NTNU - Trondheim
Norwegian University of

Science and Technology

Plantwide- and Self-Optimizing Control of
a Reactor with Recycle Process

Helene Paulsen

Chemical Engineering and Biotechnology
Submission date: June 2013

Supervisor: Sigurd Skogestad, IKP
Co-supervisor: Vladimiros L. Minasidis, IKP

Norwegian University of Science and Technology
Department of Chemical Engineering

Preface

This thesis was performed as the last part of my master degree in Industrial Chemistry and
Biology at the Norwegian University of Science and Technology (NTNU). My specialization
was in chemical engineering, where I was a part of the process systems group. My master’s
thesis title is “Plantwide- and Self-Optimizing Control of a Reactor with Recycle Process.

I would like to thank my supervisor Sigurd Skogestad and my co-supervisor Vladimiros
Minasidis who have helped me with any problems during the semester.

Declaration of Compliance

I declare that this is an independent work according to the exam regulations of the Norwegian
University of Science and Technology (NTNU).

uégﬂw @ C!wi/(A~

Helene Paulsen

Trondheim, 13.6.2013

Abstract

Plantwide control is a very important topic in today’s process plants in a lot of different
industries. With a large number of interacting process units, it is not enough to design a
control structure for each single unit by itself without considering the whole system. Control
decisions highly affect the economics of a plant, and that is why it is such an important topic.
For example, a huge part of the energy costs can be saved by selecting a proper control
system.

The objective of this work was to find a control structure for an entire process plant, including
which variables to control, which variables to be manipulated and which variable to measure.
Skogestad’s procedure was applied to a reactor and distillation column process with recycle.
This procedure included finding an economic cost function, finding the active constraints,
defining the degrees of freedom, and identify self-optimizing variables based on economic
loss.

Two different cases were studied in this thesis. Case I had a given reactor feed rate with the
objective of minimizing the vapour boilup in the column, while case II had the objective of
maximizing the feed rate with a given vapour boilup.

Matlab models of the reactor and distillation column were made, and the process was
optimized for both of the studied cases. Following this, the nominal optimal values of
compositions and flows were compared between the cases and also compared with existing
literature. The optimization results were consistent with the literature written on the same
process.

Three different methods were tested in order to find which self-optimizing variable to use for
the last remaining degree of freedom in the system. These were the Brute force method, the
null space method and the exact local method. In the Brute force method, the economic cost
was computed for all the candidate controlled variables by keeping them constant and
applying disturbances and implementation errors. The losses resulting from this were plotted
to see which variable had the smallest loss. This ended up being the flow ratio L/F, and was
therefore chosen as the self-optimizing variable for both case I and II.

Measurement combinations to be held constant were found by applying the null space and
exact local method, followed by calculating the economic loss caused by this. Dynamic
simulations were also performed in order to find the loss with the null space and exact local
method. The dynamic model gave the same nominal optimization results as the steady-state
model.

Control structures and pairings between controlled variables and manipulated variables were
suggested for the two cases based on the results from Sigurd’s procedure. For control of the
self-optimizing variable L/F, the reflux flow L was used as manipulated variable for the single
control loop. This was because the reflux L was the only remaining unconstrained degree of
freedom after the control analysis.

Sammendrag

Regulering av hele anlegg er et meget viktig tema for de fleste av dagens prosessanlegg i
mange forskjellige industrier. Med et stort antall samhandlende prosessenheter er det ikke
tilstrekkelig a designe en reguleringsstruktur for hver enkelt enhet uten at hele systemet tas i
betraktning. Avgjerelser med tanke pa regulering har ofte stor innvirkning pa de ekonomiske
sidene av anlegget, noe som er en viktig grunn til hvorfor dette er et sa viktig tema. Mye
energikostnader kan for eksempel spares ved & velge det riktige reguleringssystemet.

Formélet med dette arbeidet var & finne en reguleringsstruktur for et helt prosessanlegg,
inkludert & identifisere hvilke variabler som skal reguleres, hvilke variables som skal
manipuleres, og hvilke variabler som skal males. Skogestads metode ble utfort pa en reaktor-
og destillasjonskolonne-prosess med resirkulering. Denne metoden géir blant annet ut pd a
definere en kostnadsfunksjon, aktive betingelser, antall frihetsgrader og selvoptimaliserende
variabler basert pa gkonomisk tap.

To ulike tilfeller ble undersekt. I det forste tilfellet ble reaktorfeden gitt, der formalet var a
minimere damp-oppkoket i kolonnen, mens i det andre tilfellet var formélet & maksimere
fodestrommen med et gitt damp-oppkok.

Det ble lagd Matlab-modeller av reaktoren og destillasjonskolonnen, og prosessen ble sa
optimalisert i begge tilfellene. Etter dette ble de optimale verdiene av stremmer og
sammensetninger sammenlignet mellom de to tilfellende og med eksisterende litteratur.
Resultatene fra optimaliseringen stemte overens med litteraturen som ble funnet om den
samme prosessen.

Tre ulike metoder ble preovd for & finne den beste selvoptimaliserende variabelen som skulle
bli brukt for den siste frihetsgraden. Disse var henholdsvis Brute-kraftmetoden, nullroms-
metoden og den eksakte lokale metoden. I Brute-kraftmetoden ble kostnaden beregnet for alle
kandidatene til regulert variabel ved & holde dem konstant pd sin optimale verdi, for sa a
tilfore forstyrrelser og implementeringsfeil. De resulterende tapene ble plottet for a se hvilken
variabel som hadde det minste tapet. Dette ble variabelen L/F, og den ble derfor brukt som
selvoptimaliserende variabel for tilfelle I og II.

Nullroms- og den eksakte lokale metoden ble brukt til & finne mélekombinasjoner som skulle
holdes konstant, etterfulgt av beregning av tap pa grunn av dette. I tillegg ble det utfort
dynamiske simuleringer for & finne tapet ved & bruke disse to metodene. Den dynamiske
modellen ga de samme optimaliseringsresultatene som den stasjongere modellen.

Forslag til reguleringsstrukturer og paringer mellom regulerte variabler og manipulerte
variabler ble utarbeidet for de to tilfellene. Disse forslagene var basert pd resultatene fra
Sigurds metode. Tilbakestremningen L ble brukt som manipulert variabel for & regulere den
selvoptimaliserende variabelen L/F 1 en enkel reguleringssloyfe. Dette ble gjort fordi
tilbakestromningen L var den eneste gjenstdende frihetsgraden i systemet som ikke var brukt
opp 1 lepet av reguleringsanalysen.

i

Contents

Declaration of COMPIANCE.ccociiiiiiieeiiiecie ettt e e e e e e e taeeeaaeessaeessseeessseeesaseens
F N 0] 5 ¢ o1 AR 1
SAMMENIATAZeeevieeeiie et e et e et e e et e e etaeeetaeeeaaeesssaeeessaeeessseeesseeesssaeessseeenssenns i
Lo INEEOAUCTION ...ttt et ettt e st e b et eenbeeeeee 1
N U1 1510 2O OSSR PR SUUPSRUPRRPRO 3
2.1, Plantwide CONtrol.......ccoiiiiuiiiiiiiiiieieeiesee ettt 3
2.2. Skogestad’s Plantwide Control Procedureccccoeevieviiiiiiiiiieniieienieeeeeeee e 3
2.2. 1. TOP-DOWN ANALYSIS ..ecuviiiiieiieiiieeiieriee ettt e e e stee e sraeebeeseaeeaeeseneesseenens 4
2.2.2. Bottom-Up DESIZN c..ooiuiiiiiiiiieciieciieiie ettt aae e ee 6

2.3, Self-Optimizing CONtrOl........ccciiiiiiiiiiiieiieeieesee ettt eeessee e 7
2.3.1. Brute Force Methodoooouiiiiiiiieieeeee et 10
2.3.2. Null Space Method........coouoiiiiiiiiie e 10
2.3.3. The Exact Local Methodcccuviiiiiiiiiiieiecceeeeeee e 13

2.4, SIMC TUuning RUIES....c..coouiiiiiiiiiiiiieeeeeeeset ettt 14
2,41, FirSt-0Tder PrOCESS....ccuviiiiiieeiiieciie ettt et et e et e tae e e e saae e eaaeeenree s 15
242, INtegrating PTOCESScevuieiiiiiiieeiieiie ettt ettt ettt et e seeeebeesaeeens 16

3. Process DESCIIPIION. ...c..eiuiiiiieiiriteiieie ettt sttt ettt sttt e 17
310 Plant Data .oo..oooiiiiiiie ettt 20
3.2. Model Equations for the PrOCESScceiviiiiiiiieiiiieeiieeiteeee e 20
4. Skogestad’s Procedure Applied to the Recycle Process.........ccccoevvveeciveeniieencieeeieeee, 23
4.1. Case I: Given Feed Ratecooiiiiiiiiiiiiiiieteeeeee e 23
Step 1: Definition of Operational Objectives and Constraints...........cceeeevveeecuveercreeencveennns 23
Step 2: Identify Degrees of Freedomoocviieiiiiiiiieciiieececeeee e 24
Step 3: Implementation of Optimal Operation...........c.cececvieeriieeiieeeiieeeieeeeeeeveeeeree s 24
Step 4: Where to Set the Production Rate...........c.coocviviiiniieiiiiniiiiieccee e 24
Step 5: Regulatory Control Layer..........c.eecuieiiiiiienieeiieeeieee et 24

111

6.

Step 6: Supervisory Control LAYETcc.cocuieriiiiiiienieeiiecie ettt 25

Step 7: Optimization LaYer.........ccciveiieiiiiiiieiieeieeree ettt ee 25
4.2, Case II: Maximize the Feed Rateccccooeriiiiiiiiniiiiiicceceeeeeeeeee e 25
Step 1: Definition of Operational Objectives and Constraints............coceeververeeriereennenn 25
Step 2: Identify Degrees of Freedomccoovviieiiiiiiiiieiieiiee e 25
Step 3: Implementation of Optimal Operation...........c..eceveeeiiieerieeeiiee e eeeeeree s 25
Step 4: Where to Set the Production Rate............ccooevieeiiiiiiiiiceceeeeeeee e 26
Step 5: Regulatory Control LaYeTcccviieiiieeeiie ettt sveeeeiree e 26
Step 6: Supervisory Control LaYercoeeiiriiriiiinienieicnieseeceeceee e 26
Step 7: Optimization LaYer........ccociiiiiiiiiiieieeee et 26
SIMulation ProCedUIe............cooouiiiiiiiiee e e 27
5.1. Model of the Column and ReacCtOrccoeriiriinieiiiiiiriieeceee e 27
5.2, Optimization 0f the PrOCESS........ceciviiiiiiiiiieieeieereee et ees 27
5.3. Identification of Candidate Controlled Variables for Self-Optimizing Control........ 28
5.4. Evaluation of the Loss From the Steady-State Model.........c..cccceevveriiecienciiinies 28
5.4.1. Brute FOrce Methodcooiiiiiiiiiiiieieieeieseee e 29
5.4.2. Null Space Method........c.cooiiiiiiiiieiiie et sbee e 29
5.4.3. Exact Local Methodcccooiiiiiiiiiieee e 31
5.5. Evaluation of the Loss from the Dynamic Simulink Model............ccccccceveininiinnnne. 32
5.5.1. MEASUICIMENLS.eeiiiiiiiiieeiiiie ettt et te et e ettt ettt e et e e et e e st eesabbeesabeeesabeeesabeeenns 32
5520 CONIOMIET ..eniiiiiiiiie ettt ettt st 33
5.5.3. Step Tests and SIMC TUNINGcccueeriiiiiiiiieeiiee et 35
Results and DISCUSSIONccvuiiiiiiiieiiiieiie ittt ettt ettt e sieeebeesaaeens 37
6.1, Optimization RESUILSccciiiiiiiiiiii ettt 37
6.2. Loss with Brute Force Methodccccooiiiiiiiniiiiiieeeee e 38
6.2.1. Loss for Case I: Given Feed Rate.........ccccooceiiiiiiiiiiiiiicece 38
6.2.2. Loss for Case II: Maximize the Feed Rate...........cocceiiiiiiiiniiis 46

v

6.3. Null Space Method ReSUILScc.oooiiiiiiiiieiieciiee e 53

6.4. Exact Local Method Results..........ccooiiiiiiiniiiiiiiiicieeecee e 55
6.5. Results from Dynamic SIMulations..........cccecveeciierieiiiienieeiieee e 57
6.5.1. Null Space Method.........cceeiiiiiiiiiiiiiieieeeee et 58
6.5.2. Exact Local Methodcoouiiiiiiiiiiieiieieeeeeeeeeee e 61

6.6. Proposed Control StUCTUIEScccuviiecuieiiiieeciee et e ertee et ee e tee e e eraeesaeeeneree s 63
6.6.1. Case I: Given Feed Rate.........cccooiiiiiiiiiiiiieceee e 63
6.6.2. Case II: Maximize Production...........ccceecvieeiuieeeiiieeiieeciee et 65

A D o1 13 U) § DS PUSRPRPPRR 67
Tl MOAEIING. ...ttt et ettt e et esbee et e s saeebeesaeeens 67
N 1 1 L1115 10 DO USRS 67
7.3, FUIher WOTK ..oeoiiiiiiee et 67

8. COMCIUSIONS...cuiiiitiete ettt sttt ettt ettt et et ent e eate bt enteseeenaeenees 69
0. INOMENCIATUTE ...ttt ettt ettt ettt st e et e e e st e st enbesetesae e beeneesaeenee 71
0.1, LiSt Of SYMDOIS...cuiiiiiiiiieiiecieeee ettt beestee e e saeeseesane e 71
9.2, LiSt Of ADDIEVIAIONSeeuiiiieiiiiieeiieieete ettt sttt 73
L0, RETEIEICES ...ttt ettt et st e bt e e e eeees 75
ADPPENAIX A Lottt ettt ettt nb et et sae et et 77

1. Introduction

Plantwide control deals with the overall control scheme of a chemical plant, where the
structural decisions are important [1]. In this thesis the objective is to apply the plantwide
control method to a process with a reactor and recycle. There is also a distillation column,
where unreacted reactants is recycled back to the reactor as just mentioned. In addition, it is
desired to find the self-optimizing variables of the process. This is necessary because by
finding the self-optimizing variables, the process can be economically optimal. Also, the loss
with different unconstrained degrees of freedom as self-optimizing variables will be
evaluated. This can then prove why it is important to find which variables to control, and
which not to control in a process plant.

Throughout this project it is assumed that a steady-state model is sufficient for most of the
optimization and calculations. Also, the reaction happening in the reactor is assumed to be a
first order reaction with two components, one reactant and one product.

Larsson et al. (2003) have already studied the control structure selection and what to control
for the process considered in this project [2]. They found a complete control structure for the
recycle process and also computed the losses for different self-optimizing variables for two
cases. According to Larsson et al. (2003), the conventional way of controlling this process is
by having a fixed reactor holdup and “two-point” distillation control [2]. More specifically,
that means controlling M;, xg and xp. Several other control configurations have been proposed
in the literature.

Wu and Yu (1996) have looked at the reactor/separator process as a whole unit, and then at
each of the separate units by themselves [3]. They found that the behaviour of the process
differs from the behaviour of the different units, both at steady-state and dynamically. A
control structure and tuning procedure was also proposed.

Regarding the search for self-optimizing variables, Alstad et al. (2009) studied a method to
find optimal measurement combinations as controlled variables [4]. By doing that, self-
optimizing control was achieved. This method is called the null space method, and was also
used by Alstad and Skogestad (2007) earlier to find the self-optimizing variables [5]. They
used a steady-state model of a process to achieve this. In addition, the optimal selection of
controlled variables was studied by Halvorsen et al. (2003) with the exact local method, an
extended version of the null space method [6].

Skogestad (2000) developed a strategic method to find the self-optimizing variables of a
process and gives the criteria for this variable [7]. This also includes finding which variables
to measure, which inputs to manipulate, and which links to make between those. Also,
Skogestad (2004) follows a systematic procedure for finding the control structure for a
complete chemical plant [8]. Other issues, such as inventory control, production rate control,
decentralized versus multivariable control and loss in performance by bottom-up design is
also considered in the paper just mentioned.

Luyben (1993) has explored and described the problems and challenges associated with the
dynamics and control of recycle systems [9]. Several different process designs were analysed
and the steady-state economics and controllability of the systems were compared.

Skogestad (2007) claims that the LV-configuration for level control combined with a fast
temperature loop is the best choice for distillation column control [10]. The dos and don’ts of
distillation column control are summarized in this paper. Three main issues are presented,
namely the configuration problem, the temperature control problem and the composition
control problem.

Wu et al. (2002) explored different control configurations to achieve the best composition
control and to improve the disturbance rejection [11]. This was done to avoid complex control
configurations for composition control.

The method of steady-state optimization and self-optimizing control has also been applied to a
large-scale HDA plant (hydrodealkylation of toluene) by Araugjo et al. (2007) [12]. Here, a
linear analysis based on singular value decomposition (SVD) was used for pre-screening. This
is because large plants can have combinatorial problems related to the choice of
measurements and outputs.

Other processes have also been studied for plantwide control. Larsson et al. (2001) applied
this to a large-scale plant where the issue was “what should we control” [13]. This was for the
Tennessee Eastman process, where the concept of self-optimizing control was used to choose
between many candidate variables. A systematic procedure was used for reducing the number
of alternatives [13].

2. Theory

2.1. Plantwide Control
The plantwide control theory is about choosing which variables to control, which variables to
measure, which inputs to manipulate, and which links to make between them [14]. Two
different ways to approach this is available, that is a mathematically oriented approach
(control structure design) and a process oriented approach.

2.2. Skogestad'’s Plantwide Control Procedure
Skogestad (2011) has suggested a method to decide the control structure of a plant [15]. This
method includes starting with the economic objective of the plant and to design a control
scheme that implements the optimal operation. Figure 1 shows the typical control hierarchy of
any complete chemical plant.

Scheduling
(weeks)

A 4

Site-wide optimization
(day)

N
N

Local optimization
(hour)

]

i /

al
;]

Supervisory
Control
(minutes)

Control
layer

A ‘

\ |

Regulatory
Control
(seconds)

Figure 1: Typical control hierarchy in a chemical plant [12].

3

Skogestad’s method consists of two parts, a top-down analysis and a bottom-up design, as
described in the following sections [8]. As will be seen in chapter 2.2.2, the supervisory
regulatory control layer in Figure 1 is included in the bottom-up design.

2.2.1. Top-Down Analysis
Four different steps make up the top-down analysis in Skogestad’s procedure, and they are all
explained in the following sub chapters. These steps deal mostly with plant economics.
Steady-state models are usually sufficient for this part because plant economics are
determined primarily by the steady-state behaviour [1].

Step S1: Definition of Operational Objectives
The first step is to find the operational constraints, and in addition define a scalar cost
function J. In most cases, J represents the operational cost, but other possibilities exist [8].
This cost function is to be minimized. Equivalently, a scalar profit function P = -J, could be
maximized [1]. A typical form of the scalar cost function can be given as follows:

] = cost feed + cost utilities (energy) — value products ($/s) (D)

In the equation above, only factors that are influenced by plant operation on the given
timescale are included. This is why neither fixed costs nor capital costs are included [1].
Further on, the objective of control and operation is to minimize the cost J, subject to
satisfying the operational constraints. Operational constraints include both safety and
environmental constraints. Some typical constraints include minimum and maximum values
on temperatures, pressures, compositions, and flows. By intuition, it is clear that the values of
all compositions, pressures and flows must be positive.

Taking the constraints into account, the minimization of the cost function can be defined as
follows:

mlf'n]X (x,u,d),)
Subject to the constraints

g1(x,u,d) =0 (3)

g2.(x,u,d) <0 (€))

In the equations above, x represents the state variables, u denote the degrees of freedom for
optimization, and d represent the disturbances. Equation (3) represents the non-linear equality
constraints, while equation (4) denotes the non-linear inequality constraints.

Step S2: Identify Degrees of Freedom and Optimize Operation for Important

Disturbances
It is important to know what the optimal way of operating the process is. This should be
known before designing the control structure. A reason for this is that variables that turn out
to be active constraints need to be controlled [1]. A steady-state model is needed to obtain the
steady-state optimal operation. Further on, the number of degrees of freedom and important
disturbances must be determined. From this follows an optimization of the process for the
expected disturbances. These steps are explained as follows.

(a) Degree of Freedom Analysis
The steady-state degrees of freedom (DOF) are given as

Ngs = Ny — (NOm + NOy) (%)

Here, N, is the number of dynamic or control degrees of freedom and m stands for
manipulated [8]. Thus, Ny, is equal to the number of manipulated variables. In most cases this
number can be found by counting the number of adjustable valves plus other adjustable
electrical and mechanical variables in a process.

The degrees of freedom that affect the operational cost J are referred to as the Ny
optimization degrees of freedom. Usually, Ny, is the number of steady-state degrees of
freedom, N, because the cost often only depends on the steady-state.

Further on, Ny, is the number of manipulated (input) variables with no steady-state effect or
no influence on the operational cost. Sometimes, this can for example be a heat exchanger or
an extra bypass [8]. The last parameter in the equation above, Nyy, is the number of (output)
variables that must be controlled, but which have no effect on the cost, thus no steady-state
effect. This often turns out to be liquid levels in holdup tanks.

(b) Identify Disturbances
The disturbances for a certain process need to be defined so that the optimal operation can be
implemented in the next step. Often the most important disturbances are flows that cannot be
controlled, for example a feed rate. Flow compositions can also be considered as disturbances.

Step S3: Implementation of Optimal Operation (Primary Controlled

Variables)
This step deals with the choice of primary controlled variables (CVs) and self-optimizing
control. First of all, the variables that are directly related to achieving optimal economic
operation need to be controlled [8]. These are called the primary controlled variables. Thus,
the first rule is to control active constraints. Secondly, control self-optimizing variables for the
remaining unconstrained degrees of freedom [1]. Self-optimizing variables are defined as
variables with constant set-points where almost optimal operation is achieved, even when
disturbances or implementation errors are present. Self-optimizing control is described in
more detail in chapter 2.3.

Step S4: Where to Set the Production Rate (Inventory Control)?
The production rate represents a degree of freedom which is called the throughput
manipulator (TPM) [1]. So the amount of mass passing through the process is determined by
specifying this variable and is often set as the feed rate or product rate. A common word for
the TPM is the “gas pedal” of the process, and links the top-down and bottom-up parts of
Sigurd’s procedure. In most cases, the TPM is a flow, but it can be other variables as well.

