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Abstract

The production of pharmaceuticals is typically done using batch processing at multiple fa-
cilities. Drawbacks of the current approach include long production times and the potential
for drug shortages due to supply chain interruptions and quality control issues. Other ma-
jor challenges facing the pharmaceutical industry today include the need to respond to
sudden changes in demand due to epidemics or pandemics, lower drug production costs,
and reduce waste generation. To address these issues, research efforts in academia and
industry over the last decade have been oriented towards the development of end-to-end
continuous-flow processes for drug production.

This work considers the plantwide control design for a portable pharmaceutical platform
for the on-demand continuous-flow production of atropine, which is an active pharma-
ceutical ingredient used in the treatment of heart rhythm problems. The existing physical
platform developed at the Massachusetts Institute of Technology has a regulatory control
layer that controls key states such as reactor temperatures to specified setpoints. However,
the design of an upper supervisory control layer to meet plantwide control objectives such
as minimization of the environmental factor is needed. In this work, we explore the appli-
cation of self-optimizing control in the design of the supervisory control layer. The idea
is to achieve near-optimal operation by tracking carefully selected controlled variables to
constant setpoints without the need to re-optimize online the system when disturbances oc-
cur. Screening methodologies for selection of self-optimizing controlled variables based
on local and global approaches were developed. Furthermore, decentralized PID control
and model predictive control strategies were developed for the optimal operation and con-
trol of the system.

It was found that a constant setpoint control strategy of linear combinations of 6 con-
centration measurements results in near-optimal operation in the face of uncertainty. The
uncertainty considered in this work includes process disturbances, parametric model un-
certainty and sensor noise.
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Chapter 1
Introduction

1.1 Project background

This master thesis is submitted in partial fulfillment of the requirements for the degree of
Master of Science in Natural Gas Technology at the Norwegian University of Science and
Technology. The work has been supervised by Professor Truls Gundersen and Associate
Professor Johannes Jäschke at the Norwegian University of Science and Technology, and
Professor Richard D. Braatz at the Massachusetts Institute of Technology.

1.2 Motivation

The production of pharmaceuticals is typically done using batch processing. The entire
process chain, from raw materials to the final drug form, can take up to a total of 12
months. This long production time together with drug shortages due to supply chain in-
terruptions and quality control issues are among the most important challenges facing the
pharmaceutical industry today. Other challenges include the need to respond to sudden
changes in demand (e.g., due to epidemics or pandemics), high drug production costs, and
high waste generation.

To address these issues, important research efforts in academia and industry over the last
decade have been oriented towards the development of continuous-flow processes for drug
production. The case study considered in this work is a compact modular reconfigurable
system for continuous-flow production of atropine recently developed at the Massachusetts
Institute of Technology. Atropine is an active pharmaceutical ingredient with a variety of
therapeutic uses, including the treatment of heart rhythm problems.

1



Chapter 1. Introduction

The stable and optimal operation of these pharmaceutical platforms requires the imple-
mentation of plantwide control strategies to guarantee short-term stability and long-term
optimal economic performance in the face of uncertainty. This shall be the focus of this
work.

1.3 Objectives

The objectives of this master thesis are:

1. Perform a literature study on self-optimizing control and controller design method-
ologies in multivariable plants.

2. Develop a screening methodology for control structure selection based on recent
global self-optimizing control approaches, and apply it to the atropine process.
Compare these results with the ones obtained by traditional local approaches.

3. Design a multiple-input-multiple-output controller for the atropine process.

4. Validate the resulting control system via dynamic closed-loop simulations.

1.4 Organization

This report comprises four chapters, including this introduction, and one appendix.

Chapter 2 contains the technical background. It begins by presenting some basic con-
cepts on control system design and hierarchical plantwide control. The central part of the
chapter is devoted to self-optimizing control, covering the general problem formulation
as well as local and global methods for controlled variable selection. Then, controller
design methodologies in multivariable plants are discussed, covering both decentralized
PID control and model predictive control. The final section of the chapter is the most ap-
plied one and it motivates some recent research efforts in continuous-flow pharmaceutical
manufacturing.

Chapter 3 presents the case study considered in this work, which is the continuous-flow
production of atropine. A first-principles model of the process is derived. Furthermore,
the methodologies for controlled variable selection and controller design used in this work
are explained.

Chapter 4 presents the results of the case study, including the selection and validation of
the self-optimizing control structure proposed for the atropine process. The chapter ends
with a summary of the overall conclusions, an evaluation of the objectives set out in the
previous section, and some directions for further research.

Appendix A contains some important pieces of source code developed in this project.

2



Chapter 2
Technical background

2.1 Introduction to control system design

From a systems engineering perspective, every problem can be considered a system com-
posed of several interactive components. For some systems, like chemical plants, these
components are processing units (reactors, separators, crystallizers, heat exchangers, etc.)
and the interactions are material and energy flows. Other biological systems, like living
cells, are composed of molecules and macromolecular structures interacting through co-
valent and non-covalent bondings. The list may be endless. However, no matter what type
of system we are considering, in systems engineering the interest is always on studying
how the components and their interactions determine the behavior of the whole system.

Control has been defined by Findeisen et al. (1980) as influencing a system to behave in a
desired way. A block diagram of a generalized control system is shown in Fig. 2.1, where

Disturbance inputs

d

Controlled outputs

c

Observations 

(measurements)

y

Manipulated 

inputs

u

Plant

P

Controller

K

Figure 2.1: Generalized control system.
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Chapter 2. Technical background

the plant P and the controller K are linked via actuator signals and sensor in a feedback
structure.

The general controller design problem is to find the controller K that based on the in-
formation provided by the measurements y, generates the control signals u such that the
controlled outputs c are kept close to their desired setpoints despite disturbances d. This
problem will be the topic of Section 2.5.

However, this problem formulation assumes that we know which variables to measure,
manipulate and control. Furthermore, specifications about the control configuration (local
decomposition of the controller) and the control law (PID, MPC, LQG, H-infinity, etc.)
may also be assumed. In other words, a given control structure is given at the outset.

The problem of determining the above structural decisions is called control structure selec-
tion or control structure design. In the field of process control, the term plantwide control
is used as a synonym for referring to the same problem (Skogestad and Postlethwaite,
2007).

2.2 Principles of hierarchical control

In practice, complex systems such as complete chemical plants are controlled using hi-
erarchical structures. The overall control problem is decomposed into a series of simple
control problems. This decomposition follows two basic principles:

• Hierarchical control, based on the multilayer concept proposed by Lefkowitz (1966).
This vertical decomposition divides the control system into a set of algorithms, or
layers, that act on different time scales.

• Decentralized control, based on the multilevel concept proposed by Mesarovic et al.
(1970). This horizontal decomposition divides the control system into a set of local
control units, whose actions are coordinated by a master unit.

There are fundamental reasons for decomposing the overall control problem instead of
using a centralized optimizing controller. One is robustness. In case of failure of a control
unit, the overall system will survive. Furthermore, the use of decentralized (local) control
operating on a fast time-scale will make the overall system less sensitive to disturbances.
Another important reason is that decentralized control can be used effectively with limited
knowledge about the system and therefore without much need for models.

The theoretical foundations of control and coordination in hierarchical systems go back
to the classic work by Mesarovic et al. (1970). In the field of process control, these ideas
gained wide recognition through the work of Findeisen et al. (1980).

4



2.3 Plantwide control

simple. The basis is to de®ne mathematically the quality
of operation in terms of a scalar cost function J to be
minimized. To achieve truly optimal operation we
would need a perfect model, we would need to measure
all disturbances, and we would need to solve the result-
ing dynamic optimization problem on-line. This is
unrealistic, and the question is if it is possible to ®nd a
simpler implementation which still operates satisfacto-
rily (with an acceptable loss). More precisely, the loss L
is de®ned as the di�erence between the actual value of
the cost function obtained with a speci®c control strat-
egy, and the truly optimal value of the cost function, i.e.
L � Jÿ Jopt. The simplest operation would result if we

could select controlled variables such that we obtained
acceptable operation with constant setpoints, thus
e�ectively turning the complex optimization problem
into a simple feedback problem and achieve what we
here call ``self-optimizing control'':

Self-optimizing control is when we can achieve an
acceptable loss with constant setpoint values for the
controlled variables (without the need to reoptimize
when disturbances occur).

[The reader is probably familiar with the term self-
regulation, which is when acceptable dynamic control
performance can be obtained with constant manipu-
lated inputs. Self-optimizing control is a direct general-
ization to the case where we can achieve acceptable
(economic) performance with constant controlled vari-
ables.] The term ``self-optimizing control'' is short and
descriptive, but also other terms have been used to
describe the same idea, such as ``feedback optimizing
control'' [4], and ``indirect optimizing control (through
setpoint control)'' [5]. A simple example of self-optimizing
control is the process of baking a cake, where the

Fig. 1. Typical control hierarchy in a chemical plant.

Nomenclature

c controlled variables (selected from
the sets of y and m to replace u as
degrees of freedom for optimization;
special case c � u)

copt d� � optimal value of c which minimizes
cost J for given d.

cs setpoint value for c; in this paper,
cs � copt d

�� �
d disturbance variables
d� nominal value of disturbances
dc � cÿ cs implementation error
ecs � cs ÿ copt d� �

setpoint error
ec � ecs � dc � cÿ copt d� �

overall error
J � Ju u; d� � � Jc c; d� �

scalar cost function to be minimized
Jopt d� � minimum value of J (minimized with

respect to u or c)
L � Jc c; d� � ÿ Jopt d� �

loss
m manipulated variables (degrees of

freedom for control)
m (as subscript) measured
n noise on measurements of y
Nm no. of degrees of freedom for control
Nopt � Nu � Nc

no. of degrees of freedom for optimi-
zation

Nopt;free no. of unconstrained degrees of free-
dom for optimization

u ``base set'' for the Nu optimization
degrees of freedom

v all available measurements (including
cm; dm; ym)

y dependent ``output'' variables;
usually measured

488 S. Skogestad / Journal of Process Control 10 (2000) 487±507

Figure 2.2: Typical control hierarchy in a chemical plant (Skogestad, 2000).

2.3 Plantwide control

Plantwide control refers to the problem of control structure selection discussed in Sec-
tion 2.1, but applied to chemical plants. This involves all the structural decisions to design
the control system with focus on the overall control philosophy of the plant. These deci-
sions include the following tasks (Skogestad, 2000):

1. Selection of controlled variables and setpoints.

2. Selection of manipulated variables.

3. Selection of measurements for control purposes, including stabilization.

4. Selection of a control configuration (this refers to the structure of the overall con-
troller, which can be decomposed into a series of decentralized controllers).

5. Selection of the type of controller (PID, MPC, LQG, H-infinity, etc.).

The plantwide control system for a chemical plant is organized in a hierarchical structure
as the one shown in Fig. 2.2, where layers operate on different time scales. This decom-
position is based on the decomposition principles discussed in Section 2.2. Typical layers
in the control hierarchy of a chemical plant include:

• Scheduling (weeks).

5



Chapter 2. Technical background

• Site-wide optimization (day).

• Local optimization (hour).

• Supervisory/predictive control (minutes).

• Stabilization and regulatory control (seconds).

Optimal operation is achieved by cascading the economic plant objectives down from the
upper optimization layers to the lower control layers. The different layers are linked via
controlled variables and setpoints. Due to time-scale separation, the optimization and the
control objectives are decoupled. This means that the control layer immediately imple-
ments a given setpoint from the optimization layer above without any knowledge of the
optimality criterion used to compute it.

The operational objectives of a plantwide control system are to achieve short-term stability
and long-term economic profitability. Skogestad (2004) outlines the following plantwide
control procedure to achieve these objectives.

I. Top-down analysis (focus on plant economics)

Step 1. Define optimal operation in terms of a scalar cost function to be mini-
mized and a set of constraints to be satisfied.

Step 2. Identify steady-state degrees of freedom and determine the steady-state
optimal operating point for nominal operation, including active constraints.

Step 3. Identify measurement candidates and select primary controlled vari-
ables for the supervisory control layer based on the principles of self-optimizing
control.

Step 4. Select the location of the throughput manipulator (TPM), which will
determine where to set the production rate and the structure of the remaining
inventory control system.

II. Bottom-down analysis (focus on robustness and stability)

Step 5. Select secondary controlled variables for the regulatory (stabilizing)
control layer and determine the pairing with the manipulated variables.

Step 6. Select the structure of the supervisory control layer (decentralized or
multivariable control).

Step 7. Determine the need for an optimization layer (RTO).

Step 7. Validation through nonlinear dynamic simulation.

This work is mainly concerned with the top-down analysis of the procedure, which focuses
on the selection of controlled variables and setpoints for achieving near-optimal operation
in the presence of disturbances. This will be discussed more in detailed in the following
section.
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2.4 Self-optimizing control

2.4 Self-optimizing control

The paradigm of hierarchical control is effective in handling the complexity of real process
systems, e.g., when controlling a complete chemical plant. However, it results in a loss of
optimality with respect to a centralized optimizing controller. This loss comes from the
time-scale separation between the optimization and the control layers. The optimization
layer typically operates on a slower time-scale where setpoints are only recomputed at low-
frequency time intervals. Therefore, disturbances impacting the process between setpoint
updates are not optimally rejected by the lower control layer until the next update.

It turns out that the loss of optimality from low-frequency setpoint adaptation strongly
depends on the selected controlled variables. This is an important structural decision with
consequences for the overall profitability of the plant. This has been recognized by Foss
(1973) in his “Critique of chemical process control theory”:

Which variables should be measured, which inputs should be manipulated,
and what links should be made between these two sets? This problem is con-
sidered by many to be the most important problem encountered by designers
of chemical process control systems (Foss, 1973).

Since then, important research efforts have been focused on finding optimal control struc-
tures in terms of economics. Early work in this direction includes Morari et al. (1980);
Morari (1981); Narraway and Perkins (1994). In the first part of the series of papers
“Studies in the synthesis of control structures for chemical processes”, Morari et al. (1980)
introduced the concept of “feedback optimizing control”:

In attempting to synthesize a feedback optimizing control structure, our main
objective is to translate the economic objective into process control objec-
tives. In other words we want to find a function c of the process variables
[...] which when held constant, leads automatically to the optimal adjustment
of the manipulated variables, and with it, the optimal operating conditions
(Morari et al., 1980).

The idea of Morari et al. (1980) was to achieve optimal operation not by solving opti-
mization problems online, but through feedback control of optimal invariants (i.e., process
variables that remain constant whenever the process is operated optimally). However, the
idea of “feedback optimizing control” was largely forgotten for about two decades, but it
laid the groundwork for the concept of “self-optimizing control” presented by Skogestad
(2000). Closely related, the idea here is to achieve near-optimal operation by selecting con-
trolled variables whose optimal setpoints are near-insensitive to disturbances and sensor
noise, so that the loss from time-scale separation is minimized. Skogestad (2000) writes:

Self-optimizing control is when we can achieve an acceptable loss with con-
stant setpoint values for the controlled variables (without the need to reopti-
mize when disturbances occur) (Skogestad, 2000).

A control layer designed by the principles of self-optimizing control can reject distur-
bances near-optimally on a fast time-scale without having to wait for the real-time opti-
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mizer to update the setpoints. Meanwhile, the upper optimization layer can still correct for
plant-model mismatches or unmodeled disturbances on a slower time-scale.

Since the publication of the seminal paper by Skogestad (2000), research in this area has
focused on providing systematic methods to select self-optimizing controlled variables.
The developments since then are collected in the recent review paper “Self-optimizing
control - A survey” by Jäschke et al. (2017).

2.4.1 Problem formulation

We assume that quasi-steady-state optimal operation of continuous processes with para-
metric model uncertainty represented as disturbances can be mathematically formulated
as a static optimization problem,1

min
u

J(u,x,d)

s.t. f(u,x,d) = 0,

g(u,x,d) ≤ 0,

(2.1)

where u ∈ Rnu are the manipulated variables, x ∈ Rnx are the states, d ∈ Rnd are
the disturbances, J : Rnu×nx×nd 7→ R is a scalar objective function representing a
given optimality criterion (typically, the operating cost of the plant to be minimized),
f : Rnu×nx×nd 7→ Rnf are the model equations, and g : Rnu×nx×nd 7→ Rng are the
operational constraints.

By using the model equations f(u,x,d) = 0 to formally eliminate the states x, the opti-
mization problem above becomes

min
u

J(u,d)

s.t. g(u,d) ≤ 0.
(2.2)

In general, a subset of the operational constraints ga ⊂ g will be active at the optimal
solution, i.e., ga = 0. In self-optimizing control, we assume that the active constraints
can be identified and controlled at the active boundaries using an equal number of degrees
of freedom (manipulated variables).2 By formally eliminating the active constraints and
their corresponding degrees of freedom in (2.2), we obtain the following unconstrained
problem:

min
u

J(u,d), (2.3)

1Economic plant performance in most continuous processes is mainly determined by steady-state operation.
In the case of continuous processes with frequent grade changes or batch processes, optimal operation should be
formulated as a dynamic optimization problem.

2Theory in self-optimizing control has been originally derived under the assumption that active constraints do
not change under operation. If this is not the case, Section 2.4.6 will give a brief overview of methods to handle
active set changes within the self-optimizing control framework.
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2.4 Self-optimizing control

where, for simplicity, we also use u here to denote the remaining degrees of freedom in
the reduced unconstrained space after satisfying all the active constraints.

To achieve optimal operation, the necessary conditions of optimality must be satisfied.
This is, the reduced gradient must be zero, Ju = 0. Self-optimizing control achieves this
objective indirectly by using the unconstrained degrees of freedom u to control carefully
selected controlled variables c at constant setpoints cs. By tracking the right variables
using a feedback controller, the system is driven towards the optimal operating point and
u approaches uopt, despite disturbances and sensor noise.

The ideal self-optimizing controlled variable would be the reduced gradient of the cost
function, Ju. In this case, optimal operation is achieved by simply controlling the gradient
to a constant setpoint of zero. The problem is that a direct evaluation of the gradient in
real processes is often challenging. Instead, we use the available plant measurements for
which we assume we have a model,

y = m(u,x,d), (2.4)

where the measurements y are a function of the inputs u, the states x, and the disturbances
d. These measurements can include process variables, manipulated variables (inputs) and
also measured disturbances (parametric model uncertainty that can be measured in a feed-
forward manner before affecting the process, e.g., knowledge about prices).

In a real plant, measurements y are corrupted by sensor noise n, such that

ym = y + n. (2.5)

In general, controlled variables can be selected as any function h of the available plant
measurements, such that

c = h(ym). (2.6)

However, we often restrict this function to linear combination of measurements on the
form

c = Hym. (2.7)

The matrix H ∈ Rnc×ny is called selection or combination matrix. A full matrix will
result in measurement combinations, while rows containing one ”1” and zeros otherwise
will result in the control of single measurements. Research has shown that controlling
combination of measurements enhances the economic performance of the control scheme,
achieving lower steady-state losses. (Alstad and Skogestad, 2007; Kariwala, 2007; Alstad
et al., 2009). A block diagram of a general self-optimizing control structure is shown in
Fig. 2.3.
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Process -
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Figure 2.3: Block diagram of a general self-optimizing control structure.

Skogestad and Postlethwaite (2007) state some requirements for selecting good controlled
variables:

1. The inputs u should have a significant effect (gain) on the controlled variables c
(i.e., they should be easy to control).

2. Their optimal setpoints cs should be insensitive to disturbances and sensor noise.

3. In case of several controlled variables, these should not be closely correlated.

The criterion for evaluating the performance of a given control structure c = Hym is
the economic loss, which is defined as the difference between the cost resulting from that
control structure and the cost resulting from truly optimal operation. Mathematically,

L = J(u,d)− J(uopt,d),

= J(u,d)− Jopt(d).
(2.8)

Here, the loss is written in terms of the steady-state inputs, which may be generated by
using either a closed or an open-loop policy.

The central issue addressed in the framework of self-optimizing control is the selection of
appropriate controlled variables c = Hym and setpoints cs. More specifically, for a given
set of possible disturbances d ∈ D and sensor noise realizations n ∈ N , we want to find
the optimal combination matrix H and the setpoints cs which minimize the average (or
worst-case) loss for the entire operating region. To solve this problem, different methods
have been proposed in the literature. The next sections will give a brief overview over
some of these methods, including early brute force approaches, local methods and some
recent global methods.
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2.4.2 Brute force methods

Early methods to find self-optimizing controlled variables relied on the brute force eval-
uation of all possible control structures. The idea is simply to evaluate the loss L corre-
sponding to each possible combination matrix H for all possible values of disturbances
d ∈ D and measurement noise realizations n ∈ N , and then rank the different candidates
in terms of the worst-case loss

Lwc(H) = max
d∈D,n∈N

L(n,d,H), (2.9)

or the average loss

Lav(H) = E
d∈D,n∈N

[L(n,d,H)] , (2.10)

where E [ · ] is the expectation operator. The candidate with the lowest average or worst-
case loss is finally selected.

Brute force approaches can only be realized in small-scale problems with only a few sets of
possible controlled variables. Otherwise, they lead to a combinatorial explosion. When se-
lecting nu single measurements as controlled variables out of a total of ny measurements,
there are

Cnuny =

(
ny
nu

)
=

ny!

(ny − nu)!nu!
(2.11)

possible combinations. In complete chemical plants, with hundreds or thousands of possi-
ble measurements, this approach is clearly intractable. Furthermore, for each loss eval-
uation a nonlinear programming problem has to be solved, which is generally large-
dimensional and non-convex.

If we allow linear combination of measurements to be chosen as controlled variables,
instead of single measurements, the problem becomes even more difficult. Here, the prob-
lems are generally large-scale nonlinear bilevel optimization problems.

One common strategy in brute force approaches is to neglect the sensor noise, n = 0, and
therefore reduce the number of optimization problems to be solved. However, this can
lead to poor control structures when noise is present in the real plant and if the number
of disturbances and potential controlled variables is still high, the problem will remain
intractable. The use of heuristics can also be used to reduce the number of candidate
controlled variables.

