t),[0 0 0 0 0 1]);
74 Beq_T = S.R*ones(t,1);
75 % Aeq & Beq integration
76 Aeq = [Aeq_D;Aeq_T];
77 Beq = [Beq_D;Beq_T];
78

79 %%% INEQUALITY CONSTRAINTS : Ax<=b
80 %Charging limitation : WS+GS+S <=R.max
81 A_1 = kron(eye(t), [0 0 0 1 1 1]);
82 B_1 = S0.R_max*ones(t,1);
83 %Discharging limitation : Q,SD < amount in Storage
84 A_2 = kron(eye(t),[0 0 1 0 0 -1]);
85 B_2 = zeros(t,1);
86 %Charing rate limitation
87 A_3 = kron(eye(t),[0 0 0 1 1 0]);
88 B_3 = S0.rate_c*ones(t,1)*theta;
89 %Discharing rate limitation
90 A_4 = kron(eye(t),[0 0 1 0 0 0]);
91 B_4 = S0.rate_d*ones(t,1)*theta;
92 %Waste incinerator : Heat supply amount
93 A_5 = kron(eye(t),[1 0 0 1 0 0]);
94 B_5 = Energy_horizon’;
95 % A&B integration
96 A = [A_1;A_2;A_3;A_4;A_5];
97 B = [B_1;B_2;B_3;B_4;B_5];
98

99 %%% Objective function
100 f = kron(Price_horizon,[-0.02 1 0 -0.01 1 0]);
101

102 %%% Boundaries - lower and upper
103 lb = zeros(6*t,1);
104 ub = ones(6*t,1)*inf;

85



105

106 %%% Optimization
107 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
108

109 % Data store from openloop optimization
110 u.WD = w_opt(1:t:6*t);
111 u.GD = w_opt(2:t:6*t);
112 u.SD = w_opt(3:t:6*t);
113 u.WS = w_opt(4:t:6*t);
114 u.GS = w_opt(5:t:6*t);
115

116 %realization
117 S.P = sample_path.P(w,k);
118 S.D = sample_path.D(w,k);
119 %Energy_horizon = sample_path.E(1,k);
120

121 % Take an action
122 uk = [u.WD(1);u.GD(1);u.SD(1);u.WS(1);u.GS(1)];
123

124 %Simulating the plant behavior during dt
125 S.R = S.R + [0 0 -1 S0.eff_c S0.eff_c]*uk;
126

127 %For plotting
128 xSim = [xSim, S.R];
129 uSim = [uSim, uk];
130

131 end
132

133 Cost1 = sum(sample_path.P(w,1:N).*(uSim(2,1:N) + uSim(5,1:N)));
134 Cost2 = [Cost2; Cost1];
135 end
136 Cost = mean(Cost2);
137 Modified_cost = [Modified_cost, Cost];
138 end
139

140 for i = 1:size(Cost2,1)
141 Avg_cost_cum(i) = mean(Cost2(1:i));
142 end
143

144

145 %% Plot
146 plot_settings
147 close all
148

149 figure()
150 plot(theta_array,Modified_cost,’LineWidth’,1.5)
151 axis([min(theta_array) max(theta_array) min(Modified_cost) max(

Modified_cost)])
152 xlabel(’A parameter for the maximum charging and discharging rates, $\

theta_{R}$’,’FontSize’,33)
153 ylabel(’Expected Cost [NOK]’,’FontSize’,33)
154 set(gca,’FontSize’,33)
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A.7 Scenario-based MPC
The files P04 P scn MPC main.m and P04 D scn MPC main.m runs the scenario-
based MPC on the spot electricty price and the demand respectively.

P04 P scn MPC main.m

1 close all
2 clear all
3 clc
4

5 %% Load
6 addpath(’../Exogenous_information’)
7 addpath(’../P01_PFA’)
8 load(’sample_path.mat’)
9

10 %% Optimum calculation
11

12 %initial setup
13 S0 = S0();
14 S = S0.S;
15

16 %Scenario number
17 n_scenario = size(sample_path.D,1);
18

19 %total time horizon
20 N = size(sample_path.D,2);
21

22 %Open loop optimization time horizon
23 t = 20;
24

25 %Extention of sample path
26 sample_path.E = [S.E sample_path.E sample_path.E(1,1:t+1)];
27

28 %Demand model without stochastic value used for prediction
29 z = 0:N-1;
30 D_mean = 200;
31 amplitude = 50;
32 Dmin = 100;
33 Dmax = 300;
34 D = D_mean + amplitude * sin(2*2*pi*z/(N-1) -pi/2);
35 D = min(max(D,Dmin),Dmax);
36 D = [S.D D D(1,1:t+1)];
37

38 %% setting
39

40 %Price_scneario parameters.
41 Theta_up = 1.3;
42 Theta_mid = 1.0;
43 Theta_down = 0.7;
44