2.2.2. Bottom-Up Design
The four last steps make up the bottom-up design.

Step S5: Regulatory Control Layer (Secondary Controlled Variables)

The main objective of the regulatory control layer is to stabilize the given plant. Selection of
secondary controlled variables (CV,) and selection of which inputs to be paired with these are
the main decisions in this part [1]. When disturbances occur, the plant is stabilized if the
process does not drift too far away from the optimal operation. Manipulated variables that
may saturate are preferably not used as secondary controlled variables because this can cause
loss of control and reconfiguration of loops may be required [8]. Skogestad (2004) has found
that certain properties are wanted for a good secondary controlled variable (measurement), as
listed here [8]:

e The variable is easy to measure

e The variable is easy to control using one of the available manipulated variables

e For stabilization: the unstable mode should be detected “quickly” by the
measurement

e For local disturbance rejection: the variable is located “close” downstream of an
important disturbance.

In order to stabilize overall inventory in different units in liquid phase systems, liquid level
can be controlled. It is also possible to control a composition or a temperature in order to
stabilize the inventory of different components. The regulatory layer can also be named the
lower layer, secondary loops or inner loops [8].

Step S6: Supervisory Control Layer

The supervisory control layer is also referred to as the advanced control layer or the primary
control system. The main objective of this layer is to keep the primary controlled outputs at
their optimal set-points (cs) by using the set-points in the regulatory layer as manipulated
variables or degrees of freedom [8]. In addition, any unused manipulated inputs could also be
used to control the primary outputs. Two other tasks for the supervisory layer include
supervision of the performance of the regulatory layer, and switching of the controlled
variables and control strategies due to change in disturbance or price. These changes can
cause the process to enter a new region of active constraints.

Step S7: Optimization Layer
The real time optimization (RTO) layer is used to update the set-points for the controlled
variables and to discover any changes in the active constraint regions which can be caused by
changes in disturbances and implementation errors [1]. Changes in the active constraint region
can lead to switching of the controlled variables. However, the benefit of the RTO layer can
be to low compared to the cost of generating the steady-state model needed to do that.

Validation
When the plantwide control scheme is determined, it can sometimes be wise to validate the
structure. This can for example be performed by dynamic simulation.

2.3. Self-Optimizing Control
As explained earlier, self-optimizing control is achieved when self-optimizing variables are
controlled by remaining unused degrees of freedom after selecting the primary controlled
variables. By using self-optimizing control, the system is optimized by itself without the need
for on-line optimization [16]. The procedure is to keep a certain variable constant at a set-
point, and this variable is the self-optimizing variable.

As before, a scalar cost function J has to be defined, and the goal is to minimize J. The real
optimal solution would be to have a perfect model, and to re-optimize the process
dynamically when disturbances and implementation errors occur [7]. However, this is not
very realistic, and that is why self-optimizing control is used instead. If the loss by using self-
optimizing control is acceptable, the process still operates satisfactorily. From this, the loss is
defined as the difference between the value of the cost function when using self-optimizing
control and the value of the cost function of the truly optimal solution:

Loss = J,(u,d) _]opt(u, d) (6)
The definition of self-optimizing control is then as defined by Skogestad (2000) [7]:

“Self-optimizing control is when we can achieve an acceptable loss with constant set-
point values for the controlled variables (without the need to re-optimize when
disturbances occur).”

Figure 2 illustrates the loss caused by keeping different controlled variables at constant set-
points. The value of the cost function J is shown as a function of the disturbance value, where
d* 1s the nominal value of the disturbance. In this case, the imposed loss is smaller for the first
controlled variable (c;s) than the second one (c,5). At the nominal disturbance value, there is
no loss for any of the controlled variables, but as the disturbance increases, so does the value
of the loss. As a consequence, the variable c; would be chosen as the self-optimizing variable
instead of ¢, if the loss was as shown in Figure 2.

C, = constant

Cost J
C | ;= constant
Loss

Reoptimized J npt(d)

Disturbance d

Figure 2: Loss imposed by keeping different controlled variables constant at their individual set-
points [7].

Also, implementation errors will occur which is caused by for example measurement error or
imperfect control. These are represented as follows:

de=¢C—¢Cs (7

There will always be a difference between the set-point ¢ and the actual value of ¢ because of
the implementation errors. This causes an extra concern with the constant set-point-strategy,
and the cost surface plotted as a function of ¢ should therefore be as flat as possible [13]. This
is to minimize the effect of the measurement or control errors. Figure 3 illustrates this for
three different versions of the cost function surface.

J J J
"-h__________—__-"
C C C
(a) (b) (c)

Figure 3: Implementation of the controlled variable [13].

In plot (a) the implementation is easy because of active constraint control. As seen in the
figure, the optimum is constrained, so the optimal cost is obtained when one of the variables
is at its minimum or maximum [13]. In this case Figure 3 shows a case where the optimum is
when c is equal to cyin. By keeping the controlled variable constant at its active constraint,
there is no loss occurring. In (b) there is an unconstrained flat optimum, where the cost is not
highly affected by the value of the controlled variable [13]. In (c), the cost J is sensitive to the
value of the controlled variable because of the constrained sharp optimum happening here.
Therefore, self-optimizing control is not possible in the latter case.

For an active constraint case, the solution is to select the optimally constrained variables as
controlled variables. However, in the unconstrained case in (b) is it not that clear which
variables to control [13]. As a guideline, Skogestad has suggested four requirements for
choosing a good candidate controlled variable [7]:

1. The candidate variable ¢ should be easy to measure and control.

2. The optimal value of ¢ should be insensitive to disturbances. Thus cop (d) should not
be very affected by changes in d.

3. The value of ¢ should be sensitive to changes in the manipulated variables u. Thus, the
gain from u to y (G) should be large. This is equivalent to having a flat optimum with
respect to c.

4. For cases with two or more controlled variables, the chosen variables should not be
closely correlated.

The requirements above can be a good way to reduce the number of candidate controlled
variables in a plant with a lot of possible candidate controlled variables. Also, the optimal
self-optimizing variable would be the derivative of the cost with respect to the input u:

9

C—a—

Ju ®)
However, this is not realisable because the gradient in equation (8) cannot be measured. As a
consequence, other self-optimizing variables with economic losses have to be found.

There are several methods to find the self-optimizing variables with the smallest loss. Three
different ways of calculating the loss for different controlled variables are explained in the
following sub-chapters.

2.3.1. Brute Force Method
In order to avoid issues with local behaviour and infeasibility when finding the loss, it is
possible to use a direct evaluation method called the Brute force method [16]. This method
directly calculates the loss for expected disturbances and implementation errors. A model of
the system is needed to evaluate the loss directly. According to Skogestad (2004), the
following steps are required [16]:

e Define the degrees of freedom for optimization

e State optimal operation in terms of a cost function J and operational constraints

e Determine the important disturbances

e Use the model to find the optimal operation, both nominally and with disturbances

¢ Find the active constraints and control them

e Evaluate the loss with constant set-points for alternative controlled variables; do this
for the remaining unconstrained degrees of freedom

e Evaluate more carefully the alternatives with the smallest loss, for example by
controllability analysis

However, even though this is a simple method, it requires a lot of computations due to the
large number of alternative controlled variables that may be considered [16]. It is therefore
desired to limit the number of alternative controlled variables to be studied. One way to do
this is to use a method called the minimum singular value, and eliminate variables with a
small minimum singular value. Also, the evaluation of the loss only requires a steady-state
model of the process. Another positive property with the Brute force method is that it is easy
to detect controlled variables that may cause infeasibility for certain disturbances or
implementation errors [5].

2.3.2. Null Space Method
The minimization problem that is studied is given by the following equation:

min J(u, d) 9)

This means that all of the optimally constrained variables are assumed to be kept constant at
their respective optimal values [5]. In other words, “active constraint control” is assumed.

In the null space method, the objective is to find a linear measurement combination to be kept
constant at the set-point, c;. The measurement combination, c, is given by equation (10):

c=Hy (10)

Here, ¢ is a vector, H is a constant n, X ny matrix and y is a vector with individual available
measurements. As before, only the steady-state problem is considered because the cost
function value is mostly determined by the steady state. In addition, the disturbances
considered all affect the steady-state operation. In addition, all implementation errors are
neglected, which is the sum of the control error and the effect of the measurement error [5].
The assumption of no control error is correct if a controller with integral action is used. When

10

it comes to neglecting the measurement error, this can be satisfied if the measurements are
selected wisely.

In the H matrix, n, is the number of degrees of freedom or independent unconstrained free
variables u and ny is the number of individual measurements (y). Also, ng is the number of
independent disturbances d, and it is desired to achieve n.=n, independent controlled
variables c¢ that are linear combinations of the measurements, as given in equation (10).

The next step is to define the optimal sensitivity matrix, evaluated with constant active
constraints. This matrix is given by equation (11), which describes the sensitivity of the
optimal value of the measurements to changes in disturbances [5].

6 opt
F="r (1)
If the following criterion is satisfied:
n, =2 n, +ng, (12)
The H matrix can be selected in the left null space of F, H € N (F"), such that
HF =0 (13)

When the matrix H is defined like this, first-order optimality for disturbances d is achieved by
fixing ¢ at its optimal value. So as long as the sensitivity matrix F in equation (11) does not
change, this method gives zero loss.

In order to prove that this selection of H gives zero loss, let
yPi(d) — y°PH(d") = F(d — d") (14)

Equation (14) shows the optimal change in the measurements due to a small change in the
disturbances, where

7 sy
5d, Sdy,
F=| : ~ (15)
Synr’ Synr’
| 6d; 8dy, |

is the optimal sensitivity matrix evaluated at the nominal optimal point * [5]. Equation (14) is
valid only for small disturbance changes because only the first-order term from the Taylor
expansion is taken into account. Thus, the higher order terms from the Taylor expansion are
neglected in this case.

11

The corresponding optimal change in the controlled variables is found from equation (10) as
follows:

cPH(d) — cPH(d") = H(y"P'(d) — y*P'(d")) (16)
Inserting equation (14) in equation (16) gives the following:
c°Pt(d) — c°?P*(d*) = HF(d — d*) (17)

In order to maintain the constant set-point policy as described earlier, the left hand side in the
above equation needs to be equal to zero. Thus,

c°Pt(d) — c°Pt(d*) = 0 (18)
This leads to the condition
HF(d—-d")=0 (19)
In order for the requirement in equation (19) to hold, it is required that
HF =0 (20)
That is because the condition in equation (19) needs to be valid for all values of (d-d*).

The rank of the n. x ny matrix H and the n, x nqg matrix F is n, and ny, respectively [5]. This is
due to the fact that ny > n. (ns=n,) and ny > nq. Both the controlled variables and disturbances
are assumed to be independent. Alstad & Skogestad (2007) proved that in order to find an H
matrix of rank n, in the left null space of F, it is required that ny > n, + nq [5].

One downside with the null space method is that it is only locally optimal, except in cases
where the sensitivity matrix F is not dependent on disturbances.

Theoretically, the sensitivity matrix can be calculated from the steady-state gain matrices (G”
and G’y) and the Hessian matrices (J,, and J,4), as shown here:

F=—(6"ziua — G) 1)

Nevertheless, the F matrix is often computed directly instead, by optimizing the process with
a steady-state model for the chosen disturbances. By perturbing the disturbances and re-
optimize the process with constant active constraints, F can be obtained numerically. The
steps for achieving this are as follows [5]:

(1) Compute the nominal optimum y* (d*) with the steady-state model and determine the
active constraints.

(2) Make small perturbations in the chosen disturbances and resolve the optimization
problem to get y** (d).

(3) Calculate Ay = y°" (d) - y*" (d*) and obtain the matrix F by applying equation (15).

12

Since the implementation error is not taken into account in the null space method, there may
be more measurements than degrees of freedom and disturbances, so that

ny, >ny, +ny (22)

This results in extra degrees of freedom for selecting the H matrix. Ideally, these could be
used to reduce the sensitivity to measurement error.

2.3.3. The Exact Local Method
Unlike the null space method, the exact local method considers noise in addition to
disturbances and any number of measurements can be used in this method.

Let
Ad = W d' (23)
n’ =W, yn”’ (24)

In the above equations, Ad and n” are the magnitudes of the disturbances d and measurement
errors, respectively [4]. These magnitudes are quantified by the diagonal scaling matrices W,
and Wy, respectively. The vectors d" and n¥’ can be any vectors satisfying

||[,fy"]||2 =1 (25)
Let
Y = FW W,, (26)

where F is the optimal sensitivity matrix as in the null space method, and W, and W,y are
the diagonal scaling matrices for the disturbances d and measurement errors n?” , respectively
[17]. The measurement combination matrix H can then be found as follows [17]:

H=(inw(Y +Y) =G,) (27)

The steady-state gain matrix G, is defined by
oy
=_Z 28
Gy ou (28)

Thus, the matrix G,, can be computed by making a small perturbation in the input u, and
calculating the new measurement y by re-solving the problem. As in the null space method,
the goal is to find a linear measurement combination to be held constant at the set-point c.
The measurement combination, c, is given by equation (10) in the previous chapter.

13

2.4. SIMC Tuning Rules
There exist a lot of different rules for tuning of controllers in a chemical plant, and the SIMC
tuning rules have been used in the industry in Norway already [18]. In this method the first
step includes finding an approximate first- or second-order time delay model on the form

_ k
TIs+1t

-0s _ k' e—@s (29)
1
s+ T_l

g1

Where

k
k' =— (30)

T1
If the model is second-order, the transfer function g, becomes

k

- (T35 + D(15+ 1) e G

g2

In the equations above, k is the plant gain, t; is the dominant lag time constant, 6 is the time
delay and 1, is the second-order lag time constant [18]. In addition, s is the Laplace parameter
which has replaced the time parameter (t). There are three ways to obtain these parameters,
namely:

e From open-loop step response
e From closed-loop set-point response with P-controller
e From detailed model: approximation of effective delay using the half rule

In this project, the open-loop step response method will be used to find the parameters.

14

2.4.1. First-order Process
A first-order process usually has the step response behaviour shown in Figure 4.

Ay()
09 '
RESULTING OUTPUT y
0.8F -
0.7 -
0.63
06 '
: uy STEPININPUT u

06fF Je==——-af- e mm e E e, e ——————— -
" :
1

04k i -
1 Au

o3k : 8: Delay - Time where output does not change 4
1 7,: Time constant - Additional tume to reach

02} : 63% of final change -
1 k = A y(=)/A u : Steady-state gam
1

0AfF I "
I 8

0 [— - 1 1 1 1 1
0] 10 16 20 26 30 36 40

Figure 4: Open-loop step response test for a first-order process model [18].

It is possible to obtain the model parameters from the response above, even though it is not
necessarily the most effective method to find them [18]. On the other hand, this is a quite
simple way to do it. As explained on the figure, the steady-state gain is found as follows:

_ Ay()

k=— (32)

Also explained on the figure, the time delay 0 is the time where the output does not change
(after the input step is applied). The time constant T; is found as the time where 63% of the
final output change is reached. To be clear, y is the output and u is the input. In addition, the
unit of the x-axis is time, whereas the unit on the y-axis is any output y.

15

For a PI controller and a first-order model the SIMC method gives the tuning rules given in
the following equations [18]:

e lm 11
© kt.+0 kKrt.+6

(33)

7; = min{ty, 4(t, + 6)} (34)

Here, K, is the controller gain, Ty is the integral time and t. is the desired first-order closed
loop time constant which is also the only tuning parameter [18].

2.4.2. Integrating Process
If the process is approximated as an integrating process, the parameter k’ can be found as
shown on Figure 5 below. Here, u is the input and Au is the input change, Ay is the
measurement change, and At is the time.

/N\

) Ay
Slope,, k' = AL-Au

n /

—
——
I 3
L 2

9 At

Figure 5: Open-loop step response for obtaining the parameters k’ and 0 for an integrating
process [18].

With an integrating process the time constant t; will go towards infinity. The controller gain
K. is still found by equation (33), but because t; will always be larger than 4(t.+0) in an
integrating process, the integral time is now given by

T, =4(t,+6) (35)

16

3. Process Description

The process studied in this project is the same as given in Larsson et al. (2003), a reactor and
separator with recycle process [2]. This recycle plant is sketched in Figure 6, and explained
more detailed in the following.

@

—M— a-s N
F
ZF

V
i
M

B
X

B

Figure 6: Schematic drawing of the reactor and recycle plant [2].

As seen in Figure 6, the plant consists of a reactor and a separator or distillation column,
where some of the top product is recycled back to the reactor. The liquid feed F, is fed into
the reactor, where the liquid reactant A is transformed to the liquid product B:

A(D) - B (36)

The column feed, F, is separated in a distillation column with bottom product B and vapour
boilup V. At the top of the column, some product is recycled back to the reactor as D, and the
rest goes back into the column as the reflux L. Thus, this distillation column has a total
condenser.

17

A description of the different symbols in Figure 6 is given in Table 1.

Table 1: Overview of the different flows and compositions in the recycle plant.

Symbol Description

Fo [kmol/h] Liquid reactor feed

Zro [mol A/mol] Mole fraction of component A in the reactor feed
F [kmol/h] Liquid feed to the distillation column

zr [mol A/mol] Mole fraction of component A in the column feed
M; [kmol/h] Liquid holdup in the reactor

A [-] Component A

B[-] Component B

M, [kmol/h] Liquid holdup in the bottom of the column

B [kmol/h] Bottom product

xg [mol A/mol] Mole fraction of component A in the bottom product
L [kmol/h] Reflux

Mgy [kmol/h] Liquid holdup at the top of the column

D [kmol/h] Distillate or recycle

xp [mol A/mol] Mole fraction of component A in the recycle

A model of the process made in Simulink is shown in Figure 7 on the next page. This drawing
shows all the inputs, outputs, parameters, measurements and controllers in the recycle plant.
The model is the same as was used in one of the exercises in the subject Advanced Process
Control in the autumn of 2012 [19]. As seen in the model, a CSTR reactor is used for the
reactor and the distillation column is the one named separator. Though the steady-state model
is utilized for the major parts of this project, the dynamic model in Simulink can also be
helpful to see how the process reacts to changes in disturbances or implementation errors.

18

ACT-

- PI CONTROLLERS - . 2 o
[ra e I - 1667]| B
- MEASURMENTS ey > T oo B
- PARAMETERS - 597](F
aR=F - [04386]| oF
- INPUTS [3125 am
ME
Alr
Dusgitay
n F
460750 p:) ’
Momind fred flow sate * . sf CSTR .
m 0 | 0| —F > . i >
PO - nim R - ~ I P
’ Fesd composition R % sed liqaid fraction L
T Finl
= [7e | ———gr 1 Bl [
.) Refax flow mate # sf columnd o
t TR LT .oee| [momimal) LT
Reactor ﬁ'@ s =
L h w8 i
I l ‘ .| Taycumpeon
lpminal reactor outflow gate, F T e Vapor flow rate I T
ke L) {nominal} =g VB »
T P : Trav baldups
Fi- slap -t-ws- 1] u _ M
1 - Dhatifte fow sate v
2 hlr (e (nommumal) D
— | I—_ selpcet Columm A
o Separator
480050 E Ml

Bottom flow sate I

Reactor holdup
(nommnal} B -wiep B
MDD
To Wolspam . L MDD PI Controller Condenaer hjl.GJp
dr PIrst | :-:-'v i =B P1 Controlier =E|
Display!) il Rebailer holcha
) N MDD 4. Pl{=s - l_+l‘:

D

|_ = Xb

sempoit .
Prodhact composition

Figure 7: Flow sheet of the reactor/recycle process in Simulink [19].

19

3.1. Plant Data
For simplicity, the design and plant data used here is taken from the work by Larsson et al.
(2003) [2]. The data and assumptions for the plant are given in Table 2.

Table 2: Plant data and design information [2].

Factor Value/definition
Feed composition 0.9 mol A/mol
Feed Fy 460 kmol/h
Reactor type Isothermal
Maximum reactor holdup M:; max = 2800 kmol
Reaction in reactor 1. order reaction
Reaction rate constant k=0.341h"
Number of stages in column 22 (including reboiler and condenser)
Feed stage in column 13
Relative volatility aap = 2 (constant)
Flows Constant molar flows
Purity requirement for product xg < 0.0105 mol A/mol

As seen above, both the feed composition and feed flow are given. That means the reactor
composition zr cannot be specified independently.

3.2. Model Equations for the Process
The reaction in the isothermal reactor is a first order reaction as assumed by Larsson et al.
(2003), and thus has the following reaction rate [2]:

r =kcycp (37)

The concentrations of component A and B at the reactor outlet are represented by c, and cg,
respectively. By studying the process in Figure 6, the steady-state overall total mass balance
can be written as

Fy =B (38)
For component A, the overall mass balance becomes
FozZpy = Bxg — 1,4 (39)
The first order rate equation for component A is given by
T4 = kcy (40)

Here, ca is the concentration of component A at the reactor outlet. This concentration is given
by

Cqp = MTZF (41)

20

By inserting equation (40) and equation (41) into equation (39), the following overall mass
balance for component A is obtained:

FozZpg = Bxg — kM, zp (42)
Considering only the distillation column, the total mass balance becomes
F=B+D (43)
For component A, the column mass balance is as follows:
Fzr = Bxg + Dxp (44)
These mass balances were the basis for the model of the column and reactor in Matlab.

The temperature at each stage of the distillation column can be approximated in terms of the
composition at the individual stages as follows :

NC
T] = Z TBi * xi,] (45)
i=1

Here, Tj is the temperature at stage number J, Tg; is the boiling temperature of component i,
and x; ; is the mole fraction of component 1 at stage J. Also, NC is the number of components,
which in this case is two, that is component A and component B. In this project it will be
assumed that equation (51) can be used for the distillation column that is studied here.

21

22

4. Skogestad’s Procedure Applied to the Recycle Process
Two different cases are studied for the recycle process. In the first case, the feed rate (Fo) is
given and in the second case the feed rate is a variable. It is assumed that the first constraint to
become active in the last case is the vapour flow constraint, V < V.« [2]. For simplicity and
comparison, the data used is the same as in Larsson et al. (2003) [2].

4.1. Case I: Given Feed Rate

Step 1: Definition of Operational Objectives and Constraints
A scalar cost function J needs to be defined, which in case I is the difference between the
value of the feed Fy and the product B. The operational costs for recycling and distillation also
need to be taken into account. Thus, the cost function is defined as

J] =g, Fo — pgB + ppD +pyV (46)

From equation (38), and by defining pg, = pg, — P, equation (46) becomes

J =prFo +ppD +pyV 47)

Since Fy is given, and with negligible recycling cost, the objective is to minimize the boilup
V. This is because the cost function is then only influenced by the distillation costs [2]. With
constant energy price, the cost function is thus represented by

J=V (48)

As explained in the theory chapter, the cost function in equation (48) is subject to the
operational constraints for the process. With a given feed rate, there are constraints on the
reactor holdup (M;), the product composition (xg) and on the column boilup (V). Larsson et
al. (2003) found the most economical case to be when the reactor was operated with
maximum liquid holdup M,. This is because it may not be desirable to change the reactor
holdup during operation due to achieving the maximum per pass conversion [2]. That is way
the constraint on M; is present. Further on, the desired composition of the bottom product is
xp=0.0105. Due to the extra distillation costs of over-purifying the bottom product, there is a
constraint on xg. The equality constraint on Fy occurs because it is used as a degree of
freedom where its value is set by the operator. It is expected that the constraints on M, and xp
will be active [2].