However, it is clear that without systematic methods to find optimal controlled variables
in real large-scale processes, the search for self-optimizing control structures is hopeless.
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2.4.3 Local methods

The first systematic methods proposed in the literature were based on the linearization
of the plant model and a quadratic approximation of the loss around the nominal operat-
ing point. The idea is to select locally optimal control structures that behave well around
the nominal point, where the process is expected to operate most of the time. The con-
trol structures resulting from this local screening can then be validated using the original
nonlinear model over the entire operating region.

Local approximation of the loss

The nonlinear cost function J is approximated locally by a second order Taylor expansion
around the moving optimal point (uopt,d). For a given disturbance d, this expansion
gives

J(u,d) = J(uopt,d) + JT
u (u−uopt) +

1

2
(u−uopt)TJuu(u−uopt) +O3 (2.12)

where Ju and Juu are the Jacobian and the Hessian matrices of the cost function J eval-
uated at the optimal point, respectively. Subtracting J(uopt,d) from both sides of (2.12)
and taking into account that at the optimum JT

u (u − uopt) = 0, which corresponds with
the necessary condition of optimality, we get the following approximation of the loss:

L = J(u,d)− J(uopt,d),

≈ 1

2
eT
uJuueu.

(2.13)

Here, eu , u− uopt is the deviation of the inputs with respect to their optimal value.

Introducing the loss variable z = J
1/2
uu eu, we can write the loss as

L =
1

2
zTz, (2.14)

or alternatively

L =
1

2
‖z‖22, (2.15)

where ‖ · ‖ denotes the two-norm of the vector.
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Local approximation of the plant and linear measurement combination

For small deviations with respect to the nominally optimal operating point, we can lin-
earize the measurement model (2.4) as

∆ym = Gy∆u + Gyd∆d + n, (2.16)

where ∆ym = ym − yopt
m , ∆u = u − uopt, and ∆d = d − dnom. Furthermore,

Gy = (∂y/∂u), and Gyd = (∂y/∂d) are the gains from the inputs and disturbances
to the outputs evaluated at the nominally optimal point, respectively. The additive sensor
noise is represented by the vector n.

Assuming that the controlled variables are linear combinations of measurements, the con-
trolled variables in deviation variables are given by

∆cm = H∆ym. (2.17)

Inserting (2.16) into (2.17), we get an expression for the controlled variables as a linear
function of the inputs, disturbances and measurement noise,

∆cm = HGy∆u + HGyd∆d + Hn, (2.18)

where the matrix HGy must have full rank, i.e., rank(HGy) = nu in order to obtain
linear independent controlled variables that fully specify the system.

Exact local method

The exact local method (Halvorsen et al., 2003; Alstad et al., 2009) is a method for evalu-
ating the loss for a given control structure.

To derive an expression for the loss in terms of a given combination matrix H, disturbance
d, and noise realization n, we start by assuming perfect control. Therefore, the controlled
variables will be kept at their nominal setpoints despite disturbances, c = cnom, which in
deviation variables corresponds to ∆c = 0. Imposing this condition on (2.18), the input
∆u generated by the controllers is

∆u = (HGy)−1(∆cm︸︷︷︸
=0

−HGyd∆d−Hn)

= −(HGy)−1H(Gyd∆d + n).

(2.19)

Using this result into the loss expression (2.15), Halvorsen et al. (2003) shows that the
loss variable z for a given control structure H, disturbance d, and sensor noise value n
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becomes

z = −J1/2
uu (HGy)−1H

[
(Gyd −GyJ

−1
uuJud)︸ ︷︷ ︸

F

∆d + n

]

= −J1/2
uu (HGy)−1H

[
F∆d + n

]
.

(2.20)

Here, F is the optimal sensitivity matrix,

F = Gyd −GyJ
−1
uuJud, (2.21)

which represents the sensitivity of the vector of optimal measurements with respect to the
disturbances, i.e.,

F =
∂yopt

∂d
. (2.22)

The sensitivity matrix F can be computed by evaluating (2.21), using re-optimization and
finite differences, or nonlinear programming sensitivity using the inverse function theo-
rem, see Fiacco et al. (1983); Pirnay et al. (2012).

We scale the disturbances and sensor noise realizations using diagonal scaling matrices,
Wd and Wn, respectively, of appropriate sizes such that

∆d = Wdd
′, (2.23)

n = Wnn′, (2.24)

where d′ and n′ are the scaled disturbance and sensor noise vector.

The loss for a given value of d′ and n′ can be evaluated by

L =
1

2

∥∥∥∥J1/2
uu (HGy)−1HF̃

[
d′

n′

] ∥∥∥∥2

2

, (2.25)

where the augmented matrix F̃ is defined as

F̃ ,
[
FWd Wn

]
. (2.26)
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We can simplify (2.25) by introducing the matrix

M = J1/2
uu (HGy)−1HF̃, (2.27)

so that the loss becomes

L =
1

2

∥∥∥∥M [
d′

n′

] ∥∥∥∥2

2

. (2.28)

The steady-state loss is independent of the scaling chosen for the controlled variables. The
reason is that the loss matrix M remains constant when we pre-multiply it by any non-
singular matrix. To show this, consider that the controlled variables are rescaled using the
scaling matrix Q, such that (Jäschke et al., 2017)

∆ĉ = Q∆c

= Q(H∆y)

= Ĥ∆y,

(2.29)

where Ĥ is the rescaled selection matrix. We can see that the loss given by M is the same
in both cases,

M = J1/2
uu (ĤGy)−1ĤF̃

= J1/2
uu (QHGy)−1QHF̃

= J1/2
uu (HGy)−1Q−1QHF̃

= J1/2
uu (HGy)−1HF̃.

(2.30)

Local average loss

Local expressions for both the average and worst-case loss have been derived under dif-
ferent assumptions on how disturbances and sensor noise realizations are distributed. We
show here the most relevant ones.

• Two-norm bounded disturbance and noise (Halvorsen et al., 2003). Assuming
that the disturbances and noise are independent and uniformly distributed over the
set

DN 2 =
{

(d′,n′)
∣∣∣ ∥∥∥ [d′ n′

]T ∥∥∥
2
≤ 1
}
, (2.31)
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the worst-case loss becomes

Lwc = max∥∥∥∥d′

n′


∥∥∥∥

2

≤1

1

2

∥∥∥∥M [
d′

n′

] ∥∥∥∥2

2

=
1

2
‖M‖22 =

1

2
σ̄2(M), (2.32)

where σ̄( · ) represents the largest singular value.

• Infinity-norm bounded disturbance and noise (Kariwala et al., 2008). Assuming
that the disturbances and noise are independent and uniformly distributed over the
set

DN∞ =
{

(d′,n′)
∣∣∣ ∥∥∥ [d′ n′

]T ∥∥∥
∞
≤ 1
}
, (2.33)

the average loss in given by

Lav = E
d′,n′∈DN∞

[
1

2

∥∥∥∥M [
d′

n′

] ∥∥∥∥2

2

]
=

1

6
‖M‖2F, (2.34)

where E[·] is the expectation operator.

• Normally distributed disturbance and noise (Kariwala et al., 2008). Assuming
that the disturbances and noise are normally distributed with zero mean and unit
variance,

DNN =
{

d′ ∼ N (0, I), n′ ∼ N (0, I)
}
, (2.35)

the average loss becomes

Lav = E
d′,n′∈DNN

[
1

2
M

[
d′

n′

] ]
=

1

2
‖M‖2F, (2.36)

and the worst-case loss results unbounded, i.e., Lwc = ∞, as the noise and distur-
bances can become arbitrarily large.

In this work, disturbances and sensor noise realizations are assumed to be normally dis-
tributed. Kariwala et al. (2008) showed that the combination matrix H that minimizes
the average loss is superoptimal, meaning that it also minimizes the worst-case loss. For
this reason and because it is more meaningful in real applications, we decided to use the
average loss in this work.
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Minimum loss method

The optimal linear combination of measurements cm = Hym can be found by minimizing
any of the previous expressions for the average or worst-case loss. Considering the average
loss minimization for normally distributed scenarios of disturbances and sensor noise,

H = arg min
H

1

2
‖M‖2F

= arg min
H

1

2
‖J1/2

uu (HGy)−1HF̃‖2F.
(2.37)

This formulation results in a non-convex optimization problem difficult to solve. How-
ever, exploiting the non-uniqueness property of the combination matrix H, Kariwala et al.
(2008) derived an equivalent convex optimization problem:

min
H

‖HF̃‖F
s.t. HGy = J1/2

uu .
(2.38)

The idea is to select a nonsingular matrix Q such that HGy = J
1/2
uu so that the nonlin-

earity in the matrix M is canceled. This is possible because pre-multiplying H by any
nonsingular matrix Q will not affect the value of the loss matrix M, as shown previously.

An analytical solution to this problem was found by Alstad et al. (2009) and later simplified
by Yelchuru and Skogestad (2012),

H = (Gy)T(F̃F̃T)−1. (2.39)

The matrix (F̃F̃T)−1 is always invertible provided that all measurements are corrupted by
noise.

Null-space method

The null-space method is a special case of the minimum loss method when no sensor
noise is present, Wn = 0. Alstad and Skogestad (2007) showed that if the number of
measurements is greater or equal than the number of inputs and disturbances, ny ≥ nu +
nd, it is always possible to find a nontrivial combination matrix H such that

HF = 0, (2.40)

resulting in zero average (or worst-case) loss. The matrix H is therefore selected in the
null-space of F, and hence the name of the method.

However, neglecting measurement noise will not give optimal results in a real setting.
Furthermore, the condition ny ≥ nu +nd requires control structures with large number of
measurements.
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2.4.4 Global methods

Local methods introduced so far are based on linearization around the nominally opti-
mal operating point, resulting in locally optimal control structures. However, if distur-
bances move the process far away from the nominal point, local control structures may
perform poorly, resulting in unacceptable losses. Several global approaches have been
derived to address this issue. In particular, this section will focus on a simplified global
self-optimizing control (gSOC) algorithm proposed by Ye et al. (2015), that leads to an
analytical solution of H similar to the one derived in the minimum loss method. However,
the matrices involved in the global solution are constructed based on optimal data sampled
from the whole operating region. For an overview of other global self-optimizing control
methods, we refer the reader to Jäschke et al. (2017).

In the global approach by Ye et al. (2015), both the combination matrix H and the set-
points cs are degrees of freedom for optimization. The objective is no longer to achieve
locally zero loss (in local methods, cs is typically selected to be cs = Hyopt

nom), but to
select economically robust setpoints that minimize the average loss over the entire oper-
ating range. Setpoints cs are included in the combination matrix H by introducing an
augmented combination matrix Haug =

[
−cs H

]
and an augmented measurement vec-

tor yaug =
[
1 yT

]T
. This formulation generalizes the concept of arbitrary controlled

variables c with nonzero setpoints cs to controlled variables caug with zero setpoints. Both
formulations are equivalent:

caug = 0⇔ Haug yaug = 0,

⇔
[
−cs H

] [1
y

]
= 0,

⇔ −cs + Hy = 0,

⇔ Hy = cs,

⇔ c = cs.

(2.41)

For simplicity and to draw a parallel with the notation used in local methods, the subscript
corresponding to the augmented matrices will be dropped in the remainder of this section.

Global average loss

The global average loss in the entire uncertain space spanned by all expected disturbances
d ∈ D and sensor noise realizations n ∈ N , resulting from a given control structure H,
can be expressed as

Lav(H) = E
[
L(d,n,H)

]
,

=

∫
d∈D,n∈N

ρ(d)ρ(n)L(d,n,H) dn dd,
(2.42)
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where E[ · ] and ρ( · ) denote the expected value and the probability density of a random
variable, respectively.

The loss has been originally defined from an open-loop perspective in terms of u and d.
Here, we consider the closed-loop performance of the system and the loss L is implicitly
defined in terms of disturbances d, sensor noise n and the selected control structure H.
The feedback result of u in closed-loop operation is governed by the following equations:

y = f(u,d), (2.43)

Hym = H(y + n) = 0, (2.44)

which correspond to the nonlinear process model and the feedback control effects, respec-
tively. The direct evaluation of the loss based on the formulation above requires one to
solve a set of nonlinear equations. The calculations involved are cumbersome, rendering
the approach intractable in practice.

Global approximation of the loss

To make the problem tractable, it is important to approximate the loss L as an explicit
function of the combination matrix H. Similar to local methods, the loss L is approxi-
mated using a second-order Taylor expansion around a chosen reference point. However,
c is selected as the independent variable instead of u, to directly use the feedback results
from closed-loop operation. The simplified loss becomes (Halvorsen et al., 2003)

L ≈ 1

2
eTc Jccec, (2.45)

where ec , c − copt is the deviation of c from its optimal value copt, and Jcc is the
Hessian of J with respect to c. Using c = Hy = H(ym − n) and the feedback result
Hym = 0, we get c = −Hn. Furthermore, the optimal value of the controlled variables
corresponds to copt = Hyopt. Therefore, ec can be expressed as

ec = −H(y + n). (2.46)

Inserting (2.46) into (2.45), we obtain an explicit expression of the loss L in terms of the
combination matrix H:

L ≈ 1

2
(yopt + n)THTJccH(yopt + n). (2.47)

Here, the Hessian matrix Jcc is defined as in Halvorsen et al. (2003),

Jcc = (HGy)−TJuu(HGy)−1, (2.48)
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where Gy is the gain matrix from the inputs u to the measurements y, and Juu is the
reduced Hessian of J with respect to u.

Global average loss minimization

A central idea in the gSOC approach of Ye et al. (2015) is the decomposition of the loss
L into two contributions: Ld due to disturbances and Ln due to sensor noise, such that the
total loss is L = Ld + Ln. By substituting (2.47) into (2.42), the global average loss can
be derived as

Lav(H) = E[Ld] + E[Ln], (2.49)

where

Ld =
1

2
(yopt)THTJccHyopt, Ln =

1

2
tr(W2HTJccH). (2.50)

A proof of the proposition above is given in the original paper by Ye et al. (2015). Here,
tr( · ) represents the trace of a matrix and W2 , E(nnT) is the covariance matrix of
measurement noise. Introducing the diagonal matrix Wn containing the expected magni-
tudes of the measurement errors, it can be shown that W2 = W2

n for normally distributed
sensor noise realizations, while W2 = 1/3W2

n for uniform distributions.

To further simplify the problem, Jcc is relaxed as a constant matrix so that the loss
L ≈ 1

2eT
c Jccec is approximated by a quadratic function in terms of the controlled vari-

ables, as in local approaches. However, the linearization here is based on data from
the whole operating region such that the Euclidean norm of ec is minimized. Based on
this assumption, the condition Jcc ≈ I is enforced by imposing an equivalent constraint
HGy,ref = J

1/2
uu,ref at a chosen reference point. The equivalence between both constraints

follows from (2.48). The trick of adding a constraint does not change the problem because
it exploits the non-uniqueness property of the optimal H, whose structure is preserved
upon left-multiplication with any non-singular matrix. Under this assumption, the ex-
pected value of Ln becomes

E[Ln] =
1

2
E[tr(W2HTH)],

=
1

2
E[tr(HW2HT)],

=
1

2

∥∥∥WHT
∥∥∥2

F
.

(2.51)

The expected value of Ld with Jcc = I is estimated by sampling the disturbance space
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into N disturbance scenarios, using Monte Carlo simulations:

E[Ld] =
1

2
E[(yopt)THTHyopt],

≈ 1

2N

N∑
i=1

(yopt
(i) )THTHyopt

(i) .
(2.52)

The subscript ( · )(i) denotes variables corresponding to the ith disturbance scenario d(i).
The expression above for E[Ld] can be rewritten by introducing the matrix Y,

Y =



(yopt
(1) )T

(yopt
(2) )T

...

(yopt
(N))

T


=



1 yopt
1,(1) . . . yopt

ny,(1)

1 yopt
1,(2) . . . yopt

ny,(2)

...
...

...

1 yopt
1,(N) . . . yopt

ny,(N)


, (2.53)

whose ith row vector contains the optimal noise-free measurements for a given disturbance
scenario d(i). Therefore, rearranging (2.52) in terms of (2.53), the expectation value of Ld

becomes

E[Ld] =
1

2N
tr(HYTYHT),

=
1

2N

∥∥∥YHT
∥∥∥2

F
.

(2.54)

An approximation of the global average loss is derived by combining the expressions
above, (2.54) and (2.51), corresponding to the expected values of Ld and Ln, respectively.

Lav(H) = E(Ld) + E(Ln),

=
1

2N

∥∥∥YHT
∥∥∥2

F
+

1

2

∥∥∥WHT
∥∥∥2

F
,

=
1

2

∥∥∥ỸHT
∥∥∥2

F
,

(2.55)

where the intermediate matrix Ỹ is constructed as

Ỹ =


1√
N

Y

W

 . (2.56)
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Finally, by combining the approximated global average loss (2.55) together with the con-
straint HGy,ref = J

1/2
uu,ref introduced before, the following convex optimization problem

for global average loss minimization is formulated:

min
H

Lav(H) =
1

2

∥∥∥ỸHT
∥∥∥2

F

s.t. HGy,ref = J
1/2
uu,ref .

(2.57)

An analytical solution to this problem is given as

HT = (ỸTỸ)−1Gy,ref(G
T
y,ref(Ỹ

TỸ)−1Gy,ref)
−1J

1/2
uu,ref . (2.58)

To sum up, the main steps involved in the gSOC short-cut algorithm for selecting global
controlled variables are presented below:

Algorithm 1 Global controlled variable selection methodology by Ye et al. (2015)

1: Sample N finite disturbance scenarios through Monte Carlo simulation
2: For each d(i), calculate yopt

(i) via off-line optimization (minimizing J)
3: Evaluate Gy,ref and Juu,ref at a reference point
4: W2 = W2

n for Gaussian and W2 = 1
3W2

n for uniform distributions
5: Construct Y and Ỹ from (2.53) and (2.56), respectively
6: Compute optimal H using (2.58)

2.4.5 The problem of measurement subset selection

This section discusses the selection of optimal subsets of measurements, which is of great
importance in practical applications. Local and global methods presented before address
the following problem:

• Given a set of available measurements y, find the optimal combination matrix H
such that, by controlling c = Hy to a constant setpoint of cs, the average loss for
all expected disturbances d ∈ D and sensor noise realizations n ∈ N is minimized.

In this section, we add another restriction to the problem:

• Given a set of available measurements y, find the optimal subset of ny measure-
ments that results in minimum average loss applying the methods considered before.

In a complete chemical plant, the number of possible measurements can be in the order of
hundreds or thousands and using all of them when designing the control structure is not
desired nor required.

The problem is to find the optimal trade-off between the benefits of adding more sensors
(better disturbance rejection and less impact of sensor noise) and the associated costs (in-
creased investment and control complexity). If we plot the average loss of optimality as a
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Figure 3: Illustration of average loss vs number of measurements for a self-optimizing control

structure. The optimal set of a given number of measurements lies on the Pareto frontier.

where the integer variables indicate whether a measurement is active or not [20].

For the case studied in this paper, it was found that both methods found the

same optimal solution, resulting in the same measurement sets.

3. Process description110

The process studied in this work is a cascaded LNG refrigeration plant,

similar to [21]. The operational goal is to cool the pretreated natural gas to a

su�ciently low temperature such that it stays in liquid phase when the pressure

is lowered to ambient pressure. A temperature of no higher than −150 ◦C is

required to ensure this. After refrigeration, the LNG is sent to storage facilities.115

The cascaded refrigeration plant consists of multiple, increasingly cold, closed

cycles which exchange heat with each other. The advantage of such a design

is that the mean temperature di�erence between the hot and cold streams can

be kept small, resulting in lower energy consumption. This particular plant has

three separate refrigerant cycles; propane, ethane and methane. An illustration120

of the full process is shown in Fig. 4.

9

Figure 2.4: Pareto frontier representing the optimal set of measurements for a given control structure
(Verheyleweghen and Jäschke, 2019).

function of the number of measurements selected in the control structure, the trend follows
a Pareto frontier (Kariwala and Cao, 2009), as the one shown in Fig. 2.4. Above certain
threshold, the reduction in loss becomes insignificant with the number of measurements
and therefore the addition of a new sensor does not offset the investment cost and the
increased complexity of the control structure.

The problem of selecting subsets of measurements is combinatorial in nature. To solve
the problem, two approaches are currently used in the literature. One option is to use
tailor-made branch and bound algorithms (Kariwala and Cao, 2009). The second approach
proposed by Yelchuru and Skogestad (2012) consists of formulating the problem as a
mixed integer quadratic programming (MIQP) problem and use standard MIQP solvers to
find the solution. This second approach will be the one used in this work.

Mixed integer quadratic programming (MIQP) formulation

The first step in the method proposed by Yelchuru and Skogestad (2012) is to transform
the quadratic programming (QP) problem considered in the minimum loss method,

min
H

‖HF̃‖F
s.t. HGy = J1/2

uu ,
(2.59)
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into an equivalent vectorized problem,

min
hδ

hT
δ Fδhδ

s.t. GT
yδ

hδ = jδ.
(2.60)

This is done for practical reasons, because most standard solvers work with vectors and
not matrix formulations. In the formulation above, the matrix H ∈ Rnu×ny

H =

 h11 · · · h1ny
...

. . .
...

hnu1 · · · hnuny

 (2.61)

is vectorized along the rows of H to form the vector

hδ = [h11 . . . h1ny︸ ︷︷ ︸
row 1

h21 . . . h2ny︸ ︷︷ ︸
row 2

. . . hnu1 . . . hnuny︸ ︷︷ ︸
row nu

]T ∈ Rnuny×1. (2.62)

A similar vectorization procedure is applied along the columns of J
1/2
uu ∈ Rnu×nu , giving

jδ ∈ Rnunu×1.

The matrix GT
yδ
∈ Rnunu×nynu is a block diagonal matrix, where the matrix GT

y is
repeated along the diagonal nu times,

GT
yδ

=

GT
y · · · 0

...
. . .

...
0 · · · GT

y

 (2.63)

The matrix Fδ ∈ Rnuny×nunu is computed as Fδ = F̃δF̃
T
δ , where

F̃δ =

F̃ · · · 0
...

. . .
...