45 % %% simulation
46 Cost2 =[];
47

48 for w = 1:1%n_scenario
49 % initial states
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50 S = S0.S;
51

52 %Plotting Arrays
53 xSim = [];
54 uSim = [];
55 timeSim = [];
56

57 for k = 1:N
58

59 %exogenous information model
60 Price_R = normrnd(0,50,1,t) + S.P;
61 Demand_horizon = [S.D D(1,k+1:k+t-1)];
62 Energy_horizon = sample_path.E(1,k:k+t-1);
63

64 %% Process constraint : Same for all senarios.
65 %%% EQUALITY CONSTRAINT
66 %Demand constraint
67 S_Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
68 S_Beq_D = Demand_horizon’;
69 %Transition function
70 S_Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(

eye(t),[0 0 0 0 0 1]);
71 S_Beq_T = S.R*ones(t,1);
72 % Aeq & Beq integration
73 S_Aeq = [S_Aeq_D; S_Aeq_T];
74 S_Beq = [S_Beq_D; S_Beq_T];
75

76 %%% INEQUALITY CONSTRAINTS : Ax<=b
77 %Charging limitation : WS+GS+S <=R.max
78 S_A_1 = kron(eye(t), [0 0 0 1 1 1]);
79 S_B_1 = S0.R_max*ones(t,1);
80 %Discharging limitation : Q,SD < amount in Storage
81 S_A_2 = kron(eye(t),[0 0 1 0 0 -1]);
82 S_B_2 = zeros(t,1);
83 %Charing rate limitation
84 S_A_3 = kron(eye(t),[0 0 0 1 1 0]);
85 S_B_3 = S0.rate_c*ones(t,1);
86 %Discharing rate limitation
87 S_A_4 = kron(eye(t),[0 0 1 0 0 0]);
88 S_B_4 = S0.rate_d*ones(t,1);
89 %Waste incinerator : Heat supply amount
90 S_A_5 = kron(eye(t),[1 0 0 1 0 0]);
91 S_B_5 = Energy_horizon’;
92 % A&B integration
93 S_A = [S_A_1; S_A_2; S_A_3; S_A_4; S_A_5];
94 S_B = [S_B_1; S_B_2; S_B_3; S_B_4; S_B_5];
95

96 %% PRICE SCENARIOS : 9 trees.
97 f_form = [-0.02 1 0 -0.01 1 0]
98 % Scenario. 01 : Present-UP-UP-Costant
99 pt.S1_Price_horizon = [Price_R(1) (Theta_up*Price_R(2)) Theta_up*(

Theta_up*Price_R(3))*ones(1,t-2)];
100 %%% Objective function
101 S1_f = kron(pt.S1_Price_horizon,f_form);
102

103 % Scenario. 02 : Present-UP-MID-Costant
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104 pt.S2_Price_horizon = [Price_R(1) (Theta_up*Price_R(2)) Theta_mid

*(Theta_up*Price_R(3))*ones(1,t-2)];
105 %%% Objective function
106 S2_f = kron(pt.S2_Price_horizon,f_form);
107

108 % Scenario. 03 : Present-UP-DOWN-Costant
109 pt.S3_Price_horizon = [Price_R(1) (Theta_up*Price_R(2)) Theta_down

*(Theta_up*Price_R(3))*ones(1,t-2)];
110 %%% Objective function
111 S3_f = kron(pt.S3_Price_horizon,f_form);
112

113 % Scenario. 04 : Present-MID-UP-Costant
114 pt.S4_Price_horizon = [Price_R(1) (Theta_mid*Price_R(2)) Theta_up

*(Theta_mid*Price_R(3))*ones(1,t-2)];
115 %%% Objective function
116 S4_f = kron(pt.S4_Price_horizon,f_form);
117

118 % Scenario. 05 : Present-MID-MID-Costant
119 pt.S5_Price_horizon = [Price_R(1) (Theta_mid*Price_R(2)) Theta_mid

*(Theta_mid*Price_R(3))*ones(1,t-2)];
120 %%% Objective function
121 S5_f = kron(pt.S5_Price_horizon,f_form);
122

123 % Scenario. 06 : Present-MID-DOWN-Costant
124 pt.S6_Price_horizon = [Price_R(1) (Theta_mid*Price_R(2))

Theta_down*(Theta_mid*Price_R(3))*ones(1,t-2)];
125 %%% Objective function
126 S6_f = kron(pt.S6_Price_horizon,f_form);
127

128 % Scenario. 07 : Present-DOWN-UP-Costant
129 pt.S7_Price_horizon = [Price_R(1) (Theta_down*Price_R(2)) Theta_up

*(Theta_down*Price_R(3))*ones(1,t-2)];
130 %%% Objective function
131 S7_f = kron(pt.S7_Price_horizon,f_form);
132