23

These constraints are givenl1 in the following equations, respectively.

M, < 2800 (49)
xg < 0.0105 (50)
Fy = Fymax = 460 (51)

Step 2: Identify Degrees of Freedom

By using the counting method described in chapter 2.2.1, the number of valves was found to
be 6. This can be seen on Figure 6. Two of these valves need to be used for control of the
liquid holdups My and M,,. Therefore, they have no steady-state effect on the operational cost.
Thus, there are 4 degrees of freedom at steady-state, with Fy included. The most important
disturbance is the feed rate, Fy, and +20% changes will be considered. Disturbance in the feed
composition (zgy) will also be considered, and the magnitude of the disturbance will be zgy =
0.9 £ 0.1. In addition, implementation errors in the candidate variables, the bottom
composition (xg) and the reactor holdup (M;) are analysed. The magnitude of these are £20%,
+0.002 and +-400 kmol/h, respectively. These are all the same disturbances as found in
Larsson et al. (2003), and this was chosen due to ability for comparison of results [2].

Step 3: Implementation of Optimal Operation

Since the active constraints were found to be the feed rate to the reactor (Fy), the bottom
composition (xg) and the liquid reactor holdup (M;), these three variables will be the primary
controlled variables (CV). According to Skogestad’s procedure, the remaining unconstrained
DOF should be used to control self-optimizing variables. In this case there are four steady-
state degrees of freedom and three active constraints, which leaves one unconstrained DOF
left to be utilized. In order to decide which variable should be the self-optimizing variable,
simulations had to be performed. These simulations and results are described in chapter 5.

Step 4: Where to Set the Production Rate
In this process, the TPM will be the feed rate Fy because this flow determines the amount of
mass going through the plant. Thus, the production rate is determined by defining F.

Step 5: Regulatory Control Layer
After the previous steps, there are no unconstrained DOF left. However, this is because the
liquid holdups in the condenser (Mq) and reboiler (My) must be controlled by the bottom flow
(B) and recycle (D), respectively. These two control loops must be present in order to keep
the system stable. Therefore, the liquid holdups My and M, are considered as secondary
controlled variables which helps stabilize the process. Also, both My and M, satisfy the rules

24

for a good controlled variable given in chapter 2.2.2. That is, they are both assumed to be
easily measured and easy to control by using the manipulated variables B and D.

Step 6: Supervisory Control Layer
In order to control the active constraints, the manipulated variables must be used. The reactor
holdup (M;) will be controlled by the reactor outflow (F), the product composition (xg) will be
controlled by the vapour boilup V, and Fy is set. These pairings were chosen because the
manipulated variable should be located close to the controlled variable which it is linked to. A

Step 7: Optimization Layer
In the case of a change in the active constraint regions, the controlled variables will have to be
switched. Also, the set-points of the current controlled variables may have to be changed
according to the different disturbances.

4.2. Case II: Maximize the Feed Rate

Step 1: Definition of Operational Objectives and Constraints
In the case of maximizing the feed rate, the feed rate will now be a variable and not chosen.
Small losses in the production rate often have a large effect on the overall plant economics, so
this case may have more practical importance than the previous.

As before, the original cost function is given in equation (46). Unlike the first case, the goal
here is to maximize the production rate, and thus maximize the feed rate Fy. It is also assumed
that the price of Fy will be constant for this analysis. The cost function therefore becomes

] = —F, (52)

As before, both the product composition (xg) and the reactor holdup (M;) are active
constraints. In addition, the vapour boilup will be constrained since it is assumed to be the
first constraint to become active. The actual value of the maximum boilup (Vpax) is the most
important disturbance in addition to the feed composition (zgp). The considered magnitudes of
these disturbances will be 300 kmol/h and +0.1, respectively. Also, implementation errors in
the candidate controlled variables, the reactor boilup (M;) and the product composition (xg)
are considered. The magnitudes of the implementation errors are £20%, +400 kmol/h and
+0.02, respectively.

Step 2: Identify Degrees of Freedom
Since the process is basically the same as in the first case, the number of degrees of freedom
is the same. Thus, there are four degrees of freedom including the vapour boilup.

Step 3: Implementation of Optimal Operation
Using the same reasoning as for case I, the primary controlled variables are the vapour boilup
(V), the bottom composition (xg) and the liquid reactor holdup (M;). One unconstrained
degree of freedom remains after this, and this will be used to control a self-optimizing
variable. The procedure for finding this variable and the result is given in chapter 5.

25

Step 4: Where to Set the Production Rate
The vapour boilup will be the “gas pedal” of the plant in case II. This is because when the
vapour boilup is determined, it determines the amount of mass going through the plant.

Step 5: Regulatory Control Layer
Again, the liquid holdups in the condenser (My) and reboiler (M) must be controlled by the
bottom flow (B) and recycle (D), respectively. These two control loops must be present in
order to keep the system stable. Therefore, the liquid holdups My and M, are considered as
secondary controlled variables which helps stabilize the process. Also, both My and M, satisty
the rules for a good controlled variable given in chapter 2.2.2. That is, they are both assumed
to be easily measured and easy to control by using the manipulated variables B and D.

Step 6: Supervisory Control Layer
A possible way to control the active constraints is given here. As earlier, the condenser level
and reboiler level could be controlled by the recycle flow D and bottom flow B, respectively.
Since Fy is now a degree of freedom, it can be used to control the reactor holdup (M,),
whereas the bottom product composition (xg) can be controlled by the reactor outflow, F.

Step 7: Optimization Layer
In the case of a change in the active constraint regions, the controlled variables will have to be
switched. Also, the set-points of the current controlled variables may have to be changed
according to the different disturbances. The procedure here follows the same principles for
both cases.

26

5. Simulation Procedure

5.1. Model of the Column and Reactor
A Matlab model of the reactor and distillation column had to be created. These models were
based on column A in Skogestad and Postlethwaite (2007) [20]. The model of the column is a
nonlinear steady-state model and assumes binary separation, constant relative volatility, no
vapour holdup, one feed and two products, constant molar flows, and a total condenser at the
top. All the inputs, outputs and mass balance equations are found in these models. The models
are called colamodSS.m and CSTR _SS model.m, respectively, and are given Appendix A.

5.2. Optimization of the Process
The optimization is a minimization process where the objective is to minimize a cost function.
Thus, a function called fmincon in Matlab was used for the optimization. Fmincon finds the
minimum of a constrained nonlinear multivariable function [21]. As explained before, the
optimization was performed on both the cases studied for the recycle process. The scripts used
for the optimization are named fun.m, nlcon.m and testScriptOpt.m. They are also given in
Appendix A.

These last three scripts have the optimization of both cases included, so it is easy to change
between the two by changing one parameter. Fun.m contains the function that is to be
minimized in each case, while nlcon.m contains the nonlinear equality and inequality
constraints for the optimization problem. Further on, testScriptOpt.m is where the process is
optimized, subject to the specific constraints. Initial values for all the optimization variables
also had to be included here in order for fmincon to solve the minimization problem.

For simplicity, global parameters were used in some of the Matlab scripts, and state variables
x were defined where many of the variables were included. In total there were 30 x-
parameters. The first 22 x-values are the compositions at the 22 distillation column stages,
starting from the bottom. So the 22 stage is the condenser at the top of the column. The 8
last x-values are flows and compositions. This is summarized in the following equations:

x[l - 22(pNT)] = (XB,XZ,X3, ...,XD) (53)
Here, p.NT is the total number of stages, which is equal to 22.
x[23(p.NT + 1) —30(p.NT + 8)] = (L,V,D,B,F, zg, M, F)) (54)

This means that for example the column feed, F, can be written as x(27)=x(p.NT+5). The
same holds for the other variables in equation (54).

27

5.3. Identification of Candidate Controlled Variables for Self-Optimizing
Control

For simplicity and comparison, the candidate controlled variables for self-optimizing control
used in Larsson et al. (2003) will also be used in this project [2]. These are F, L, D, L/D, L/F,
L/V, xp, F/Fy, and D/F,. Some variables are not included in the candidate controlled variables
considered, namely the reactor composition zr and the boilup V. This is because the reactor
composition is dependent on other variables so it is not a candidate for control. The boilup V
is not included because specifying it below its minimum value (optimum) value results in
infeasible operation in case I. In addition, V is an active constraint in case II. The same

candidate controlled variables are studied for case I and case IL.

5.4. Evaluation of the Loss From the Steady-State Model
In order to calculate the loss with self-optimizing control, the candidate controlled variables
and disturbances have to be defined. These are summarized in Table 3 and Table 4 for case I
and case II. The disturbances and implementation errors are deviations from the optimal
values found by the optimization in chapter 5.2.

Table 3: Suggested candidate controlled variables for the two cases.

Candidate Controlled Variables

Case 1 Case 11
F F
L L
D D
L/D L/D
L/F L/F
L/V L/V
XD XD
F/Fy F/Fy
F/Fy F/Fy

Table 4: Disturbances and implementation errors for the two cases.

Disturbances/implementation errors

Case 1 Case 11
Variable Deviation | Variable Deviation
Fo.max +20% V max +20%
ZFr0 +0.1 ZFro +0.1
c +20% c +20%
M, +400 M, +400
XB +0.002 XB +0.002

The choice of candidate controlled variables in Table 3 is justified by looking at the rules for a
good candidate controlled variable in chapter 2.3. The first rules is satisfied because all of the
suggested candidate variables are assumed to be easily measured and controlled if necessary.
Further on, the second and third rule are not explored in detail in this work. However, since

28

Larsson et al. (2003) used the same candidate controlled variables, the two last rules are
assumed to be fulfilled as well [2].

The loss was computed with three different methods as explained in the next paragraphs. It
can be calculated by equation (6). However, it is desired to represent the loss in percentage,
thus the loss was found by equation (55).

:]u(ur d) _]opt(u: d) (55)

Loss * 100%
]Opt(ul d)

5.4.1. Brute Force Method

The loss was calculated by the Brute force method described in chapter 2.3.1. Thus, the loss
for each candidate controlled variable was found by keeping this variable constant at its
optimal value and solving the problem again for different values of the disturbance. This was
computed for all the nine different candidate controlled variables listed in Table 3, and for all
the disturbances and implementation errors mentioned in Table 4. After finding the loss, it
was plotted against the disturbances in order to see which variables had the smallest and
largest losses. The script for calculation of the cost with the Brute Force method is the one
named testScript BF.m, and is given in Appendix A

The plots of the losses were made in LossBFI.m and LossBF2.m for case I and case II,
respectively. These scripts are given in Appendix A

5.4.2. Null Space Method
In order to use the null space method, a measurement vector was needed according to
equation (10). This was defined as follows:

Y = [Xp X¢ X10 X14 X1 Xp LV D B F Fy] (56)

Here, xp is the bottom composition, Xe.10 are the compositions at the different stages in the
column and xp is the recycle composition. The flows L, V, D, B, F, and F0 are the reflux,
vapour boilup, recycle, bottom, column feed, and rector feed flow, respectively. Temperatures
could also be used as measurements instead of the compositions, but in this case the
compositions were used for simplicity. There are 12 measurements in total, and the goal was
to find a measurement combination to be held constant, as in equation (10).

The first step was to find the optimal sensitivity matrix, F. It was found by making a small
step of 1% in the disturbances, followed by calculating the new optimal measurement y. Two
disturbances were present for both case I and case I, namely Fy and zg, and V. and zg,
respectively. This procedure was performed in Matlab, and the script that was used is named
testScript NP_EL.m. This is also given in Appendix A

In addition, the criterion in equation (12) is satisfied for both cases because the number of
measurements is 12, the number of unconstrained DOF is one, and the number of disturbances
is two. This is summarized in the following equations.

29

n, =12 (57)

n, =1 (58)
ng =2 (59)

Thus,
12>21+2=3 (60)

After the measurement combination was found, this was held constant by adding it as an
equality constraint in the Matlab script named nlcon.m. Then the problem was solved with the
measurement combination kept constant for different disturbances. The loss with using the
null space method was found in the same manner as for the Brute force method. The equality
constraint that had to be added to the script nlcon.m is as follows:

Hy—Hyy,=0 (61)

As before, H is the measurement combination matrix, y is the measurement vector, and yy is
the nominal measurement vector without disturbances. Therefore, Hyy is the set point of the
measurement combination ¢. Thus, equation (65) can be written in the following manner:

c—c,=0 (62)

30

5.4.3. Exact Local Method
When adding the implementation and measurement errors, the scaling matrices Wy and W,y
had to be defined. These represent the magnitudes of the disturbances and measurement
errors. For the measurement error, a change of 0.01 was used for the compositions, while a
change of 2% was used for the measured flows. Thus, W,y is a ny x n, matrix with the
diagonal being a vector with the different measurement errors:

W,y = diag[0.01 * ones(1,6) 0.02 * y,(7:12)] (63)

Here, yo is the optimal values of the measurements. Further on, the matrix in equation (63)
will be the same for both cases due to the measurements being equal. The first six elements in
equation (63) are the measurement errors that are present for the compositions, while the last
six elements are the measurements errors that occurs for the flows in the system. Thus, the
magnitude of the measurement error is approximated as 0.01 for compositions (and
temperatures), and as 2% of the optimal values for all flows. This assumption is made because
the exact local method is only valid for small disturbances and measurement errors.

When it comes to the second scaling matrix, Wy, it will be different for the two cases due to
the different disturbances. Since this matrix represents the magnitudes of the disturbances, the
matrix for case 1 will consist of a diagonal with each element equal to 1% of the optimal
value of Fy. In the second case, the diagonal will consist of elements equal to 1% of the
optimal value of Vyax. Thus, for case I the disturbance scaling matrix is as follows:

W, = diag[0.01 * FOs * ones(12,1)] (64)

In the equation above, FOs is the optimal value of the reactor feed, which is equal to 460
kmol/h. For case II, the disturbance scaling matrix becomes

W = diag[0.01 * Vmaxs * ones(12,1)] (65)
Here, Vmaxs is the optimal value of the vapour boilup, which is equal to 1500 kmol/h.

The F matrix is the same as the one in the null space method, but the steady-state gain matrix
G, needs to be computed. As explained in the theory chapter, small steps are made in the
inputs u, and the new optimal y-values are found. The inputs in the first case are L, V and F,
and in the second case they are L, F and F(. Both the bottom flow B and recycle flow D is
utilized for control of the liquid holdups in the reboiler and condenser, and is therefore not
available as inputs.

Further on, the Y matrix is found by applying equation (26), and then the H matrix can be
calculated by using equation (27).

As for the null space method, an equality constraint had to be added to n/con.m. The same
equation as in the null space method holds for the exact local method as well, given in
equation (61) and equation (62).

Again, the script where the exact local method was applied is testScript NP _EL.m, and can be
found in Appendix A.

31

5.5. Evaluation of the Loss from the Dynamic Simulink Model
In order to actually see how the process behaves dynamically, the model in Simulink was
used to find the loss in addition to the loss found from the steady-state model. This was done
with both the null space method and the exact local method. The same equations as before are
valid for finding the H matrix in the two methods, as described in chapter 2.3.

5.5.1. Measurements
One change from the steady-state calculation is that temperature measurements will be used
instead of composition measurements. This is because it is much cheaper, easier and more
normal to use temperatures than compositions as measurements in a real plant. The
temperatures will be measured at the same stages as the compositions were before. Further on,
the same flows as in the steady-state calculations will be measured. Thus, the measurement
matrix y becomes

Y =I[TyTe T1o T14 T1g Too LV D B F Fy] (66)

As explained in the theory chapter, the temperatures at the distillation stages can be calculated
by equation (45). However, the temperatures are already included in the Simulink model of
the process, so it is not necessary to calculate them explicitly. In the beginning, the
simulations were performed with only three measurements (Fo, zry and T¢). According to
equation (12), only three measurements are necessary. That includes two measurements
because of two disturbances, in addition to one measurement because of one remaining
unconstrained degree of freedom u. However, the use of three measurement resulted in
infeasible simulations with high disturbances. Thus, 12 measurements were used after all
since the simulations worked for higher disturbance values.

A new problem that appears now is the controller used in Simulink for calculating the loss. It
needs to be tuned, and the SIMC rules will be used for this. Thus, step tests will be made in
the input L, and the response in the measurement combination ¢ will be plotted against time.
This was done for the input flow L, which is the only unused manipulated variable in the
dynamic model of the process. Thus, the last remaining degree of freedom is used up by L.
This procedure was executed for case I only, with the null space method and the exact local
method. First, the H matrix had to be found for the two methods, which was done in the script
called script np el T.m, given in Appendix A. Because these methods was considered for the
steady-state problem as well, it will not be described in detail here, but the same equations
were used for finding the measurement combination matrices.

32

5.5.2. Controller
The new controller had to be added to the Simulink model, and it is shown in Figure 8. By
manipulating the last unconstrained degree of freedom L, the measurement combination cs-c
will be controlled. Here, y n is the measurement vector, H is the measurement matrix, c is the
measurement combination (c=H*y), and csns is the set-point of the measurement
combination.

On the right side of Figure 8, a block called ‘mux’ combines several input signals into a
vector. As seen in the figure, the input signals Ty, Te, Tio, T4, T1s, T2, L, V, D, B, F and F
are combined into the measurement vector y n. Both the set-point of ¢ (csns) and the actual
value of ¢ are sent to the PI controller, where the signal from the controller is sent to the LT
block (not shown here). Also, the counting of the distillation steps starts at the bottom, which
makes T the reboiler temperature and T, the temperature at the top of the column.

Both the setpoint (csns) and the measurement combination matrix (H) was defined in Matlab
and sent to the Simulink file. The ‘goto’ and ‘from’ blocks were used instead of arrows to
pass signals between several blocks. More specific, the ‘goto’ block passes the block input to
the ‘from’ block. Thus, the ‘sul’ block passes the controller output to the LT block. The LT
block can be seen on the previous Simulink model in Figure 7.

33

[sull 3

Set-point of ¢

Csns

c=Hy

Figure 8: Simulink flow sheet showing the cs-c controller were the input L is used to control the measurement combination csns-c.

L]

<« H

Measurement
combination
tmatrix

Scope

[T1]

[TE]

(T10]

(T14]

[T18]

34

[T22]

L]

V]

(O]

[E]

[F]

[FO]

5.5.3. Step Tests and SIMC Tuning
Further on, the step test discussed above was applied to the process. This is shown in the
Matlab scripts named StepTest NS.m and StepTest EL.m for the two methods. These scripts
are also shown in Appendix A. Then the response in the measurement combination (c) was
plotted against time. Since the L-step was applied at t = 500 minutes, ¢ was plotted in the time
interval t € [500, 510]. This time interval was chosen because the process could be assumed to
follow an integrating process response in this region.

Moving on, the tuning parameter and process time constant T, was set to T.=5 minutes in both
methods. This value was chosen based on the fact that only the steady-state values are
interesting, Thus, it does not matter if the controller is a bit slow. An examination of the step
responses revealed a time delay of just above zero. Thus, the time delay was set to zero for
simplicity. It was assumed to have little effect on the result, which will be explained further in
chapter 6.5.

In order to find the tuning parameters P and I for the PI controller, the SIMC tuning rules
were utilized. These are the ones described in chapter 2.4.

After finding the controller tunings for the L controller, they were used to keep the
measurement combination ¢ constant. Then the loss was found by running the simulation with
the L controller operating and applying disturbances in the feed rate Fy. This was performed
in the same scripts as for the step tests, which are StepTest NS.m and StepTest EL.m.

Further on, the loss by utilizing the null space method and exact local method in Simulink was
plotted against the disturbance in Fy. These plots were made in the Matlab scripts named
LossNSsimulink.m and LossELsimulink.m, respectively.

35

36

6. Results and Discussion

6.1. Optimization Results
The nominal results from the optimization of the reactor with recycle process are presented
here. Table 5 shows the results for case I and case II, where the most important variables are

represented.
Table 5: Nominal optimization results for case I and case II.
Variable Casel: min V Case II: max F,

Feed rate Fo [kmol/h] 460 498
Bottom flow B [kmol/h] 460 498
Reactor outflow F [kmol/h] 958 1113
Vapour boilup V [kmol/h] 1276 1500
Reflux L [kmol/h] 778 885
Recycle/distillate D [kmol/h] 498 615
Recycle composition xp [molA/mol] 0.82 0.83

Bottom composition xg [molA/mol] 0.0105 0.0105
Reactor composition zg [molA/mol] 0.43 0.46
Reactor holdup M; [kmol/h] 2800 2800

Comparing the results in Table 5 with the results from Larsson et al. (2003) confirms that they
are the same, except from a difference of 1 kmol/h in the recycle flow in case I, and a change
of 0.2 kmol/h in the feed rate in case II [2]. As expected, the active constraints on the bottom
composition and reactor holdup are the same in both cases. In both of the cases, there is one
unconstrained degree of freedom left because F is given in case I, while V is given in case IL
It 1s also noted that the vapour boilup V is smaller in case I than case II, which makes sense
because the objective in case | was to minimize the vapour boilup. Correspondingly, the feed
rate Fy is larger in case II than case I because the goal in case II was to maximize the feed
rate. Due to the different cost functions, the other variables except the constraints are slightly
different for the two cases. That is, all the flows have higher values in case II compared to
case I because the feed rate is maximized in case II. This, and the fact that the vapour boilup
1s maximized causes the other flows to increase compared to case 1.

Another observation is that the feed rate Fy and the bottom flow B are exactly the same in
each of the cases. This was also expected due to the total mass balance in equation (38),
which says that the reactor feed rate is always equal to the bottom flow at steady-state. Since
the vapour boilup is a measure of the economic cost in case I, the optimal cost for case I is
equal to V = 1276 kmol/h. Correspondingly, the optimal cost for case II is equal to —Fy = -498
kmol/h because the goal is to maximize the feed rate, and thus minimize the negative feed
rate.

37

6.2. Loss with Brute Force Method
The loss computed with the Brute force method was plotted against the disturbances and
implementation errors described in chapter 5. In the following figures, these plots are given
for the two different cases. The disturbances and implementation errors are in the feed rate,
the feed composition, the candidate controlled variables, the reactor holdup, and in the bottom
composition for case 1. Case II has the same disturbances and implementation errors except of
disturbance in the maximum vapour boilup instead of the reactor feed rate.