0 · · · F̃

 . (2.64)

After this vectorization procedure, we introduce the vector of binary variables σ

σ = [σ1 σ2 · · · σny ], σj = {0, 1}, (2.65)

where σj = 0 corresponds to a measurement that is excluded from the subset and σj = 1
corresponds to a selected measurement. The dimension of the subset can be specified by
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the constraint

Pσ = s, (2.66)

where P = 1T
1×ny is a ny dimensional vector of ones, and s is the number of measurements

included in the subset.

Finally, the mixed integer quadratic programming (MIQP) problem to find optimal subsets
of measurements corresponds to

min
hδ,σ

hT
δ Fδhδ

s.t. GT
yδhδ = jδ,

Pσ = s,
−Mσj ≤ hi,j ≤ Mσj , j = 1, . . . , ny, i = 1, . . . , nu,

σ ∈ {0, 1}.

(2.67)

The constraints −Mσj ≤ hi,j ≤Mσj are known as big-M constraints and their mission
is to ensure that the elements in H are zeros whenever σj = 0. M ∈ Rnu+ is a vector of
positive constants that act as upper bounds on the elements in H. Selecting appropriate
values for M is not straightforward and it is often done on a trial and error basis. Low val-
ues can result in a false active constraint and a suboptimal solution, while large values can
become very computationally demanding. One strategy is to reduce iteratively the values
in M until no changes are seen in the solution. Examples of standard MIQP commercial
solvers are CPLEX (CPLEX, 2009) and GUROBI (Gurobi, 2014).

2.4.6 The problem of handling active set changes

In general, the set of active constraints may change during operation due to disturbances.
This situation is illustrated in Fig. 2.5. To handle this problem within the framework of
self-optimizing control, different approaches have been proposed in the literature. The pur-
pose of this section is not an extensive review of these methods, but to provide references
to the reader.

One approach is to decompose the disturbance space into different active set regions and
design self-optimizing control structures for each region based on the methods presented
so far. Then, implement switching laws to change between control structures when distur-
bances make the active set change. This is the idea of the multi-parametric programming
approach by Manum and Skogestad (2012). The applicability of this approach is lim-
ited by the size of the problem because the number of potential active set regions grows
exponentially with the number of constraints.

Another approach, more in line with the spirit of self-optimizing control due to its simplic-
ity, is the integrated approach by Hu et al. (2012). Here, the goal is to find a single control
structure that is feasible and minimized the average loss for all disturbances.
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J(u, d2)
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Figure 2: Schematic representation showing the change in the active constraint set for two dif-
ferent disturbances, where for disturbance d1 the optimum occurs at the constraint, whereas,
for disturbance d2, the optimum is unconstrained.

When we have one manipulated variable (MV) controlling two controlled variable (CV),

i.e. CV-CV switching, then minimum/maximum selectors can be used. Alternatively, when

we have more than one candidate MV to control one controlled variable (CV), then split-

range logic can be used. Split range control may also be used when MV-CV pairings need to

be changed when a MV saturates. However, this paper focuses on CV-CV switching and the

reader is referred to Reyes-Lúa et al. 10 and Reyes-Lúa et al. 11 for more detailed description

on MV-MV switching.

The main contribution of this paper is to show that, for many simple processes, online

steady-state process optimization with changes in active CV constraint regions can indeed

be achieved by using simple feedback control structures, without having a separate online

optimization layer. Some well known case studies are presented that demonstrate the effec-

tiveness of the proposed control structures and how changes in the active constraint regions

can be handled using simple control logics such as selectors.

5

Figure 2.5: Illustration of the effect of disturbances in active set changes. For disturbance d1, the op-
timum lies at the constraint, while for disturbance d2 the optimum is unconstrained (Krishnamoorthy
and Skogestad, 2019).

For cases when the set of active constraints is not likely to change frequently and the
number of constraints is less than the number of controlled variables, the cascade approach
by Cao (2004) may be implemented.

However, handling active set changes within the framework of self-optimizing control can
still be challenging and it is one of the open issues for further research in this field (Jäschke
et al., 2017).

2.5 Controller design in multivariable plants

This section covers some basic concepts on the design of two important types of con-
trollers used in multivariable plants: decentralized proportional-integral-derivative (PID)
controllers and model predictive controllers (MPC). The regulatory control layer is usually
composed of single-loop PID controllers to stabilize the plant, giving robust performance
without the need for a detailed plant model. In the upper supervisory control layer, ad-
vanced control structures involving PID controllers and logic elements such as selectors
have been traditionally used. However, in the last decades, model predictive control has
become the most widespread alternative due to its ability to explicitly handle process con-
straints and interactions in multivariable systems. The choice of one approach over the
other will mainly depend on the specific process. The improvement in performance re-
sulting from a multivariable controller needs to offset the cost of modeling and controller
design.
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Figure 10.14: Decentralized diagonal control of a 2 × 2 plant

10.6 Decentralized feedback control
10.6.1 Introduction
We have already discussed, in the previous sections on control con£gurations, the use of
decentralized control, but here we consider it in more detail. To this end, we assume in this
section that G(s) is a square plant which is to be controlled using a diagonal controller (see
Figure 10.14)

K(s) = diag{ki(s)} =




k1(s)
k2(s)

. . .
km(s)


 (10.49)

This is the problem of decentralized (or diagonal) feedback control.
It may seem like the use of decentralized control seriously limits the achievable control

performance. However, often the performance loss is small, partly because of the bene£ts
of high-gain feedback. For example, it can be proved theoretically (Zames and Bensoussan,
1983) that with decentralized control one may achieve perfect control of all outputs, provided
the plant has no RHP-zeros that limit the use of high feedback gains. Furthermore, for
a stable plant G(s) (also with RHP-zeros), it is possible to use integral control in all
channels (to achieve perfect steady-state control) if and only if G(0) is non-singular (Campo
and Morari, 1994). Both these conditions are also required with full multivariable control.
Nevertheless, for “interactive” plants and £nite bandwidth controllers, there is a performance
loss with decentralized control because of the interactions caused by non-zero off-diagonal
elements in G. The interactions may also cause stability problems. A key element in
decentralized control is therefore to select good “pairings” of inputs and outputs, such that
the effect of the interactions is minimized.

The design of decentralized control systems typically involves two steps:

1. The choice of pairings (control con£guration selection).
2. The design (tuning) of each controller, ki(s).

The optimal solution to this problem is very dif£cult mathematically. First, the number of
pairing options in step 1 is m! for an m × m plant and thus increases exponentially with the
size of the plant. Second, the optimal controller in step 2 is in general of in£nite order and
may be non-unique. In step 2, there are three main approaches:

Figure 2.6: Decentralized control of a 2× 2 plant. (Skogestad and Postlethwaite, 2007).

2.5.1 Decentralized PID control

The simplest approach to control multiple-input-multiple-output (MIMO) plants is to de-
compose the plant into a series of subplants controlled by local control units. An example
of such a decentralized or diagonal controller for a 2× 2 plant is shown in Figure 2.6. The
performance of a decentralized controller is limited by the plant interactions. Although
the use of decouplers can minimize the interactions between the control loops, for highly
interactive plants the use of multivariable controllers is recommended. Model predictive
control (MPC) will be the topic of the next section.

For plants where a decentralized control strategy can be realized, the controller design
typically involves two steps:

• The choice of pairings (control configuration selection).

• The design (tuning) of each controller.

Input-output pairing

Inputs (manipulated variables, MVs) and outputs (controlled variables, CVs) should be
paired such that interactions between the control loops are minimized. A tool used in con-
trol configuration selection to quantify these interactions is the relative gain array (RGA)
matrix. It is defined as

RGA(G) ≡ Λ(G)
∆
= G× (G−1)T, (2.68)

where G is a non-singular square matrix that represents the plant gain from inputs to
outputs, and × denotes the element wise multiplication operator or Hadamard product.
Some important properties of the RGA matrix are that columns and rows always sum to 1
and that the matrix is independent from the scaling chosen for the inputs and outputs.

A derivation of the RGA matrix is given in Skogestad and Postlethwaite (2007). For a
given plant G(s) and a control loop defined by the input-output pair uj-yi, we consider
the following two extreme cases:
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• All other loops are open:

uk = 0 ∀ k 6= j , gij =

(
∂yi
∂uj

)
uk 6=j=0

(2.69)

• All other loops are perfectly controlled:

yk = 0 ∀ k 6= i , ĝij =

(
∂yi
∂uj

)
yk 6=i=0

(2.70)

where gij and ĝij are the open and closed-loop gains of the pair uj-yi. The elements in
the RGA matrix correspond to the ratio between these gains,

λij =
gij
ĝij
. (2.71)

The value of λij provides a measure of the interactions between the pair and the rest
of the control loops. RGA-elements greater than one, λij > 1, imply a gain reduction
when other loops are closed in the plant, making control slower and more difficult due
to “fighting loops”. On the other side, RGA-elements smaller than one, λij < 1 imply
a gain increase when other loops are closed, which can result in a dangerous situation.
Furthermore, negative RGA-elements, λij < 0, result in gain changes when other loops
are closed, causing instability.

Skogestad and Postlethwaite (2007) suggest two rules for input-output selection based on
the RGA matrix. The first rule is to avoid pairing on negative steady-state RGA-elements
to not get instability if one of the loops becomes inactive (e.g., due to saturation). The
second rule is to select pairings corresponding to RGA-elements close to 1, so that inter-
actions between control loops are minimized.

Controller tuning

The PID controller equation in the time domain can be written as

u(t) = u0 +Kc

(
e(t) +

1

τI

∫ t

0

e(τ) dτ + τD
d

dt
e(t)

)
, (2.72)

where u0 is the bias term; e(t) = ys(t) − y(t) is the error vector, which measures the
deviation of the controlled variables from their desired setpoints; Kc is the controller gain;
τI is the integral time; and τD is the derivative time.

The tuning problem is to find appropriate values for the controller settings Kc, τI and
τD. Several model-based PID tuning methods have been proposed, including the classi-
cal method by Ziegler and Nichols (1942), the internal model control (IMC-PID) tuning
method by Rivera et al. (1986), the direct synthesis tuning method by Smith and Corripio
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(1985) and the simple internal model control (SIMC-PID) method by Skogestad (2003).
The SIMC-PID tuning method by Skogestad (2003) will be used in this work because it
results in simple PI/PID settings; works well for a wide range of processes, including in-
tegrating and pure time delay processes; and provides satisfactory performance both for
setpoint tracking and disturbance rejection.

The first step of the SIMC method is to approximate the process by a first or second-order
plus delay model. On transfer function form, a first-order model corresponds to

g1(s) =
k

(τ1s+ 1)
e−θs, (2.73)

where k is the process gain, τ1 is the dominant time constant, and θ is the effective time
delay. For a second-order model,

g2(s) =
k

(τ1s+ 1)(τ2s+ 1)
e−θs, (2.74)

where τ2 is the second-order time constant (used to describe second-order processes where
τ2 > θ, approximately). These process parameters can be obtained from open-loop step
responses, closed-loop setpoint responses, or by approximating a detailed model using the
so-called “half-rule”. For a detailed explanation of these methods, the reader is referred to
Skogestad (2003); Skogestad and Grimholt (2012).

Based on the model formulations above, the SIMC method for a first-order model results
in a PI controller with settings

Kc =
1

k

τ1
(τc + θ)

, (2.75)

τI = min{τ1, 4(τc + θ)}. (2.76)

For a second-order model, the SIMC method results in a PID controller with settings

Kc =
1

k

τ1
(τc + θ)

, (2.77)

τI = min{τ1, 4(τc + θ)}, (2.78)

τD = τ2. (2.79)

These PID settings are derived for the cascade (series) form of the PID controller equation
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in the Laplace domain:

c(s) = Kc

(
τIs+ 1

τIs

)
(τDs+ 1) . (2.80)

The SIMC method reduces the tuning problem to only one tuning parameter: the closed-
loop time constant τc. A small value of τc favors fast speed of response and good dis-
turbance rejection; while a large value of τc favors stability, robustness, and small input
variation. Skogestad (2003) recommends to select τc equal to the time delay, τc = θ,
to achieve a good trade-off between fast response, moderate input variation, and good
robustness margins.
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state at t′

Figure 6: Illustration of the MPC principle.

One obvious question is �What is the advantage of MPC vs. the open loop
solution?� The brief answer is that MPC couples open loop optimization with
feedback control in the following way: At each time step MPC requires a new
solution of the dynamic optimization problem. This solution z∗t contains the
future states x∗t+1, . . . , x

∗
t+N . Recalling (20c) or (23c) the optimization problem

at t + 1 requires an initial value, i.e., xt+1. A key question is how to select
this initial value. One option is to use the prediction x∗t+1 computed at t.
However, this prediction does not account for errors in the discrete time model
and disturbances that occur on the time interval between t and t + 1. Hence,
a better option is to compute a state estimate x̂t+1 which relies on the latest
available measurements and use this instead of x∗t+1. State estimation extends
Algorithm 2 as follows.

Algorithm 3 Output feedback MPC procedure

for t = 0, 1, 2, . . . do
Compute an estimate of the current state x̂t based on the measured data
up until time t.
Solve a dynamic optimization problem on the prediction horizon from t to
t+N with x̂t as the initial condition.
Apply the �rst control move ut from the solution above.

end for

Before moving on we reiterate the di�erence between Algorithm 2 and Algo-
rithm 3. Algorithm 2 requires an exact measure of the state at each time step

25

Figure 2.7: Illustration of the model predictive control (MPC) principle (Foss and Heirung, 2013).

2.5.2 Model predictive control

Model predictive control (MPC) is a widely used control technology with industrial appli-
cations due to its ability to handle constraints in the manipulated and controlled variables.
An online optimization is solved iteratively to minimize an objective function with respect
to current and future control moves. A plant model is used to predict the future plant
behavior over a time period called prediction horizon p given these control moves over a
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time period called control horizon c. The goal of the optimization is to compute the cur-
rent and future control moves in a way that the future output is driven as close to a desired
setpoint or trajectory as possible while maintaining a penalty on the control moves. The
optimization problem solved by the MPC algorithm is typically formulated as

min
∆u

(ysp − ŷ)TWy(ysp − ŷ) + ∆uTWu∆u

s.t. ymin ≤ ŷ ≤ ymax,

umin ≤ u ≤ umax,

∆umin ≤ ∆u ≤ ∆umax,

(2.81)

where ysp is the vector of output setpoint values, ŷ is the vector of predicted outputs, ∆u
are the future control moves given as deviations from the inputs of the previous time in-
stance, and the matrices Wy and Wu are the relative weights in the objective function.
Only the first control move is implemented and the problem is solved iteratively in a re-
ceding horizon fashion. The MPC principle is illustrated in Figure 2.7.

Dynamic matrix control (DMC) (Cutler and Ramaker, 1979) is an MPC algorithm that pro-
vides an approach to obtain the predictions ŷ. A linear input-output model is constructed
by performing step changes in the inputs or manipulated variables (MVs) of the plant and
recording the response of the plant outputs or controlled variables (CVs). Using an input-
output model offers the advantage of decoupling the model size from the actual system
size for large scale distributed systems such as the one examined in this work resulting in
low computational costs, and using an input-output model in (2.81) yields a quadratic pro-
gram. A more sophisticated version of DMC, quadratic dynamic matrix control (QDMC)
is used in this work. For details regarding these methodologies, the reader is referred to
Cutler and Ramaker (1979); Garcia and Morshedi (1986); Ikonen (2017).

2.6 Continuous-flow production of pharmaceuticals

This last section is the most applied of the chapter and gives some basic background for
the case study considered in this work. In particular, it motivates some recent research
efforts in continuous-flow pharmaceutical manufacturing.

The production of pharmaceuticals is typically done using batch processing at multiple
sites. Most of the molecular fragments involved in the process synthesis are provided by
different sources and only the final synthesis steps are carried out at the company site. The
entire process chain, from raw materials to the final drug form, can take up to a total of 12
months. This long production time is one of the main limitations of the current batch-wise
approach. Other important challenges facing the pharmaceutical industry today include
drug shortages due to supply chain interruptions and quality control issues, the need to
respond to sudden changes in demand (e.g., due to epidemics or pandemics), high drug
production costs, and high waste generation (Adamo et al., 2016).

To address these issues, important research efforts in academia and industry over the last
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decade have been oriented towards the development of continuous-flow processes for drug
production (Mascia et al., 2013; Baxendale et al., 2015; Myerson et al., 2015). Further-
more, compact reconfigurable platforms for on-demand pharmaceutical manufacturing
have been designed, see Adamo et al. (2016). On them, end-to-end synthesis from sim-
ple inexpensive molecules to the final active pharmaceutical ingredient is carried out in
one single platform. Such systems have the potential to reduce manufacturing times and
overcome the major drawbacks of batch-wise production listed above.
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Chapter 3
Case study and methodology

3.1 The case study

3.1.1 Process description

The case study for this work is the continuous flow synthesis of atropine. Atropine is an
active pharmaceutical ingredient (API) with a variety of therapeutic uses, including the
treatment of heart rhythm problems (North and Kelly, 1987). A two dimensional view of
the atropine molecule is shown in Fig. 3.1.

A flow synthetic route for atropine was reported in 2015 by Dai et al. (2015). Unfortu-
nately, the process suffered from the production of large amounts of undesired byproducts,
resulting in a low overall yield of atropine obtained (8%).

A way to quantify the efficiency in a chemical manufacturing process accounting for the
waste production is through the so-called environmental factor, often abbreviated as E-
factor. This metric is defined as the ratio of the mass of waste produced (excluding water,

Figure 3.1: Atropine molecule (C17H23NO3)
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Figure 3.2: Process flowsheet. Adapted from (Nikolakopoulou et al., 2019).

which is not environmentally harmful) to that of product obtained, i.e.,

E-factor =
mass of waste produced (excluding water)

mass of product obtained
. (3.1)

In the previous process formulation reported by Dai et al. (2015), the E-factor was 2245,
meaning that for each kilogram of atropine obtained, 2245 kilograms of undesired byprod-
ucts were produced. Two years later, in 2017, a new process synthesis was proposed by
Bédard et al. (2017), giving an E-factor of 24. This represents a reduction of two orders of
magnitude in waste generation.

This study builds on the experimental results reported by Bédard et al. (2017) to construct
an improved version of a recently published first-principles model of the continuous flow
synthesis of atropine (Nikolakopoulou et al., 2019). A flowsheet of the process is shown
in Fig. 3.2.

The process is composed by three mixers, three tubular reactors and a liquid-liquid sepa-
rator unit. First, streams q1 (tropine in dimethylformamide) and q2 (phenylacetylchloride)
are mixed and then flow to the first tubular reactor, which is kept at temperature T1 by a
lower regulatory control layer. Streams q3 (formaldehyde in methanol and water) and q4

(sodium hydroxide in water) are mixed with the outlet stream of the first tubular reactor
before flowing to the second tubular reactor with temperature T2. Subsequently, streams
q5 (buffer) and q6 (toluene) are mixed with the the outlet stream from the second tubular
reactor and flow to the third tubular reactor with temperature T3. Finally, the atropine is
extracted in the aqueous phase of the liquid-liquid separator.

The overall process involves a total of 14 chemical components, which are listed in Ta-
ble 3.1. Atropine is produced according to the following reaction set (Eq. 3.2):

C8H15NO + C8H7ClO→ C16H21O2NHCl (3.2a)

C16H21O2NHCl + NaOH→ H2O + C16H21O2N + NaCl (3.2b)

CH2O + C16H21O2N→ C17H23NO3︸ ︷︷ ︸
atropine

(3.2c)
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Table 3.1: Chemical process components.

Component Chemical formula Ref.

Tropine C8H15NO 1
Dimethylformamide C3H7NO 2
Phenylacetyl chloride C8H7ClO 3
Intermediate C16H21O2NHCl 4
Formaldehyde CH2O 5
Methanol CH3OH 6
Sodium hydroxide NaOH 7
Water H2O 8
Atropine C17H23NO3 9
Apoatropine C17H21NO2 10
Tropine ester C16H21O2N 11
Sodium chloride NaCl 12
Buffer NH4Cl 13
Toluene C7H8 14

CH2O + C16H21O2N→ C17H21NO2 + H2O (3.2d)

In the first tubular reactor, only reaction (3.2a) occurs due to the absence of NaOH, CH2O
and C16H21O2N to start the remaining reactions. Another interesting observation is that
reactions (3.2c) and (3.2d) are competing to produce atropine (desired product) and apoa-
tropine (undesired byproduct), respectively.

3.1.2 Mathematical model

Each unit operation in the system is described by first-principles model equations, namely
mass balances, and chemical reaction kinetics. The energy balances are not modeled since
the reactors can be kept at the desired temperature setpoint using regulatory level con-
trollers. The setpoint temperature can be achieved rapidly due to the high surface-to-
volume ratio of the tubular reactors. Below is a description of the mathematical models of
each unit operation.

Mixer

The mixers are in-line and are assumed to achieve perfect mixing instantaneously. The
model equations represent mass conservation without accumulation for each species

ṁout,i =

ns∑
k=1

ṁin,i,k for i = 1, 2, . . . , nc, (3.3)
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where ṁout,i is the outlet mass flowrate of species i, ṁin,i,k is the inlet mass flowrate of
species i in the inlet stream k, ns is the number of feed streams, and nc is the number of
species. The overall mass balance within each mixer unit is

ṁout,tot =

nc∑
i=1

ṁout,i, (3.4)

and the concentration of species i,

cout,i =
ṁout,iρ

ṁout,totMi
for i = 1, 2, . . . , nc, (3.5)

where ρ is density of the solution and Mi is the molecular mass of species i.