133 % Scenario. 08 : Present-DOWN-MID-Costant
134 pt.S8_Price_horizon = [Price_R(1) (Theta_down*Price_R(2))

Theta_mid*(Theta_down*Price_R(3))*ones(1,t-2)];
135 %%% Objective function
136 S8_f = kron(pt.S8_Price_horizon,f_form);
137

138 % Scenario. 09 : Present-DOWN-DOWN-Costant
139 pt.S9_Price_horizon = [Price_R(1) (Theta_down*Price_R(2))

Theta_down*(Theta_down*Price_R(3))*ones(1,t-2)];
140 %%% Objective function
141 S9_f = kron(pt.S9_Price_horizon,f_form);
142

143 %% Non-anticipativity constraints
144 nas = [1 1 1 1 1 0];
145 naz = zeros(1,6);
146

147 na_A1 = [nas kron(ones(1,t-1),naz) -nas kron(ones(1,t-1),naz) kron(ones(1,
t*7), naz)

148 nas kron(ones(1,t-1),naz) kron(ones(1,t*1), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*6), naz)

149 nas kron(ones(1,t-1),naz) kron(ones(1,t*2), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*5), naz)
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150 nas kron(ones(1,t-1),naz) kron(ones(1,t*3), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*4), naz)

151 nas kron(ones(1,t-1),naz) kron(ones(1,t*4), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*3), naz)

152 nas kron(ones(1,t-1),naz) kron(ones(1,t*5), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*2), naz)

153 nas kron(ones(1,t-1),naz) kron(ones(1,t*6), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*1), naz)

154 nas kron(ones(1,t-1),naz) kron(ones(1,t*7), naz) -nas kron(ones(1,t-1)
,naz) ];

155

156 na_A2 = [naz nas kron(ones(1,t-2),naz) naz -nas kron(ones(1,t-2),naz) kron
(ones(1,t*7),naz)

157 naz nas kron(ones(1,t-2),naz) kron(ones(1,t),naz) naz -nas kron(
ones(1,t-2),naz) kron(ones(1,t*6),naz)

158 kron(ones(1,t*3),naz) naz nas kron(ones(1,t-2),naz) naz -nas kron(
ones(1,t-2),naz) kron(ones(1,t*4),naz)

159 kron(ones(1,t*3),naz) naz nas kron(ones(1,t-2),naz) kron(ones(1,t)
,naz) naz -nas kron(ones(1,t-2),naz) kron(ones(1,t*3),naz)

160 kron(ones(1,t*6),naz) naz nas kron(ones(1,t-2),naz) naz -nas kron(
ones(1,t-2),naz) kron(ones(1,t),naz)

161 kron(ones(1,t*6),naz) naz nas kron(ones(1,t-2),naz) kron(ones(1,t)
,naz) naz -nas kron(ones(1,t-2),naz)];

162

163 na_Aeq = [na_A1; na_A2];
164 na_Beq = zeros(size(na_Aeq,1),1);
165

166 %% Integration of linprog factors
167

168 Aeq = kron(eye(9),S_Aeq);
169 Aeq = [Aeq; na_Aeq];
170 Beq = kron(ones(9,1),S_Beq);
171 Beq = [Beq; na_Beq];
172 A = kron(eye(9),S_A);
173 B = kron(ones(9,1),S_B);
174 f = [S1_f S2_f S3_f S4_f S5_f S6_f S7_f S8_f S9_f];
175 lb = zeros(6*9*t,1);
176 ub = ones(6*9*t,1)*inf;
177

178 %% %%% Optimization
179 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
180

181 % Data store from openloop optimization
182 u.S1.WD = w_opt(1:6:6*t);
183 u.S1.GD = w_opt(2:6:6*t);
184 u.S1.SD = w_opt(3:6:6*t);
185 u.S1.WS = w_opt(4:6:6*t);
186 u.S1.GS = w_opt(5:6:6*t);
187 u.S1.R = w_opt(6:6:6*t);
188

189 u.S2.WD = w_opt(6*t+1:6:6*2*t);
190 u.S2.GD = w_opt(6*t+2:6:6*2*t);
191 u.S2.SD = w_opt(6*t+3:6:6*2*t);
192 u.S2.WS = w_opt(6*t+4:6:6*2*t);
193 u.S2.GS = w_opt(6*t+5:6:6*2*t);
194 u.S2.R = w_opt(6*t+6:6:6*2*t);
195
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196 u.S3.WD = w_opt(6*2*t+1:6:6*3*t);
197 u.S3.GD = w_opt(6*2*t+2:6:6*3*t);
198 u.S3.SD = w_opt(6*2*t+3:6:6*3*t);
199 u.S3.WS = w_opt(6*2*t+4:6:6*3*t);
200 u.S3.GS = w_opt(6*2*t+5:6:6*3*t);
201 u.S3.R = w_opt(6*2*t+6:6:6*3*t);
202