6.2.1. Loss for Case I: Given Feed Rate
Figure 9 and Figure 10 show the plots of the candidate controlled variables versus
disturbances in the feed rate Fy. They separately show the graphs for the variables with
relatively large losses and the variables with relatively small losses, respectively. As seen
from the first plot, the variables with the highest losses are F, L, D, L/V, F/F, and D/F,.

Also seen in the figures, the same values of the axes as in Larsson et al. (2003) were used in
order to compare the results [2]. In addition, the same candidate variables were plotted in each
of the plots. It is not surprising that disturbances in Fy produce relatively large economic
losses, due to the fact that it is the most important disturbances of the ones considered (F and
Zro). For low values of Fy, the highest loss occurs for the reflux L, followed by the column
feed (F), the recycle (D), the ratios F/FO and D/F0, whereas the smallest loss is for L/V. On
the other hand, large values of Fy give the highest loss for F as a self-optimizing variable,
followed by D, F/Fy, D/Fy, L, and L/V. Thus, the ratio L/V used for self-optimizing control
yields the smallest loss of the variables with the relatively large losses.

Looking at the plot in Figure 10, it is observed that L/F, L/D and xp all have much smaller
losses than the previous variables. This is because the magnitude on the y-axis goes up to 10%
on the first plot, and up to only 0.5% in the second plot. This indicates that one of the
variables L/F, L/D or xp should be controlled and used as a self-optimizing variable for
disturbances in the feed rate.

Unlike the first figure, the same candidate variable has the smallest and largest loss for all
values of the disturbance F,. Self-optimizing control of L/F results in the smallest loss for the
entire disturbance region, followed by the recycle composition xp and the ratio L/D.

38

Case 1-Large loss

1[] T T T "
— 1
]
8 D .
LA 'I
EEEEEER Fln'F[] _'
—— !
D/F0 ;
T P
< !
w I
3 I
- 1 i
F]
F)
I
F]
!
r’ .
/
.
e
500 550

F, [kmol/h]

Figure 9: Loss due to disturbance in F, for case I, where the variables with large losses are
plotted against the disturbance.

Case 1- Small loss

U.E T T T
*n
L/D
04| — LF 4
— 03F i
&
w
7]
o
.| 02k
01
[——————
0 L {
400 480 500 550
Fn [kmol/h]

Figure 10: Loss due to disturbance in F, for case I, where the variables with small losses are
plotted against the disturbance.

39

For disturbance in the feed composition, the resulting plots are shown in Figure 11 and Figure
12. As for a disturbance in the feed rate, the variables with the largest losses are F, L, D, L/V,
F/Fy and D/F; here as well. Thus, L/F, L/D and xp have the smallest losses when they are kept
constant at their optimal point. Again this indicates that one of the latter candidate CVs should
be used as a self-optimizing variable in order to use the last unconstrained degree of freedom.
Also noted is that L/F has the smallest loss of the three variables, followed by xp and L/D.
This is the same as for a disturbance in the feed rate, discussed above.

Another observation from the discussed plots is that the losses are generally larger from a
disturbance in the feed rate than for a disturbance in the feed composition. This makes sense
because the feed rate Fy was expected to be the most important disturbance of the two. The
reason why flow disturbances gives higher loss than composition disturbances in the feed may
be because flow disturbances has a higher effect on the economics of the plant. That makes
sense because the cost function to be minimized is the vapour boilup rate. So changes in the
feed or production rate changes the cost value as well. Since the feed rate is considered as the
throughput manipulator, it is logical to say that changes in the feed rate causes changes in the
vapour boilup as well.

Further on, comparing the four first plots with the ones in Larsson et al. (2003) shows good
correspondence between the plots [2]. This is probably because they were all based on a
steady-state model of the recycle process.

Unlike the first plot, the losses in Figure 11 are very similar, at least for a feed composition of
Zro < 0.95. For compositions of 0.95 < zgy < 1, the loss for the flow ratios F/F, and D/F,
increases compared to the other variables. The same trend as in Figure 10 is observed in
Figure 12, with the main difference being the magnitude of the losses.

40

Case 1-Large loss

10 , , |
—F
— |
D
o L
sennnns FE(Q
———- DIFO
= -
g
w
w
o
-l 4L |
2_ -
o
-
'—#"f
P o R
0 il B B S e s
0.8 0.85 049 0.95 1

Zgo [

Figure 11: Loss due to disturbance in zg, for case I, where the variables with large losses are
plotted against the disturbance.

Case 1- Small loss

U.E T T T
*n
L/D
04F — L/F (]
= 03F _
&
w
w
[a]
= 02t .
01 .
U \ I /
0.8 0.85 09 0.95 1

zZ, [kmol/h]

Figure 12: Loss due to disturbance in zg, for case I, where the variables with small losses are
plotted against the disturbance.

41

Three types of implementation errors were considered, namely implementation error in the
candidate controlled variables, in the reactor holdup M;, and the bottom composition xz. The
resulting losses due to these errors are plotted in the following figures.

Losses due to implementation error in the controlled variables are shown in Figure 13 and
Figure 14 for large and small losses, respectively. As before, F, L, D, L/V, F/F, and D/F as
controlled variables results in the biggest losses. The largest losses of these are the ones
coming from F, F/Fy and L/V. Also, Figure 13 matches the results from Larsson et al. (2003).
However, when the variables with small losses are considered, there is something strange with
the loss from xp. Comparing Figure 14 with the results in Larsson et al. (2003) gives some
differences. The losses from using L/F and L/D as a self-optimizing variable are the same, but
not the one from the recycle composition xp. According to Larsson et al. (2003), the smallest
loss should be produced by the recycle composition when comparing it with L/D and L/F, but
in this case xp has the largest loss of the three mentioned variables.

42

Case 1-Large loss

10 T T
—
—
gl D i
L
semeees FEQ
=== [}/F(
L | E_
5
w
W
o
- 4F
7 M-
'\\\
L
h\‘::_‘_‘*_b_*
0

0.9

Implementation error [%)]

Figure 13: Loss due to implementation error in the candidate controlled variables for case I,
where the variables with large losses are plotted against the implementation error. The
implementation error goes from 80%-120% of the nominal value.

Case 1- Small loss
U.E T T T T

LD
0.4 - LiF

=
L

Loss [Vo]

=
[

01

0.8 0.9 1 1.1 1.2
Implementation error [%)]

Figure 14: Loss due to implementation error in the candidate controlled variables for case I,
where the variables with small losses are plotted against the implementation error. The
implementation error goes from 80%-120% of the nominal value.

43

Moving on to implementation error in the reactor holdup in Figure 15, it is seen that D, F,
L/V, F/Fy and D/F, have relatively higher losses than the remaining variables. Also, it is
infeasible to have a liquid holdup in the reactor above 2800 kmol/h. This is because the
maximum possible liquid holdup in the reactor is 2800 kmol/h, as found in Larsson et al.

(2003) [2]. There was therefore no point in doing simulations or optimization with M; > 2800
kmol/h.

As a consequence of this result, implementation errors in M; are not very dangerous for the
variables with small losses. It should of course be avoided if possible.

Comparing Figure 15 with the corresponding figure in Larsson et al. (2003) reveals some
differences. The most prominent is the differences in magnitude of the losses. In the figure
made here, the magnitude of the loss is from 0-10%, while it goes from 0-100% in Larsson et
al. (2003) [2]. Since the previous comparisons of loss plots matched each other, the method
for calculating the losses are most likely the same. Thus, there must be something else causing

the difference. One suggestion regards the reactor models. Maybe there exist some differences
in the Matlab model of the reactor which influences the loss here.

Case1

1[] | T T

=== [JJF(

L/D
— LF

Loss [%a]

i
1
]
]
]
]
1
1
1
1
B 1
|
1
L]
1
1
1
1
1}

1 1
2400 2600 2800 3000
Implementation error - Mr [kmol]

1
3200

Figure 15: Loss due to implementation error in the reactor holdup (M,) for case I, where all the
candidate controlled variables are plotted against M,. The process becomes infeasible when
M,>2800 kmol/h, so the loss is only computed for values below this.

44

The last implementation error considered was in the bottom composition xg, and the loss from
this is plotted in Figure 16. Here all the candidate variables have similar losses for different
values of the implementation error. As for the previous figure, the process becomes infeasible
for xp-values above 0.0105 because this is the desired value of the bottom composition, and
there is no point in over-purifying the product.

The same observation is made here as for implementation error in the reactor holdup. That is,
the magnitude of the loss is much smaller than found by Larsson et al. (2003). The magnitude
in Figure 16 goes up to 0.5%, while in Larsson et al. (2003) it goes up to 10%.

Case1
05 T T
—
——
D
04F v
....... F/FO
=== /]
= 03F X H
= L/D
g —— | F
o
| 02k]
01F .
0 g |
0.009 0.01 001 0012

Implementation error - x_ []

Figure 16: Loss due to implementation error in the reactor holdup (xg) for case I, where all the
candidate controlled variables are plotted against xg. The process becomes infeasible when
xp>0.0105, so the loss is only computed for values below this.

45

6.2.2. Loss for Case II: Maximize the Feed Rate

Figure 17 and Figure 18 show the plots of the candidate controlled variables versus
disturbances in the vapour boilup V.. They separately show the graphs for the variables
with relatively large losses and the variables with relatively small losses, respectively. As seen

from the first of the plots, the candidate variables with the highest losses are F, L, D, F/F and
D/F,.

Case 2 -Large loss

1.5

= === DIF0

Loss [Yo]

0.5

[y
.y
-
-
'Il.--.
-
bl

0
1200 1400 1600 1800
V__ [kmolih]
max

Figure 17: Loss due to disturbance in V,,, for case II, where the variables with large losses are
plotted against the disturbance.

Looking at the plot in Figure 18, it is observed that L/F, L/D, L/V and xp all have much
smaller losses than the previous variables. This is seen because the magnitude on the y-axis is
up to 2% on the first plot, and goes up to only 0.2% in the second plot. This indicates that one
of the variables L/F, L/D, L/V or xp should be controlled and used as a self-optimizing
variable for disturbances in the vapour boilup. It is also observed that the flow ratio L/F gives
the lowest loss overall in both of the plots. Also, the yellow line for L/D cannot be seen in the

graph because it has the same losses for all values of V.. That means it is hidden behind the
turquoise line that is L/V.

46

Case 2 - Small loss

0.2 T T
*n
L/D
| F
015+ LAV
)
-
w 01 -
w
o
-l
005+ .
0 é
1200 1400 1600 1800

V___ [kmolih]
max

Figure 18: Loss due to disturbance in V,,, for case II, where the variables with small losses are
plotted against the disturbance. L/D has the same loss as L/V, that is way it cannot be seen.

For disturbances in the feed composition, the resulting plots are shown in Figure 19 and
Figure 20. As for a disturbance in the vapour boilup, the variables with the largest losses are
F, L, D, F/Fy and D/F,. Thus, L/F, L/D, L/V and xp have the smallest losses when they are
kept constant at their optimal point. Again this indicates that one of the latter candidate CVs
should be used as a self-optimizing variable in order to use the last unconstrained degree of
freedom. Also noted is that L/F represents the smallest loss of the three variables, followed by
xp, L/D and L/V. This is true also for a disturbance in the vapour boilup.

Another observation from the discussed plots is that the losses are generally larger from a
disturbance in the vapour boilup than for a disturbance in the feed composition. This makes
sense because the vapour boilup V was expected to be the most important disturbance for the
case of maximum production.

Further on, comparing the four first plots with the ones in Larsson et al. (2003) shows good
correspondence between the plots [2]. This is probably because they were all based on a
steady-state model of the recycle process. The reason why flow disturbances gives higher loss
than composition disturbances in the feed may be because flow disturbances has a higher
effect on the economics of the plant. That makes sense because the cost function to be
minimized is the negative feed rate. So changes in the vapour boilup rate changes the cost
value as well. Due to the fact that V is assumed to be the gas pedal of the process, it is logical
that changes in V will cause changes in the feed rate and production rate.

47

Case 2 - Large loss

2 T T T
—F
—
D
R F/FO |
: === D/FO
H=)
&
w 1r .
w
Q
-
051 .
-"—-..___.-___.-_-—---_‘__-----_-_l_-_-_--'-'
0.8 0.85 09 0.95 1

Figure 19: Loss due to disturbance in zg, for case 11, where the variables with large losses are
plotted against the disturbance.

Case 2 - Small loss

0.2 T T T
*o
L/D
—
015+ L 4
=
2
w 01fF .
7]
[a]
.|
.05 .
0 b-—-—h—— ' ———=-_-——-_-

0.8 0.85 0.9 0.95 1
zZ, [kmol/h]

Figure 20: Loss due to disturbance in zg, for case I1, where the variables with small losses are
plotted against the disturbance. L/V and L/D has the same loss, therefore only L/V is visible.

48

Three types of implementation errors were considered, namely implementation error in the
candidate controlled variables, in the reactor holdup M; and the bottom composition xg. The
resulting losses due to these errors are plotted in the following figures. Losses due to
implementation error in the controlled variables are shown in Figure 21 and Figure 22 for
large and small losses, respectively. As before, F, L, D, L/V, F/F, and D/F, as controlled
variables results in the biggest losses. The largest of these losses are the ones resulting from F,
F/Fy and L/V. Also, Figure 21 matches the results from Larsson et al. (2003).

Case 2 -Large loss

2 T T
—F
—
D
151 LA _
lllllll Fll'FU
= === D/FO
S
g |
o h
Y
- A
3
%
\\
05 L%
0
0.8

Implementation error [%)]

Figure 21: Loss due to implementation error in the candidate controlled variables for case II,
where the variables with large losses are plotted as a function of the implementation error. The
implementation error goes from 80%-120% of the nominal value.

However, when the variables with small losses are considered, there is something strange with
the loss coming from keeping xp constant at its optimal value. Comparing Figure 22 with the
results in Larsson et al. (2003) gives some differences. The losses from using L/F and L/D as
a self-optimizing variable are the same, but not the one from the recycle composition Xp.
According to Larsson et al. (2003), the smallest loss should be produced by the recycle
composition when comparing it with L/D and L/F, but in this case xp has the largest loss of
the three mentioned variables. This is the same phenomenon that occurred in case I as
discussed above. One reason for this can be errors in the calculation of the loss only for xp,
but not for the other variables.

49

Case 2- Small loss

02 T ‘ T T T
*n
LD
— | (F
0151 -
)
2
w 01F .
W
o]
1
0.05F -
]
0.8 0.9 1 1.1 1.2

Implementation error [%)]

Figure 22: Loss due to implementation error in the candidate controlled variables for case II,
where the variables with small losses are plotted as a function of the implementation error. The
implementation error goes from 80%-120% of the nominal value.

50

Moving on to implementation error in the reactor holdup in Figure 23, it is seen that the
candidate controlled variables differ in the magnitudes of the loss. Also, it is infeasible to

have a liquid holdup in the reactor above 2800 kmol/h. This is due to the maximum possible
reactor holdup, which is equal to 2800 kmol/h.

3200

Case 2
0.1 I T T T
1 —_—
] F
1 e |
“ D
0.08 - 1 v
l‘ F/FD
L) -
Y D/FO
s 0-06 tt o H
2 ' L/D
2 \ ——UF
o (Y
= p04t 1
(Y
LY
Y
LY
\\
0.02 .
kY
\\
\\
0 T '
2400 2600 2800 3000
Implementation error - Mr [kmol]

Figure 23: Loss due to implementation error in the reactor holdup (M,) for case II, where all the
candidate controlled variables are plotted against M,. The process becomes infeasible when
M,>2800 kmol/h, so the loss is only computed for values below this.

51

The last considered implementation error was in the bottom composition xg. Here all the
candidate variables have similar losses for different values of the implementation error, as
shown in Figure 24. As for the previous figure, the process becomes infeasible for xg-values
above 0.0105 because it is not desired to purify the product above this value.

For both the implementation error in reactor holdup and bottom composition, the losses are
relatively smaller than the ones found in Larsson et al. (2003).

Case 2
0.1 . .
—F
— |
D
0.08} Ly
....... F/FO0
- [)/F(
= 0-06 % H
& L/D
o e |
o
= o4t .
0.02} .
U 1
0.009 0.01 0.011 0.012

Implementation error - x, []

Figure 24: Loss due to implementation error in the reactor holdup (xg) for case II, where all the
candidate controlled variables are plotted against xg. The process becomes infeasible when
xp>0.0105, so the loss is only computed for values below this.

52

6.3. Null Space Method Results
The loss resulting from the null space method was plotted against the main disturbance for
case I and case II in Figure 25 and Figure 26, respectively.

)X 107 Null Space Method - Case 1

16}]
— 1'2 B -
=
w
w
[=]
— 08t |

04 i

400 450 500 550
F, [kmol/h]

Figure 25: Loss with the null space method for case I and disturbance in F,.

For the first case, the loss with the null space method is significantly smaller than the losses
computed with the Brute force method in the previous chapter. As seen in Figure 25, the
magnitude of the loss is on the order of 107, compared to 107 for the smallest loss with
disturbance in Fy found with the Brute force method. This is as expected because the null
space method is a more accurate method than the Brute force method. This is probably mostly
due to the measurement combination being kept constant instead of a single measurement.
The resulting measurement combination c that was kept constant in this case is as follows:

¢ = —0.3377y, + 0.3343y, + 1.1328 * 10~*y; + 1.5339
x10™%y, + 1.5067 * 10~ %y + 7.0341 * 10~*y,
+0.7742y, — 0.1838y; + 0.0419y,

— 0.2285y,, — 0.1866y,; — 0.2285y,

(67)

The measurements y;-y;, make up the measurement vector y which is given in chapter 5.4.2.

53

)X 107 Null Space Method - Case 2

16 .

Loss [Yo]

=
[==]
T
1

0.4} .

0 .
1200 1400 1600 1800
V___ [kmolih]

max

Figure 26: Loss with the null space method for case II and disturbance in V,,,.

As for case I, the null space method gives smaller loss than the Brute force method in case II
as well. In the Brute force method, the smallest loss (for L/F) was also on the order of 107,
but it was still a bit higher than in Figure 26. This again confirms that the null space method is
better and more accurate than the Brute force method. Also, the measurement combination in
this case is given here:

c=—43161 %10y, — 2.1256 * 10~ *y, — 8.6716 = 108y,
—1.1281 % 10~ 7y, + 1.0824 * 107y + y¢
+6.0919 * 10-5y, — 5.7972 10 5y, — 1.1889 (68)
* 107*yy + 1.1358 * 107 %y,
— 53098 10~*y;; + 1.1358 * 10 %y,

The graph in Figure 26 is a bit angular, and it could have been smoother with more data
points, but the shape of the plot is still visible enough.

54

6.4. Exact Local Method Results
The loss resulting from the exact local method was plotted against the main disturbance in
case I and case II in Figure 27 and Figure 28, respectively.

Exact Local Method - Case 1
1 T T T

0.8

— 06]

=

w

w

[=]

-1 04 i
0.2 .

400 450 500 550
F, [kmol/h]

Figure 27: Loss with the exact local method for case I and disturbance in F,.

Straight away, it is observed that the loss in case I with the exact local method is actually
larger than the loss with null space method and the lowest loss found with the Brute force
method. It was expected that the exact local method would give the lowest losses of all the
methods since this is supposed to be the most accurate of the three. One reason why this have
happened may be the choice of the magnitude of the disturbances and measurement errors in
the calculation of the measurement combination matrix. Perhaps the scaling matrixes should
have been changed.

Also, the measurement combination in this case is given here:

c = 7.8452 x 10713y, + 3.3470 = 1012y, + 9.7345 x 10~ 1y,
+ 1.1286 * 10~ %y + 1.3057 = 10~ %y, + 1.6679
* 107%y, + 1.3430 * 108y — 1.6545 * 10~ %y,
+ 7.4312 * 10~ %y, , — 1.6545 = 10~ %y,

(69)

55

Exact Local Method - Case 2
0.2 . .

0.15

Loss [%]

0.05

U | |
1200 1400 1600 1800

V__ [kmol/h]
max

Figure 28: Loss with the exact local method for case II and disturbance in V.

As for case I, the loss with the exact local method in case II is larger than for the two previous
methods of computing the loss. It is assumed that the same reason could be present in this
case. Also, the measurement combination in this case is given here:

c=6.8564 * 10713y, + 2.9301 = 10~ 2y, + 1.7713 » 10~ 10y,
+ 1.9822 * 10 % + 2.1331 * 10~ %y, + 3.5457
* 107 %y, — 3.5457 * 10~ %y, (70)
—4.4985 * 10~ %y, — 3.5502 * 10~ %y,
— 4.4985 = 107 %,

56

6.5. Results from Dynamic Simulations

As explained above, dynamic simulations were performed for case I, followed by calculation
of the economic losses due to the null space and exact local method. The results from this are
presented in the two next chapters. Also, for comparison with the steady-state results, the
optimal values of the process variables were found from the Simulink model as well. They are

presented in Table 6 below.

Table 6: Optimal results with the dynamic Simulink model.

Variable Case I: min. V

Feed rate Fo [kmol/h] 460
Bottom flow B [kmol/h] 460
Reactor outflow F [kmol/h] 958
Vapour boilup V [kmol/h] 1276
Reflux L [kmol/h] 778
Recycle/distillate D [kmol/h] 498
Recycle composition xp [molA/mol] 0.81

Bottom composition xg [molA/mol] 0.0105
Reactor composition zp [molA/mol] 0.43
Reactor holdup M:; [kmol/h] 2800

Comparison with the steady-state optimization results confirm that the results are the same for

case I with the two models.

57

6.5.1. Null Space Method
Figure 29 shows the response in ¢ over time when a step is made in the reflux flow L. As
before, c is the measurement combination c=H*y. In addition, the step in L was occurring at
t=500 minutes, and the magnitude of the step was 10% of the nominal value of L.

Step Testin L - Null Space Method

33595

3359

335.85

3358

c[-]

33575

3357

335.85

335_6 | | | |
500 502 504 506 508 510

Time [min]

Figure 29: Response in measurement combination c to a step in the reflux L.

Further on, the response in Figure 29 is not perfectly linear. However, it was approximated to
be almost linear as an integrating process. Thus, the SIMC rules for an integrating process
were applied. The resulting parameters and controller tunings are given in Table 7.

Table 7: SIMC tuning results for the null space method.

Parameter Value
k' [min”'] -0.0183
6 [min] 0
Tc [min] 5
Ty [min] 20
Kc[-] -10.9
P [-] -10.9
I [min™] -0.55

58

In the table above, k’ is the response gain found by examining the plot in Figure 29. This
method was explained in chapter 2.4. Further on, 0 is the time delay, t. is the closed-loop time
constant, Tj is the integral time, K, is the controller gain, and P and I are the controller tunings
used in Simulink. The two latter parameters can also be called the proportional action and
integral action.