Tubular Reactor

The tubular reactors are modeled using partial differential equations (PDEs), which are
discretized in space using the method of lines with nd discretization points. The mass
conservation equations are described by

∂ci,l
∂t

= −Qtot
∂c

∂V

∣∣∣∣
i,l

+ ri,l

∂c

∂V

∣∣∣∣
i,l

=
ci,l − ci,l−1

Vl − Vl−1

for i = 1, 2, . . . , nc, l = 1, 2, . . . , nd,

(3.6)

where ci,l is the concentration of species i at discretization point l, Qtot is the total vol-
umetric flowrate, ri,l is the reaction rate of species i at discretization point l, and Vl is
the volume from the entrance of the reactor to discretization point l. The second equation
approaches ∂c/∂V with a first-order spatial discretization. The concentration at the inlet
of the reactor, which is represented as the 0th discretization, is known and can be obtained
from the outlet of the unit upstream

ci,0 = cin,i =
ṁin,i

QtotMi
for i = 1, 2, . . . , nc. (3.7)

The total volumetric flowrate in the reactor is

Qtot =
ṁin,tot

ρ
, (3.8)

where ṁin,tot is the total mass flowrate. The volumetric mass density is calculated assuming
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additive volumes since most species are in dilute concentration in the solution,

1

ρ
=

nc∑
i=1

xi
ρi
, (3.9)

where xi is the mass fraction of species i, and ρi the density of pure species i. The density
and consequently the flowrate do not vary across the axial dimension of the reactor.

The reaction rate matrix r ∈ Rnc×nd returns the reaction rate of each species at each
discretization point and is given by

r = SR, (3.10)

where S ∈ Rnc×nr is the stoichiometric matrix, R ∈ Rnr×nd is the reaction matrix, and
nr is the number of reactions. The reaction rates are assumed to follow the Arrhenius law.
The reaction rate of the jth reaction at discretization point l is

Rj,l = kj exp

(−EA,j

RT

) ∏
m∈Mj

c
om,j
m,l

for j = 1, 2, . . . , nr, l = 1, 2, . . . , nd,

(3.11)

where kj is the pre-exponential factor, a constant for each reaction j, EA,j is the activation
energy, R is the ideal gas constant, T is the temperature,Mj is the set of reactant species
for reaction j, cm,l is the concentration of reactant species m at the discretization point l,
and om,j is the reaction order of reactant species m in reaction j.

The parameters kj and EA,j for each reaction are estimated from the experimental data
from Bédard et al. (2017). First order reaction kinetics with respect to each species are
assumed for all four reactions in the atropine synthesis process

R1,l = k1 exp

(−EA,1

RT

)
c1,lc3,l

R2,l = k2 exp

(−EA,2

RT

)
c4,lc7,l

R3,l = k3 exp

(−EA,3

RT

)
c5,lc11,l

R4,l = k4 exp

(−EA,4

RT

)
c5,lc11,l.

(3.12)

The reaction network is given in Bédard et al. (2017) and the numbering of the species
follows their order of appearance in these reactions. These numbers can also be checked
in Table 3.1.
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The mass flowrates at the outlet of the reactor are

ṁout,i = ci,ndQtotMi for i = 1, 2, . . . , nc

ṁout,tot =

nc∑
i=1

ṁout,i.
(3.13)

Liquid-Liquid Separator

To describe the dynamics of the liquid-liquid separator unit an effective average molar
concentration c̄i for each species i is introduced, such that

Qtotc̄i = FOR,i + FAQ,i for i = 1, 2, . . . , nc, (3.14)

V
dc̄i
dt

= Qtot
(
cin,i − c̄i

)
for i = 1, 2, . . . , nc, (3.15)

where V is the volume of the liquid-liquid separator, Fi is the molar flowrate of species i,
and the subscripts ‘OR’ and ‘AQ’ refer to the organic and aqueous phase respectively. The
volume of the separator is assumed to be constant over time. An additional assumption of
constant density inside the separator results in

Qtot = QOR +QAQ. (3.16)

For solutes that can be found the organic stream in trace quantities, it follows that

xin,s

xin,s + xin,w
Qtot = QOR, (3.17)

where xin,s is the mass fraction of the solvent in the inlet of the unit and xin,w is the mass
fraction of water.

Phase equilibrium that is achieved instantaneously is modeled by

cOR,i = DicAQ,i for i = 1, 2, . . . , nc, (3.18)

The dynamics of the mass transfer can be identified given enough data and can be included
in the model as a time-delay. The separation partition coefficients Di are obtained from
Bédard et al. (2017), assuming negligible variation with temperature and concentration.

Overall the equations describing the mass conservation of the process form an index-1
DAE.
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3.1.3 Operational objective

The operational objective of the process is to minimize the environmental factor (E-factor)
[kg waste/kg product], while keeping the volume flowrates of the feed streams (inputs)
within the specified bounds:

0 mL/min ≤ q1−4 ≤ 5 mL/min (3.19)

The process is controlled using the volume flowrates of the feed streams that contain
reagents, q1−4, which are the manipulated variables. The feed streams in the third mixer,
q5 and q6, contain a buffer solution and toluene (solvents). These variables have relatively
small steady-state gains and so are not effective manipulated variables. Therefore, we
assume that they are kept at their nominal values during operation, which corresponds to:

q5 = 0.2 mL/min (3.20)

q6 = 0.5 mL/min (3.21)

In the calculation of the E-factor, only the mass flowrate of atropine recovered in the
aqueous phase of the liquid-liquid separator is regarded as product. The rest of components
in both phases (aqueous and organic) are counted as waste, excluding water which is not
considered harmful for the environment.

Based on this, optimal operation of the atropine process can be formulated as the following
optimization problem:

min
q

J := E-factor

s.t. Process model: (3.3)− (3.18)
Operational constraints: (3.19)− (3.21)

(3.22)

To solved it, a nonlinear programming problem (NLP) was formulated and implemented
in MATLAB using Casadi 3.0.0 (Andersson et al., 2012) and solved using IPOPT 3.12.3
(Biegler and Zavala, 2009).

3.1.4 Challenges of optimal operation

We consider the following challenges when designing the control structure for this process:

• Parametric model uncertainty in the kinetic parameters of the Arrhenius equation
(pre-exponential factors k1−4 and activation energiesEA,1−4), and in the separation
partition coefficient of atropine D9.1

1The numbering of the components follows the one in Table 3.1.
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Table 3.2: Nominal values of the disturbances and their standard deviations.

Variable Unit Nominal value Standard deviation

M1 mol/L 2 1% nom.
M7 mol/L 4 1% nom.
T1

◦C 100 1
T2

◦C 100 1
T3

◦C 50 1
k1 mol/(mL min) 34206 5% nom.
k2 mol/(mL min) 10000 5% nom.
k3 mol/(mL min) 24 5% nom.
k4 mol/(mL min) 43599 5% nom.
EA1 J/mol 1000 5% nom.
EA2 J/mol 100 5% nom.
EA3 J/mol 1819 5% nom.
EA4 J/mol 26207 5% nom.

log(D9) - −2 0.5

• Process perturbations in the temperatures of the tubular reactors, T1−3, and in the
molarity of tropine and sodium hydroxide, M1 and M7, at the feed streams.

• Sensor noise affecting the value of concentrations, volume flowrates and tempera-
ture measurements. We assume that sensor noise is normally distributed with zero
mean and standard deviation of 2.5% of the nominal value for concentrations and
volume flowrates, and 1 K for temperatures.

In the remainder of this work, both parametric model uncertainty and process perturbations
will be considered as “disturbances”, following the notation introduced in Section 2.4.1,
when framing the self-optimizing control problem. Their nominal values and standard
deviations are given in Table 3.2.

The goal is to design a control structure able to achieve near-optimal operation in the
face of uncertainty. This uncertainty can either come from process perturbations or from
an inaccurate model of the system. Plant-model mismatch is not explicitly addressed in
this work, i.e., we assume that the model is structurally correct, even though the model
parameters are uncertain.

3.2 Controlled variable selection methodology

This section describes the methodology used in this work to select self-optimizing con-
trolled variables. Two different methods were used for comparison: a local method based
on the ideas presented in Section 2.4.3 and a global method based on the ideas presented
in Section 2.4.4. Both approaches approximate the nonlinear loss function quadratically
around the nominal operating point, to make the problem tractable. Therefore, they do
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not provide the rigorous optimal solution, but promising controlled variables that need to
be further validated before making the final selection. This final step involves a steady-
state validation, where the nonlinar model is used to check if the controlled variables give
good economic performance in the entire operating region; and a dynamic validation, to
assess the controllability of the control structures. Details of the different steps in this
methodology are given in the remainder of this section.

3.2.1 Preliminary controlled variable selection

We start by assuming that the following measurements are available for control purposes:

• Concentrations at the outlet of the tubular reactors and the liquid-liquid separator,
and in the feed streams.

• Volume flowrates of the feed streams, tubular reactors, and liquid-liquid separator.

• Temperatures of the tubular reactors.

The measurement set has a total of 39 variables. The objective now is to investigate which
combination of measurements should be selected as controlled variables, such that the re-
sulting control structure minimizes the loss of optimality due to the impact of disturbances
and sensor noise between setpoint updates in a hierarchical control architecture, where the
optimization and control layers operate on different time scales.

Local method

Using the mixed integer quadratic programming (MIQP) formulation presented in Sec-
tion 2.4.5 in combination with the exact local method presented in Section 2.4.3, we solve
the measurement subset selection problem for locally optimal control structures. To select
m sets of controlled variables which give the least losses in increasing order with s number
of measurements, we formulate the following optimization problem:

min
hδ,σ

hT
δ Fδhδ (3.23a)

s.t. GT
yδhδ = jδ, (3.23b)

Pσ = s, (3.23c)

σj = 0⇒


h1j

h2j

...
hnuj

 = 0nu×1, for j = 1, . . . , ny, (3.23d)

(σl−1)Tσl ≤ s− 1, for l = 2, . . . ,m, (3.23e)
σ ∈ {0, 1}. (3.23f)

The difference between this formulation and the one presented in Section 2.4.5 is the use
of indicator constraints (3.23d) to select subsets of measurements, instead of the so-called
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big-M constraints; and the addition of the constraint (3.23d) to select the top m solutions
to the problem.

The idea behind the indicator constraints is that whenever the binary variable σ associated
to a particular measurement j is zero, the column of the combination matrix H associated
to that measurement will also be zero. Indicator constraints have the advantage of making
the formulation problem-independent, making the optimization more robust. This avoids
the problem of selecting appropriate values for the big-M constraints on a trial and error
basis, as discussed in Section 2.4.5.

The constraint (3.23d) guarantees that the lth solution is different from the l − 1 previous
solutions. Therefore, by solving the optimization problem with increasing values of l,
we obtain sequentially the m solutions which give the least losses in increasing order.
The final control structure can be selected from this set of m candidates through further
validation using the nonlinear model.

The problem was implemented in MATLAB and solved using the MIQP solver cplexmiqp
from IBM ILOG CPLEX Optimization Studio (CPLEX, 2009). CPLEX and most opti-
mization packages, require to formulate the MIQP in the following standard form:

min
x

1

2
xTHx + xTf (3.24a)

s.t. Aeqx = beq, (3.24b)
Aineqx ≤ bineq, (3.24c)
lb ≤ x ≤ ub. (3.24d)

The translation between both formulations is as follows. The solution vector and its upper
and lower bound correspond to

x =

[
hδ
σ

]
(3.25) lb =

[
−∞
0

]
(3.26) ub =

[
∞
1

]
(3.27)

where hδ ∈ Rnuny×1 and σ ∈ Rny×1. The equality and inequality constraints corre-
sponds to

Aeq =

[
GT
yδ 0

0 P

]
(3.28) beq =

[
jδ
s

]
(3.29)

Aineq =
[
0 (σl−1)T

]
(3.30) bineq = s− 1 (3.31)

where GT
yδ ∈ Rnunu×nynu , P ∈ R1×ny , jδ ∈ Rnunu×1, s ∈ N, and (σl−1)T ∈ R1×ny .

The construction of these matrices is explained in Section 2.4.5. Finally, the matrices in
the objective function are

H = 2

[
Fδ 0

0 0ny×ny

]
(3.32) f = 01×(nuny+ny) (3.33)

where Fδ = F̃δF̃
T
δ , and F̃δ is constructed as in Section 2.4.5.
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The problem formulation above assumes that the following gain and Hessian matrices
evaluated at the nominally optimal point are available beforehand:

Gy =

(
∂y

∂u

)
nom

(3.34) Gyd =

(
∂y

∂d

)
nom

(3.35)

Juu =

(
∂2J

∂u2

)
nom

(3.36) Jud =

(
∂2J

∂u∂d

)
nom

(3.37)

These matrices were computed using automatic differentiation in Casadi 3.0.0 (Andersson
et al., 2012).

The diagonal scale matrices for the disturbances and sensor noise realizations are con-
structed based on the standard deviation values reported in Section 3.1.4.

Wd =

σ1 · · · 0
...

. . .
...

0 · · · σnd

 (3.38) Wn =

σ1 · · · 0
...

. . .
...

0 · · · σny

 (3.39)

In this work, the local method described so far was used to find the best m = 4 control
structures for each number of measurements, ranging from s = 4, which is the number
of inputs (to have a square control problem) and s = 39, which is the total number of
available measurements.

Global method

For the case of the global method, we combine the mixed integer quadratic program-
ming (MIQP) formulation presented in Section 2.4.5 with the gSOC method presented in
Section 2.4.4. The problem formulation is the same as in the local case, with the only
difference being that the matrix F̃T in the minimum loss method is replaced by the matrix
Ỹ. This augmented matrix is constructed based on optimal data from the entire operat-
ing region using Monte Carlo simulations, as explained in Section 2.4.4. In this work,
1000 Monte Carlo simulations were used to generate normally distributed scenarios of
disturbances with standard deviations given in Section 3.1.4.

3.2.2 Steady-state validation

The candidate controlled variables found by the pre-screening methods need to be further
evaluated using the nonlinear model. Each candidate control structure is tested in closed-
loop simulations under 100 scenarios of normally distributed disturbances and sensor noise
realizations. These uncertainty scenarios are generated using Monte Carlo simulations
based on the standard deviations given in Section 3.1.4. For each uncertainty scenario,
the loss of optimality from using a given control structure is computed as the difference
between the cost function resulting from using that control structure and the cost function
resulting from truly optimal operation, which is obtained by re-optimizing the system for
the new operating conditions. When the closed-loop simulations are performed for all of
the uncertainty scenarios, the nonlinear average loss for each candidate control structure
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Table 3.3: Nominal operating conditions and disturbance scenarios considered in the dynamic
closed-loop simulations.

Disturbance Unit Nominal conditions Scenario 1 Scenario 2 Scenario 3

M1 mol/L 2 2.01451 2.01454 1.99796
M7 mol/L 4 3.99748 3.98786 3.99034
T1

◦C 100 113.8 108.2 96.2
T2

◦C 100 93.3 102.4 106.9
T3

◦C 50 65.2 55.2 41.4
k1 mol/(mL min) 34206 37342.5 33855.4 32859.5
k2 mol/(mL min) 10000 8870.6 9937.9 10444.2
k3 mol/(mL min) 24 25.0 25.8 22.6
k4 mol/(mL min) 43599 44293.9 46670.6 41268.9
EA1 J/mol 1000 934.6 1070.9 959.5
EA2 J/mol 100 97.8 103.4 85.3
EA3 J/mol 1819 1850.2 1709.2 1949.8
EA4 J/mol 26207 30896.0 27146.8 26633.1

log(D9) - −2 −1.73 −1.64 −1.85

can then be computed. For any given number of measurements, the control structure with
the lowest nonlinear average loss is selected. Furthermore, to select the optimal number
of measurements to be included in the control structure, we search for a good trade-off be-
tween the reduction in the average loss (favored by more measurements) and the reduction
in structure complexity and investment cost (favored by less measurements). A detailed
analysis of this Pareto front curve is given in Section 2.4.5.

3.2.3 Dynamic validation

The analysis so far was done from a steady-state perspective, assuming that the controlled
variables can be well controlled within one transient phase. To demonstrate that the con-
trol structure can be realized in practice, closed-loop dynamic simulations are performed
according to the following set-up. Initially, the system is operated at the nominal condi-
tions. Subsequently, for every 1000 min, the operating conditions in the plant are changed
according to the disturbance scenarios given in Table 3.3. These scenarios were generated
by Monte Carlo simulations of normally distributed disturbances with standard deviations
given in Section 3.1.4.

For the closed-loop simulations, decentralized PI controllers were used to track the self-
optimizing controlled variables. For comparison, a quadratic dynamic matrix controller
(QDMC), which is a form of model predictive control, was tested under the same distur-
bance scenarios by tracking the steady-state optimal operating conditions computed by
re-optimizing the system for each uncertainty scenario. In practice, the optimal setpoints
are assumed to be given by an upper real-time optimization layer.
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3.3 Controller design methodology

This section discusses the design of the decentralized PI controllers and the quadratic
dynamic matrix controller used in the dynamic closed-loop simulations.

3.3.1 Decentralized PI control

As discussed in Section 2.5.1, the design of decentralized PI controllers involves two steps:
the choice of pairings and the controller tuning. The pairings between controlled and
manipulated variables was done using the steady-state relative gain array (RGA) matrix
by selecting positive RGA-elements close to 1. This avoids unstable loops and minimize
the interactions with other control loops.

Regarding the controller tuning, the SIMC tuning method presented in Section 2.5.1 was
applied. This method requires a first-order plus delay model of the system, on the form

g1(s) =
k

(τ1s+ 1)
e−θs, (3.40)

where k is the process gain, τ1 is the dominant time constant, and θ is the effective time
delay. These process parameters were obtained from open-loop responses of the nonlinear
system to a step change of 1% on the inputs. The resulting nonlinear response was then
fitted to a first-order plus delay model. The PI controller settings were then calculated
according to

Kc =
1

k

τ1
(τc + θ)

, (3.41)

τI = min{τ1, 4(θc + θ)}, (3.42)

where the closed-loop time constant τc is the only tuning parameter (it is a degree of
freedom for controller design, as it does not come from model information). The SIMC
recommendation of selecting the closed-loop time constant equal to the time delay was not
follow in this case because for most of the simulations the time delay was close to zero.
This would lead to a large controller gain that could lead to unstable closed-loop perfor-
mance. Instead, a value of τc = 70 was found on a trial and error based to give a good
trade-off between fast response, moderate input variation and good robustness margins.

3.3.2 Quadratic dynamic matrix control (QDMC)

Quadratic dynamic matrix control (QDMC) is a more sophisticated version of dynamic
matrix control (DMC), which was discussed in Section 2.5.2. Linear step response models
that relate the inputs to the outputs of the plant were generated and the linear predictive
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model of the E-factor with respect to the plant inputs was constructed using the methodol-
ogy described in Nikolakopoulou et al. (2019). The weights used were

Wu = diag(104, . . . , 104) ∈ Rnuc×nuc, (3.43)

where nu is the number of inputs, and

Wy = diag(1, . . . , 1) ∈ Rp×ny , (3.44)

where ny is the number of outputs. In this problem, nu = 6, ny = 1, c = 30 mins, and
p = 300 mins. The constraints on the manipulated variables were umin = 0.02 mL/min
and umax = 5 mL/min. Constraints on the rate of change of the control moves were also
implemented to avoid aggressive changes in the inputs, by restricting the moves to a rate
of change of no more than 10% of the input flowrates in the nominal plant operation.
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4.1 Optimal operation for nominal conditions

The optimal operating point of the plant for the nominal conditions given in Table 3.2 was
found by solving the nonlinear programming problem (NLP) formulated in Section 3.1.3.
The nominally optimal value of some important process variables is shown in Table 4.1.
These variables include the environmental factor (E-factor), which was the objective func-
tion minimized in this work; the production rate of atropine and the reaction yield, which
are key performance indicators of the process; and the volume flowrate of the feed streams,
which are the process inputs (manipulated variables).

Regarding the process operational objectives, we seek to maximize the mass flow rate
of atropine obtained at the outlet of the liquid-liquid separator, which is the desired ac-
tive pharmaceutical ingredient; as well as the efficiency of the overall atropine reaction.

Table 4.1: Some key process variables at the nominally optimal operating point.

Process variable Symbol Unit Optimal value

Environmental factor E-factor - 13.2997
Production rate Production rate mg/min 96.4325

Yield Yield - 0.4085
Volume flowrate stream 1 q1 mL/min 0.4078
Volume flowrate stream 2 q2 mL/min 0.1089
Volume flowrate stream 3 q3 mL/min 0.3888
Volume flowrate stream 4 q4 mL/min 0.2126
Volume flowrate stream 5 q5 mL/min 0.2000
Volume flowrate stream 6 q6 mL/min 0.5000
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These objectives correspond to the maximization of production rate and yield, respec-
tively. Therefore, the problem of achieving optimal operation presented in Section 3.1.3
could have been formulated using any of these variables as the objective function. In this
work, we chose the environmental factor (E-factor) [kg waste/kg product] as the objec-
tive function to take into account the waste generation in the problem formulation. The
E-factor gives the optimal trade-off between achieving maximum production rate and min-
imum waste. However, these metrics are closely related and by minimizing the E-factor,
the production rate of atropine and the yield are also indirectly optimized.

Regarding the optimal values of the manipulated variables presented above, these are only
optimal for the nominal operating conditions. Therefore, an open-loop operation policy
based on keeping these inputs constant will result in suboptimal operation in the face of
uncertainty and process disturbances. This motivates the search for controlled variables
that, when kept at constant setpoints, drive the process towards its optimum despite dis-
turbances. Results concerning selection and validation of such self-optimizing control
structures for the atropine process are presented in the remainder of this chapter.

4.2 Preliminary controlled variable selection

This section presents the control structures derived from the local and global pre-screening
methods formulated in Section 3.2.1 and Section 3.2.1, respectively. These methods pro-
vide promising sets of controlled variables that can be further validated using the nonlinear
model and dynamic simulations to make the final selection.

The use of these control structures to generate actuator signals (process inputs) in the pres-
ence of uncertainty (disturbances and sensor noise) results in a loss of optimality compared
to the truly optimal inputs. The aim of this work is to find control structures that result
in acceptable losses for all disturbances and sensor noise realizations, achieving therefore
near-optimal operation in the presence of uncertainty without the need to re-optimize the
system every time a disturbance occurs.