203 u.S4.WD = w_opt(6*3*t+1:6:6*4*t);
204 u.S4.GD = w_opt(6*3*t+2:6:6*4*t);
205 u.S4.SD = w_opt(6*3*t+3:6:6*4*t);
206 u.S4.WS = w_opt(6*3*t+4:6:6*4*t);
207 u.S4.GS = w_opt(6*3*t+5:6:6*4*t);
208 u.S4.R = w_opt(6*3*t+6:6:6*4*t);
209

210 u.S5.WD = w_opt(6*4*t+1:6:6*5*t);
211 u.S5.GD = w_opt(6*4*t+2:6:6*5*t);
212 u.S5.SD = w_opt(6*4*t+3:6:6*5*t);
213 u.S5.WS = w_opt(6*4*t+4:6:6*5*t);
214 u.S5.GS = w_opt(6*4*t+5:6:6*5*t);
215 u.S5.R = w_opt(6*4*t+6:6:6*5*t);
216

217 u.S6.WD = w_opt(6*5*t+1:6:6*6*t);
218 u.S6.GD = w_opt(6*5*t+2:6:6*6*t);
219 u.S6.SD = w_opt(6*5*t+3:6:6*6*t);
220 u.S6.WS = w_opt(6*5*t+4:6:6*6*t);
221 u.S6.GS = w_opt(6*5*t+5:6:6*6*t);
222 u.S6.R = w_opt(6*5*t+6:6:6*6*t);
223

224 u.S7.WD = w_opt(6*6*t+1:6:6*7*t);
225 u.S7.GD = w_opt(6*6*t+2:6:6*7*t);
226 u.S7.SD = w_opt(6*6*t+3:6:6*7*t);
227 u.S7.WS = w_opt(6*6*t+4:6:6*7*t);
228 u.S7.GS = w_opt(6*6*t+5:6:6*7*t);
229 u.S7.R = w_opt(6*6*t+6:6:6*7*t);
230

231 u.S8.WD = w_opt(6*7*t+1:6:6*8*t);
232 u.S8.GD = w_opt(6*7*t+2:6:6*8*t);
233 u.S8.SD = w_opt(6*7*t+3:6:6*8*t);
234 u.S8.WS = w_opt(6*7*t+4:6:6*8*t);
235 u.S8.GS = w_opt(6*7*t+5:6:6*8*t);
236 u.S8.R = w_opt(6*7*t+6:6:6*8*t);
237

238 u.S9.WD = w_opt(6*8*t+1:6:6*9*t);
239 u.S9.GD = w_opt(6*8*t+2:6:6*9*t);
240 u.S9.SD = w_opt(6*8*t+3:6:6*9*t);
241 u.S9.WS = w_opt(6*8*t+4:6:6*9*t);
242 u.S9.GS = w_opt(6*8*t+5:6:6*9*t);
243 u.S9.R = w_opt(6*8*t+6:6:6*9*t);
244

245 % Take an action
246 uk = [u.S1.WD(1);u.S1.GD(1);u.S1.SD(1);u.S1.WS(1);u.S1.GS(1)];
247

248 % Exogenous information realization
249 S.P = sample_path.P(w,k);
250 S.D = sample_path.D(w,k);
251

252 %Simulating the plant behavior during dt
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253 S.R = S.R + [0 0 -1 S0.eff_c S0.eff_c]*uk;
254

255 %For plotting
256 xSim = [xSim, S.R];
257 uSim = [uSim, uk];
258

259 end
260

261 Cost1 = sum(sample_path.P(w,:).*(uSim(2,:) + uSim(5,:)));
262 Cost2 = [Cost2; Cost1];
263 end
264 Cost = mean(Cost2);
265

266 for i = 1:size(Cost2,1)
267 Avg_cost_cum(i) = mean(Cost2(1:i));
268 end
269

270 name = strcat(date,’_Pscn_MPC_’,num2str(w),’itr_’,num2str(t),’_hz’);
271 save(name)

P04 D scn MPC main.m

1 close all
2 clear all
3 clc
4

5 %% Load
6 addpath(’../Exogenous_information’)
7 addpath(’../P01_PFA’)
8 load(’sample_path.mat’)
9

10 %% Optimum calculation
11

12 %initial setup
13 S0 = S0();
14 S = S0.S;
15

16 %Scenario number
17 n_scenario = size(sample_path.D,1);
18 %total time horizon
19 N = size(sample_path.D,2);
20

21 %Open loop optimization time horizon
22 t = 20;
23

24 %Extention of sample path
25 sample_path.E = [sample_path.E sample_path.E(1,1:t+1)];
26

27 %Demand model without stochastic value used for prediction
28 z = 0:N-1;
29 D_mean = 200;
30 amplitude = 50;
31 Dmin = 100;
32 Dmax = 300;
33 D = D_mean + amplitude * sin(2*2*pi*z/(N-1) -pi/2);
34 D = min(max(D,Dmin),Dmax);
35 D = [S.D D D(1,1:t+1)];
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36