Since the time delay was measured to be very small, it was set to be equal to zero for
simplicity. This assumption makes sense because the time delay would not have affected the
results too much. A look at equation (33) confirms this. Here, the controller gain (K.) is a
function of k’, t. and 6. However, the closed-loop time constant is equal to 5, and is thus
much larger than the time delay would have been. The time delay had a value of around 0.05-
0.01. Further on, the controller gain is found by dividing some value by the sum of t. and 0.
That indicates that the time delay in this case will have a very small effect on the controller
gain.

A high value of 1. gives a slow controller, because the controller gain decreases by increasing
T.. Due to the fact that only the steady-state values of the cost are interesting in this project, it
is not important to have a very fast controller. It can be very slow and still move to the steady-
state point in the end. That is way the closed-loop time constant was chosen to be relatively
high (t. = 9).

The two last parameters are the controller tuning parameters P and I, also called the
proportional and integral gain. These are applied in the Simulink model of the process when L
is used to control c - c. They are negative in this case because the step response in Figure 29
has a negative slope. This results in a negative value of k’, and thus a negative value of K., P
and 1.

Due to the assumption of an integrating process, the integral time was given by 4(t.+0).
Examination of equation (34) confirms this. In an integrating process, t; goes to infinity and is
therefore the largest of the two possibilities.

59

Figure 30 shows the loss imposed by the null space method, with disturbance in the feed rate,

Fo. However, the loss values were originally negative, but the absolute values were calculated
in order to better see the graph.

Null Space Method

Loss [%]

U | | |
400 430 460 430 520 550

F, [kmol/h]

Figure 30: Loss with the null space method for several values of the feed rate, F,.

Negative losses indicate that the operational cost is lower with the null space method than
with the optimal values. Of course, this does not make sense. The optimal values of the
vapour boilup should have been smaller than the ones computed with the null space method.
Both the optimal cost and the cost with the null space method were calculated from the
dynamic Simulink model. In addition, it was ensured that the process had reached steady-state
in both cases. Apparently, either the calculation of the optimal loss or the calculation of the
loss from the null space method contains some errors.

60

6.5.2. Exact Local Method
Figure 31 shows the response in ¢ over time when a step is made in the reflux flow L for the
exact local method. As before, c is the measurement combination c=H*y. In addition, the step
in L was occurring at t=500 minutes, and the magnitude was 10% of the nominal value of L.

w10 Step Testin L - Exact Local Method
-1.022 . .

-1.023

-1.024

-1.025

-1.026

¢

-1.027

-1.023

-1.029 | .

1 | 1 |
500 502 504 506 508 510
Time [min]

Figure 31: Response in measurement combination c to a step in the reflux L.

Further on, the response in Figure 31 is not perfectly linear. However, it was assumed to be
almost linear as an integrating process. Thus, the SIMC rules for an integrating process were
applied. The resulting parameters and controller tunings are given in Table 8.

Table 8: SIMC tuning results for the exact local method.

Parameter Value
k' [min™] 5,99
0 [min] 0
T [min] 5
Ty [min] 20
K. [-] 0.0334

P [-] 0.0334
I [min™] 0.0017

61

As in the previous chapter, k’ is the response gain, 0 is the time delay, t. is the closed-loop
time constant, T; is the integral time, K, is the controller gain, P is the proportional gain and I
is the integral part of the gain. The reasoning for choosing the closed-loop time constant and
the method for finding k’ is still the same as for the null space method discussed above.

Figure 32 shows the loss by using the exact local method to control the measurement
combination. Unfortunately, the graph does not look as expected. It should have been a curve
similar to the ones found with the Brute force method. In this plot the loss increases all the
time as Fy increases. Ideally, the loss would be zero at the optimal feed rate, which is Fy = 460
kmol/h. Below and above this value the loss was expected to increase as the feed rate moves
away from the optimal value.

Exact Local Method
2[] T T T T

16 E

Loss [Ya]
(]

U 1 | 1 |
400 430 460 490 520 550
F, [kmol/h]

Figure 32: Loss with the exact local method for several values of the feed rate, F,.

In summary, there are probably some errors in the calculation of the losses with the dynamic
Simulink model. This should be investigated further, as will be discussed in the discussion
part in chapter 7. Another reason why the results are not as expected, may be the tuning of the
controller. The assumption of an integrating process for the tuning part may not be valid.
Perhaps the process should have been tuned as a non-integrating first-order process instead of
an integrating process.

62

6.6. Proposed Control Structures
Control structures for case I and case II will be suggested in the following sections, based on
the simulation results. This is proposed subject to the assumption that the computed losses
with self-optimizing control are acceptable.

6.6.1. Case I: Given Feed Rate

As mentioned earlier, the conventional way of designing the control structure for this case is
to have maximum reactor holdup (M;), constant bottom product composition (xg) and
constant set-point for the recycle composition (xp). This control structure has very small
losses with self-optimizing control of xp, but it can be too expensive to have online
measurements of xp [2]. Also, two-point distillation composition control is already known to
have difficult control problems due to interactions between xg and xp. The loss plots from the
simulations show that L/F had the smallest losses in case I, followed by xp and L/D. Thus,
L/F has the best self-optimizing properties in terms of the loss imposed by keeping the self-
optimizing variable constant at its optimal point. Control of L/F is a relatively simple control
problem, and L/F should therefore be chosen as the self-optimizing variable in case 1. Figure
33 shows the proposed control structure.

—— Mol K
E F

xlB,s

AN

- V ;%G

Mp,s =L ¥

Figure 33: Control structure design for case I with given feed rate F [2].

63

As seen in the figure above, the following single control loops are included:
M, o F
Mg < D
M,, & B
Xp <V

L/F e L

All the active constraints (M;, xg, and Fy) should be controlled according to the principle of
always controlling active constraints. Since all the pairings should be close, M, is controlled
by the column feed F, xp is controlled by the vapour boilup V, and Fy is set by the operator.
Also the liquid levels in the reboiler and condenser need to be controlled by the bottom flow
B and recycle D, respectively. This is chosen because they are close to each other. That is, the
reboiler holdup is close to the bottom flow and the condenser level is close to the recycle
flow. After this, the only remaining manipulated variable is the reflux flow L. Therefore, the
reflux L will be used to control the variable L/F by measuring both F and L. This is a version
of ratio control. All the degrees of freedom are now used and the control structure can be
applied. It is already seen in chapter 6.2 that this control structure produces small losses

compared to the optimal operation.

64

(71)
(72)
(73)
(74)

(75)

6.6.2. Case II: Maximize Production
Figure 34 shows the suggested control structure for case II. As for the previous case, L/F will
be used as a self-optimizing variable and controlled instead of xp due to the simpler control
problem this causes. Further on, the variables with the smallest loss in case Il were L/F, xp,
L/V and L/D, in increasing order. Therefore, it makes sense to control L/F instead of xp in
terms of economic loss.

E At

Mc,a"“'E"“: L
D ¥ i
(L) =RGr--
M
F.8)
:"é v :
LC3 = '
™ M., F .]
—EE—' A—>B ¥ ‘ Bss
F “I"s T f’!‘
0 [' Y. [[AXC
%
Y
Mp g =LCH1

Figure 34: Control structure design for case II with maximum vapour boilup V. [2].

As explained for the first case, the condenser holdup My will be controlled by the recycle D
and the reboiler level M, will be controlled by the bottom flow B. Since the vapour boilup
now is constrained, the product composition xg can be controlled by the column feed F
instead. Further on, the self-optimizing variable L/F will still be controlled by the reflux L,
because this is simple compared to other configurations. This leaves the reactor feed F as the
last remaining degree of freedom. It should therefore be used to control the reactor holdup M;.

65

All the single control loops are summarized in the following equations:

M, & F, (76)
My & D (77)
M, & B (78)
xp & F (79)
L/F o L (80)

In the two control structure figures discussed above, LC stands for level control, RC stands
for ratio control and XC means composition control. Further on, M, (L/F)s, My s and xp s are
the set-points for the condenser holdup, the ratio between L and F, the reboiler holdup and the
bottom composition, respectively.

66

7. Discussion

7.1. Modelling
Most of the work in this project was done in the programming language called Matlab. Quite
a lot of time was spent trying and failing with getting the codes to work as wanted. For
example, it took a while to get the correct optimization values with the reactor and column
model. Since the results were to be compared with existing literature, the model was changed
until the same optimization results were obtained.

Regarding the different plots made in Matlab, a function called spline was used for generating
smoother plots. This function includes cubic spline data interpolation for any data points.
Some of the plots were very angular without utilization of the cubic spline interpolation
applied. On the other hand, increasing the number of data points would have given smoother
plots in the first case. But this would also have increased the computation time in Matlab, and
most of the trends were obvious enough without increasing the number of points.

7.2. Simulation

Some dynamic simulations were also performed, as described in the simulation procedure
chapter. For this part, the Simulink model was already available from one of the exercises in
the subject “Advanced Process Control” [19]. The intention from the beginning was to only
consider steady-state operation, but by having a large enough simulation time, the steady-state
was reached. Also, some other problems occurred here. First of all, the dynamic simulations
did not give the same optimal values of the operational cost as the steady-state model did
when applying disturbances. Secondly, the dynamic model gave a lower cost with the null
space method than the optimal cost value.

7.3. Further Work
The work in this thesis focused on a simple process with two components and a simple plant
with only one reactor and a distillation column. Since the reality is usually more complex than
this, this procedure should be applied to a more complicated process, for example one with
three components and a purge included in the plant. This could maybe show how Sigurd’s
procedure could be utilized for large-scale plants in addition to small, simple processes.

As explained earlier, compositions were used in the measurement vector for the null space
and exact local method in the steady-state calculations. However, they were replaced by
temperature measurements in the dynamic simulations because that was more realistic and
easier in a real plant. Temperatures could have been utilized as measurements also in the
steady-state part by applying equation (45). However, the steady-state simulations were
already finished when this was discovered. Thus, the composition measurements were still
used. The results may not have been that different anyway. Thus, future work could include
using temperature measurements also in the steady-state calculations for the null space
method and exact local method. In addition, the losses with the null space and exact local
method should be found again with the dynamic model to get more realistic results.

Further on, the number of candidate controlled variables could be reduced by plotting the cost
J as a function of each candidate CV and looking at the shape of the graph. By using the rules

67

in chapter 2.3, bad candidate CVs could be eliminated and this could have reduced the
computation time. There is also another way to select self-optimizing variables, called the
minimum singular value rule [7]. This method was not considered in this work, but could be
used for eliminating infeasible controlled variables.

The problem regarding switching of active constraints regions can arise when processes are
disturbed above a certain point. Other active constraints regions probably exist for the process
studied here as well. This could be one of the things to study further by disturbing the process
enough. In addition, in order for a plant to handle case I and case II at the same time, model
predictive control (MPC) could be implemented. By using MPC, it would be relatively easy to
switch between the two cases because one of the advantages of MPC is fast switching of set-
points. That would also cause the need for a dynamic model of the process.

In the step test results, the process was assumed as an integrating process. However, the
responses were not entirely linear, so SIMC tuning with a non-integrating process could
improve the tuning parameters and maybe result in more reliable loss plots. Since case II was
found to be of more industrial relevance, dynamic simulations should be applied there as well.

One other thing to consider is the prices of the different streams in the process. If for example
the distillation costs were not neglected, this would have given a different cost function in the
two cases. That could give a case where the prices could be considered as disturbances as
well.

68

8. Conclusions

The objective of this work was to apply Skogestad’s procedure for plantwide control on a
given process plant. Another goal was to find the self-optimizing variables for the process in
two different cases.

A simple reactor and distillation column process with a recycle stream has been studied in this
master’s thesis. A two component system was assumed for the plant due to simplicity and
relevance to existing literature. Two cases were studied, one with a given feed rate Fy, and the
other one where the vapour boilup V was given. The cost in case I was found to be equal to
the amount of vapour boilup in the plant, as seen in equation (46) - (48). In the second case,
the cost function to be minimized was found to be equal to the negative value of the feed rate,
Fo. This is derived in equation (52).

Optimization of the process was one of the first tasks, in order to find the nominal optimal
values of all the variables, in addition to active constraints. The optimization results are given
in Table 5 for case I and case II. They show the active constraints and the values for some
other flows and compositions in the plant. It is seen that the two active constraints hold for
both case I and II. These are the bottom composition (x3<0.0105 mol A/mol) and the
maximum reactor holdup (M;<2800 kmol/h). In case I, the optimal vapour boilup was equal to
V=1276 kmol/h. For case II, the optimal reactor feed rate turned out to be Fy;=498 kmol/h.

There was one unconstrained degree of freedom left for self-optimizing control in both cases.
Nine different candidate controlled variables were suggested, namely F, L, D, L/D, L/F, L/V,
xp, F/FO and D/F0. The Brute force method was used to calculate the cost by keeping each
and one of these candidate CVs constant at a time while applying different disturbances. Then
the economic loss was calculated by using equation (55). L/F, xp and L/D were found to have
the smallest losses in both cases for most of the disturbances and implementation errors. The
variable with the smallest loss of the three was L/F, and was thus chosen as the self-
optimizing variable for the plant in both cases. This was also because a two-point composition
control with xp as self-optimizing variable can be difficult and expensive.

Two other methods were used to find the economic loss, the null space method and the exact
local method. A measurement combination (c) was found and kept constant instead of a single
variable. The null space method resulted in significantly smaller losses with disturbance in Fy
for both case I and II. This is shown in Figure 25 and Figure 26. The exact local method did
not give smaller losses than the null space method, so this method should be investigated
further.

Also, the dynamic simulations gave the same nominal optimal results as for the steady-state
model. This is seen in Table 6. Step tests were made in the reflux L, followed by plotting the
response in the measurement combination c¢. Tuning parameters were found from the step test
responses by using the SIMC tuning rules. These responses are shown in Figure 29 and Figure
31, and the tuning results are given in Table 7 and Table 8.

69

The proposed control structures for the two cases are sketched in Figure 33 and Figure 34.
Also, the pairings between controlled variables and manipulated variables are listed in the
equations (71) - (80).

It is recommended to investigate the null space method and exact local method further,
especially in the dynamic model since this did not give the expected loss plots. Another
possibility is to implement cascade control for the bottom composition in order to get faster
and better control.

70

9. Nomenclature

9.1. Listof Symbols

Symbol Unit Description

A - Component A

B - Component B

B kmol/h Bottom rate

C - Candidate controlled variable

Copt - Optimal value of controlled variable

Cs - Set-point of controlled variable

Ca mol/L Concentration of component A

CB mol/L Concentration of component B

CVl - Primary controlled variables

CVv2 - Secondary controlled variables

d - Disturbance

D kmol/h Recycle/distillate rate

F - Optimal sensitivity matrix

F kmol/h Feed rate to the distillation column

Fo kmol/h Feed rate to the reactor

g - Process transfer function

Gy - Steady-state gain matrix

H - Measurement combination matrix

I [min™] Integral part of controller gain

J $/h Cost function

Jopt Optimal cost

Ty Cost function with constant input

k h! Reaction rate constant

k ? Plant gain

k' ? Plant gain divided by the dominant lag time
constant

K. ? Controller gain

L kmol/h Reflux rate

M, kmol/h Reboiler holdup

My kmol/h Condenser holdup

M, kmol/h Reactor holdup

Nom - Number of manipulated variables with no steady-
state effect

Noy - Number of output variables that must be controlled
and have no steady-state effect

Np, - Number of dynamic degrees of freedom or
manipulated variables

Ngs - Number of steady-state degrees of freedom

ng - Number of disturbances

ny - Number of inputs/manipulated variables

ny - Number of measurements

n’ - Measurement error

PB $/mol Price of the bottom product

71

9.1. List of Symbols continued

Symbol Unit Description

Pp $/mol Price of the recycle

P - Proportional part of controller gain

Pro $/mol Price of the reactor feed

pv $/mol Price of the vapour boilup

r mol/Leh Reaction rate

Tgi K Boiling temperature of component 1

Ty K Temperature at stage J in the column

u - Input/manipulated variable

VvV kmol/h Vapour boilup

Wy - Diagonal scaling matrix for quantifying the
disturbances

Wi - Diagonal scaling matrix for quantifying the
measurement errors

X - State variables

XB mol A/mol Mole fraction in bottom flow

X; - Mole fraction of component i

XiJ - Mole fraction of component I at stage J in the
column

y - Vector of single measurements

Yopt - Optimal values of measurements

ZFo mol A/mol Mole fraction in reactor feed

ZF mol A/mol Mole fraction in column feed

Oag - Relative volatility between component A and B

0 min Time delay

T Min Dominant lag time constant

T Min Desired closed-loop time constant

T Min Integral time

72

9.2. List of Abbreviations

Abbreviation Stands for

Cv Controlled variable

DOF Degrees of freedom

HDA Hydrodealkylation of toluene
MPC Model predictive control

NC Number of components

RTO Real time optimization

TPM Throughput manipulator

73

74

10. References

10.

2007.
11.

12.

13.

14.

15.

16.

17.

Skogestad, S., Plantwide Control - Recent Development and
Applications, ed. G. Rangaiah, P., Kariwala, V.,2012: Wiley & Sons.
Larsson, T. Govatsmark, M. S. Skogestad, S. Yu, C. C., Control
Structure Selection for Reactor, Separator, and Recycle Processes. 2003.
42:p.1225-1234.

Wu, K., Yu, C.,, Reactor/separator processes with recycle - 1. Candidate
control structure for operability. 1996. 20(11): p. 1291-1316.

Alstad, V., Skogestad, S. Hori, E. S., Optimal measurement
combinations as controlled variables. 2009.

Alstad, V., Skogestad, S., Null Space Method for Selecting Optimal
Measurement Combinations as Controlled Variables. 2007. 46: p. 846-
853.

Halvorsen, 1.J., Skogestad, S., Morud, J. C., Alstad, V.,, Optimal Selection
of Controlled Variables. 2003. 42: p. 3273-3284.

Skogestad, S., Plantwide control: the search for the self-optimizing
control structure. 2000. 10: p. 487-507.

Skogestad, S., Control structure design for complete chemical plants.
2004. 28: p. 219-234.

Luyben, W.L., Dynamics and Control of Recycle Systems. 2. Comparison
of Alternative Process Designs. 1993. 32: p. 476-486.

Skogestad, S., The Dos and Don'ts of Distillation Column Control

85(A1): p. 13-23.

Wu, K, Yu, C, Luyben, W. L. Skogestad, S., Reactor/separator
processes with recycles-2. Design for composition control. 2002. 27: p.
401-421.

de Araujo, A.C.B., Govatsmark, M. Skogestad, S., Application of
plantwide control to the HDA process. I - steady-state optimization and
self-optimizing control. 2007. 15: p. 1222-1237.

Larsson, T., Hestetun, K., Hovland, E., Skogestad, S.,, Self-Optimizing
Control of a Large-Scale Plant: The Tennessee Eastman Process. 2001.
40: p. 4889-4901.

Larsson, T., Skogestad, S., Plantwide control - A review and a new
design procedure. 2000. 21(4): p. 209-240.

Skogestad, S., Economic Plantwide Control. 2011.

Skogestad, S., Near-Optimal operation by self-optimizing control: from
process control to marathon running and business systems. 2004. 29: p.
127-137.

Skogestad, S., Advanced Process Control: Solution for the Exercise 2,
2012.

75

18.

19.

20.

21.

Skogestad, S., Grimholt, C.,, The SIMC method for smooth PID controller
tuning. 2011.

Skogestad, S. Exercise 5: Dynamic simulation of a simple plant process
with reactor, separator and recycle using Simulink. 2012.

Skogestad, S., Postlethwaite, I.,, Multivariable Feedback Control -
Analysis and Design. 2007.

MathWorks. fmincon - Find minimum of constrained nonlinear
multivariable function. 2013; Available from:
http://www.mathworks.se/help/optim /ug/fmincon.html.

76

http://www.mathworks.se/help/optim/ug/fmincon.html

Appendix A

Matlab model of the column, colamodSS.m:

function residue=colamodSS (x,U)

o

o\

This is a nonlinear steady state model of a distillation column

with

% NT-1 theoretical stages including a reboiler (stage 1) plus a
% total condenser ("stage" NT).

% Model assumptions:

% Two components (binary separation);

% Constant relative volatility;

% No vapor holdup;

% One feed and two products;

% Constant molar flows (same vapor flow on all stages);

% Total condenser

% The model is based on column A in Skogestad and Postlethwaite
% (1996) . The model has NT states.

% Inputs: b4 - states, the NT compositions of light component A with
% reboiler/bottom stage as x (1) and condenser as x(NT).
% U(l) - reflux L,

% U(2) - boilup V,

% U(3) - top or distillate product flow D,

% U(4) - bottom product flow B,

% U(5) - feed rate F,

% U(6) - feed composition, zF.

% U(7) - feed liquid fraction, gF.

% U(8) - number of stages, NT.

% U(9) - location of feed stage, NF.

% U(10)- relative volatility, alpha.

% Outputs [residue] = f(x), residue=0 if x is a solution of the

oe

system of nonlinear equations

% Inputs and disturbances

LT = U(1); % Reflux

VB = U(2); % Boilup

D = U(3); % Distillate

B Uu(4); $ Bottoms

F =1U(5); % Feedrate

zF = U(6); % Feed composition

qfF = U(7); % Feed liquid fraction

NT = U(8); % Number of stages (including
reboiler and total condenser:

NE = U(9); % Location of feed stage (stages are

counted from the bottom) :
alpha = U(10);

o\

Relative volatility

77

$Preallocation
y=ones (NT-1,1);
dMxdt = ones (NT,1);
dMdt = ones(2,1);

o

THE MODEL

o\°

Vapor-liquid equilibria
=1:NT-1; y(i)=alpha*x(i)./ (1+(alpha-1)*x(i));
———————————————————— Column---------—-—-———-————————————

o° oo M-

o\°

Component balances

o\

o

Reboiler (assumed to be an equilibrium stage)

dMxdt (1)= (LT+gF*F) *x(2) - VB*y(l) - B*x(1l);

% Stripping section trays

i=2:NF-1;

dMxdt (1) = (LT+gF*F) *x (i+1) - (LT+gF*F)*x (i) + VB*y(i-1) - VB*y(i);

% Feed tray

dMxdt (NF)= LT*x (NF+1) - (LT+gF*F)*x (NF) + VB*y (NF-1) - (VB+ (1-gF)*F)*y (NF)
+ F*zF;

[

% Enrichment section trays

i=NF+1:NT-1;

dMxdt (1)= (LT)*x (i+1) - LT*x (i) + (VB+(l-gF)*F)*y(i-1) - (VB+(1-
qF) *F) *y (i) ;

% Total condenser (no equilibrium stage)

dMxdt (NT)= (VB+(1-gF)*F) *y(NT-1) - LT*x(NT) - D*x(NT) ;

[

o\

o

o

Mass balances

o

% Reboiler

dMdt (1) = LT+QF*F - VB - B;
% Condenser

dMdt (2) = VB+(l-gF)*F - LT - D;
% Output

residue=[dMxdt; dMdt];

78

Model of the reactor, CSTR _SS model.m:
function xpr = CSTR_SS model (t, X, U)

% CSTRmod - This is a nonlinear model of a CSTR w

% product.