The local method formulated in Section 3.2.1 gives the m sets of s measurements that
provide the least average losses in increasing order. In this work, the top m = 4 sets
were selected for each number of measurements, ranging from s = 4 (equal to the number
of inputs, to form a square control problem)1 to s = 39 (which is the total number of
available process measurements). The average loss computed by the local method as a
function of the number of measurements included in the control structure follows a Pareto
frontier, which is shown in Fig. 4.1. Here, the average loss is expressed in the same units as
the objective function (E-factor). Therefore, the average loss for a given control structure
corresponds to the average amount of extra waste produced in the process (in mg) for every

1In decentralized control, nc = nu, i.e., the number of inputs is equal to the number of controlled variables,
making the control problem square. This is because each control loop composed of a decentralized controller
connects a single input with a single output. Furthermore, we also require that nc ≤ ny , i.e., the number of
measurements has to be equal or greater than the number of controlled variables. Otherwise, the system will be
overdetermined and perfect control could not be achieved.
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4.2 Preliminary controlled variable selection

Figure 4.1: Pareto frontier showing the steady-state local average loss versus the number of mea-
surements for the control structures selected by the local method.

100 mg of atropine obtained as a result of using that control structure in the presence of
uncertainty instead of online process re-optimization.

As expected from the theory discussed in Section 2.4.5, with more sensors the average loss
decreases. This is because more sensors give better disturbance rejection and make the
control structure less sensitive to sensor noise. However, the addition of every new sensor
increases the capital cost and the complexity of the control system. As a result, there is
an optimal trade-off between these two objectives and the goal is to find the number of
measurements above which the reduction in loss does not compensate for the addition of
an extra sensor. Based on the Pareto frontier in Fig. 4.1, this threshold can be located in
the range of 10-15 measurements, where the addition of a new sensor will not decrease the
average loss more than 0.025 mg of waste per 100 mg of atropine obtained, approximately.

However, the loss value predicted by the local method is just a local approximation of
the true loss. In Section 2.4.3, we discussed how local methods relied on the quadratic
approximation of the loss function and the linearization of the process model around the
nominal operating point. Therefore, these loss values are only valid in the vicinity of the
nominal point and may result in poor approximations of the true loss for disturbances with
large standard deviation values (in this work, the uncertainty is assumed to be normally
distributed). A further validation using the nonlinear model is necessary to evaluate the
accuracy of the predictions made by the local method. The results of this validation are
presented in the next section.
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Table 4.2: Optimal sets of measurements selected by the local method and corresponding steady-
state local average losses.

ny Local subset Llav

4 [c5r3
c1s,aq

c7s,aq
c11s,or

] 0.6143
[c1r3

c5r3
c7s,aq

c11s,or
] 0.6165

[c1r2
c5r3

c7s,aq
c11s,or

] 0.6165
[c3r2

c5r3
c7s,aq

c11s,or
] 0.6297

5 [c5r2
c1s,aq

c7s,aq
c5s,or

c11s,or
] 0.4547

[c5r2 c1r3 c7s,aq c5s,or c11s,or ] 0.4552
[c1r2 c5r2 c7s,aq c5s,or c11s,or ] 0.4553
[c5r2

c7r2
c1s,aq

c5s,or
c11s,or

] 0.4594
6 [c5r2

c11r3
c1s,aq

c7s,aq
c5s,or

c11s,or
] 0.4106

[c5r2
c1r3

c11r3
c7s,aq

c5s,or
c11s,or

] 0.4110
[c1r2

c5r2
c11r3

c7s,aq
c5s,or

c11s,or
] 0.4112

[c5r2
c7r2

c11r3
c1s,aq

c5s,or
c11s,or

] 0.4146
7 [c5r2 c5r3 c11r3 c1s,aq c7s,aq c5s,or c11s,or ] 0.3765

[c5r2 c1r3 c5r3 c11r3 c7s,aq c5s,or c11s,or ] 0.3769
[c1r2

c5r2
c5r3

c11r3
c7s,aq

c5s,or
c11s,or

] 0.3771
[c5r2

c7r2
c5r3

c11r3
c1s,aq

c5s,or
c11s,or

] 0.3805
8 [c5r2

c5r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

c11s,or
] 0.3624

[c5r2
c1r3

c5r3
c11r3

c7s,aq
c9s,aq

c5s,or
c11s,or

] 0.3627
[c1r2

c5r2
c5r3

c11r3
c7s,aq

c9s,aq
c5s,or

c11s,or
] 0.3629

[c5r2
c10r2

c5r3
c11r3

c1s,aq
c7s,aq

c5s,or
c11s,or

] 0.3647
9 [c5r2 c5r3 c11r3 c1s,aq c7s,aq c9s,aq c5s,or c11s,or q3] 0.3465

[c5r2 c1r3 c5r3 c11r3 c7s,aq c9s,aq c5s,or c11s,or q3] 0.3466
[c1r2

c5r2
c5r3

c11r3
c7s,aq

c9s,aq
c5s,or

c11s,or
q3] 0.3468

[c5r2
c9r2

c5r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

c11s,or
] 0.3475

10 [c5r2
c9r2

c5r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

c11s,or
q3] 0.3333

[c5r2
c9r2

c1r3
c5r3

c11r3
c7s,aq

c9s,aq
c5s,or

c11s,or
q3] 0.3335

[c1r2
c5r2

c9r2
c5r3

c11r3
c7s,aq

c9s,aq
c5s,or

c11s,or
q3] 0.3337

[c5r2
c5r3

c9r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

c11s,or
q3] 0.3352

...
...

...
39 all measurements 0.2828
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4.2 Preliminary controlled variable selection

More important in this preliminary analysis are the optimal set of measurements selected
by the local method, which are shown in Table 4.2. Each set corresponds to a point in the
Pareto frontier in Fig. 4.1. For the sake of brevity, we only present here sets containing
between 4 and 10 measurements. The sets in this table should be read as follows. The
volume flowrate of the feed streams, which are the manipulated variables, are denoted
by q1−4. The rest of the process variables are given by the following three identification
elements:

• Letter indicating the type of process variable; namely, c for concentration, q for
volume flow rate, and T for temperature.

• Number between 1 and 14 indicating the process component. These numbers follow
the order established in Table 3.1.

• Subscript indicating the unit operation in the system; namely, ( · )r1−3 for the three
tubular reactors, ( · )s,aq for the aqueous phase of the liquid-liquid separator, and
( · )s,or for the organic phase of the liquid-liquid separator.

As an example, the best set of 4 measurements found by the local method corresponds to

[c5r3 c1s,aq c7s,aq c11s,or ], (4.1)

which is composed of the following four measurements: the concentration of formalde-
hyde at the outlet of the third tubular reactor (c5r3

), the concentration of tropine in the
aqueous phase of the liquid-liquid separator (c1s,aq

), the concentration of sodium hydrox-
ide in the aqueous phase of the liquid-liquid separator (c7s,aq

), and the concentration of
tropine ester in the organic phase of the liquid-liquid separator (c11s,or ). This set derived
from the local method agrees with the intuitive dominant variables in the process that one
may expect. Both formaldehyde (CH2O, component 5) and tropine ester (C16H21O2N,
component 11) are the reactants in reactions (3.2c) and (3.2d), that compete to produce
atropine (desired product) and apoatropine (undesired byproduct), respectively. Further-
more, tropine (C8H15NO, component 1) and sodium hydroxide (NaOH, component 7) are
the reactants in reactions (3.2a) and (3.2b), respectively, that trigger the overall reaction
set. These variables appear repeatedly in the rest of the selected sets of measurements.

Similar results found by the global method formulated in Section 3.2.1 are shown in
Fig. 4.2 and Table 4.3. The global method uses optimal data sampled from the entire
operating region, giving average loss predictions closer to the true values. Compared with
the local method, the loss predictions are larger (more than the double). Regarding the
selection of optimal measurement sets, there are several similarities with the sets pro-
posed by the local method. One example is the optimal set of 4 measurements, where
the same process variables were selected by both methods. Among some differences, it is
remarkable the early inclusion of the concentration of atropine in the aqueous phase of the
liquid-liquid separator (c9s,aq ) into the measurement sets, as well as the volume flowrate
of the first feed stream (q1).
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Chapter 4. Results and conclusions

Table 4.3: Optimal sets of measurements selected by the global method and corresponding steady-
state global average losses.

ny Global subset Lgav

4 [c5r3
c1s,aq

c7s,aq
c11s,or

] 1.4427
[c1r2

c5r3
c7s,aq

c11s,or
] 1.4456

[c1r3
c5r3

c7s,aq
c11s,or

] 1.4457
[c3r2

c5r3
c7s,aq

c11s,or
] 1.4600

5 [c5r3
c11r3

c1s,aq
c7s,aq

q1] 1.2990
[c1r3 c5r3 c11r3 c7s,aq q1] 1.2992
[c1r2 c5r3 c11r3 c7s,aq q1] 1.2994
[c5r3

c11r3
c1s,aq

c7s,aq
qr1] 1.2999

6 [c9r2
c5r3

c1s,aq
c7s,aq

c9s,aq
c11s,or

] 1.1725
[c9r2

c1r3
c5r3

c7s,aq
c9s,aq

c11s,or
] 1.1733

[c1r2
c9r2

c5r3
c7s,aq

c9s,aq
c11s,or

] 1.1734
[c3r2

c9r2
c5r3

c7s,aq
c9s,aq

c11s,or
] 1.1805

7 [c9r2 c5r3 c1s,aq c7s,aq c9s,aq c5s,or c11s,or ] 1.0690
[c9r2 c1r3 c5r3 c7s,aq c9s,aq c5s,or c11s,or ] 1.0696
[c1r2

c9r2
c5r3

c7s,aq
c9s,aq

c5s,or
c11s,or

] 1.0698
[c7r2

c9r2
c5r3

c1s,aq
c9s,aq

c5s,or
c11s,or

] 1.0757
8 [c9r2

c5r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

q1] 1.0090
[c9r2

c1r3
c5r3

c11r3
c7s,aq

c9s,aq
c5s,or

q1] 1.0092
[c5r2

c9r2
c5r3

c11r3
c1s,aq

c7s,aq
c9s,aq

q1] 1.0092
[c1r2 c9r2 c5r3 c11r3 c7s,aq c9s,aq c5s,or q1] 1.0094

9 [c5r2 c9r2 c5r3 c11r3 c1s,aq c7s,aq c9s,aq c5s,or q1] 0.9734
[c9r2 c3r3 c5r3 c11r3 c7s,aq c9s,aq c3s,or c5s,or q1] 0.9735
[c5r2

c9r2
c1r3

c5r3
c11r3

c7s,aq
c9s,aq

c5s,or
q1] 0.9735

[c1r2
c5r2

c9r2
c5r3

c11r3
c7s,aq

c9s,aq
c5s,or

q1] 0.9737
10 [c5r2

c9r2
c3r3

c5r3
c11r3

c7s,aq
c9s,aq

c3s,or
c5s,or

q1] 0.9392
[c5r2

c9r2
c3r3

c5r3
c11r3

c7s,aq
c9s,aq

c3s,or
c5s,or

q1] 0.9405
[c9r2

c3r3
c5r3

c11r3
c7s,aq

c9s,aq
c12s,aq

c3s,or
c5s,or

q1] 0.9413
[c9r2

c3r3
c5r3

c11r3
c7s,aq

c9s,aq
c12s,aq

c3s,or
c5s,or

qr1] 0.94241
...

...
...

39 all measurements 0.7706

52



4.3 Steady-state validation

Figure 4.2: Pareto frontier showing the steady-state global average loss versus the number of mea-
surements for the control structures selected by the global method.

4.3 Steady-state validation

The candidate controlled variables found in the previous section are now evaluated us-
ing the nonlinear model to check if the average losses predicted by the local and global
methods are accurate with respect to the true average loss. For each control structure,
the steady-state average loss was computed by performing closed-loop simulations under
100 scenarios of normally distributed disturbances and sensor noise realizations generated
by Monte Carlo simulations with standard deviations given in Section 3.1.4. The results
of these simulations are illustrated in Fig. 4.3. The shape and the average loss values of
the Pareto frontier curves have changed with respect to the ones showed in the previous
section, indicating that the true average loss is larger than the predicted values. The nonlin-
ear average losses corresponding to the control structures selected by the local and global
methods are depicted in blue and red lines, respectively. Furthermore, the nonlinear av-
erage loss resulting from open-loop nominal operation (black line) has been included for
the sake of comparison. The optimal measurement sets from local and global methods are
given in Table 4.4.

The control structures resulting from the global method outperform the ones from the
local method, giving lower steady-state average losses. Furthermore, tracking controlled
variables derived from the global method reduces in about 15 mg the waste generated per
100 mg of atropine obtained, compared with open-loop nominal operation. The inclusion
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Chapter 4. Results and conclusions

of 6 measurements into the control structure gives a good trade-off between the reduction
in the average loss and the number of measurements. Above this point, the controlled
variables found by the global method do not significantly reduce the steady-state average
loss when new sensors are added to the control structure.

A more detailed look into the control structures containing 6 measurements is given in
Fig. 4.4. Here, the steady-state losses for the 100 normally distributed uncertainty scenar-
ios are shown. The performance of global self-optimizing control structures is superior to
that of local self-optimizing control structures and nominal open-loop operation.

A sensitivity analysis of the steady-state loss resulting from control structures of 6 mea-
surements for the different disturbances considered in this work is presented in Fig. 4.5.
The loss of optimality is shown as a function of the standard deviation of the different dis-
turbances. At the nominal operating point (σ = 0), the locally optimal control structures
give zero loss. This is not the case for globally optimal control structures, where the objec-
tive is to minimize the average loss over the entire operating envelope rather than obtaining
locally zero loss. The disturbances with more influence over the steady-state loss are the
value of the distribution coefficient of atropine in the liquid-liquid separator log(Datrop)
and the activation energy of reaction (3.2d) EA4. Both disturbances correspond to para-
metric model uncertainty.

Based on the results from the steady-state validation, the global self-optimizing (gsoc)
control structure of 6 measurements was finally selected for further dynamic validation.
Writing the controlled variables as linear combination of the available measurements on
the form c = Hy, we get

cgsoc = Hgsoc


c9r2

c5r3

c1s,aq

c7s,aq

c9s,aq

c11s,or

 , (4.2)

where the combination matrix Hgsoc is

Hgsoc =


−0.011 −0.003 0.319 −0.091 0.008 0.022 2.594 · 10−15 1.463 · 10−14

−0.003 −8.737 · 10−4 −1.096 −0.034 0.002 0.007 5.151 · 10−16 3.560 · 10−15

−0.015 0.038 −0.007 0.005 0.011 −2.452 · 10−4 8.243 · 10−15 4.038 · 10−14

−0.007 −0.002 −0.030 0.225 0.008 0.010 2.353 · 10−15 1.465 · 10−14

 (4.3)

and the setpoints cs,gsoc are

cs,gsoc =


−1.085
−0.202
−2.738
−1.078

 . (4.4)
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4.3 Steady-state validation

Figure 4.3: Steady-state nonlinear average loss versus the number of measurements for control
structures selected by global (red) and local (blue) methods, and for open-loop nominal operation
(black). The average losses were computed from 100 normally distributed scenarios of disturbances
and sensor noise realizations generated by Monte Carlo simulations.
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Table 4.4: Optimal measurement sets from local and global methods validated using the nonlinear model. The steady-state average losses were computed
from 100 normally distributed scenarios of disturbances and sensor noise realizations generated by Monte Carlo simulations.

ny Best local subset Lav Best global subset Lav

4 [c5r3 c1s,aq c7s,aq c11s,or ] 5.0471 [c5r3 c1s,aq c7s,aq c11s,or ] 4.5428
5 [c5r2 c1s,aq c7s,aq c5s,or c11s,or ] 5.1331 [c5r3 c11r3 c1s,aq c7s,aq q1] 4.3177
6 [c5r2

c11r2
c1s,aq

c7s,aq
c5s,or

c11s,or
] 4.9944 [c9r2

c5r3
c1s,aq

c7s,aq
c9s,aq

c11s,or
] 2.6753

7 [c5r2
c11r2

c5r3
c1s,aq

c7s,aq
c5s,or

c11s,or
] 4.8052 [c9r2

c5r3
c1s,aq

c7s,aq
c9s,aq

c5s,or
c11s,or

] 2.5654
8 [c5r2

c5r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

c11s,or
] 4.4934 [c9r2

c5r3
c11r3

c1s,aq
c7s,aq

c9s,aq
c5s,or

q1] 2.5033
9 [c5r2

c9r2
c5r3

c11r3
c1s,aq

c7s,aq
c9s,aq

c5s,or
c11s,or

] 3.8306 [c9r2
c3r3

c5r3
c11r3

c7s,aq
c9s,aq

c3s,or
c5s,or

q1] 2.3614
10 [c5r2

c9r2
c5r3

c11r3
c1s,aq

c7s,aq
c9s,aq

c5s,or
c11s,or

q3] 3.8292 [c9r2
c3r3

c5r3
c11r3

c7s,aq
c9s,aq

c12s,aq
c3s,or

c5s,or
q1] 2.2716

...
...

...
...

...
39 all measurements 3.6909 all measurements 2.0855
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4.3 Steady-state validation

Figure 4.4: Steady-state losses for 100 scenarios of normally distributed disturbances and sensor
noise realizations resulting from open-loop nominal operation (black), and constant setpoint control
of the optimal set of 6 measurements found by the global (red) and local (blue) methods.
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Figure 4.5: Sensitivity analysis of the steady-state loss for the different disturbances considered in this work. The losses shown correspond to open-loop
nominal operation (black), and constant setpoint control of the optimal set of 6 measurements found by the global (red) and local (blue) methods.
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4.4 Dynamic validation

4.4 Dynamic validation

The final step of the methodology for controlled variable selection is to test the dynamic
behaviour of the control structure to check if it can be realized in practice. This is done
by performing closed-loop step responses to selected disturbances as described in Sec-
tion 3.2.3.

Self-optimizing control is realized by controlling the set of controlled variables selected
from the global method to some optimally robust constant setpoint (also given by the
global method) when disturbances occur. As the process is non highly interactive2, the
simplest approach is to use decentralized PI controllers for tracking the controlled vari-
ables to their given setpoints.

First, a dynamic closed-loop simulation was performed assuming no sensor noise. The
trajectories of the different disturbances during the simulation are given in Section 3.2.3.
The resulting profiles of the controlled variables are shown in Fig. 4.7. The controlled
variables are given in deviations with respect to their setpoints. Therefore, tracking the
controlled variables ∆c (in deviation variables) to zero is equivalent to tracking the con-
trolled variables c to their given setpoints cs. By using feedback control to track these
carefully selected controlled variables, the process is automatically driven towards its op-
timal point despite disturbances. This can be seen from the profile of the economic cost
function (here, the E-factor) during the dynamic closed-loop simulation, shown in Fig. 4.6.
The optimal steady-state value of the cost function is also depicted with a black dashed
line for every disturbance scenario.

To compare the dynamic response of the decentralized PI controllers with a multivari-
able controller, a model predictive controller (MPC) was implemented. In particular, a
quadratic dynamic matrix controller (QDMC) was designed to track the steady-state op-
timal value of the cost function (E-factor) for all uncertainty scenarios. The optimal set-
points were assumed to be readily available by an upper real-time optimization layer.

Both control strategies result in satisfactory dynamic performance. Some differences
among them include the following. The response from the QDMC controller exhibits
overshoots when disturbances impact the process, while the response from the decentral-
ized PI controllers tracking self-optimizing controlled variables is rather slow and it takes
about 500 min to converge towards the steady-state optimal operating point. One can play
around with the PI settings to achieve a faster response. Here, we used the SIMC tuning
method, which gives a good trade-off between fast response, moderate input variation and
good robustness margins.

The addition of sensor noise to the control system was also studied. The closed-loop
simulation results for this scenario are shown in Fig. 4.8 and Fig. 4.9. We observe that both
controllers give good dynamic performance. Despite larger variations in the controlled
variable profiles, the effect of sensor noise in the cost function is small.

2For interactive multiple-input-multiple-output (MIMO) systems, a multivariable controller such as model
predictive control (MPC) should be used. To reduce the interactions in decentralized controllers, one can also
implement decouplers.
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Chapter 4. Results and conclusions

Figure 4.6: Profile of the cost function (E-factor) for nominal operation and three disturbance sce-
narios.

Figure 4.7: Profiles of the controlled variables for nominal operation and three disturbances scenar-
ios.
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4.4 Dynamic validation

Figure 4.8: Profile of the cost function (E-factor) for nominal operation and three disturbance sce-
narios. Sensor noise is present in the control system.

Figure 4.9: Profiles of the controlled variables for nominal operation and three disturbances scenar-
ios. Sensor noise is present in the control system.
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4.5 Overall conclusions

This section summarizes the main conclusions drawn from this work.

• A first-principles model of the atropine process is presented in Section 3.1.2. Due
to the lack of experimental data, there is parametric model uncertainty in the ki-
netic parameters of the Arrhenius equation (pre-exponential factors and activation
energies) and the separation partition coefficients. This is effectively tackled by de-
signing a control layer selecting controlled variables whose optimal setpoints are
near-insensitive to the value of these parameters and other disturbances, making the
control system optimally robust to parametric uncertainty. Such optimal invariants
are called self-optimizing controlled variables because by tracking them to constant
setpoints, the plant is operated near-optimally despite parametric uncertainty and
without the need to re-optimize the system when disturbances occur.

• The system was optimized for nominal conditions. At the optimum, all of the 4 de-
grees of freedom were unconstrained, which correspond with the volume flowrates
of the feed streams q1−4. These degrees of freedom were used to find self-optimizing
controlled variables.

• To select such self-optimizing controlled variables and their optimal setpoints, a lo-
cal and a global approach were used. Both methods resulted in minimum losses at
steady-state, compared with open-loop nominal operation in the presence of distur-
bances. The global approach outperforms the local method, giving lower average
losses. This was expected because the global method uses optimal data from the
entire operating region to approximate the loss quadratically around the nominal
operating point, and therefore linearization errors are minimized far away from the
chosen linearization point.

• A set of 6 concentration measurements found by the global approach was selected
as controlled variables for giving a good trade-off between the number of measure-
ments and the loss reduction. This trade-off balances the benefits of adding more
sensors (better disturbance rejection and a control structure less sensitive to sensor
noise) and the associated cost (increase investment and control complexity).