37 %% setting
38

39 %Price_scneario parameters.
40 Theta_up = 20;
41 Theta_mid = 0;
42 Theta_down = -20;
43

44 % %% simulation
45 Cost2 =[];
46 for w = 1:1%n_scenario
47 % initial states
48 S = S0.S;
49

50 %Plotting Arrays
51 xSim = [];
52 uSim = [];
53 timeSim = [];
54

55 for k = 1:N
56

57 %exogenous information model
58 Price_horizon = normrnd(0,50,1,t) + S.P;
59 Demand_horizon = [S.D D(1,k+1:k+t-1)];
60 Energy_horizon = sample_path.E(1,k:k+t-1);
61

62 %% Demand SCENARIOS : 9 trees.
63 dt.S1_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+

Theta_up) (Demand_horizon(3)+2*Theta_up) (Demand_horizon(4:t)+2*
Theta_up)];

64 dt.S2_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_up) (Demand_horizon(3)+Theta_up+Theta_mid) (Demand_horizon(4:t)+
Theta_up+Theta_mid)];

65 dt.S3_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_up) (Demand_horizon(3)+Theta_up+Theta_down) (Demand_horizon(4:t)
+Theta_up+Theta_down)];

66 dt.S4_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_mid) (Demand_horizon(3)+Theta_mid+Theta_up) (Demand_horizon(4:t)
+Theta_mid+Theta_up)];

67 dt.S5_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_mid) (Demand_horizon(3)+Theta_mid+Theta_mid) (Demand_horizon(4:t
)+Theta_mid+Theta_mid)];

68 dt.S6_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_mid) (Demand_horizon(3)+Theta_mid+Theta_down) (Demand_horizon(4:
t)+Theta_mid+Theta_down)];

69 dt.S7_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_down) (Demand_horizon(3)+Theta_down+Theta_up) (Demand_horizon(4:
t)+Theta_down+Theta_up)];

70 dt.S8_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_down) (Demand_horizon(3)+Theta_down+Theta_mid) (Demand_horizon
(4:t)+Theta_down+Theta_mid)];

71 dt.S9_Demand_horizon = [Demand_horizon(1) (Demand_horizon(2)+
Theta_down) (Demand_horizon(3)+Theta_down+Theta_down) (Demand_horizon
(4:t)+Theta_down+Theta_down)];

72

73 %% Process constraint : Same for all senarios.
74 %%% EQUALITY CONSTRAINT
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75 %Demand constraint => when eqaulity : infeasible => inequality
.

76 S_Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
77 S_Beq_D = [dt.S1_Demand_horizon’
78 dt.S2_Demand_horizon’
79 dt.S3_Demand_horizon’
80 dt.S4_Demand_horizon’
81 dt.S5_Demand_horizon’
82 dt.S6_Demand_horizon’
83 dt.S7_Demand_horizon’
84 dt.S8_Demand_horizon’
85 dt.S9_Demand_horizon’];
86

87 %Transition function
88 S_Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(

eye(t),[0 0 0 0 0 1]);
89 S_Beq_T = S.R*ones(t,1);
90

91 %%% INEQUALITY CONSTRAINTS : Ax<=b
92 %Charging limitation : WS+GS+S <=R.max
93 S_A_1 = kron(eye(t), [0 0 0 1 1 1]);
94 S_B_1 = S0.R_max*ones(t,1);
95 %Discharging limitation : Q,SD < amount in Storage
96 S_A_2 = kron(eye(t),[0 0 1 0 0 -1]);
97 S_B_2 = zeros(t,1);
98 %Charing rate limitation
99 S_A_3 = kron(eye(t),[0 0 0 1 1 0]);

100 S_B_3 = S0.rate_c*ones(t,1);
101 %Discharing rate limitation
102 S_A_4 = kron(eye(t),[0 0 1 0 0 0]);
103 S_B_4 = S0.rate_d*ones(t,1);
104 %Waste incinerator : Heat supply amount
105 S_A_5 = kron(eye(t),[1 0 0 1 0 0]);
106 S_B_5 = Energy_horizon’;
107 % A&B integration
108 S_A = [S_A_1; S_A_2; S_A_3; S_A_4; S_A_5];
109 S_B = [S_B_1; S_B_2; S_B_3; S_B_4; S_B_5];
110

111 S_f = kron(Price_horizon,[-0.02 1 0 -0.01 1 0]);
112

113 %% Non-anticipativity constraints
114 nas = [1 1 1 1 1 0];
115 naz = zeros(1,6);
116

117 na_A1 = [nas kron(ones(1,t-1),naz) -nas kron(ones(1,t-1),naz) kron(ones(1,
t*7), naz)

118 nas kron(ones(1,t-1),naz) kron(ones(1,t*1), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*6), naz)