% Model assumptions: Two components.

% The model has two states (the composi
% Inputs: t - time in [min]

S X - state, the first state is the

and the second state is the h

U(l) - product rate F
U(2) - recycle/distillate D
% U (3) - feed rate FO
U(4) - feed composition, zFO
U (5) - recycle composition, xD.

% Output: xprime - vector with time derivative

89900000000 00000 00 S 9 o 9900000000000 000000

[

% Splitting the states

zFA=X (1) ; % Liquid hold up of A
Mr=X(2) ; % Liquid hold up in re

MrA=zFA*Mr;

% Inputs and disturbances

F = U(l); % Product rate

D = U(2); % Recycle/distillate

FO U(3); % Feed rate

zF0O = U(4); % Feed composition

xD = U(5); % Recycle composition
kl = U(6); % Reaction rate const

% The model
% Dynamic component balances
dMrAdt = FO0*zF0+D*xD-F*zFA-k1*MrA;

dMrdt = FO+D-F;
xpr = [dMrAdt; dMrdt];
end

79

ith two feeds and one

tion of A and holdup)

composition of light

oldup in the reactor

of the two states

S 9 o S 9 o S 9 o

in reactor
actor

ant

Script for the function which is to be minimized, fun.m:

function [J] = fun(x)
% Objective function

o

$Parameters

global p;

if p.case I==
J=x(p.NT+2) ;

else
Jj=-x(p.NT+8) ;

end

80

Script for the nonlinear equality and inequality constraints, nlcon.m:

function [c ,ceqg] = nlcon(x)
$NLCON Nonlinear equality and inequality constraints

[

s Parameter
global p;

[

% Column parameters

Ul=[x(p.NT+1:p.NT+6); p.qgF; p.NT; p.NF; p.alphal;
% Column state variables
X1=x(1l:p.NT);

s CSTR parameters
U2=[x(p.NT+5) x(p.NT+3) x(p.NT+8) p.zF0 x(p.NT) p.kl]';

% CSTR state variables
X2=x (p.NT+6:p.NT+7) ;

% Nonlinear inequality constraints C(x)<0

c=[1;
% Nonlinear equality constraints C(x)=0
ceg=[colamodSS (X1,Ul); CSTR_SS model (0,X2,U2)]; % 1 unconstrained DOF

o
o

o)

%Keeping CV constant at its optimal value for case 1
load yopt nom casel.mat % Optimal values of the measurements for case I

o

ceg=[colamodSsS (X1,Ul); CSTR _SS model (0,X2,U02); X (p.NT+5) - (A1 (1)/60)*1];
keeping F constant

oe

o

ceg=[colamodSS (X1,Ul); CSTR _SS model (0,X2,U2); x(p.NT+1)-(A1(2)/60)*1.0];
keeping L constant

oe

o

ceg=[colamodSS (X1,Ul); CSTR _SS model (0,X2,U2); x(p.NT+3)-(A1(3)/60)*1.0];
keeping D constant

oe

% ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); x(p.NT+1)-
(A1(4))*1.0*x(p.NT+3)]; % keeping L/D constant

% ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); x(p.NT+1)-
A1 (5)*1.0*x(p.NT+5)]; % keeping L/F constant

% ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); x(p.NT+1)-
A1 (6)*1.0*x(p.NT+2)]; % keeping L/V constant

oe

ceg=[colamodSs (X1,Ul); CSTR_SS model (0,X2,U2); x(22)-A1(7)*0.8];
% keeping xD constant

% ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); x(p.NT+5)-
A1(8)*1.0*x (p.NT+8)1]; % keeping F/F0 constant

% ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); x(p.NT+3)-
A1(9)*1.0*x (p.NT+8)1]; % keeping D/F0 constant

oe
oe

Q

%Keeping CV constant at its optimal value for case 2

o)

load yopt nom caseZ.mat % Optimal values of the measurements for case II

81

o\

ceg=[colamodSS (X1,Ul) ;
keeping F constant

o\

o

ceq:[colamOdSS(XllUl);
keeping L constant

o

o

ceq:[colamOdSS(XllUl);
keeping D constant

o

% ceg=[colamodSS(X1,Ul);
(A4(4))*1.0*x(p.NT+3)];

eg=[colamodSS (X1,Ul) ;
(5))*1.0*x(p.NT+5) 1;

eg=[colamodSS (X1,Ul) ;
(6))*1.0*x(p.NT+2)];

% ceg=[colamodSS(X1,Ul);
% keeping xD constant

% ceg=[colamodSS(X1,Ul);
(A4(8))*1.0*x(p.NT+8)];
% ceg=[colamodSS(X1,Ul);
(A4(9))*1.0*x(p.NT+8)];

RS

load H11l.mat

5 y=1[x(1);

% x(6) ;

% x(10) ;

% x(14);

% x(18);

% x(22);

% x(23) *60;
3 x(24)*60;
% x(25)*60;
% x(26) *60;
% x(27)*60;
% x (30)*60];

o

o

CSTR_SS model (0,X2,U2) ;

CSTR_SS_model (0, X2,U2) ;

CSTR_SS_model (0, X2,U2) ;

CSTR_SS_model (0, X2,U2) ;

o)

% keeping L/D constant

CSTR_SS_model (0, X2,U2) ;

o)

% keeping L/F constant

CSTR_SS_model (0,X2,U2) ;

o)

% keeping L/V constant

CSTR_SS_model (0, X2,U2) ;

CSTR_SS_model (0,X2,U2) ;

o)

CSTR_SS_model (0, X2,U2) ;

o)

s Null space method case 1

[

Q

% Measurement vector y

%% Null space method case 2

5 y=[x(1);

5 x(6) ;

% x(10) ;

% x(14);

% x(18);

% x(22);

% x(23) *60;
% x(24)*60;
% x(25) *60;
% x(26) *60;
% x(27)*60;

o

82

% keeping F/F0 constant

% keeping D/F0 constant

NT+5) - (A4 (1) /60)*1.0];

NT+1)-(RA4(2)/60)*1.07;

NT+3)-(R4(3)/60)*1.0];

NT+1) -

NT+1) -

NT+1) -

X (22)=(A4(7))*1.0];

x(p.NT+5) -

X (p.NT+3) -

% The H-matrix with the measurement combinations

ceg=[colamodsS (X1,Ul); CSTR SS model (0,X2,U2); H11*y-0.0272];

> The H-matrix with the measurement combinations

o\

x(30)*607]; % Measurement vector y

o\

o\

ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); H2*y-0.8315];

o

% Exact local method

% Case 1

load Hel.mat % The H-matrix with the measurement combinations
s y=[x(1);

% x(6);

% x(10);

% x(14);

S x(18);

% x(22);

% x(23) *60;

% x(24)*60;

% % (25) *60;

% X (26) *60;

% x(27)*60;

% x(30)*60]; % Measurement vector y

o° o

o

ceg=[colamodsSS (X1,Ul); CSTR SS model (0,X2,U2); Hel*y+0.0011];

o

With p=0.01 instead of p=0.02
load Heln.mat

o

5 y=I[x(1);

5 x(6);

% x(10) ;

% x(14);

% x(18);

% x(22);

% x(23)*60;
% x(24)*60;
% x(25) *60;
% x(26) *60;
% x (27) *60;
% x(30)*607]; % Measurement vector y

o° o

o

ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); Heln*y-0.0046];

% Case 2

load Hel2.mat % The H-matrix with the measurement combinations
s y=[x(1);

% x(6);

% x(10);

% x(14);

% x(18);

% x(22);

% X (23) *60;

% X (24) *60;

% X (25) *60;

% X (26) *60;

% X (27)*60;

% x (30) *60]; % Measurement vector y

o oo

o

ceg=[colamodSS (X1,Ul); CSTR SS model (0,X2,U2); Hel2*y+0.0030];

&3

o\°
o\

$For OPTI toolbox

if (nargout ==1&&p.0PTI==1)
c=[c;ceql;

end

84

Script for the optimization of the process, testScriptOpt.m:

% Script for optimization of reactor, separator and recycle process.
The numerical description of the process is taken from Larsson et al
2003)

—~ ope

clc
clear all
global p;

o

Column parameters

p.qF =1; % Liquid fraction in column feed [-]

p.NT = 22; % Number of stages in distillation column [-]

p.NF = 13; % Feed stage in distillation column [-]

p.alpha = 2; % Relative volatility between component A and B [-]

Vmaxs=(1500/60) ;

o

The optimal value of vapour boilup in case II

[kmol/h]

p.Vmax = Vmaxs; % Making the wvapour boilup a global parameter
[kmol/h]

p.xB=0.0105; % Bottom composition (original value) [mol A/mol]
p.F=958; % Column feed (original value) [kmol/h]
p.L=778; % Reflux (original value) [kmol/h]

p.D=498; % Recycle (original value) [kmol/h]

p.LD=1.6; % Ratio L/D (original value) [-]

p.LF=0.8; % Ratio L/F (original value) [-]

p.Lv=0.61; % Ratio L/V (original value) [-]

p.xD=0.82; % Distillate composition (original value) [mol
A/mol]

p.FF0=2; % Ratio F/F0 (original value) [-]

p.DF0=2; % Ratio D/F0 (original value) [-]

% CSTR parameters

FOs = (460/60) ; % The optimal value of reactor feed (case 1I)
[kmol/h]

zF0O = 0.9; % The optimal value of reactor feed composition
[mol A/mol]

p.FO = FOs; % Making the reactor feed a global parameter
[kmol/h]

p.zF0 = zFO; % Making the reactor feed a global parameter [-]
p.k1 = 0.341/60; % Reaction rate constant [min”®-1]

p.Mr=2800; % Liquid holdup in reactor [kmol/h]

% Flags

p.0OPTI=0;

p.case I=0; % Switching between case I and case II

o\°

if p.case I== Case I
% Constraints
lb=zeros (p.NT+8,1); % Lower bounds for the 30 variables

ub=[ones (p.NT,1); ones(8,1)*Inf]; % Upper bounds for the 30 variables

oe

Active constraints for case I
% xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

% FO = fixed;

1b(p.NT+8)=p.F0;

ub (p.NT+8)=p.FO0;

&5

[

else % Case II
% Constraints
lb=zeros (p.NT+8,1); Lower bounds for the 30 variables

ub=[ones (p.NT,1); ones(8,1)*Inf]; % Upper bounds for the 30 variables

o°

% Active constraints for case II
xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

$ V <= Vmax;

ub (p.NT+2) =p.Vmax;
end

o

% Initial values of the 30 variables
0= [ones(l,p.NT)*0.5 10 15 5 5 1.1 0.5 1000 400/601"';

X

% fmincon options

options = optimset ('TolFun',10e-6, 'TolCon',10e-6, 'MaxFunEvals',le4, ...
'Display', 'none', 'Algorithm', 'sgp', 'Diagnostics', 'off'...

)

% fmincon
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
x0=x;

% Results
if p.case I==
casename='case I: min operation cost (energy)\n';

else
casename='case II: max production rate\n';

end

results fmincon=sprintf (strcat(...
casename, ...
'feed rate, FO[kmol/h] = %15$0.4d\n"', ...
'reactor effluent, Flkmol/h] = %2350.4d\n"', ...
'vapor boilup, V[kmol/h] = %$3$0.4d\n"', ...
'reflux, L[kmol/h] = %4350.4d\n"', ...
'recycle (distilate), D[kmol/h] = %550.4d\n"', ...
'recycle composition, xD[molA/mol] = %650.4d\n"', ...
'bottom composition, xB[molA/mol] = %750.4d\n", ...
'reactor composition, zF [molA/mol] = %8s50.4d\n", ...
'reactor holdup, Mr [kmol/h] = %950.4d\n"'...

), x(p.NT+8) *60,x (p.NT+5) *60,x (p.NT+2) *60,x (p.NT+1) *60, x(p.NT+3)*60, ...
X (p.NT), x(1), x(p.NT+6),x(p.NT+7))
% Nominal results
Vnom=x (p.NT+2) *60
FOn=-x(p.NT+8) *60

o\°

Nominal wvapour boilup
Nominal negative feed

oe

86

Script for calculation of the cost with the Brute force method, testScript BF.m:

% Script for optimization of reactor, separator and recycle process.

—~ ope

2003)
clc
clear all
global p;

o

Column parameters

Vmaxs=(1500/60) ;
[kmol/h]

p.qgF = 1; %
p.NT = 22; %
p.NF = 13; %
p.alpha = 2; %

o

The numerical description of the process is taken from Larsson et al

Liquid fraction in column feed [-]

Number of stages in distillation column [-]

Feed stage in distillation column [-]

Relative volatility between component A and B [-]

The optimal value of vapour boilup in case II

p.Vmax = Vmaxs; % Making the wvapour boilup a global parameter
[kmol/h]

p.xB=0.0105; % Bottom composition (original value) [mol A/mol]
p.F=958; % Column feed (original value) [kmol/h]
p.L=778; % Reflux (original value) [kmol/h]

p.D=498; % Recycle (original value) [kmol/h]

p.LD=1.6; % Ratio L/D (original value) [-]

p.LF=0.8; % Ratio L/F (original value) [-]

p.Lv=0.61; % Ratio L/V (original value) [-]

p.xD=0.82; % Distillate composition (original value) [mol
A/mol]

p.FF0=2; % Ratio F/F0 (original value) [-]

p.DF0=2; % Ratio D/F0 (original value) [-]

% CSTR parameters
FOs = (460/60);
[kmol/h]

zFO = 0.9;

[mol A/mol]

.FO = FOs;
kmol/h]

.zF0 = zFO0;

.kl = 0.341/60;
.Mr=2800;

Flags

.OPTI=0;

.case I=1;

g g o — 'O

'O 'O

if p.case I==
% Constraints

o

o\°

o\°

oe

oe

oe

oe

o\°

The optimal value of reactor feed (case 1I)

The optimal value of reactor feed composition

Making the reactor feed a global parameter
Making the reactor feed a global parameter [-]

Reaction rate constant [min”®-1]
Ligquid holdup in reactor [kmol/h]

Switching between case I and case II

Case I

lb=zeros (p.NT+8,1);
ub=[ones (p.NT,1); ones(8,1)*Inf];

oe

Active constraints for case I
% xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

% FO = fixed;

1b(p.NT+8)=p.F0;

ub (p.NT+8)=p.FO0;

87

% Lower bounds for the 30 variables
% Upper bounds for the 30 variables

else % Case II
% Constraints
lb=zeros (p.NT+8,1); Lower bounds for the 30 variables

ub=[ones (p.NT,1); ones(8,1)*Inf]; % Upper bounds for the 30 variables

o°

% Active constraints for case II
xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

$ V <= Vmax;

ub (p.NT+2) =p.Vmax;
end

o

% Initial values of the 30 variables
0= [ones(l,p.NT)*0.5 10 15 5 5 1.1 0.5 1000 400/60]1"';

X

% fmincon options

options = optimset ('TolFun',10e-6, 'TolCon',10e-6, 'MaxFunEvals',le4, ...
'Display', 'none', 'Algorithm', 'sgp', 'Diagnostics', 'off'...

)

% fmincon
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
x0=x;

% Results
if p.case I==
casename='case I: min operation cost (energy)\n';

else
casename='case II: max production rate\n';

end

results fmincon=sprintf (strcat(...
casename, ...
'feed rate, FO[kmol/h] = %15$0.4d\n"', ...
'reactor effluent, Fl[kmol/h] = %2350.4d\n", ...
'vapor boilup, V[kmol/h] = %$3$0.4d\n"', ...
'reflux, L[kmol/h] = %4350.4d\n"', ...
'recycle (distilate), D[kmol/h] = %550.4d\n"', ...
'recycle composition, xD[molA/mol] = %650.4d\n"', ...
'bottom composition, xB[molA/mol] = %750.4d\n", ...
'reactor composition, zF[molA/mol] = %830.4d\n", ...
'reactor holdup, Mr [kmol/h] = %950.4d\n"'...

), X (p.NT+8) *60,x (p.NT+5) *60, x (p.NT+2) *60, x (p.NT+1) *60, x(p.NT+3)*60, ...
X (p.NT), x(1), x(p.NT+6),x(p.NT+7))
% Nominal results
Vnom=x (p.NT+2) *60
FOn=-x(p.NT+8) *60

[

% break

o\°

Nominal wvapour boilup
Nominal negative feed

oe

%% Calculation of cost with the Brute force method

if p.case I==
%% Calculation of the optimal cost for different FO values, case I.
VoptFO0=zeros (1,17); % Preallocation of the optimal
values of V
for i=1:17
p.FO=(F0s*0.8):(11.5/60) : (F0s*1.2); % Vector of FO-values
1b(p.NT+8)=p.F0 (i) ; % Keeping FO at a given value
ub (p.NT+8)=p.F0 (1) ;
gl

% Keeping FO at a given value
[

[x,fval,exitflag]=fmincon(@fun,x0, []1,[],[1,[],1b,ub,@nlcon,options);

88

VoptFO (1)=x(p.NT+2) *60; % Vector of optimal values of V
end

% Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/FO and D/FO
is kept constant at their optimal values with different FO values

o

Matrix with optimal values of

o

load yopt nom casel.mat

the CVs

% 1b (p.NT+5)=A1(1)/60; % Keeping F constant
% ub (p.NT+5)=A1(1)/60; % Keeping F constant
% 1lb (p.NT+1)=A1(2)/60; % Keeping L constant
% ub (p.NT+1)=A1(2)/60; % Keeping L constant
% 1b (p.NT+3)=A1(3)/60; % Keeping D constant
% ub (p.NT+3)=A1(3)/60; % Keeping D constant
% 1lb(p.NT)=A1(7); % Keeping xD constant
% ub(p.NT)=A1(7); % Keeping xD constant

% The remaining variables L/D, L/F, L/V, F/FO and D/FO0 was kept constant by
% adding a non-linear equality constraint in the script named nlcon.m

% because the lower and upper bounds can not be used for keeping those
variables constant.

VF0 F=zeros(1l,17);

different CVs kept constant

for i=1:17
p.F0=(F0s*0.8) : (11.5/60) : (FOs*1.2);
1b(p.NT+8)=p.FO0 (i) ;
ub (p.NT+8)=p.F0 (1) ;
[x,fval,exitflag]l=fmincon (@fun,x0, []1,[],
VFO F(i)=x(p.NT+2)*60;

constant

end

o)

% break

o

Vector of V-values with the

o©

Vector of FO-values

Keeping FO at a given value
Keeping FO at a given value
1,[01,1b,ub,@nlcon,options);

Vector of V-values with CV

o©

o — oo

%% Calculation of the optimal cost for different zF0 values.

p.FO0 = FOs; % Setting feed rate back to
F0=460
1b(p.NT+8)=p.F0;
ub (p.NT+8)=p.FO0;

oe

Keeping FO at the given wvalue
Keeping FO at the given wvalue

oe

VoptzFO=zeros (1l,11);

values of V

for i=1:11
p.zF0=0.80:0.02:1.0;
p.zF0=p.zFO0(i);
[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[],1b,ub,@nlcon,options);
VoptzF0 (1)=x(p.NT+2) *60; % Vector of optimal values of V

end

oe

Preallocation of the optimal

Vector of zFO-values

o

% Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/F0 and D/FO
is kept constant at their optimal values with different zFO0 values

oe

o

load yopt nom casel.mat Matrix with optimal values of

the CVs

% 1b (p.NT+5)=A1(1)/60; % Keeping F constant
% ub (p.NT+5)=A1(1)/60; % Keeping F constant
% 1b (p.NT+1)=A1(2)/60; % Keeping L constant
% ub (p.NT+1)=A1(2)/60; % Keeping L constant
% 1b (p.NT+3)=A1(3)/60; % Keeping D constant

&9

o\
o\

ub (p.NT+3) =21 (3) /60;
1b (p.NT)=A1 (7) ;
ub (p.NT) =21 (7) ;

Keeping D constant
Keeping xD constant
Keeping xD constant

o
o

o
o

o

The remaining variables L/D, L/F, L/V, F/F0O and D/F0O was kept constant by
adding a non-linear equality constraint in the script named nlcon.m
because the lower and upper bounds can not be used for keeping those
variables constant.

o

o\°

VzF0 DFO=zeros(1,11); % Vector of V-values with the
different CVs kept constant
for i=1:11

p.zF0=0.80:0.02:1.0; % Vector of zFO-values

p.zFO0=p.zFO0 (1) ;

[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[]1,[]1,1b,ub,@nlcon,options);

4
VzFO DFO (i) =x(p.NT+2) *60; % Vector Vs with CVs kept
constant
end
% break

%% Calculation of the cost for implementation errors in c (CVs).
p.FO = FOs; % F0=460
1b(p.NT+8)=p.FO0;

ub (p.NT+8)=p.FO0;

p.zF0 = zFO;

load yopt nom casel.mat
the CVs

o

zF0=0.9
Matrix with optimal values of

o

o)

% Implementation error in F
VieF=zeros(1,9);
implementation error in F
for i=1:9

p.F=A1(1)*0.8/60: A1(1)*0.05/60: A1(1)*1.2/60; % Vector of F-values
with +-20% impl. error

o©

Preallocation of Vs for

1b(p.NT+5)=p.F (1) % Keeping F at given
value

ub (p.NT+5)=p.F(1i); % Keeping F at given
value

[x,fval,exitflag]=fmincon(@fun,x0,[]1,[],[1,[],1lb,ub,@nlcon,options);

VieF(i)=x(p.NT+2) *60; % Vector of V-values
for +-20% impl.error in F

end
1b(p.NT+5)=0;
ub (p.NT+5)=Inf;

o)

% Implementation error in L
VielL=zeros(1l,9);
for implementation error in L
for i=1:9
p.L=A1(2)*0.8/60: Al(2)*0.05/60: Al(2)*1.2/60;
with +-20% impl. error

o\°

Preallocation of Vs

oe

Vector of L-values

1b(p.NT+1)=p.L(1); % Keeping L at given
value

ub (p.NT+1)=p.L(1); % Keeping L at given
value

[x,fval,exitflag]=fmincon(@fun,x0,[]1,[],[1,[],1b,ub,@nlcon,options);

VieL (1)=x(p.NT+2) *60; $ Vector of V-values
for +-20% impl.error in L

end
1b(p.NT+1)=0;

90

ub (p.NT+1)=Inf;
% Impl.error in D
VieD=zeros(1,9); % Preallocation of Vs
for implementation error in D
for i=1:9

p.D=A1(3)*0.8/60: A1(3)*0.05/60: A1(3)*1.2/60; % Vector of D-values
with +-20% impl. error