• Two controllers were designed: namely, decentralized PI controllers tracking self-
optimizing control variables and a quadratic dynamic matrix controller (QDMC)
tracking optimal setpoints. Both control strategies resulted in good dynamic perfor-
mance, also in the presence of sensor noise.

• Therefore, using decentralized PI controllers to track self-optimizing controlled
variables is a simple and optimally robust way to operate the plant under parametric
uncertainty.
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4.6 Evaluation of objectives

The purpose of this section is to evaluate if the objectives set in Section 1.3 were accom-
plished and to what extent.

1. An extensive literature study on control structure selection methods based on self-
optimizing control (including local and global approaches) and controller design
methods in multivariable plants (including decentralized PID control and model pre-
dictive control) was conducted in Chapter 2.

2. Screening methodologies for selection of self-optimizing controlled variables based
on local and global approaches were developed in Section 3.2.1. These methods
select optimal subsets of measurements by solving a mixed integer quadratic pro-
gramming (MIQP) reformulation of the problem. The resulting local and global
methods were applied to the atropine process in Section 4.2.

3. Decentralized PI controllers were designed in Section 3.3.1 by using the steady-state
relative gain array of the plant to select the pairings and the SIMC tuning method for
finding the controller settings. Furthermore, a quadratic dynamic matrix controller
(QDMC), which is a form of model predictive controller (MPC), was designed in
Section 3.3.2.

4. A steady-state validation of the selected control structures using the nonlinear model
was performed in Section 4.3. Furthermore, a dynamic validation using closed-loop
step responses to selected disturbances was performed in Section 4.4.

4.7 Directions for further research

Further research directions in this project may include:

• Combine the proposed self-optimizing control layer with an upper real-time opti-
mization (RTO) layer in a hierarchical control architecture. Among different RTO
strategies, the authors advocate for the use of modifier adaptation, which can cor-
rect for plant-model mismatch. In the combined control hierarchy, the lower self-
optimizing control layer can account for parametric model uncertainties on a fast
time-scale, while the upper modifier adaptation layer can adjust the setpoints of
the controlled variables below to correct for structurally unknown uncertainties and
converge to the true optimum on a slower time-scale.

• Test the proposed plantwide control approach in the real plant and validate the sim-
ulation results.

• Develop approaches to automate start-up and shutdown procedures in the plant.
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Appendix A
MATLAB code

This section contains some important pieces of source code developed in this project. The
code is written in MATLAB together with CPLEX (CPLEX, 2009) and Casadi (Andersson
et al., 2012).

A.1 MIQP solver for local self-optimizing control

The function miqp solver lsoc solves the mixed integer quadratic programming (MIQP)
problem for selecting the top ns local self-optimizing control structures of nm measure-
ments.

1 function [H,loss,sset]= miqp_solver_lsoc(Gy,Gd,Juu,Jud,Wd,Wn,nm,ns)
2

3 [ny,nu] = size(Gy);
4 nd = size(Gd,2);
5 sigma = zeros(1,ny);
6

7 if nm == ny
8 ns = 1;
9 end

10

11 for k = 1:ns
12

13 try
14 % Initialize CPLEX object
15 cplex = Cplex(’miqp_solver_lsoc’);
16 cplex.DisplayFunc = [];
17

18 % Fill in the data for the problem using populatebyrow
19 populatebyrow(cplex,Gy,Gd,Juu,Jud,Wd,Wn,nm,sigma);
20

21 % Optimize the problem
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22 cplex.solve();
23

24 xn = cplex.Solution.x;
25 H(:,:,k) = reshape(xn(1:ny*nu),ny,nu)’;
26

27 % Compute average loss
28 F = Gd-Gy/Juu*Jud;
29 Y = [F*Wd Wn];
30 M = Juuˆ(1/2)/(H(:,:,k)*Gy)*(H(:,:,k)*Y);
31 loss(k) = 1/2*norm(M,’fro’)ˆ2;
32

33 % Select best subset
34 sigma(k,:) = xn(nu*ny+1:end)’;
35 sset(k,:) = find(sigma(k,:)==1);
36

37 catch m
38 disp(m.message);
39 throw (m);
40 end
41 end
42

43 function populatebyrow(cplex,Gy,Gd,Juu,Jud,Wd,Wn,nm,sigma)
44

45 F = Gd-Gy/Juu*Jud;
46 Y = [F*Wd Wn];
47 Juu12 = sqrtm(Juu);
48 [ny,nu] = size(Gy);
49 nd = size(Gd,2);
50

51 % Vectorization
52 Jn = []; Yn = []; GnyT = [];
53 for i = 1:nu
54 GnyT = blkdiag(GnyT,Gy’);
55 Jn = [Jn;Juu12(i,:)’];
56 Yn = blkdiag(Yn,Y);
57 end
58 Fn = Yn*Yn’;
59

60 % Objective function
61 Q = 2*blkdiag(Fn,zeros(ny,ny));
62 c = zeros(size(Q,1),1);
63

64 % Constraint matrix and bounds
65 GnyT_aug = [GnyT zeros(nu*nu,ny)];
66 P_aug = [zeros(1,ny*nu) ones(1,ny)];
67 sigma_aug = [zeros(size(sigma,1),ny*nu) sigma];
68 A = [GnyT_aug;P_aug;sigma_aug];
69 lhs = [Jn;nm;zeros(size(sigma,1),1)];
70 rhs = [Jn;nm;(nm-1)*ones(size(sigma,1),1)];
71

72 % Bounds
73 x_L = [-Inf*ones(nu*ny,1);zeros(ny,1)];
74 x_U = [Inf*ones(nu*ny,1);ones(ny,1)];
75

76 % Define variable type
77 str(1:ny*nu) = ’C’;
78 str(ny*nu+1:ny*nu+ny) = ’B’;
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79

80 % Add columns
81 cplex.addCols(c, [], x_L, x_U, char(str));
82

83 % Add indicator constraints on columns
84 for i = 1:ny
85 counter = 0;
86 for j = 1:nu
87 a = zeros(nu*ny+ny,1);
88 a(i+counter) = 1;
89 cplex.addIndicators(nu*ny+i,1,a,’E’,0);
90 counter = counter+ny;
91 end
92 end
93

94 % Update CPLEX class
95 cplex.Model.sense = ’minimize’;
96 cplex.Model.ctype = char(str);
97 cplex.addRows(lhs, A, rhs);
98 cplex.Model.Q = Q;
99 end

100 end

A.2 MIQP solver for global self-optimizing control

The function miqp solver gsoc solves the mixed integer quadratic programming (MIQP)
problem for selecting the top ns global self-optimizing control structures of nm measure-
ments.

1 function [H,loss,sset] = miqp_solver_gsoc(YY,Gy,Juu,nm,ns)
2

3 [ny,nu] = size(Gy);
4 sigma = zeros(1,ny);
5

6 if nm == ny
7 ns = 1;
8 end
9

10 for k = 1:ns
11

12 try
13 % Initialize CPLEX object
14 cplex = Cplex(’miqp_solver_gsoc’);
15 cplex.DisplayFunc = [];
16

17 % Fill in the data for the problem using populatebyrow
18 populatebyrow(cplex,YY,Gy,Juu,nm,sigma);
19

20 % Optimize the problem
21 cplex.solve();
22

23 xn = cplex.Solution.x;
24 H(:,:,k) = reshape(xn(1:ny*nu),ny,nu)’;
25
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26 % Compute average loss
27 loss(k) = 1/2*norm(YY*H(:,:,k)’,’fro’)ˆ2;
28

29 % Select best subset
30 sigma(k,:) = xn(nu*ny+1:end)’;
31 sset(k,:) = find(sigma(k,:)==1);
32

33 catch m
34 disp(m.message);
35 throw (m);
36 end
37 end
38

39 function populatebyrow(cplex,YY,Gy,Juu,nm,sigma)
40

41 Y = (YY)’;
42 Juu12 = sqrtm(Juu);
43 [ny,nu] = size(Gy);
44

45 % Vectorization
46 Jn = []; Yn = []; GnyT = [];
47 for i = 1:nu
48 GnyT = blkdiag(GnyT,Gy’);
49 Jn = [Jn;Juu12(i,:)’];
50 Yn = blkdiag(Yn,Y);
51 end
52 Fn = Yn*Yn’;
53

54 % Objective function
55 Q = 2*blkdiag(Fn,zeros(ny,ny));
56 c = zeros(size(Q,1),1);
57

58 % Constraint matrix and bounds
59 GnyT_aug = [GnyT zeros(nu*nu,ny)];
60 P_aug = [zeros(1,ny*nu) ones(1,ny)];
61 sigma_aug = [zeros(size(sigma,1),ny*nu) sigma];
62 sigma1 = zeros(1,length(sigma_aug));
63 sigma1(nu*ny+1) = 1;
64 A = [GnyT_aug;P_aug;sigma_aug;sigma1];
65 lhs = [Jn;nm;zeros(size(sigma,1),1);1];
66 rhs = [Jn;nm;(nm-1)*ones(size(sigma,1),1);1];
67

68 % Bounds
69 x_L = [-Inf*ones(nu*ny,1);zeros(ny,1)];
70 x_U = [Inf*ones(nu*ny,1);ones(ny,1)];
71

72 % Define variable type
73 str(1:ny*nu) = ’C’;
74 str(ny*nu+1:ny*nu+ny) = ’B’;
75

76 % Add columns
77 cplex.addCols(c, [], x_L, x_U, char(str));
78

79 % Add indicator constraints on columns
80 for i = 1:ny
81 counter = 0;
82 for j = 1:nu
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83 a = zeros(nu*ny+ny,1);
84 a(i+counter) = 1;
85 cplex.addIndicators(nu*ny+i,1,a,’E’,0);
86 counter = counter+ny;
87 end
88 end
89

90 % Update CPLEX class
91 cplex.Model.sense = ’minimize’;
92 cplex.Model.ctype = char(str);
93 cplex.addRows(lhs, A, rhs);
94 cplex.Model.Q = Q;
95 end
96 end

A.3 Computing the steady-state RGA matrix

The function rga computes the steady-state relative gain array (RGA) matrix of the plant.
This is used for selecting the input-output pairings in the decentralized PI controllers.

1 function [R,S]=rga(G)
2

3 % By Yi Cao at Cranfield University on 7th March 2008
4 %
5 % References:
6 %
7 % 1. Bristol, E.H., On a new measure of interactions for multivariable
8 % process control. IEEE Trans. Automatic Control, AC-11:133-134, 1966.
9 % 2. Cao, Y and Rossiter, D, An input pre-screening technique for control

10 % structure selection, Computers and Chemical Engineering, 21(6), pp.
11 % 563-569, 1997.
12

13 % Check input and output
14 error(nargchk(1,1,nargin));
15 error(nargoutchk(0,2,nargout));
16

17 % The RGA
18 R=pinv(G.’).*G;
19 if nargout<2
20 return
21 end
22

23 [m,n]=size(G);
24 % The square case
25 if n==m
26 S=R;
27 while norm(round(S)-S)>1e-9
28 S(S<0)=0;
29 S = inv(S.’).*S;
30 end
31 return
32 end
33

34 % The nonsquare case
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35 S = sqrt(sum(R))’;
36 if m>n
37 S = sqrt(sum(R,2));
38 end

A.4 Computing PI settings

The function pi settings computes the PI controller settings based on the SIMC tuning
method.

1 function [kp,ki] = pi_settings(H,Gy,tauc)
2 %% General settings: add paths and packages
3

4 % Add paths
5 CurrentPath = mfilename(’fullpath’);
6 MainFolderPath = fileparts(fileparts(CurrentPath));
7 addpath(genpath(MainFolderPath));
8

9 % Add specific packages
10 import casadi.*
11

12 %% RGA pairing
13

14 [R,S]=rga(H*Gy);
15

16 %% SIMC-PID tuning
17

18 m = model_main();
19 get_y = Function(’get_y’,{m.x,m.u,m.d},{m.y});
20 load(’nominal.mat’)
21

22 for nu = 1:size(H,1)
23

24 nc = find(S(:,nu)>0);
25

26 % Define struct for the integrator
27 int_struct = struct();
28 int_struct.x = vertcat(m.t,m.x);
29 int_struct.ode = vertcat(1,m.ode);
30 int_struct.p = vertcat(m.u,m.d);
31

32 % Define initial conditions
33 x0 = vertcat(-20,x_nom);
34 u0 = u_nom;
35 d0 = d_nom;
36 p = vertcat(u0,d0);
37

38 xsol = [];
39

40 for i = 1:2
41

42 if i == 1
43 % Options structure
44 opts = struct(’grid’,linspace(0,20,100),...
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45 ’max_num_steps’,1e5,’reltol’,1e-8,’abstol’,1e-12);
46

47 % Define the integrator
48 I = integrator(’I’,’cvodes’,int_struct,opts);
49

50 % Call the integrator
51 sol = I(’x0’,x0,’p’,p);
52 xsol = [xsol;full(sol.xf)’];
53 x0 = xsol(end,:);
54 dim_time_ss = size(xsol,1);
55

56 elseif i == 2
57 % Options structure
58 opts = struct(’grid’,linspace(0,100,1000),...
59 ’max_num_steps’,1e5,’reltol’,1e-8,’abstol’,1e-12);
60

61 % Step change in input
62 u_step = u0;
63 u_step(nu) = u_step(nu)*1.01;
64 p = vertcat(u_step,d0);
65

66 % Define the integrator
67 I = integrator(’I’,’cvodes’,int_struct,opts);
68

69 % Call the integrator
70 sol = I(’x0’,x0,’p’,p);
71 xsol = [xsol;full(sol.xf)’];
72 time = xsol(:,1);
73

74 % Select measurements from states
75 % Steady-state part
76 for n = 1:dim_time_ss
77 ysol(n,:) = full(get_y(xsol(n,2:end),u_nom,d_nom));
78 end
79 % Step change response
80 for n = dim_time_ss+1:length(time)
81 ysol(n,:) = full(get_y(xsol(n,2:end),u_step,d_nom));
82 end
83

84 % Compute controlled variable from measurements
85 for n = 1:length(time)
86 csol(n) = (H(nc,:)*ysol(n,:)’)’;
87 end
88

89 % Compute controlled variable in deviation variables
90 for n = 1:length(time)
91 dc(n) = csol(n)-(H(nc,:)*ysol(1,:)’)’;
92 end
93

94 % Compute process gain, time delay and time constant
95 du = u_step(nu)-u_nom(nu);
96 k(nu) = abs(dc(end))/du;
97 theta(nu) = max(time(find(abs(dc)<=1e-2*abs(dc(end)))));
98 tau(nu) = 5;
99 end

100 end
101
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102 % Closed-loop time constant
103 tau_c(nu) = tauc;
104

105 % Proportinal and integral controller gains
106 kp(nu,1) = (1/k(nu))*(tau(nu)/(tau_c(nu)+theta(nu)));
107 taui(nu) = min(tau(nu),4*(tau_c(nu)+theta(nu)));
108 ki(nu,1) = kp(nu)/taui(nu);
109 end
110 end

A.5 Computing steady-state losses

The function ss loss computes the steady-state losses for a given control structure defined
by the combination matrix H and the setpoints cs. The losses are computed for each
disturbance in a given range of standard deviation values.

1 function [sigma,L,L_ol] = ss_loss(H,cs,Gy,sigma_limits)
2 %% General settings
3

4 % Determine the paths for this script and the main folder, respectively
5 script = mfilename(’fullpath’);
6 main = fileparts(fileparts(script));
7

8 % Add folders and subfolders to current path
9 addpath(genpath(main));

10

11 % Import CasADi
12 import casadi.*
13

14 % Initialize parallel pool
15 delete(gcp(’nocreate’))
16 clc
17 parpool;
18

19 %% Load model
20

21 m = model_main();
22

23 %% Create CasADi functions
24

25 J_f = Function(’J_f’,{m.x,m.u,m.d},{m.J});
26 y_f = Function(’y_f’,{m.x,m.u,m.d},{m.y});
27

28 %% Finding nominal operating point
29

30 disp(’Finding optimally nominal operating point’)
31 tic
32

33 % Load data if available
34 if isfile(fullfile(main,’Data’,’nominal.mat’)) == 1
35 disp(’ Loading data’)
36 load(’nominal.mat’)
37

38 % Compute if data non available
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39 else
40 d_nom = m.d_nom;
41 u0 = m.u0;
42 [u_nom,x_nom] = nlp_solver(d_nom,u0);
43 save(fullfile(’Data’,’nominal.mat’),’u_nom’,’x_nom’,’d_nom’)
44 end
45

46 disp(’ Elapsed time (seconds):’)
47 disp(toc)
48

49 %% Finding degress of freedom for self-optimizing control
50

51 disp(’Finding degress of freedom for self-optimizing control’)
52 tic
53

54 % Load data if available
55 if isfile(fullfile(main,’Data’,’sset_soc.mat’)) == 1
56 disp(’ Loading data’)
57 load(’sset_soc.mat’)
58

59 % Compute if data non available
60 else
61 tol = 1e-4;
62 sset_soc = zeros(1,length(u_nom));
63 % Check active constraints on inputs
64 for i = 1:length(u_nom)
65 if abs(u_nom(i)-m.umin(i))<=tol || abs(u_nom(i)-m.umax(i))<=tol
66 sset_soc(1,i) = 1;
67 else
68 sset_soc(1,i) = 0;
69 end
70 end
71 sset_soc = find(sset_soc == 0);
72 save(fullfile(’Data’,’sset_soc.mat’),’sset_soc’)
73 end
74

75 disp(’ Elapsed time (seconds):’)
76 disp(toc)
77

78 %% Computing PI controller settings
79

80 disp(’Computing PI controller settings’)
81 tic
82

83 tauc = 250;
84 [kp,ki] = pi_settings(H,Gy,tauc);
85

86 disp(’ Elapsed time (minutes):’)
87 disp(toc/60)
88

89 %% Preparing data for parallel computing
90

91 disp(’Preparing data for parallel computing’)
92 tic
93

94 % Grid with standard deviation values
95 s0 = sigma_limits(1);
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96 sf = sigma_limits(2);
97 ds = 0.1;
98 N = (sf-s0)/ds+1;
99 sigma = linspace(s0,sf,N);

100

101 % Disturbance values and standard deviations
102 Wd = diag(m.Wd);
103 d_nom = m.d_nom;
104

105 % Prepare data for parallel computing
106 ID = []; Dnom = []; WD = []; SIGMA = [];
107 for nd = 1:length(Wd)
108 ID = [ID,nd*ones(1,N)];
109 Dnom = [Dnom,d_nom(nd)*ones(1,N)];
110 WD = [WD,Wd(nd)*ones(1,N)];
111 SIGMA = [SIGMA,sigma];
112 end
113

114 for i = 1:length(SIGMA)
115 d = d_nom;
116 d(ID(i)) = Dnom(i)+SIGMA(i)*WD(i);
117

118 D(:,i) = d;
119 end
120

121 disp(’ Elapsed time (seconds):’)
122 disp(toc)
123

124 %% Optimization
125

126 disp(’Optimization’)
127 tic
128

129 % Load data if available
130 if isfile(fullfile(main,’Data’,’ss_optimization.mat’)) == 1
131 disp(’ Loading data’)
132 load(’ss_optimization.mat’)
133

134 disp(’ Elapsed time (seconds):’)
135 disp(toc)
136

137 % Compute if data non available
138 else
139 % Create progress monitor bar
140 ppm = ParforProgMon(’Progress: ’,size(D,2));
141 u0 = m.u0;
142 parfor i = 1:size(D,2)
143 d = D(:,i);
144 [u,x] = nlp_solver(d,u0);
145 u_opt(i,:) = u;
146 x_opt(i,:) = x;
147 % Update progress monitor bar
148 ppm.increment();
149 end
150

151 for i = 1:size(D,2)
152 d = D(:,i);
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153 x = x_opt(i,:)’;
154 u = u_opt(i,:)’;
155 J_opt(i) = full(J_f(x,u,d));
156 end
157

158 save(fullfile(’Data’,’ss_optimization.mat’),’J_opt’)
159

160 disp(’ Elapsed time (hours):’)
161 disp(toc/3600)
162 end
163

164 %% Closedloop simulation
165

166 disp(’Closed-loop simulation’)
167 tic
168

169 % Create progress monitor bar
170 ppm = ParforProgMon(’Progress: ’,size(D,2));
171

172 % Closedloop simulation settings
173 x0 = x_nom;
174 u0 = u_nom;
175 t0 = 0;
176 tf = [];
177 n0 = zeros(size(Gy,1),1);
178 err_tol = 1e-10;
179

180 parfor i = 1:size(D,2)
181 d = D(:,i)’;
182 J = J_opt(i);
183 [loss,˜,˜,˜,˜,˜,˜,˜] = closedloop_sim(H,kp,ki,n0,d,J,cs,x0,...
184 u0,sset_soc,t0,tf,err_tol)
185 L(i,1) = loss;
186 % Update progress monitor bar
187 ppm.increment();
188 end
189

190 disp(’ Elapsed time (minutes):’)
191 disp(toc/60)
192

193 %% Openloop simulation
194

195 disp(’Open-loop simulation’)
196 tic
197

198 % Create progress monitor bar
199 ppm = ParforProgMon(’Progress: ’,size(D,2));
200

201 % Closedloop simulation settings
202 tf = 1000;
203 err_tol = [];
204

205 parfor i = 1:size(D,2)
206 d = D(:,i)’;
207 J = J_opt(i);
208 [loss,˜,˜,˜,˜,˜,˜,˜] = closedloop_sim(H,kp,ki,n0,d,J,cs,x0,...
209 u0,sset_soc,t0,tf,err_tol)
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210 L_ol(i,1) = loss;
211 % Update progress monitor bar
212 ppm.increment();
213 end
214

215 disp(’ Elapsed time (minutes):’)
216 disp(toc/60)
217

218

219 %% Reorganize data
220

221 L = reshape(L,length(sigma),length(d_nom))’;
222 L_ol = reshape(L_ol,length(sigma),length(d_nom))’;
223 end

A.6 NLP solver

The function nlp solver solves the nonlinear programming problem (NLP) corresponding
to optimal operation. In particular, it minimizes the E-factor while satisfying actuator
constraints for a given disturbance scenario.