119 nas kron(ones(1,t-1),naz) kron(ones(1,t*2), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*5), naz)

120 nas kron(ones(1,t-1),naz) kron(ones(1,t*3), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*4), naz)

121 nas kron(ones(1,t-1),naz) kron(ones(1,t*4), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*3), naz)

122 nas kron(ones(1,t-1),naz) kron(ones(1,t*5), naz) -nas kron(ones(1,t-1)
,naz) kron(ones(1,t*2), naz)

123 nas kron(ones(1,t-1),naz) kron(ones(1,t*6), naz) -nas kron(ones(1,t-1)
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,naz) kron(ones(1,t*1), naz)
124 nas kron(ones(1,t-1),naz) kron(ones(1,t*7), naz) -nas kron(ones(1,t-1)

,naz) ];
125

126 na_A2 = [naz nas kron(ones(1,t-2),naz) naz -nas kron(ones(1,t-2),naz) kron
(ones(1,t*7),naz)

127 naz nas kron(ones(1,t-2),naz) kron(ones(1,t),naz) naz -nas kron(
ones(1,t-2),naz) kron(ones(1,t*6),naz)

128 kron(ones(1,t*3),naz) naz nas kron(ones(1,t-2),naz) naz -nas kron(
ones(1,t-2),naz) kron(ones(1,t*4),naz)

129 kron(ones(1,t*3),naz) naz nas kron(ones(1,t-2),naz) kron(ones(1,t)
,naz) naz -nas kron(ones(1,t-2),naz) kron(ones(1,t*3),naz)

130 kron(ones(1,t*6),naz) naz nas kron(ones(1,t-2),naz) naz -nas kron(
ones(1,t-2),naz) kron(ones(1,t),naz)

131 kron(ones(1,t*6),naz) naz nas kron(ones(1,t-2),naz) kron(ones(1,t)
,naz) naz -nas kron(ones(1,t-2),naz)];

132

133

134 na_Aeq = [na_A1; na_A2];
135 na_Beq = zeros(size(na_Aeq,1),1);
136

137 %% Integration of linprog factors
138 Aeq_T = kron(eye(9),S_Aeq_T);
139 Aeq_D = kron(eye(9),S_Aeq_D);
140 Aeq = [Aeq_D; Aeq_T; na_Aeq];
141

142 Beq = [S_Beq_D; kron(ones(9,1),S_Beq_T)];
143 Beq = [Beq; na_Beq];
144

145 A = kron(eye(9),S_A);
146 B = kron(ones(9,1),S_B);
147 f = kron(ones(1,9),S_f);
148 lb = zeros(6*9*t,1);
149 ub = ones(6*9*t,1)*inf;
150

151 %% %%% Optimization
152 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
153

154 % Data store from openloop optimization
155 u.S1.WD = w_opt(1:6:6*t);
156 u.S1.GD = w_opt(2:6:6*t);
157 u.S1.SD = w_opt(3:6:6*t);
158 u.S1.WS = w_opt(4:6:6*t);
159 u.S1.GS = w_opt(5:6:6*t);
160 u.S1.R = w_opt(6:6:6*t);
161

162 u.S2.WD = w_opt(6*t+1:6:6*2*t);
163 u.S2.GD = w_opt(6*t+2:6:6*2*t);
164 u.S2.SD = w_opt(6*t+3:6:6*2*t);
165 u.S2.WS = w_opt(6*t+4:6:6*2*t);
166 u.S2.GS = w_opt(6*t+5:6:6*2*t);
167 u.S2.R = w_opt(6*t+6:6:6*2*t);
168

169 u.S3.WD = w_opt(6*2*t+1:6:6*3*t);
170 u.S3.GD = w_opt(6*2*t+2:6:6*3*t);
171 u.S3.SD = w_opt(6*2*t+3:6:6*3*t);
172 u.S3.WS = w_opt(6*2*t+4:6:6*3*t);
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173 u.S3.GS = w_opt(6*2*t+5:6:6*3*t);
174 u.S3.R = w_opt(6*2*t+6:6:6*3*t);
175

176 u.S4.WD = w_opt(6*3*t+1:6:6*4*t);
177 u.S4.GD = w_opt(6*3*t+2:6:6*4*t);
178 u.S4.SD = w_opt(6*3*t+3:6:6*4*t);
179 u.S4.WS = w_opt(6*3*t+4:6:6*4*t);
180 u.S4.GS = w_opt(6*3*t+5:6:6*4*t);
181 u.S4.R = w_opt(6*3*t+6:6:6*4*t);
182

183 u.S5.WD = w_opt(6*4*t+1:6:6*5*t);
184 u.S5.GD = w_opt(6*4*t+2:6:6*5*t);
185 u.S5.SD = w_opt(6*4*t+3:6:6*5*t);
186 u.S5.WS = w_opt(6*4*t+4:6:6*5*t);
187 u.S5.GS = w_opt(6*4*t+5:6:6*5*t);
188 u.S5.R = w_opt(6*4*t+6:6:6*5*t);
189