1b(p.NT+3)=p.D(1); % Keeping D at given
value

ub (p.NT+3)=p.D(1); % Keeping D at given
value

[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[]1,1b,ub,@nlcon,options);

VieD(1)=x(p.NT+2) *60; % Vector of V-values
for +-20% impl.error in D

end
1b(p.NT+3)=0;
ub (p.NT+3)=Inf;
% Impl.error in xD
ViexD=zeros (1,9);
for implementation error in xD
for i=1:9
p.xD=A1(7)*0.8: Al (7)*0.05: A1(7)*1.2;
with +-20% impl. error

o©

Preallocation of Vs

o

Vector of xD-values

1b(p.NT)=p.xD(1); % Keeping xD at given
value
ub (p.NT)=p.xD (1) ; % Keeping xD at given
value
[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[],1b,ub,@nlcon,options);
ViexD(1)=x(p.NT+2) *60; % Vector of V-values
for +-20% impl.error in xD
end
1b(p.NT)=0;
ub (p.NT)=1;

o\°

The operational cost for +-20% implementation errors in the remaining
variables (L/D, L/F, L/V, F/FO and D/F0) was found by adding equality
constraints in the script nlcon.m, and were then typed in below for
simplicity. Again, this is because the lower and upper bounds could not
be used to keep ratios constant.

o 0o oe

o\°

o)

% Impl.error in L/D
Vie LD=[1278.9 1277.6 1276.6 1276 1275.7 1276 1276.7 1278.1 1280];

o)

% Impl.error in L/F
Vie LF=[1281.1 1279.0 1277.3 1276.2 1275.7 1276.2 1277.9 1281.1 1286.2];

o)

% Impl.error in L/V
Vie LV=[1286.7 1283 1279.6 1276.9 1275.7 1277.7 1286.6 1311 1369.1];

o)

% Impl.error in F/FO
Vie FFO0=[7117.3 1460.3 1299.8 1279.1 1275.7 1277.4 1280.9 1285.1 1289.4];

o)

% Impl.error in D/FO
Vie DFO0=[1303.3 1286.7 1279.5 1276.5 1275.7 1276.3 1277.5 1279.2 1281.2];

Q

% break

%% Optimal cost for implementation errors in Mr
p.FO0=F0s;

91

p.zF0=zF0;

oo

VoptMr=zeros (1,11); Preallocation of the

optimal values of V

for i=1:11

p.Mr=2300:50:2800; % Vector of Mr-values
(infeasible with Mr>2800 kmol/h)

1b(p.NT+7)=p.Mr (i) ; % Keeping Mr at given
value

ub (p.NT+7)=p.Mr (1) ; % Keeping Mr at given
value

[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[]1,[]1,1b,ub,@nlcon,options);

VoptMr (1) =x (p.NT+2) *60; % Vector of optimal V-
values with impl.error in Mr
end

% Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/FO and D/FO
is kept constant at their optimal values with different Mr values

o

o

load yopt nom casel.mat
values of the CVs for case I

Matrix with optimal

% 1b (p.NT+5)=A1(1)/60; % Keeping F constant
% ub (p.NT+5)=A1(1)/60; % Keeping F constant
% 1b(p.NT+1)=A1(2)/60; % Keeping L constant
% ub (p.NT+1)=A1(2)/60; % Keeping L constant
% 1b (p.NT+3)=A1(3)/60; % Keeping D constant
% ub (p.NT+3)=A1(3)/60; % Keeping D constant
% lb(p.NT)=A1(7); % Keeping xD constant
% ub(p.NT)=A1(7); % Keeping xD constant

oe

The remaining variables L/D, L/F, L/V, F/F0 and D/F0 was kept constant by
adding a non-linear equality constraint in the script named nlcon.m
because the lower and upper bounds can not be used for keeping those
variables constant.

oe

o

VMr F=zeros(1l,11); % Preallocation of V-
values with CVs kept constant
for i=1:11
p.-Mr=2300:50:2800; % Vector of Mr-values
1b(p.NT+7)=p.Mr (1) ; % Keeping Mr at given
value
ub (p.NT+7)=p.Mr (1) ; % Keeping Mr at given
value
[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[],1b,ub,@nlcon,options);
VMr F(i)=x(p.NT+2)*60; % Vector of V-values
with impl. error in CVs

end
1b(p.NT+7)=0;
ub (p.NT+7)=2800;

p.F0=F0s;
p.zF0=zF0;
VoptxB=zeros (1l,11); % Preallocation of
optimal values of V with impl. error in xB
for i=1:11
p.xB=0.009:0.00015:0.0105; % Vector of xB-values

(infeasible with xB>0.0105 mol A/mol)

92

1b(1l)=p.xB(1);

value
ub (1)=p.xB(1);

value
[x,fval,exitflag]=fmincon (@fun, x0,
VoptxB(1)=x(p.NT+2) *60;

values with impl. error in xB

end

% Calculation of the cost when F, L,

D,

(1, 01,101,

L/D,

(1,

L/F,

[

% Keeping xB at given

Q

% Keeping xB at given

1b,ub, @nlcon,options) ;

[

% Vector of optimal V-

L/V, xD, F/F0 and D/FO

% 1s kept constant at their optimal values with different Mr values

load yopt nom casel.mat

values of the CVs

% lb(p.NT+5)— 1)/60;
% ub (p.NT+5) = (l)/60;
% lb(p.NT+l)=Al(2)/60;
% ub (p.NT+1)=A1(2)/60;
% 1lb(p.NT+3)=Al1(3)/60;
% ub (p.NT+3)=A1(3)/60;
% 1lb(p.NT)=A1(7);

% ub (p.NT)=A1(7);

oe

The remaining variables L/D, L/F,

oe

oe

variables constant.

VxB F=zeros(1l,11);

values with CVs kept constant

for i=1:11
p.xB=0.009:0.00015:0.0105;

1b(1l)=p.xB(1);
value

ub (1)=p.xB (1) ;
value

[x,fval,exitflag]=fmincon (€fun, x0,

VxB F(i)=x(p.NT+2)*60;
with CVs kept constant
end
1b(1)=0;
ub (1) =1;
else
%% Case II

% Calculation of the optimal cost for

FOoVm=zeros (1,13);

optimal values of FO

for i=1:13
pP.Vmax=1200/60:50/60:1800/60;

1b(p.NT+2)=p.Vmax (i) ;

value
ub (p.NT+2)=p.Vmax (1) ;

value
[x,fval,exitflag]=fmincon (@fun, x0,
FOoVm (i)=-x (p.NT+8) *60;

values

end

(1, 01,00, 1

different

(1,01, 01,1

93

% Matrix with optimal

% Keeping F constant
% Keeping F constant
% Keeping L constant
% Keeping L constant
% Keeping D constant
% Keeping D constant
% Keeping xD constant

oe

Keeping xD constant

L/V, F/FO0 and D/FO was kept constant by
adding a non-linear equality constraint in the script named nlcon.m
because the lower and upper bounds can not be used for keeping those

% Preallocation of V-

o©

Vector of xB-values
Keeping xB at given

o©

% Keeping xB at given

1,1b,ub,@nlcon,options);
% Vector of V-values

Vmax values.
% Preallocation of the

o\°

Vector of Vmax-values
% Keeping Vmax at given

Q

% Keeping Vmax at given

,1b,ub,@nlcon,options);
Vector of optimval FO-

]

o\

Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/F0 and D/FO
% 1s kept constant at their optimal values with different Vmax values

Matrix with optimal

oo

load yopt nom caseZ.mat
values of the CVs

% 1b (p.NT+5)=A4 (1) /60; % Keeping F constant
% ub (p.NT+5)=A4 (1) /60; % Keeping F constant
% 1b (p.NT+1)=A4(2)/60; % Keeping L constant
% ub (p.NT+1)=A4(2)/60; % Keeping L constant
% 1b (p.NT+3)=A4(3)/60; % Keeping D constant
% ub (p.NT+3)=A4(3)/60; % Keeping D constant
% 1lb(p.NT)=A24(7); % Keeping xD constant
% ub(p.NT)=A4(7); % Keeping xD constant

o

The remaining variables L/D, L/F, L/V, F/F0 and D/F0O was kept constant by
adding a non-linear equality constraint in the script named nlcon.m
because the lower and upper bounds can not be used for keeping those
variables constant.

o

o\°

Preallocation of FO-

o©

FOVm CV=zeros (1,13);

values

for 1i=1:13
P.Vmax=1200/60:50/60:1800/60;
1b(p.NT+2)=p.Vmax (i) ;

value
ub (p.NT+2)=p.Vmax (1) ;

value
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
FOVm _CV (i)=-x(p.NT+8) *60; % Vector of FO-values with

CVs constant

end

% break

o

Vector of Vmax-values
Keeping Vmax at given

o©

o©

Keeping Vmax at given

%% Calculation of the optimal cost for different zF0 values.

p.Vmax = Vmaxs; % Vmax=1500
1b (p.NT+2)=p.Vmax; % Keeping Vmax at given
value
ub (p.NT+2)=p.Vmax; % Keeping Vmax at given
value
FOozFO=zeros(1,11); % Preallocation of optimal
values of FO
for i=1:11

p.zF0=0.80:0.02:1.0; % Vector of zFO-values

p.zF0=p.zFO0 (i) ;
[x,fval,exitflag]=fmincon(@fun,x0,[]1,[],[1,[],1lb,ub,@nlcon,options);
FOozFO0 (1)=-x(p.NT+8) *60; % Vector of optimal FO-
values
end

% Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/F0 and D/FO
% 1s kept constant at their optimal values with different zF0 values

Matrix with optimal

o

load yopt nom caseZ.mat

values of the CVs

% 1b(p.NT+5)=A4 (1) /60;
ub (p.NT+5)=A4 (1) /60;

% 1lb(p.NT+1)=A4(2)/60;

o\°

Keeping F constant
Keeping F constant
Keeping L constant

o

o

94

% ub (p.NT+1)=A4(2)/60; % Keeping L constant
% 1b (p.NT+3)=A4(3)/60; % Keeping D constant
% ub (p.NT+3)=A4(3)/60; % Keeping D constant
% 1lb(p.NT)=R24(7); % Keeping xD constant
% ub(p.NT)=R24(7); % Keeping xD constant
FOzFO CV=zeros(1l,11); % Preallocation of FO-
values
for i=1:11

p.zF0=0.80:0.02:1.0; % Vector with zFO-
values

p.zF0=p.zF0(1);
[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[]1,1b,ub,@nlcon,options);

FOzFO CV(1)=-x(p.NT+8) *60; % Vector with FO-values
with CVs constant
end
% break
%% Calculation of the cost for implementation errors in c (CVs).
p.zF0 = zFO; % zF0=0.9
P .Vmax=Vmaxs; $ Vmax=1500

ub (p.NT+2)=p.Vmax;
load yopt nom caseZ.mat
values of the CVs for case 2

o©

Matrix with optimal

[

% Impl.error in F

FOieF=zeros(1,9);

vector

for i=1:9
p.F=RA4(1)*0.8/60: A4(1)*0.05/60: A4(1)*1.2/60; % Vector of F-values

with +-20% implerror

o©

Preallocation of FO-

1b(p.NT+5)=p.F (1) ; % Keeping F at given
value

ub (p.NT+5)=p.F (1) ; % Keeping F at given
value

[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[],1b,ub,@nlcon,options);

FOieF (i)=-x(p.NT+8) *60; % Vector of FO-values
for impl.error in F

end

1b(p.NT+5)=0;

ub (p.NT+5)=Inf;

% Impl.error in L

FOieL=zeros(1,9);

vector

for i=1:9
p.L=RA4(2)*0.8/60: A4(2)*0.05/60: A4(2)*1.2/60; % Vector of L-values

with +-20% implerror
1b(p.NT+1)=p.L(1);

oe

Preallocation of FO-

oe

Keeping L at given

value
ub (p.NT+1)=p.L(1); % Keeping L at given
value
[x,fval,exitflag]=fmincon (@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
FOieL(i)=-x(p.NT+8) *60; % Vector of FO-values
for impl.error in L
end

1b(p.NT+1)=0;

ub (p.NT+1)=Inf;

% Impl.error in D

FOieD=zeros (1,9); % Preallocation of FO-
vector

95

for i=1:9
p.D=RA4(3)*0.8/60: A4(3)*0.05/60: A4(3)*1.2/60; % Vector of D-values
with +-20% implerror

1b(p.NT+3)=p.D(1); % Keeping D at given
value

ub (p.NT+3)=p.D (1) ; % Keeping D at given
value

[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);

FOieD(1)=-x(p.NT+8) *60; % Vector of FO-values
for impl.error in D

end
1b(p.NT+3)=0;
ub (p.NT+3)=Inf;

o)

% Impl.error in xD

FOiexD=zeros (1,9); % Preallocation of FO-
vector
for i=1:9
p.xD=A4 (7)*0.8: A4(7)*0.05: A4(7)*1.2; % Vector of xD-values
with +-20% implerror
1b(p.NT)=p.xD(1); % Keeping xD at given
value
ub (p.NT)=p.xD(1); % Keeping xD at given
value
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
FOiexD(1)=-x(p.NT+8) *60; % Vector of FO-values
for impl.error in xD
end

1b(p.NT)=0;
ub (p.NT)=1;

o

The operational cost for +-20% implementation errors in the remaining
variables (L/D, L/F, L/V, F/F0O and D/F0) was found by adding equality
constraints in the script nlcon.m, and were then typed in below for
simplicity. Again, this is because the lower and upper bounds could not
be used to keep ratios constant.

o oo oe

oe

[

% Impl.error in L/D
FOie LD=[-497.2457 -497.5115 -497.7107 -497.8362 -497.8799 -497.8332 -
497.6872 -497.4323 -497.05901;

[

% Impl.error in L/F
FOie LF=[-496.89 -497.2817 -497.5937 -497.8027 -497.8799 -497.7899 -
497.4908 -496.9346 -496.06901;

o)

% Impl.error in L/V
FOie LV=[-495.8496 -496.5349 -497.1659 -497.6631 -497.8799 -497.5409 -
496.1306 -492.7389 -486.07531;

o)

% Impl.error in F/FO
FOie FF0=[-466.3790 -485.9074 -494.4255 -497.2917 -497.8799 -497.5584 -
496.8714 -496.0507 -495.20047];

% Impl.error in D/FO
FOie DF0=[-493.2664 -495.8115 -497.1334 -497.7255 -497.8799 -497.7692 -
497.4975 -497.1291 -496.70461];

o)

% break

%% Optimal cost for implementation errors in Mr
p.zF0=zFO0;

96

p.Vmax=vVmaxs;
ub (p.NT+2) =p.Vmax;

FOoMr=zeros (1,11); % Preallocation of the

optimal values of FO

for i=1:11
p.Mr=2300:50:2800;

(infeasible with MR>2800 kmol/h)
1b(p.NT+7)=p.Mr (i) ;
ub (p.NT+7)=p.Mr (1) ;
[x,fval,exitflag]=fmincon(@fun,x0, []1,[]1,[]1,(
FOoMr (1) =-x(p.NT+8) *60;

values with impl. error in Mr

end

Vector of Mr-values

o

o°

Keeping Mr at given value
Keeping Mr at given value
,1b,ub,@nlcon,options);
Vector of optimal FO-

o°

00—

o\

Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/FO and D/FO
% 1s kept constant at their optimal values with different Mr values

Matrix with optimal

o©

load yopt nom caseZ.mat
values of the CVs

% 1b (p.NT+5)=A4 (1) /60; % Keeping F constant
% ub (p.NT+5)=A4 (1) /60; % Keeping F constant
% 1lb(p.NT+1)=RA4(2)/60; % Keeping L constant
% ub (p.NT+1)=RA4(2)/60; % Keeping L constant
% 1lb (p.NT+3)=A4(3)/60; % Keeping D constant
% ub (p.NT+3)=A4(3)/60; % Keeping D constant
% 1lb(p.NT)=A4(7); % Keeping xD constant
% ub(p.NT)=A4(7); % Keeping xD constant

% The remaining variables L/D, L/F, L/V, F/F0 and D/F0 was kept constant by
% adding a non-linear equality constraint in the script named nlcon.m

% because the lower and upper bounds can not be used for keeping those
variables constant.

FOMr F=zeros(1l,11); % Preallocation of FO-
values
for i=1:11

p.Mr=2300:50:2800;
1b(p.NT+7)=p.Mr (i) ;
ub (p.NT+7)=p.Mr (1) ;
[x,fval,exitflag]=fmincon (@fun,x0, []1,[]1,[]1,I
FOMr F(i)=-x(p.NT+8)*60;

CVs kept constant

end

1b(p.NT+7)=0;

ub (p.NT+7)=2800;

oe

Vector of Mr-values
Keeping Mr at given value
Keeping Mr at given value
,1b,ub,@nlcon,options);
Vector of FO-values with

oe

oe

00—

% break

%% Optimal cost for implementation errors in xB
ub (p.NT+7)=2800; % Mr=2800

p.zF0=zFO0; % zF0=0.9

FOoxB=zeros (1,11);

FO-values

for i=1:11
p.xB=0.009:0.00015:0.0105;

(infeasible with xB>0.0105 mol A/mol)
1b(1)=p.xB(1); Keeping xB at given value
ub (1)=p.xB(1); Keeping xB at given value
[x,fval,exitflag]=fmincon(@fun,x0,[]1,[],[1,[],1b,ub,@nlcon,options);

o

Preallocation of optimal

Vector of xB-values

o\°

o

o\°

97

FOoxB(1)=-x(p.NT+8) *60; % Vector of optimal FO-
values with impl. error in xB
end

% Calculation of the cost when ¥, L, D, L/D, L/F, L/V, xD, F/FO and D/FO
is kept constant at their optimal values with different Mr values

o

Matrix with optimal

o

load yopt nom caseZ.mat
values of the CVs

% 1lb(p.NT+5)= 1)/60; % Keeping F constant
% ub (p.NT+5)= (l)/60; % Keeping F constant
% lb(p.NT+l)=A4(2)/60; % Keeping L constant
% ub (p.NT+1)=A4(2)/60; % Keeping L constant
% 1b (p.NT+3)=A4(3)/60; % Keeping D constant
% ub (p.NT+3)=A4(3)/60; % Keeping D constant
% 1lb(p.NT)=R24(7); % Keeping xD constant
% ub(p.NT)=24(7); % Keeping xD constant

FO0xB DFO=zeros(1l,11); Preallocation of FO-

o©

values

for i=1:11
p.xB=0.009:0.00015:0.0105; % Vector of xB-values
1b(1l)=p.xB(1); % Keeping xB at given value
ub (1)=p.xB(1i); % Keeping xB at given value
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
FOxB DF0O(1)=-x(p.NT+8) *60; $ Vector of FO-values with

CVs kept constant

end

1b(1)=0;

ub (1)=1;

% break

end

98

Script for plotting the losses in case I with the Brute force method, LossBF1.m:
clc
clear all

close all

%% Script for plotting the losses with the Brute force method in case I

o\

Loss for disturbances in FO, with F, L, D, L/D, L/F, L/V, xD, F/FO
% and D/FO0 kept constant, respectively

F0=368:11.5:552;

% Loading the saved wvalues of the cost (V) for all the candidate controlled
% variables with disturbances in FO.
load VoptFO.mat

load VFO F.mat

load VFO L.mat

load VFO D.mat

load VFO LD.mat

load VFO LF.mat

load VFO LV.mat

load VFO xD.mat

load VFO FFO.mat

load VFO DFO.mat

[

% Calculating the loss for each candidate controlled variable

LossF FO = [(VF0_F-VoptFO0) ./VoptF0]*100;
LossL FO0 = [(VF0_L-VoptFO0)./VoptF0]*100;
LossD FO0 = [(VF0_D-VoptFO0)./VoptF0]*100;
LossLD FO = [(VFO_LD-VoptFO0)./VoptF0]*100;
LossLF _FO = [(VFO_LF-VoptF0)./VoptF0]*100;
LossLV_FO0 = [(VFO0_LV-VoptF0)./VoptF0]*100;
LossxD FO = [(VF0_xD-VoptF0) ./VoptF0]*100;

LossFFO_FO = [(VFO FF0-VoptF0) ./VoptF0]*100;

LossDF0_FO = [(VFO DF0-VoptFO0) ./VoptF0]*100;

% Plotting the losses due to disturbance in FO, using the spline function
% to get smoother graphs.
figure (1)

yy=spline (F0,LossF FO0,xx);
plot(xx,yy, 'b"', '"LineWidth',2.5)

x1im ([370 5501])

ylim ([0 107)

set (gca, 'XTick',400:50:550) ;

set(gca, 'YTick',0:2:10);

xlabel ('F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")

99

title('Case 1 - Large loss', 'FontSize',12, 'FontWeight', 'bold")
hold on

yy=spline (F0,LossL FO0,xx);
plot(xx,yy,'r"', 'LineWidth',2.5)

yy=spline (F0,LossD FO0, xx) ;
plot(xx,vyy,'g', 'LineWwidth',2.5)

yy=spline (F0,LossLV_FO0, xx) ;
plot(xx,yy,'c', 'LineWidth',2.5)

yy=spline (F0,LossFF0_ FO0, xx) ;
plot(xx,yy,':", 'LineWidth',2.5)

yy=spline (F0,LossDF0_ FO0, xx) ;
plot(xx,yy,'--", 'LineWidth',2.5)

legend('F','L','D','L/V','F/FO','D/FO')
hold off
figure (2)

yy=spline (F0,LossxD FO0,xx);

plot (xx,yy, 'k', 'Linewidth',2.5)

x1im ([370 550])

ylim ([0 0.5])

set (gca, 'XTick',400:50:550) ;

set(gca, 'YTick',0:0.1:0.5);

xlabel ('F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 1 - Small loss','FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (F0,LossLD FO0,xx);
plot(xx,yy,'y', 'LineWidth',2.5)

yy=spline (F0,LossLF FO0,xx);
plot (xx,yy, 'm', '"LineWidth',2.5)

legend('x D', 'L/D','L/F")

hold off

oe

Loss for disturbances in zFO, with ¥, L, D, L/D, L/F, L/V, xD, F/FO
% and D/FO0 kept constant, respectively

oe

zF0=0.80:0.02:1.0;

oe

Loading the saved wvalues of the cost (V) for all the candidate controlled
% variables with disturbances in zFO.

load VoptzF0.mat

load VzF0 F.mat

load VzFO0 L.mat

load VzF0O D.mat

100

load VzFO LD.mat
load VzFO LF.mat
load VzFO LV.mat
load VzFO_ xD.mat
load VzFO FFO.mat
load VzFO DFO.mat

[

% Calculating the loss for each candidate controlled variable

LossF zF0 = [(VzFO_F-VoptzF0) ./VoptzF0]*100;
LossL zF0 = [(VzFO_L-VoptzF0)./VoptzF0]*100;
LossD zF0 = [(VzFO_D-VoptzF0) ./VoptzF0]*100;
LossLD zFO = [(VzF0_ LD-VoptzF0)./VoptzF0]*100;

LossLF_zFO [(VZFO_LF-VoptzF0) ./VoptzF0]*100;
LossLV_zFO0 = [(VzF0_ LV-VoptzF0)./VoptzF0]*100;

LossxD zFO0

[(VzFO0_xD-VoptzF0) ./VoptzF0]*100;

LossFFO_zFO

[(VzFO FF0-VoptzF0) ./VoptzF0]*100;

LossDFO_zF0 = [(VzFO_DF0-VoptzFO0)./VoptzF0]*100;

oe

o
°

oe

Plotting loss due to disturbance in zFO0, using the spline function
to get smoother graphs.
xx=zF0;

oe

figure (3)

yy=spline (zF0, LossF zF0,xx) ;

plot (xx,yy, 'b', '"LineWidth',2.5)

x1im([0.8 17])

ylim ([0 1017)

set(gca, 'XTick',0.8:0.05:1);

set(gca, 'YTick',0:2:10);

xlabel('z F 0 [-]','FontSize',12, 'FontWeight', 'bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 1 - Large loss','FontSize',12,'FontWeight', 'bold")

hold on

yy=spline (zF0, LossL zF0,xx) ;
plot(xx,yy,'r', 'LineWidth',2.5)

yy=spline (zF0, LossD zF0,xx) ;
plot (xx,yy,'g', 'LineWwidth',2.5)

yy=spline (zF0, LossLV_zF0, xx) ;
plot (xx,yy,'c', 'LineWidth',2.5)

yy=spline (zF0, LossFF0 zF0, xx) ;
plot (xx,yy,':", 'LineWidth',2.5)

yy=spline (zF0, LossDF0_zF0, xx) ;

101

plot (xx,yy, '--', 'LinewWidth',2.5)
legend('F','L','D','L/V','F/F0', 'D/F0O")
hold off

figure (4)

yy=spline (zF0, LossxD zF0,xx) ;

plot (xx,yy, 'k', 'Linewidth',2.5)

x1im([0.80 17)

ylim ([0 0.5])

set(gca, 'XTick',0.8:0.05:1);

set(gca, 'YTick',0:0.1:0.5);

xlabel('z F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', 'bold")
title('Case 1 - Small loss', 'FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (zFO0, LossLD zFO0,xx);
plot (xx,yy, 'y', 'Linewidth',2.5)

yy=spline (zFO0, LossLF zF0,xx);
plot (xx,yy, 'm', 'LinewWidth',2.5)

legend('x D', 'L/D', 'L/F")
hold off

o)

% break

o

Loss for implementation error in ¥, L, D, L/D, L/F, L/V, xD, F/FO
and D/F0, respectively

o\°

oe

ie=0.8:0.05:1.2;

% Loading the saved wvalues of the cost (V) for all the candidate controlled
% variables with implementation error in the candidate controlled
variables.