1 function [u,x] = nlp_solver(d0,u0);
2 %% General settings: add paths and packages
3

4 % Add paths
5 CurrentPath = mfilename(’fullpath’);
6 MainFolderPath = fileparts(fileparts(CurrentPath));
7 addpath(genpath(MainFolderPath));
8

9 % Add specific packages
10 import casadi.*
11

12 %% Optimization parameters
13

14 m = model_main(); % Load model
15 J = m.J; % Cost function
16 x0 = vertcat(1,m.x0); % Initial states
17 umax = m.umax; % Upper bounds for inputs
18 umin = m.umin; % Lower bounds for inputs
19

20 %% Improve x0 by simulating the system up to steady-state
21

22 % Create integrator
23 int_struct = struct();
24 int_struct.x = vertcat(m.t,m.x); % Time + Differential states
25 int_struct.ode = vertcat(1,m.ode); % dt/dt + Differential equations
26 int_struct.p = vertcat(m.u,m.d); % Parametrize u and d
27 opts = struct(’grid’,linspace(0,100,100),...
28 ’max_num_steps’,1e5,’reltol’,1e-8,’abstol’,1e-12);
29 I = integrator(’I’,’cvodes’,int_struct,opts);
30

31 % Call the integrator
32 p = vertcat(u0,d0);
33 sol = I(’x0’,x0,’p’,p);

80



34 xsol = full(sol.xf)’;
35

36 % New initial guess
37 x0 = xsol(end,2:end)’;
38

39 %% Optimization
40

41 active_artificial_bounds = 1;
42 counter = 0;
43

44 while active_artificial_bounds == 1
45 counter = counter+1;
46

47 % Create NLP solver
48 prob_struct = struct();
49 prob_struct.f = J; % Objective
50 prob_struct.x = vertcat(m.x,m.u); % Decision variables
51 prob_struct.g = m.ode; % (In)equality constraints
52 prob_struct.p = m.d; % Parameters: the disturbances
53

54 % Initial guess
55 w0 = vertcat(x0,u0); % Initial guess: SS operating point
56 p = d0; % Use d0 as disturbance realization
57

58 % Exploration step
59 step = 0.2;
60 % Artificial upper bounds
61 for k = 1:4
62 if u0(k)+step >= umax(k)
63 ubound(1,k) = umax(k);
64 elseif u0(k)+step < umax(k)
65 ubound(1,k) = u0(k)+step;
66 end
67 end
68 % Artificial lower bounds
69 for k = 1:4
70 if u0(k)-step<=umin(k)
71 lbound(1,k) = umin(k);
72 elseif u0(k)-step>umin(k)
73 lbound(1,k) = u0(k)-step;
74 end
75 end
76

77 lbw = [zeros(1,length(x0)), lbound, 0.2, 0.5];
78 ubw = [0.025*ones(1,length(x0)), ubound, 0.2 0.5];
79

80 opts = struct;
81 opts.ipopt.acceptable_tol = eps;
82 opts.ipopt.tol = eps;
83 opts.ipopt.max_cpu_time = 3*3600;
84 nlp = nlpsol(’nlp’,’ipopt’,prob_struct,opts);
85

86 % Call NLP solver
87 sol_nlp = nlp(’p’,p,’x0’,w0,’lbx’,lbw,’ubx’,ubw,’lbg’,0,’ubg’,0);
88 x0 = full(sol_nlp.x(1:length(x0)));
89 u0 = full(sol_nlp.x(length(x0)+1:end));
90
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91 InputBounds(:,1) = lbw(end-5:end)’;
92 InputBounds(:,2) = u0;
93 InputBounds(:,3) = ubw(end-5:end)’
94

95 % Check artificial upper bound on the states
96 if max(x0)<0.025
97 else
98 disp(’WARNING: artificial bound on states active’)
99 pause

100 end
101

102 % Check if artificial bounds are active
103 for n = 1:4
104 if abs(u0(n)-InputBounds(n,1))<1e-4 ||...
105 abs(u0(n)-InputBounds(n,3))<1e-4;
106 active_artificial_bounds(n) = 1;
107 else
108 active_artificial_bounds(n) = 0;
109 end
110 end
111

112 % Remove real bounds from this set
113 for n = 1:4
114 if abs(u0(n)-umin(n))<1e-4 || abs(u0(n)-umax(n))<1e-4;
115 active_artificial_bounds(n) = 0;
116 else
117 active_artificial_bounds(n) = active_artificial_bounds(n);
118 end
119 end
120

121

122 if sum(active_artificial_bounds)>0
123 active_artificial_bounds = 1;
124 disp(’New iteration required: artificial bounds active’)
125 else
126 active_artificial_bounds = 0;
127 disp(’Local optimum found’)
128 end
129

130 u = u0;
131 x = x0;
132 end
133 end

A.7 Closed-loop simulator

The function closedloop sim simulates the system in closed-loop for a given disturbance
and sensor noise realization. The termination criterion can either be given as the final
simulation time or as a certain error tolerance.

1 function [loss,J_c,J_opt,time,uend,xend,u,err] = ...
2 closedloop_sim(H,kp,ki,n,d,J_opt,cs,x0,u0,sset_soc,t0,tf,err_tol)
3 %% General settings: add paths and packages
4

82



5 % Add paths
6 CurrentPath = mfilename(’fullpath’);
7 MainFolderPath = fileparts(fileparts(CurrentPath));
8 addpath(genpath(MainFolderPath));
9

10 % Add specific packages
11 import casadi.*
12

13 %% Load model
14 m = model_main();
15

16 %% Create CasADi functions
17 J_f = Function(’J_f’,{m.x,m.u,m.d},{m.J});
18 y_f = Function(’y_f’,{m.x,m.u,m.d},{m.y});
19 Wn_f = Function(’Wn_f’,{m.x,m.u,m.d},{m.Wn});
20

21 %% Closedloop simulation
22

23 % Number of control inputs
24 nu = size(H,1);
25

26 % Define error and integrated error
27 e = cs - H*(m.y+n);
28 ie = MX.sym(’ie’,nu,1);
29

30 % Input classification
31 sset_soc; % Self-optimizing control
32 sset_acc = setdiff(1:length(u0),sset_soc); % Active constraint

control
33

34 % Structure for the integrator
35 int_struct = struct();
36 int_struct.x = vertcat(m.t,m.x,ie);
37 int_struct.ode = vertcat(1,m.ode,e);
38 int_struct.p = vertcat(m.d);
39 int_struct.z = vertcat(m.u);
40 if isempty(sset_soc) == 1
41 alg_cl = [];
42 else
43 alg_cl = m.u(sset_soc)-(u0(sset_soc)+(kp.*e + ki.*ie));
44 end
45 alg_ol = m.u(sset_acc)-u0(sset_acc);
46 int_struct.alg = vertcat(alg_cl,alg_ol);
47

48 % Initial conditions
49 x0 = vertcat(t0,x0,zeros(nu,1));
50 z0 = u0;
51 p = d;
52

53 % Empty vectors to store results
54 xsol = [];
55 zsol = [];
56

57 % Case 1: terminate when error below certain tolerance
58 if isempty(err_tol) == 0 && isempty(sset_soc) == 0
59

60 error = 1;
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61 counter = 0;
62

63 while error>err_tol
64

65 counter = counter+1;
66 tf = 50;
67 dt = 1;
68 N = (tf-t0)/dt+1;
69

70 if counter == 2
71 tf = 10000;
72 dt = 20;
73 N = (tf-t0)/dt+1;
74 elseif counter > 2
75 tf = 50000;
76 dt = 50;
77 N = (tf-t0)/dt+1;
78 end
79

80 % Create integrator
81 opts = struct(’grid’,linspace(t0,tf,N));
82 I = integrator(’I’,’idas’,int_struct,opts);
83

84 % Call the integrator
85 sol = I(’x0’,x0,’z0’,z0,’p’,p);
86 xsol = [xsol;full(sol.xf)’];
87 zsol = [zsol;full(sol.zf)’];
88 x0 = xsol(end,:);
89 z0 = zsol(end,:);
90 time = xsol(:,1);
91

92 % Compute outputs
93 for t = 1:length(time)
94 J_c(t) = full(J_f(xsol(t,2:end-nu),zsol(t,:),d));
95 y(t,:) = full(y_f(xsol(t,2:end-nu),zsol(t,:),d));
96 err(t,:) = cs-H*(y(t,:)’+n);
97 end
98 error = max(abs(err(end,:)));
99 end

100

101 % Case 2: terminate when final time is reached
102 else
103

104 % Create integrator
105 opts = struct(’grid’,linspace(t0,tf,250),...
106 ’reltol’,1e-12,’abstol’,1e-12);
107 I = integrator(’I’,’idas’,int_struct,opts);
108

109 % Call the integrator
110 sol = I(’x0’,x0,’z0’,z0,’p’,p);
111 xsol = [xsol;full(sol.xf)’];
112 zsol = [zsol;full(sol.zf)’];
113 x0 = xsol(end,:);
114 z0 = zsol(end,:);
115 time = xsol(:,1);
116

117 % Compute outputs
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118 for t = 1:length(time)
119 J_c(t) = full(J_f(xsol(t,2:end-nu),zsol(t,:),d));
120 y(t,:) = full(y_f(xsol(t,2:end-nu),zsol(t,:),d));
121 err(t,:) = cs-H*(y(t,:)’+n);
122 end
123

124 end
125

126 J_opt = repmat(J_opt,1,length(time));
127 loss = J_c(end)-J_opt(end);
128 uend = zsol(end,:);
129 xend = xsol(end,2:end-nu);
130 u = zsol;
131 end

A.8 Local self-optimizing control (main)

The function lsoc is the main code for selecting self-optimizing controlled variables using
a global method. It pre-screens promising candidate controlled variables and then per-
forms a steady-state nonlinear validation based on closed-loop simulations of normally
distributed scenarios of disturbances and sensor noise realizations generated by Monte
Carlo simulations.

1 function lsoc(Nsubsets,Nscenarios)
2 %% General settings
3

4 % Determine the paths for this script and the main folder, respectively
5 script = mfilename(’fullpath’);
6 main = fileparts(fileparts(script));
7

8 % Add folders and subfolders to current path
9 addpath(genpath(main));

10

11 % Import CasADi
12 import casadi.*
13

14 % Initialize parallel pool
15 delete(gcp(’nocreate’))
16 clc
17 parpool;
18

19 %% Load from model
20

21 m = model_main();
22

23 %% Create CasADi functions
24

25 J_f = Function(’J_f’,{m.x,m.u,m.d},{m.J});
26 y_f = Function(’y_f’,{m.x,m.u,m.d},{m.y});
27 Wn_f = Function(’Wn_f’,{m.x,m.u,m.d},{m.Wn});
28

29 %% Optimization for nominal operation
30
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31 disp(’1. Finding optimally nominal operating point’)
32 tic
33

34 % Load data if available
35 if isfile(fullfile(main,’Data’,’nominal.mat’)) == 1
36 disp(’ Loading data’)
37 load(’nominal.mat’)
38

39 % Compute if data non available
40 else
41 d_nom = m.d_nom;
42 u0 = m.u0;
43 [u_nom,x_nom] = nlp_solver(d_nom,u0);
44 save(fullfile(’Data’,’nominal.mat’),’u_nom’,’x_nom’,’d_nom’)
45 end
46

47 disp(’ Elapsed time (seconds):’)
48 disp(toc)
49

50 %% Finding degress of freedom for self-optimizing control
51

52 disp(’2. Finding degress of freedom for self-optimizing control’)
53 tic
54

55 % Load data if available
56 if isfile(fullfile(main,’Data’,’sset_soc.mat’)) == 1
57 disp(’ Loading data’)
58 load(’sset_soc.mat’)
59

60 % Compute if data non available
61 else
62 tol = 1e-4;
63 sset_soc = zeros(1,length(u_nom));
64 % Check active constraints on inputs
65 for i = 1:length(u_nom)
66 if abs(u_nom(i)-m.umin(i))<=tol || abs(u_nom(i)-m.umax(i))<=tol
67 sset_soc(1,i) = 1;
68 else
69 sset_soc(1,i) = 0;
70 end
71 end
72 sset_soc = find(sset_soc == 0);
73 save(fullfile(’Data’,’sset_soc.mat’),’sset_soc’)
74 end
75

76 disp(’ Elapsed time (seconds):’)
77 disp(toc)
78

79 %% Finding sensitivities at the nominal point: Gy, Gd, Juu, Jud
80

81 disp(’3. Finding sensitivities at the nominal point: Gy, Gd, Juu, Jud’)
82 tic
83

84 % Load data if available
85 if isfile(fullfile(main,’Data’,’sensitivities.mat’)) == 1
86 disp(’ Loading data’)
87 load(’sensitivities.mat’)
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88

89 % Compute if data non available
90 else
91 rf_f = Function(’rf_f’,{m.x,m.u,m.d},{m.ode,m.J,m.y},...
92 {’x’,’u’,’d’},{’xdot’,’J’,’y’});
93 rf = rootfinder(’rf’,’kinsol’,rf_f);
94

95 Gy_f = rf.factory(’Gy’,{’x’,’u’,’d’},{’jac:y:u’});
96 Gd_f = rf.factory(’Gd’,{’x’,’u’,’d’},{’jac:y:d’});
97 Ju_f = rf.factory(’Ju’,{’x’,’u’,’d’},{’jac:J:u’});
98 Jud_f = Ju_f.factory(’Jud’,{’x’,’u’,’d’},{’jac:jac_J_u:d’});
99 Juu_f = Ju_f.factory(’Juu’,{’x’,’u’,’d’},{’jac:jac_J_u:u’});

100

101 args = {x_nom,u_nom,d_nom};
102 Gy = full(Gy_f(args{:}));
103 Gd = full(Gd_f(args{:}));
104 Juu = full(Juu_f(args{:}));
105 Jud = full(Jud_f(args{:}));
106

107 % Select unconstrained degrees of freedom
108 Gy = Gy(:,sset_soc);
109 Juu = Juu(sset_soc,sset_soc);
110 Jud = Jud(sset_soc,:);
111

112 save(fullfile(’Data’,’sensitivities.mat’),’Gy’,’Gd’,’Juu’,’Jud’)
113 end
114

115 % Get dimensions
116 [ny,nu] = size(Gy); % Number of measurements and control inputs
117 nd = size(Gd,2); % Number of disturbances
118

119 disp(’ Elapsed time (seconds):’)
120 disp(toc)
121

122 %% Pre-screening controlled variables using local methods
123

124 disp(’4. Pre-screening controlled variables using local methods’)
125 tic
126

127 % Load data if available
128 if isfile(fullfile(main,’Data’,’lsoc_candidates.mat’)) == 1
129 disp(’ Loading data’)
130 load(’lsoc_candidates.mat’)
131

132 disp(’ Elapsed time (seconds):’)
133 disp(toc)
134

135 % Compute if data non available
136 else
137 % Create progress monitor bar
138 ppm = ParforProgMon(’Progress: ’,ny-nu+1);
139

140 % Standard deviation values of disturbances and sensor noise
141 Wd = m.Wd;
142 Wn = full(Wn_f(x_nom,u_nom,d_nom));
143

144 % Solve minimum loss problem using the MIQP formulation
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145 parfor nm = nu:ny
146 % Call MIQP solver
147 [H,loss,sset] = miqp_solver_lsoc(Gy,Gd,Juu,Jud,Wd,Wn,nm,Nsubsets);
148 % Store results
149 local_loss{nm,1} = loss;
150 local_H{nm,1} = H;
151 local_sset{nm,1} = sset;
152 % Update progress monitor bar
153 ppm.increment();
154 end
155

156 % Save results in folder ’Data’
157 save(fullfile(’Data’,’lsoc_candidates.mat’),...
158 ’local_loss’,... % Average losses (local methods)
159 ’local_H’,... % Selection matrices
160 ’local_sset’) % Optimal subsets of measurements
161

162 disp(’ Elapsed time (hours):’)
163 disp(toc/3600)
164

165 end
166

167 %% Computing PI controller settings
168

169 disp(’5. Computing PI controller settings’)
170 tic
171

172 % Load data if available
173 if isfile(fullfile(main,’Data’,’lsoc_pi_settings.mat’)) == 1
174 disp(’ Loading data’)
175 load(’lsoc_pi_settings.mat’)
176

177 disp(’ Elapsed time (seconds):’)
178 disp(toc)
179

180 % Compute if data non available
181 else
182 % Organize data in a matrix (ParData) suited for parallel computing
183 meas = []; subsets = [];
184 for nm = 1:ny-(nu-1)
185 if nm<ny-(nu-1)
186 meas = [meas,(nm+nu-1)*ones(1,Nsubsets)];
187 subsets = [subsets,1:Nsubsets];
188 else
189 meas = [meas,(nm+nu-1)];
190 subsets = [subsets,1];
191 end
192 end
193 ParData = [];
194 ParData(1,:) = meas;
195 ParData(2,:) = subsets;
196

197 % Create progress monitor bar
198 ppm = ParforProgMon(’Progress: ’,size(ParData,2));
199

200 % Compute PI controller settings in parallel
201 parfor i = 1:size(ParData,2)
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202 nm = ParData(1,i);
203 ns = ParData(2,i);
204 H = local_H{nm,1}(:,:,ns);
205 tauc = 250;
206 [kp,ki] = pi_settings(H,Gy,tauc);
207 PI_kp{1,i} = kp;
208 PI_ki{1,i} = ki;
209 % Update progress monitor bar
210 ppm.increment();
211 end
212

213 % Reorganize data
214 for i = 1:size(ParData,2)
215 nm = ParData(1,i);
216 ns = ParData(2,i);
217

218 pi_kp{nm,1}(:,ns) = PI_kp{1,i};
219 pi_ki{nm,1}(:,ns) = PI_ki{1,i};
220 end
221

222 % Save results in folder ’Data’
223 save(fullfile(’Data’,’lsoc_pi_settings.mat’),...
224 ’ParData’,... % Parallel data
225 ’pi_kp’,... % Proportinal controller gain
226 ’pi_ki’) % Integral controller gain
227

228 disp(’ Elapsed time (minutes):’)
229 disp(toc/60)
230 end
231

232 %% Generating and re-optimizing uncertainty scenarios
233

234 title1 = ’6. Generating and re-optimizing ’;
235 title2 = ’ uncertainty scenarios’;
236 disp([title1,num2str(Nscenarios),title2])
237 tic
238

239 % Load data if available
240 file = fullfile(main,’Data’,’uncertainty_scenarios.mat’);
241 if isfile(file) == 1
242 disp(’ Loading data’)
243 load(’uncertainty_scenarios.mat’)
244

245 disp(’ Elapsed time (seconds):’)
246 disp(toc)
247

248 % Compute if data non available
249 else
250

251 % Standard deviation values of disturbances and sensor noise
252 Wd = diag(m.Wd);
253 Wn = diag(full(Wn_f(x_nom,u_nom,d_nom)));
254

255 % Generate normally distributed uncertainty scenarios
256 for i = 1:nd
257 D(:,i) = normrnd(d_nom(i),Wd(i),Nscenarios,1);
258 end
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259 for i = 1:ny
260 N(:,i) = normrnd(0,Wn(i),Nscenarios,1);
261 end
262

263 % Create progress monitor bar
264 ppm = ParforProgMon(’Progress: ’,Nscenarios);
265 u0 = m.u0;
266 parfor scenario = 1:Nscenarios
267 d = D(scenario,:)’;
268 [u,x] = nlp_solver(d,u0);
269 u_opt(scenario,:) = u;
270 x_opt(scenario,:) = x;
271 % Update progress monitor bar
272 ppm.increment();
273 end
274

275 % Evaluate cost functions
276 for scenario = 1:Nscenarios
277 d = D(scenario,:)’;
278 x = x_opt(scenario,:)’;
279 u = u_opt(scenario,:)’;
280 J_opt(scenario) = full(J_f(x,u,d));
281 end
282

283 % Save results in folder ’Data’
284 save(fullfile(’Data’,’uncertainty_scenarios.mat’),...
285 ’D’,... % Scenarios of normally distributed disturbances
286 ’N’,... % Scenarios of normally distributed sensor noise values
287 ’J_opt’) % Optimal cost functions
288

289 disp(’ Elapsed time (hours):’)
290 disp(toc/3600)
291 end
292

293 %% Monte Carlo simulations
294

295 disp(’7. Monte Carlo simulations’)
296 tic
297

298 % Load data if available
299 if isfile(fullfile(main,’Data’,’lsoc_validation.mat’)) == 1
300 disp(’ Loading data’)
301 load(’lsoc_validation.mat’)
302

303 disp(’ Elapsed time (seconds):’)
304 disp(toc)
305

306 % Compute if data non available
307 else
308 % Organize data in a matrix (ParData) suited for parallel computing
309 meas = []; subsets = []; scenarios = [];
310 for nm = 1:ny-(nu-1)
311 if nm<ny-(nu-1)
312 meas = [meas,(nm+nu-1)*ones(1,Nsubsets*Nscenarios)];
313 for ns = 1:Nsubsets
314 subsets = [subsets,ns*ones(1,Nscenarios)];
315 scenarios = [scenarios,1:Nscenarios];
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316 end
317 else
318 meas = [meas,(nm+nu-1)*ones(1,Nscenarios)];
319 subsets = [subsets,ones(1,Nscenarios)];
320 scenarios = [scenarios,1:Nscenarios];
321 end
322 end
323 ParData = [];
324 ParData(1,:) = meas;
325 ParData(2,:) = subsets;
326 ParData(3,:) = scenarios;
327

328 % Create progress monitor bar
329 ppm = ParforProgMon(’Progress: ’,size(ParData,2));
330

331 % Closedloop simulation settings
332 x0 = x_nom;
333 u0 = u_nom;
334 t0 = 0;
335 tf = [];
336 err_tol = 1e-6;
337 y_nom = full(y_f(x_nom,u_nom,d_nom));
338

339 % Monte Carlo simulations in parallel
340 parfor i = 1:size(ParData,2)
341 try
342 nm = ParData(1,i);
343 ns = ParData(2,i);
344 scenario = ParData(3,i)
345