190 u.S6.WD = w_opt(6*5*t+1:6:6*6*t);
191 u.S6.GD = w_opt(6*5*t+2:6:6*6*t);
192 u.S6.SD = w_opt(6*5*t+3:6:6*6*t);
193 u.S6.WS = w_opt(6*5*t+4:6:6*6*t);
194 u.S6.GS = w_opt(6*5*t+5:6:6*6*t);
195 u.S6.R = w_opt(6*5*t+6:6:6*6*t);
196

197 u.S7.WD = w_opt(6*6*t+1:6:6*7*t);
198 u.S7.GD = w_opt(6*6*t+2:6:6*7*t);
199 u.S7.SD = w_opt(6*6*t+3:6:6*7*t);
200 u.S7.WS = w_opt(6*6*t+4:6:6*7*t);
201 u.S7.GS = w_opt(6*6*t+5:6:6*7*t);
202 u.S7.R = w_opt(6*6*t+6:6:6*7*t);
203

204 u.S8.WD = w_opt(6*7*t+1:6:6*8*t);
205 u.S8.GD = w_opt(6*7*t+2:6:6*8*t);
206 u.S8.SD = w_opt(6*7*t+3:6:6*8*t);
207 u.S8.WS = w_opt(6*7*t+4:6:6*8*t);
208 u.S8.GS = w_opt(6*7*t+5:6:6*8*t);
209 u.S8.R = w_opt(6*7*t+6:6:6*8*t);
210

211 u.S9.WD = w_opt(6*8*t+1:6:6*9*t);
212 u.S9.GD = w_opt(6*8*t+2:6:6*9*t);
213 u.S9.SD = w_opt(6*8*t+3:6:6*9*t);
214 u.S9.WS = w_opt(6*8*t+4:6:6*9*t);
215 u.S9.GS = w_opt(6*8*t+5:6:6*9*t);
216 u.S9.R = w_opt(6*8*t+6:6:6*9*t);
217

218 % Take an action
219 uk = [u.S1.WD(1);u.S1.GD(1);u.S1.SD(1);u.S1.WS(1);u.S1.GS(1)];
220

221 S.D-uk(1)-uk(2)-uk(3)
222

223 % Exogenous information realization
224 S.P = sample_path.P(w,k);
225 S.D = sample_path.D(w,k);
226

227 %Simulating the plant behavior during dt
228 S.R = S.R + [0 0 -1 S0.eff_c S0.eff_c]*uk;
229
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230 %Data storing
231 xSim = [xSim, S.R];
232 uSim = [uSim, uk];
233

234 end
235

236 Cost1 = sum(sample_path.P(w,:).*(uSim(2,:) + uSim(5,:)));
237 Cost2 = [Cost2; Cost1];
238 end
239 Cost = mean(Cost2);
240

241 for i = 1:size(Cost2,1)
242 Avg_cost_cum(i) = mean(Cost2(1:i));
243 end
244

245 name = strcat(date,’_Dscn_MPC_’,num2str(w),’itr_’,num2str(t),’_hz’);
246 save(name)

A.8 The deterministic optimal solution(perfect forecast)
The file P05 Opt main.m runs the simulation of the deterministic optimal policy under
the assumption of the perfect forecast.

P05 Opt main.m

1 close all
2 clear all
3 clc
4

5

6 %% Load
7 addpath(’../Exogenous_information’)
8 addpath(’../P01_PFA’)
9 load(’sample_path.mat’)

10 plot_settings
11

12 %% Optimum calculation
13

14 %initial setup
15 S0 = S0();
16 S=S0.S;
17 %scenario number
18 n_scenario = size(sample_path.D,1);
19

20 %Extention of sample path
21 sample_path.E = [S.E sample_path.E];
22 sample_path.D = [S.D*ones(n_scenario,1) sample_path.D];
23 sample_path.P = [S.P*ones(n_scenario,1) sample_path.P];
24

25 %time horizon
26 t = size(sample_path.D,2);
27

28 tic
29 T_Cost = [];
30 for w = 1:n_scenario
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31 w
32 %Choosing the price policy
33 Price_horizon = sample_path.P(w,:);
34 Demand_horizon = sample_path.D(w,:);
35 Energy_horizon = sample_path.E(1,:);
36

37 %optimize the system
38 %%% EQUALITY CONSTRAINT
39 %Demand constraint
40 Aeq_D = kron(eye(t),[1 1 S0.eff_d 0 0 0]);
41 Beq_D = Demand_horizon’;
42 %Transition function
43 Aeq_T = kron(tril(ones(t)),[0 0 1 -S0.eff_c -S0.eff_c 0])+kron(eye

(t),[0 0 0 0 0 1]);
44 Beq_T = S.R*ones(t,1);
45 % Aeq & Beq integration
46 Aeq = [Aeq_D;Aeq_T];
47 Beq = [Beq_D;Beq_T];
48

49 %%% INEQUALITY CONSTRAINTS : Ax<=b
50 %Charging limitation : WS+GS+S <=R.max
51 A_1 = kron(eye(t), [0 0 0 1 1 1]);
52 B_1 = S0.R_max*ones(t,1);
53 %Discharging limitation : Q,SD < amount in Storage
54 A_2 = kron(eye(t),[0 0 1 0 0 -1]);
55 B_2 = zeros(t,1);
56 %Charing rate limitation
57 A_3 = kron(eye(t),[0 0 0 1 1 0]);
58 B_3 = S0.rate_c*ones(t,1);
59 %Discharing rate limitation
60 A_4 = kron(eye(t),[0 0 1 0 0 0]);
61 B_4 = S0.rate_d*ones(t,1);
62 %Waste incinerator : Heat supply amount
63 A_5 = kron(eye(t),[1 0 0 1 0 0]);
64 B_5 = Energy_horizon’;
65 % A&B integration
66 A = [A_1;A_2;A_3;A_4;A_5];
67 B = [B_1;B_2;B_3;B_4;B_5];
68

69 %%% Objective function
70 f = kron(Price_horizon,[0 1 0 0 1 0]);
71

72 %%% Boundaries - lower and upper
73 lb = zeros(6*t,1);
74 ub = ones(6*t,1)*inf;
75

76 %%% Optimization
77 w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);
78

79 % Data store from openloop optimization
80 u.WD = w_opt(1:6:6*t);
81 u.GD = w_opt(2:6:6*t);
82 u.SD = w_opt(3:6:6*t);
83 u.WS = w_opt(4:6:6*t);
84 u.GS = w_opt(5:6:6*t);
85 x.R = w_opt(6:6:6*t);
86
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87 M_Cost = sum((u.GD+u.GS).*Price_horizon’);
88

89 T_Cost = [T_Cost; M_Cost];
90 end
91 Avg_Cost = mean(T_Cost);
92

93 for i = 1:size(T_Cost,1)
94 Avg_cost_cum(i) = mean(T_Cost(1:i));
95 end
96

97 name = strcat(date,’_OPT_’,num2str(w),’itr_’,num2str(t),’_hz’);
98 save(name)
99

100 %% Plot
101 Line_thick = 1.1
102 Font = 14;
103

104 figure()
105 subplot(5,1,1)
106 stairs(1:t,u.WD,’LineWidth’,Line_thick)
107 %legend(’$Q_{WD}$’)
108 axis([0 t 0 300])
109 %xlabel(’Time period, $t$’)
110 ylabel(’$Qˆ{WD}$ [MWh]’,’FontSize’,Font)
111 set(gca,’FontSize’,Font)
112

113

114 subplot(5,1,2)
115 stairs(1:t,u.GD,’LineWidth’,Line_thick)
116 %legend(’$Q_{GD}$’)
117 axis([0 t 0 300])
118 %xlabel(’Time period, $t$’)
119 ylabel(’$Qˆ{GD}$ [MWh]’,’FontSize’,Font)
120 set(gca,’FontSize’,Font)
121

122

123 subplot(5,1,3)
124 stairs(1:t,u.SD,’LineWidth’,Line_thick)
125 %legend(’$Q_{GD}$’)
126 axis([0 t 0 300])
127 %xlabel(’Time period, $t$’)
128 ylabel(’$Qˆ{SD}$ [MWh]’,’FontSize’,Font)
129 set(gca,’FontSize’,Font)
130

131 subplot(5,1,4)
132 stairs(1:t,u.WS,’LineWidth’,Line_thick)
133 %legend(’$Q_{WS}$’)
134 axis([0 t 0 300])
135 %xlabel(’Time period, $t$’)
136 ylabel(’$Qˆ{WS}$ [MWh]’,’FontSize’,Font)
137 set(gca,’FontSize’,Font)
138

139 subplot(5,1,5)
140 stairs(1:t,u.GS,’LineWidth’,Line_thick)
141 %legend(’$Q_{GS}$’)
142 axis([0 t 0 300])
143 xlabel(’Time period, $t$’,’FontSize’,Font)
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144 set(gca,’FontSize’,Font)
145

146 ylabel(’$Qˆ{GS}$ [MWh]’,’FontSize’,Font)
147

148 Font = 30;
149 figure()
150 stairs(1:t,x.R,’LineWidth’,1.5)
151 %legend(’$Q_{GS}$’)
152 axis([0 t 0 S0.R_max])
153 xlabel(’Time period, $t$’,’FontSize’,Font)
154 ylabel(’$Qˆ{Storage}$ [MWh]’,’FontSize’,Font)
155 set(gca,’FontSize’,Font)
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