346 H = local_H{nm,1}(:,:,ns);
347 cs = H*y_nom;
348 kp = pi_kp{nm,1}(:,ns);
349 ki = pi_ki{nm,1}(:,ns);
350 d = D(scenario,:);
351 n = N(scenario,:)’;
352 n0 = zeros(size(n));
353 J = J_opt(scenario);
354

355 [loss,˜,˜,˜,˜,˜,˜,˜] = closedloop_sim(H,kp,ki,n,d,J_opt,cs,x0,...
356 u0,sset_soc,t0,tf,err_tol)
357 Loss(i,1) = loss;
358 [loss0,˜,˜,˜,˜,˜,˜,˜] = closedloop_sim(H,kp,ki,n0,d,J_opt,cs,x0

,...
359 u0,sset_soc,t0,tf,err_tol)
360 Loss_d(i,1) = loss0;
361 Loss_n(i,1) = loss-loss0;
362 % Update progress monitor bar
363 ppm.increment();
364 catch
365 warning([’Closed-loop simulation failed at nm = ’,...
366 num2str(nm),’, ns = ’,num2str(ns),...
367 ’ and nd = ’,num2str(scenario)])
368 end
369 end
370

371 % Reorganize data
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372 for i = 1:size(ParData,2)
373 nm = ParData(1,i);
374 ns = ParData(2,i);
375 scenario = ParData(3,i);
376

377 L{nm,ns}(scenario,1) = Loss(i,1);
378 Ld{nm,ns}(scenario,1) = Loss_d(i,1);
379 Ln{nm,ns}(scenario,1) = Loss_n(i,1);
380 end
381

382 % Compute average losses
383 for nm = nu:ny
384 for ns = 1:Nsubsets
385 if nm == ny
386 ns = 1;
387 end
388 L_av(nm,ns) = mean(L{nm,ns}(:,1));
389 Ld_av(nm,ns) = mean(Ld{nm,ns}(:,1));
390 Ln_av(nm,ns) = mean(Ln{nm,ns}(:,1));
391 end
392 end
393

394 % Save results in folder ’Data’
395 save(fullfile(’Data’,’lsoc_validation.mat’),...
396 ’L’,... % Nonlinear losses (disturbances and noise)
397 ’Ld’,... % Nonlinear losses (only disturbances)
398 ’Ln’,... % Nonlinear losses (only noise present)
399 ’L_av’,... % Average nonlinear losses (dist. and noise)
400 ’Ld_av’,... % Average nonlinear losses (only dist.)
401 ’Ln_av’) % Average nonlinear losses (only noise)
402

403 disp(’ Elapsed time (hours):’)
404 disp(toc/3600)
405 end
406

407 %% Selecting top subset for each measurement
408

409 disp(’8. Selecting top subset for each measurement’)
410 tic
411

412 % Load data if available
413 if isfile(fullfile(main,’Data’,’lsoc_top_sets.mat’)) == 1
414 disp(’ Loading data’)
415 load(’lsoc_top_sets.mat’)
416

417 % Compute if data non available
418 else
419

420 for nm = nu:ny
421 ns_top = find(L_av(nm,:) == min(L_av(nm,:)));
422 if nm == ny
423 ns_top = 1;
424 end
425 top_L(nm,1) = L_av(nm,ns_top);
426 top_Ld(nm,1) = Ld_av(nm,ns_top);
427 top_Ln(nm,1) = Ln_av(nm,ns_top);
428 top_L_local(nm,1) = local_loss{nm,1}(1,ns_top);
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429 top_H{nm,1} = local_H{nm,1}(:,:,ns_top);
430 top_sset{nm,1} = local_sset{nm,1}(ns_top,:);
431 end
432

433 % Save results in folder ’Data’
434 save(fullfile(’Data’,’lsoc_top_sets.mat’),...
435 ’top_L’,... % Average losses (disturbances and sensor noise

)
436 ’top_Ld’,... % Average losses (only disturbances)
437 ’top_Ln’,... % Average losses (only sensor noise)
438 ’top_L_local’,... % Average losses from local methods
439 ’top_H’,... % Selection matrices
440 ’top_sset’) % Sets of measurements
441 end
442

443 disp(’ Elapsed time (seconds):’)
444 disp(toc)
445 end

A.9 Global self-optimizing control (main)

The function gsoc is the main code for selecting self-optimizing controlled variables using
a global method. It pre-screens promising candidate controlled variables and then per-
forms a steady-state nonlinear validation based on closed-loop simulations of normally
distributed scenarios of disturbances and sensor noise realizations generated by Monte
Carlo simulations.

1 function gsoc(Nsamples,Nsubsets,Nscenarios)
2 %% General settings
3

4 % Determine the paths for this script and the main folder, respectively
5 script = mfilename(’fullpath’);
6 main = fileparts(fileparts(script));
7

8 % Add folders and subfolders to current path
9 addpath(genpath(main));

10

11 % Import CasADi
12 import casadi.*
13

14 % Initialize parallel pool
15 delete(gcp(’nocreate’))
16 clc
17 parpool;
18

19 %% Load from model
20

21 m = model_main();
22

23 %% Create CasADi functions
24

25 J_f = Function(’J_f’,{m.x,m.u,m.d},{m.J});
26 y_f = Function(’y_f’,{m.x,m.u,m.d},{m.y});
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27 Wn_f = Function(’Wn_f’,{m.x,m.u,m.d},{m.Wn});
28

29 %% Optimization for nominal operation
30

31 disp(’1. Finding optimally nominal operating point’)
32 tic
33

34 % Load data if available
35 if isfile(fullfile(main,’Data’,’nominal.mat’)) == 1
36 disp(’ Loading data’)
37 load(’nominal.mat’)
38

39 % Compute if data non available
40 else
41 d_nom = m.d_nom;
42 u0 = m.u0;
43 [u_nom,x_nom] = nlp_solver(d_nom,u0);
44 save(fullfile(’Data’,’nominal.mat’),’u_nom’,’x_nom’,’d_nom’)
45 end
46

47 disp(’ Elapsed time (seconds):’)
48 disp(toc)
49

50 %% Finding degress of freedom for self-optimizing control
51

52 disp(’2. Finding degress of freedom for self-optimizing control’)
53 tic
54

55 % Load data if available
56 if isfile(fullfile(main,’Data’,’sset_soc.mat’)) == 1
57 disp(’ Loading data’)
58 load(’sset_soc.mat’)
59

60 % Compute if data non available
61 else
62 tol = 1e-4;
63 sset_soc = zeros(1,length(u_nom));
64 % Check active constraints on inputs
65 for i = 1:length(u_nom)
66 if abs(u_nom(i)-m.umin(i))<=tol || abs(u_nom(i)-m.umax(i))<=tol
67 sset_soc(1,i) = 1;
68 else
69 sset_soc(1,i) = 0;
70 end
71 end
72 sset_soc = find(sset_soc == 0);
73 save(fullfile(’Data’,’sset_soc.mat’),’sset_soc’)
74 end
75

76 disp(’ Elapsed time (seconds):’)
77 disp(toc)
78

79 %% Preparing matrices for gSOC
80

81 disp(’3. Preparing matrices for gSOC’)
82 tic
83
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84 % Load data if available
85 file = fullfile(main,’Data’,’gsoc_matrices.mat’);
86 if isfile(file) == 1
87 disp(’ Loading data’)
88 load(’gsoc_matrices.mat’)
89

90 disp(’ Elapsed time (seconds):’)
91 disp(toc)
92

93 % Compute if data non available
94 else
95

96 rf_f = Function(’rf_f’,{m.x,m.u,m.d},{m.ode,m.J,m.y},...
97 {’x’,’u’,’d’},{’xdot’,’J’,’y’});
98 rf = rootfinder(’rf’,’kinsol’,rf_f);
99

100 Gy_f = rf.factory(’Gy’,{’x’,’u’,’d’},{’jac:y:u’});
101 Ju_f = rf.factory(’Ju’,{’x’,’u’,’d’},{’jac:J:u’});
102 Juu_f = Ju_f.factory(’Juu’,{’x’,’u’,’d’},{’jac:jac_J_u:u’});
103

104 args = {x_nom,u_nom,d_nom};
105 Gy = full(Gy_f(args{:}));
106 Juu = full(Juu_f(args{:}));
107

108 % Select unconstrained degrees of freedom
109 Gy = Gy(:,sset_soc);
110 Gy = [zeros(1,length(sset_soc)); Gy];
111 Juu = Juu(sset_soc,sset_soc);
112

113 % Get dimensions
114 [ny,nu] = size(Gy); % Number of measurements and control inputs
115 nd = length(d_nom); % Number of disturbances
116

117 % Standard deviation values of sensor noise
118 Wd = diag(m.Wd);
119 Wn = diag(full(Wn_f(x_nom,u_nom,d_nom)));
120 Wn = diag([0; Wn]);
121

122 % Generate normally distributed uncertainty scenarios
123 for i = 1:nd
124 D(:,i) = normrnd(d_nom(i),Wd(i),Nsamples,1);
125 end
126

127 % Create progress monitor bar
128 ppm = ParforProgMon(’Progress: ’,Nsamples);
129 u0 = m.u0;
130 parfor scenario = 1:Nsamples
131 d = D(scenario,:)’;
132 [u,x] = nlp_solver(d,u0);
133 u_opt(scenario,:) = u;
134 x_opt(scenario,:) = x;
135 % Update progress monitor bar
136 ppm.increment();
137 end
138

139 % Evaluate cost functions
140 for scenario = 1:Nsamples
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141 d = D(scenario,:)’;
142 x = x_opt(scenario,:)’;
143 u = u_opt(scenario,:)’;
144 y_opt(scenario,:) = full(y_f(x,u,d));
145 end
146

147 % Build matrices Y and YY
148 for scenario = 1:Nsamples
149 Y(scenario,:) = [1, y_opt(scenario,:)];
150 end
151 YY = [1/sqrt(Nsamples)*Y; Wn];
152

153 % Save results in folder ’Data’
154 save(fullfile(’Data’,’gsoc_matrices.mat’),’Gy’,’Juu’,’Y’,’YY’,’Wn’)
155

156 disp(’ Elapsed time (hours):’)
157 disp(toc/3600)
158 end
159

160 %% Subset selection problem (MIQP formulation)
161

162 disp(’4. Pre-screening controlled variables using gSOC method’)
163 tic
164

165 % Load data if available
166 if isfile(fullfile(main,’Data’,’gsoc_candidates.mat’)) == 1
167 disp(’ Loading data’)
168 load(’gsoc_candidates.mat’)
169

170 disp(’ Elapsed time (seconds):’)
171 disp(toc)
172

173 % Compute if data non available
174 else
175 % Dimensions
176 [ny,nu] = size(Gy);
177

178 % Create progress monitor bar
179 ppm = ParforProgMon(’Progress: ’,ny-nu);
180

181 % Solve minimum loss problem using the MIQP formulation
182 parfor nm = nu+1:ny
183 % Call MIQP solver
184 [H,loss,sset] = miqp_solver_gsoc(YY,Gy,Juu,nm,Nsubsets);
185 % Store results
186 gsoc_loss{nm-1,1} = loss;
187 gsoc_H{nm-1,1} = H;
188 gsoc_sset{nm-1,1} = sset;
189 % Update progress monitor bar
190 ppm.increment();
191 end
192

193 % Save results in folder ’Data’
194 save(fullfile(’Data’,’gsoc_candidates.mat’),...
195 ’gsoc_loss’,... % Average losses (local methods)
196 ’gsoc_H’,... % Selection matrices
197 ’gsoc_sset’) % Optimal subsets of measurements
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198

199 disp(’ Elapsed time (hours):’)
200 disp(toc/3600)
201

202 end
203

204 % Dimensions
205 [ny,nu] = size(Gy(2:end,:));
206 nd = length(d_nom);
207

208 %% Computing PI controller settings
209

210 disp(’5. Computing PI controller settings’)
211 tic
212

213 % Load data if available
214 if isfile(fullfile(main,’Data’,’gsoc_pi_settings.mat’)) == 1
215 disp(’ Loading data’)
216 load(’gsoc_pi_settings.mat’)
217

218 disp(’ Elapsed time (seconds):’)
219 disp(toc)
220

221 % Compute if data non available
222 else
223

224 % Organize data in a matrix (ParData) suited for parallel computing
225 meas = []; subsets = [];
226 for nm = 1:ny-(nu-1)
227 if nm<ny-(nu-1)
228 meas = [meas,(nm+nu-1)*ones(1,Nsubsets)];
229 subsets = [subsets,1:Nsubsets];
230 else
231 meas = [meas,(nm+nu-1)];
232 subsets = [subsets,1];
233 end
234 end
235 ParData = [];
236 ParData(1,:) = meas;
237 ParData(2,:) = subsets;
238

239 % Create progress monitor bar
240 ppm = ParforProgMon(’Progress: ’,size(ParData,2));
241

242 % Compute PI controller settings in parallel
243 parfor i = 1:size(ParData,2)
244 nm = ParData(1,i);
245 ns = ParData(2,i);
246 H = gsoc_H{nm,1}(:,:,ns);
247 H = H(:,2:end);
248 tauc = 250;
249 [kp,ki] = pi_settings(H,Gy(2:end,:),tauc);
250 PI_kp{1,i} = kp;
251 PI_ki{1,i} = ki;
252 % Update progress monitor bar
253 ppm.increment();
254 end
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255

256 % Reorganize data
257 for i = 1:size(ParData,2)
258 nm = ParData(1,i);
259 ns = ParData(2,i);
260

261 pi_kp{nm,1}(:,ns) = PI_kp{1,i};
262 pi_ki{nm,1}(:,ns) = PI_ki{1,i};
263 end
264

265 % Save results in folder ’Data’
266 save(fullfile(’Data’,’gsoc_pi_settings.mat’),...
267 ’ParData’,... % Parallel data
268 ’pi_kp’,... % Proportinal controller gain
269 ’pi_ki’) % Integral controller gain
270

271 disp(’ Elapsed time (minutes):’)
272 disp(toc/60)
273 end
274

275 %% Generating and re-optimizing uncertainty scenarios
276

277 title1 = ’6. Generating and re-optimizing ’;
278 title2 = ’ uncertainty scenarios’;
279 disp([title1,num2str(Nscenarios),title2])
280 tic
281

282 % Load data if available
283 file = fullfile(main,’Data’,’uncertainty_scenarios.mat’);
284 if isfile(file) == 1
285 disp(’ Loading data’)
286 load(’uncertainty_scenarios.mat’)
287

288 disp(’ Elapsed time (seconds):’)
289 disp(toc)
290

291 % Compute if data non available
292 else
293

294 % Standard deviation values of disturbances and sensor noise
295 Wd = diag(m.Wd);
296 Wn = diag(full(Wn_f(x_nom,u_nom,d_nom)));
297

298 % Generate normally distributed uncertainty scenarios
299 for i = 1:nd
300 D(:,i) = normrnd(d_nom(i),Wd(i),Nscenarios,1);
301 end
302 for i = 1:ny
303 N(:,i) = normrnd(0,Wn(i),Nscenarios,1);
304 end
305

306 % Create progress monitor bar
307 ppm = ParforProgMon(’Progress: ’,Nscenarios);
308 u0 = m.u0;
309 parfor scenario = 1:Nscenarios
310 d = D(scenario,:)’;
311 [u,x] = nlp_solver(d,u0);
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312 u_opt(scenario,:) = u;
313 x_opt(scenario,:) = x;
314 % Update progress monitor bar
315 ppm.increment();
316 end
317

318 % Evaluate cost functions
319 for scenario = 1:Nscenarios
320 d = D(scenario,:)’;
321 x = x_opt(scenario,:)’;
322 u = u_opt(scenario,:)’;
323 J_opt(scenario) = full(J_f(x,u,d));
324 end
325

326 % Save results in folder ’Data’
327 save(fullfile(’Data’,’uncertainty_scenarios.mat’),...
328 ’D’,... % Scenarios of normally distributed disturbances
329 ’N’,... % Scenarios of normally distributed sensor noise values
330 ’J_opt’) % Optimal cost functions
331

332 disp(’ Elapsed time (hours):’)
333 disp(toc/3600)
334 end
335

336 %% Monte Carlo simulations
337

338 disp(’7. Monte Carlo simulations’)
339 tic
340

341 % Load data if available
342 if isfile(fullfile(main,’Data’,’gsoc_validation.mat’)) == 1
343 disp(’ Loading data’)
344 load(’gsoc_validation.mat’)
345

346 disp(’ Elapsed time (seconds):’)
347 disp(toc)
348

349 % Compute if data non available
350 else
351

352 % Organize data in a matrix (ParData) suited for parallel computing
353 meas = []; subsets = []; scenarios = [];
354 for nm = 1:ny-(nu-1)
355 if nm<ny-(nu-1)
356 meas = [meas,(nm+nu-1)*ones(1,Nsubsets*Nscenarios)];
357 for ns = 1:Nsubsets
358 subsets = [subsets,ns*ones(1,Nscenarios)];
359 scenarios = [scenarios,1:Nscenarios];
360 end
361 else
362 meas = [meas,(nm+nu-1)*ones(1,Nscenarios)];
363 subsets = [subsets,ones(1,Nscenarios)];
364 scenarios = [scenarios,1:Nscenarios];
365 end
366 end
367 ParData = [];
368 ParData(1,:) = meas;
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369 ParData(2,:) = subsets;
370 ParData(3,:) = scenarios;
371

372 % Create progress monitor bar
373 ppm = ParforProgMon(’Progress: ’,size(ParData,2));
374

375 % Closedloop simulation settings
376 x0 = x_nom;
377 u0 = u_nom;
378 t0 = 0;
379 tf = [];
380 err_tol = 1e-6;
381

382 % Monte Carlo simulations in parallel
383 parfor i = 1:size(ParData,2)
384 try
385 nm = ParData(1,i);
386 ns = ParData(2,i);
387 scenario = ParData(3,i)
388

389 H = gsoc_H{nm,1}(:,:,ns);
390 cs = -H(:,1);
391 H = H(:,2:end);
392 kp = pi_kp{nm,1}(:,ns);
393 ki = pi_ki{nm,1}(:,ns);
394 d = D(scenario,:);
395 n = N(scenario,:)’;
396 n0 = zeros(size(n));
397 J = J_opt(scenario);
398

399 [loss,˜,˜,˜,˜,˜,˜,˜] = closedloop_sim(H,kp,ki,n,d,J,...
400 cs,x0,u0,sset_soc,t0,tf,err_tol);
401 Loss(i,1) = loss;
402 [loss0,˜,˜,˜,˜,˜,˜,˜] = closedloop_sim(H,kp,ki,n0,d,J,...
403 cs,x0,u0,sset_soc,t0,tf,err_tol);
404 Loss_d(i,1) = loss0;
405 Loss_n(i,1) = loss-loss0;
406 % Update progress monitor bar
407 ppm.increment();
408 catch
409 warning([’Closed-loop simulation failed at nm = ’,...
410 num2str(nm),’, ns = ’,num2str(ns),...
411 ’ and nd = ’,num2str(scenario)])
412 end
413 end
414

415 % Reorganize data
416 for i = 1:size(ParData,2)
417 nm = ParData(1,i);
418 ns = ParData(2,i);
419 scenario = ParData(3,i);
420

421 L{nm,ns}(scenario,1) = Loss(i,1);
422 Ld{nm,ns}(scenario,1) = Loss_d(i,1);
423 Ln{nm,ns}(scenario,1) = Loss_n(i,1);
424 end
425
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426 % Compute average losses
427 for nm = nu:ny
428 for ns = 1:Nsubsets
429 if nm == ny
430 ns = 1;
431 end
432 L_av(nm,ns) = mean(L{nm,ns}(:,1));
433 Ld_av(nm,ns) = mean(Ld{nm,ns}(:,1));
434 Ln_av(nm,ns) = mean(Ln{nm,ns}(:,1));
435 end
436 end
437

438 % Save results in folder ’Data’
439 save(fullfile(’Data’,’gsoc_validation.mat’),...
440 ’L’,... % Nonlinear losses (disturbances and noise)
441 ’Ld’,... % Nonlinear losses (only disturbances)
442 ’Ln’,... % Nonlinear losses (only noise present)
443 ’L_av’,... % Average nonlinear losses (dist. and noise)
444 ’Ld_av’,... % Average nonlinear losses (only dist.)
445 ’Ln_av’) % Average nonlinear losses (only noise)
446

447 disp(’ Elapsed time (hours):’)
448 disp(toc/3600)
449 end
450

451 %% Selecting top subset for each measurement
452

453 disp(’8. Selecting top subset for each measurement’)
454 tic
455

456 % Load data if available
457 if isfile(fullfile(main,’Data’,’gsoc_top_sets.mat’)) == 1
458 disp(’ Loading data’)
459 load(’gsoc_top_sets.mat’)
460

461 % Compute if data non available
462 else
463

464 for nm = nu:ny
465 ns_top = find(L_av(nm,:) == min(L_av(nm,:)));
466 if nm == ny
467 ns_top = 1;
468 end
469 top_L(nm,1) = L_av(nm,ns_top);
470 top_Ld(nm,1) = Ld_av(nm,ns_top);
471 top_Ln(nm,1) = Ln_av(nm,ns_top);
472 top_L_local(nm,1) = gsoc_loss{nm,1}(1,ns_top);
473 top_H{nm,1} = gsoc_H{nm,1}(:,:,ns_top);
474 top_sset{nm,1} = gsoc_sset{nm,1}(ns_top,:);
475 end
476

477 % Save results in folder ’Data’
478 save(fullfile(’Data’,’gsoc_top_sets.mat’),...
479 ’top_L’,... % Average losses (disturbances and sensor noise

)
480 ’top_Ld’,... % Average losses (only disturbances)
481 ’top_Ln’,... % Average losses (only sensor noise)
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482 ’top_L_local’,... % Average losses from local methods
483 ’top_H’,... % Selection matrices
484 ’top_sset’) % Sets of measurements
485 end
486

487 disp(’ Elapsed time (seconds):’)
488 disp(toc)
489 end
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