Vopt ie=1275.7; % Optimal cost for case I

load VieF.mat

load VieL.mat

load VieD.mat

load Vie LD.mat

load Vie LF.mat

load Vie LV.mat

load ViexD.mat

load Vie FFO.mat

load Vie DFO.mat

Q

% Calculating the loss for each candidate controlled variable
LossF _ie = [(VieF-Vopt ie)./Vopt ie]*100;

LossL ie = [(VieL-Vopt ie)./Vopt ie]*100;

LossD ie [(VieD-Vopt ie)./Vopt ie]*100;

102

LossLD ie =

LossLF ie

LossLV_ie

LossxD ie

LossFFO ie

LossDF0_ie =

o

o3
°

o

o

figure (5)

xx=1ie;
yy=spline (ie

[(Vie LD-Vopt ie)./Vopt ie]*100;
[(Vie LF-Vopt ie)./Vopt ie]*100;
[(Vie LV-Vopt ie)./Vopt ie]*100;

[(ViexD-Vopt ie)./Vopt ie]*100;

[(Vie FF0-Vopt ie)./Vopt ie]*100;

[(Vie DF0-Vopt ie)./Vopt ie]*100;

Plotting loss due to implementation error in c,
to get smoother graphs.

,LossF _ie, xx);

plot (xx,yy, 'b"', '"LineWidth',2.5)
x1im([0.8 1.21)

ylim ([0 101)

set(gca, 'XTick',0.8:0.1:1.2);
set(gca, 'YTick',0:2:10);

xlabel ('Implementation error

ylabel ('Loss

hold on

yy=spline (ie
plot (xx,vyy,'

yy=spline (ie

using the spline

[%]"', 'FontSize',12, 'FontWeight', 'bold")
title('Case 1 - Large loss','FontSize',12, 'FontWeight', 'bold")

,LossL ie, xx);
r','LineWidth',2.5)

,LossD ie, xx);

plot (xx,vyy,'g', 'LineWidth',2.5)

yy=spline (ie
plot (xx,vyy, "'

yy=spline (ie
plot (xx,vyy, "'

yy=spline (ie

,LOSSLV_ie,XX);
c','LineWidth',2.5)

,LOSSFFO_ie,XX);

:', 'LinewWidth',2.5)

,LOSSDFO_ie,XX);

plot (xx,yy,'--","'LineWidth',2.5)

legend('F','L','D','L/V',"F/FO", 'D/FO")

hold off
figure (6)

yy=spline (ie

,LossxD ie,xx);

plot(xx,vyy, 'k', 'LineWidth',2.5)
x1im([0.8 1.21)

ylim ([0 0.5])

set(gca, 'XTick',0.8:0.1:1.2);
set(gca, 'YTick',0:0.1:0.5);

xlabel ('Implementation error

103

function

[%5]"', 'FontSize',12, 'FontWeight', 'bold")

[5]','FontSize',12, 'FontWeight', 'bold")

ylabel ('Loss [%]','FontSize',12, 'FontWeight', 'bold")
title('Case 1- Small loss', 'FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (ie,LossLD ie, xx);
plot(xx,vyy,'y"', 'LineWwidth',2.5)

yy=spline (ie,LossLF ie,xx);
plot(xx,yy, 'm', '"LineWidth',2.5)

legend('x D','L/D', 'L/F")
hold off

[

% break

o

Loss for implementation error in Mr with ¥, L, D, L/D, L/F, L/V, xD, F/FO
and D/F0 kept constant, respectively

oe

oe

Mr=2300:50:2800;

% Loading the saved values of the cost (V) for all the candidate controlled
% variables with implementation error in Mr.
load VoptMr.mat

load VMr F.mat

load VMr L.mat

load VMr D.mat

load VMr LD.mat

load VMr LF.mat

load VMr LV.mat

load VMr xD.mat

load VMr FFO.mat

load VMr DFO.mat

% Calculating the loss for each candidate controlled variable

LossF Mr = [(VMr F-VoptMr) ./VoptMr]*100;
LossL Mr = [(VMr L-VoptMr)./VoptMr]*100;
LossD Mr = [(VMr D-VoptMr) ./VoptMr]*100;
LossLD Mr = [(VMr_LD—VoptMr)./VoptMr]*lOO;
LossLF Mr = [(VMr LF-VoptMr) ./VoptMr]*100;
LossLV_Mr = [(VMr LV-VoptMr) ./VoptMr]*100;
LossxD Mr = [(VMr xD-VoptMr) ./VoptMr]*100;

LossFFO Mr [(VMr FF0-VoptMr) ./VoptMr]*100;

LossDF0 Mr

[(VMr DF0-VoptMr) ./VoptMr]*100;

oe
oe

% Plotting loss due to implementation error (back-off) in Mr, using the
spline function

o)

% to get smoother graphs.

104

figure (7)

xx=Mr;

yy=spline (Mr, LossF Mr, Xx) ;
plot(xx,yy, 'b"', '"LineWwidth',2.5)

x1im ([2300 33001])

ylim ([0 107])

set (gca, 'XTick',2400:200:3200) ;

set(gca, 'YTick',0:2:10);

xlabel ('Implementation error - M r

[kmol]', "FontSize',12, 'FontWeight', '"bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', 'bold")
title('Case 1','FontSize',12, 'FontWeight', 'bold")
hold on

yy=spline (Mr, LossL Mr, xXx) ;
plot(xx,yy,'r"', 'LineWidth',2.5)

yy=spline (Mr,LossD Mr, xXx) ;
plot(xx,vyy,'g', 'LineWwidth',2.5)

yy=spline (Mr,LossLV_Mr, xx) ;
plot(xx,yy,'c', 'LineWwidth',2.5)

yy=spline (Mr,LossFFO0_ Mr, xx) ;
plot(xx,yy,':", 'LineWidth',2.5)

yy=spline (Mr, LossDF0_ Mr, xx) ;
plot(xx,yy,'--",'LineWidth',2.5)

yy=spline(Mr,LossxD_Mr,xx);
plot(xx,yy, 'k', '"LineWwidth',2.5)

yy=spline (Mr,LossLD Mr, xx) ;
plot(xx,yy,'y', 'LineWidth',2.5)

yy=spline (Mr, LossLF Mr, xx) ;
plot (xx,yy, 'm', 'LineWidth',2.5)

legend('r','n','n','/v','¢/r0', 'D/F0','x D', 'L/D','L/F")

hold off

oe

Loss for implementation error in xB with ¥, L, D, L/D, L/F, L/V, xD, F/FO
and D/F0 kept constant, respectively

o\°

o\°

xB=0.009:0.00015:0.0105;

% Loading the saved wvalues of the cost (V) for all the candidate controlled
% variables with implementation error in xB.
load VoptxB.mat

load VxB F.mat

load VxB L.mat

load VxB D.mat

load VxB LD.mat

load VxB LF.mat

load VxB LV.mat

load VxB xD.mat

load VxB FFO.mat

105

load VxB DFO.mat

[

% Calculating the loss for each candidate controlled variable

LossF _xB = [(VxB_F-VoptxB) ./VoptxB]*100;
LossL xB = [(VxB_L-VoptxB) ./VoptxB]*100;
LossD xB = [(VxB_D-VoptxB) ./VoptxB]*100;

LossLD xB = [(VxB LD-VoptxB) ./VoptxB]*100;
LossLF xB = [(VxB LF-VoptxB) ./VoptxB]*100;
LossLV_xB = [(VxB LV-VoptxB) ./VoptxB]*100;
LossxD xB = [(VxB xD-VoptxB) ./VoptxB]*100;

LossFFO0_xB [(VxB_FFO—Vopth)./Vopth]*lOO;

LossDFO0_xB [(VxB_DFO—Vopth)./Vopth]*lOO;

oe
oe

% Plotting loss due to implementation error (back-off) in xB, using the
spline function

% to get smoother graphs.

figure (8)

XX=xXB;

yy=spline (xB, LossF xB, xx) ;

plot (xx,yy, 'b', 'LinewWidth',2.5)

x1im([0.009 0.012])

ylim ([0 0.5])

set (gca, 'XTick',0.009:0.001:0.012);

set(gca, 'YTick',0:0.1:0.5);

xlabel ('Implementation error - x B [-]','FontSize',12, 'FontWeight', 'bold"')
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold"')
title('Case 1','FontSize',12, 'FontWeight', 'bold")
hold on

yy=spline (xB, LossL xB, xx) ;
plot(xx,yy,'r', 'LineWidth',2.5)

yy=spline (xB, LossD xB, xx) ;
plot (xx,vyy,'g', 'LineWidth',2.5)

yy=spline (xB, LossLV_xB, xx) ;
plot (xx,yy,'c', 'LineWidth',2.5)

yy=spline (xB, LossFF0_ xB, xx) ;
plot (xx,yy,':", 'LineWidth',2.5)

yy=spline (xB, LossDF0_ xB, xx) ;
plot (xx,yy,'--",'LineWidth',2.5)

yy=spline (xB, LossxD_ xB, xx) ;
plot (xx,yy, 'k', '"LineWwidth',2.5)

yy=spline (xB, LossLD_ xB, xx) ;

106

plot (xx,yy, 'y', 'LinewWidth',2.5)

yy=spline (xB, LossLF xB, xx);
plot(xx,yy, 'm', '"LineWidth',2.5)

legend('F','L','D','L/V','F/FO','D/FO','x D','L/D','L/F")

hold off

107

Script for plotting the loss in case II with the Brute force method, LossBF2.m:
clc
clear all

close all

%% Script for plotting the losses with the Brute force method in case II

o\

Loss for disturbances in Vmax, with ¥, L, D, L/D, L/F, L/V, xD, F/FO
% and D/FO0 kept constant, respectively

Vm=1200:50:1800;

[

% Loading the saved values of the cost (F0) for all the candidate
controlled

% variables with disturbances in Vmax.
load FOoVm.mat

load FOVm F.mat

load FOVm L.mat

load FOVm D.mat

load FOVm LD.mat

load FOVm LF.mat

load FOVm LV.mat

load FOVm_ xD.mat

load FOVm FFO.mat

load FOVm DFO.mat

[

% Calculating the loss for each candidate controlled variable

LossF Vm = [(FOVm_F-FOoVm) ./abs (FOoVm)]*100;
LossL Vm = [(FOVm_L-FOoVm) ./abs (FOoVm)]*100;
LossD Vm = [(FOVm_D—FOon)./abs(FOon)]*lOO;
LossLD Vm = [(FOVm LD-FOoVm)./abs (FOoVm)]*100;
LossLF Vm = [(FOVm LF-F0oVm) ./abs (FOoVm)]*100;
LossLV_Vm = [(FOVm_LV-F0oVm) ./abs (FOoVm)]*100;
LossxD Vm = [(FOVm_xD-F0oVm) ./abs (FOoVm)]*100;
LossFFO _Vm = [(FOVm_FFO-FOoVm) ./abs (FOoVm)]*100;

LossDFO0_Vm [(FOVm_DFO-FOoVm) ./abs (FOoVm)] *100;

o\°

%

oe

Plotting loss due to disturbance in Vmax, using the spline function
to get smoother graphs.

figure (1)

xx=Vm;

yy=spline (Vm, LossF Vm, Xx) ;

plot(xx,yy, 'b"', '"LineWidth',2.5)

x1im([1200 1800])

ylim ([0 2])

set (gca, 'XTick',1200:200:1800) ;

set(gca, 'YTick',0:0.5:2);

oe

108

xlabel ('V.m a x [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 2 - Large loss','FontSize',12,'FontWeight', 'bold")
hold on

yy=spline (Vm, LossL Vm, Xx) ;
plot (xx,yy, 'r', 'Linewidth',2.5)

yy=spline (Vm, LossD Vm, Xx) ;
plot (xx,yy, 'g', 'Linewidth',2.5)

yy=spline (Vm, LossFF0_ Vm, xx) ;
plot (xx,yy,':"', 'Linewidth',2.5)

yy=spline (Vm, LossDF0_Vm, xXx) ;
plot (xx,yy, '--', 'Linewidth',2.5)

legend('F','L','D','"F/FO',"'D/FO")
hold off
figure (2)

yy=spline (Vm, LossxD Vm, xX) ;

plot (xx,yy, 'k', '"LineWwidth',2.5)

x1im ([1200 18007)

ylim ([0 0.2])

set (gca, 'XTick',1200:200:1800) ;

set(gca, 'YTick',0:0.05:0.2);

xlabel ('V.m a x [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 2 - Small loss', 'FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (Vm, LossLD Vm, xX) ;
plot(xx,vyy,'y"', 'LineWidth',2.5)

yy=spline (Vm, LossLF Vm, xx) ;
plot(xx,yy, 'm', '"LineWidth',2.5)

yy=spline (Vm, LossLV_Vm, xX) ;
plot(xx,vyy,'c', 'LineWidth',2.5)

legend('x D', 'L/D','L/F','L/V")

hold off

oe

Loss for disturbances in zF0, with ¥, ., D, L/D, L/F, L/V, xD, F/FO
% and D/F0 kept constant, respectively

o\°

zF0=0.8:0.02:1.0;

[

% Loading the saved wvalues of the cost (F0) for all the candidate
controlled
% variables with disturbances in zFO.

109

load FOozFO.mat
load FO0zFO0 F.mat
load FO0zFO0 L.mat
load FO0zFO D.mat
load FO0zFO LD.mat
load FOzFO LF.mat
load FO0zFO0 LV.mat
load F0zFO0 xD.mat
load FOzFO FFO.mat
load FO0zFO DFO.mat

[

% Calculating the loss for each candidate controlled variable
LossF zF0 = [(F0zF0 F-F0o0zF0)./abs (F00zF0)]*100;

LossL zFO

[(FOzFO_L-F00zF0) ./abs (F0ozF0)]1*100;
LossD zF0 = [(F0zF0 D-F0ozF0)./abs (F00zF0)]*100;

LossLD zFO0

[(FOzFO_LD-F0o0zF0) ./abs (F0ozF0)]1*100;

LossLF_zFO0 [(FOzZFO_LF-F00zF0) ./abs (F0ozF0)]1*100;

LossLV_zFO = [(F0zF0 LV-FOozF0)./abs (FOozF0)]*100;

LossxD zFO [(FOzFO_xD-FOozFO0) ./abs (FOozF0)]*100;

LossFFO_zF0 [(FOzFO_FFO0-F00zFO0) ./abs (F0ozF0)]*100;

LossDFO_zF0 = [(FO0zF0 DFO-FOozFO0)./abs (FOozF0)]*100;

o

%

oe

Plotting loss due to disturbance in zF0, using the spline function
to get smoother graphs.
xx=zF0;

oe

figure (3)

yy=spline (zF0, LossF zF0,xx) ;

plot(xx,vyy, 'b"', '"LineWidth',2.5)

x1im([0.8 17])

ylim ([0 27])

set (gca, 'XTick',0.8:0.05:1);

set(gca, 'YTick',0:0.5:2);

xlabel('z F O [-]','FontSize',12, 'FontWeight', 'bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 2 - Large loss','FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (zF0, LossL zF0,xx) ;
plot (xx,yy, 'r', 'LineWidth',2.5)

yy=spline (zF0, LossD zF0,xx) ;
plot (xx,yy,'g', 'LineWwidth',2.5)

yy=spline (zF0, LossFF0 zF0, xx) ;
plot (xx,yy,':", 'LineWidth',2.5)

110

yy=spline (zF0, LossDF0_zF0, xx) ;
plot(xx,yy,'--"', 'LineWidth',2.5)

legend('F','L','D','F/FO','D/FO')
hold off
figure (4)

yy=spline (zFO0, LossxD zF0,xx);

plot (xx,yy, 'k','LineWidth',2.5)

x1im([0.80 11])

ylim ([0 0.2])

set(gca, 'XTick',0.8:0.05:1);

set (gca, 'YTick',0:0.05:0.2);

xlabel('z F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]','FontSize',12, 'FontWeight', 'bold")
title('Case 2 - Small loss','FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (zFO0, LossLD zFO0,xx);
plot(xx,vyy,'y"', 'LineWwidth',2.5)

yy=spline (zFO0, LossLF zF0,xx);
plot (xx,yy, 'm', '"LineWidth',2.5)

yy=spline (zFO0, LossLV_zF0,xx) ;
plot(xx,yy,'c', 'LineWwidth',2.5)

legend('x D', 'L/D','L/F','L/V")

hold off

oe

Loss for implementation error in ¥, L, D, L/D, L/F, L/V, xD, F/FO
% and D/F0, respectively

oe

ie=0.8:0.05:1.2;
FOo i1e=-497.8799; % Optimal value of cost in case II

[

% Loading the saved values of the cost (F0) for all the candidate
controlled

% variables with implementatione error in CV.
load FOieF.mat

load FOieL.mat

load FOieD.mat

load FOie LD.mat

load FOie LF.mat

load FOie LV.mat

load FOiexD.mat

load FOie FFO.mat

load FOie DFO.mat

Q

% Calculating the loss for each candidate controlled variable
LossF _ie = [(FOieF-FOo_ie)./abs (FOo _ie)]*100;

LossL ie = [(FOieL-FOo ie)./abs(FO0o ie)]*100;

111

LossD ie = [(FOieD-FOo_ie)./abs (FOo_ie)]*100;

LossLD ie [(FOie LD-FOo ie)./abs(FOo_ie)]*100;

LossLF _ie = [(FOie LF-FOo ie)./abs(FOo_ie)]*100;

LossLV_ie [(FOie LV-FOo ie)./abs(FOo_ie)]*100;
LossxD ie = [(F0iexD-FOo_ ie)./abs(FOo ie)]1*100;
LossFF0 _ie = [(FOie FFO0-FOo ie)./abs(FOo_ie)]*100;

LossDFO_ie

[(FOie DFO0-FOo ie)./abs(FOo_ie)]*100;

o

o3
°

o\°

Plotting loss due to implementation error in c, using the spline function
to get smoother graphs.

oe

figure (5)

xx=1ie;

yy=spline (ie,LossF ie, xx);

plot (xx,yy, 'b', 'LinewWidth',2.5)

x1im([0.8 1.21])

ylim ([0 27])

set (gca, 'XTick',0.8:0.1:1.2);

set (gca, 'YTick',0:0.5:2);

xlabel ('Implementation error [%]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 2 - Large loss','FontSize',12, 'FontWeight', 'bold")
hold on

yy=spline (ie, LossL ie, xx);
plot(xx,yy,'r', 'LineWidth',2.5)

yy=spline (ie, LossD ie, xx);
plot(xx,vyy,'g', 'LineWidth',2.5)

yy=spline (ie,LossLV ie, xx);
plot(xx,vyy,'c', 'LineWidth',2.5)

yy=spline (ie,LossFF0 ie, xx);
plot(xx,yy,':", 'LineWidth',2.5)

yy=spline (ie,LossDF0 ie, xx) ;
plot(xx,vyy,'--"',"'LineWidth',2.5)

legend('F','L','D','L/V","F/FO',"'D/FO")
hold off

figure (6)

yy=spline (ie,LossxD ie, xXx);

plot (xx,yy, 'k', 'LineWidth',2.5)

x1im([0.8 1.2])
ylim ([0 0.2])

112

set (gca, 'XTick',0.8:0.1:1.2);
set(gca, 'YTick',0:0.05:0.2);

o)

xlabel ('Implementation error [%]','FontSize',12, 'FontWeight', 'bold’")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', 'bold")
title('Case 2- Small loss', 'FontSize',12, 'FontWeight', 'bold")

hold on

yy=spline (ie,LossLD ie, xXx);
plot (xx,yy, 'y', 'Linewidth',2.5)

yy=spline (ie, LossLF ie, xXx);
plot (xx,yy, 'm', 'Linewidth',2.5)

legend('x D','L/D', 'L/F")

hold off

o

%

o

Loss for implementation error in Mr with ¥, L, D, L/D, L/F, L/V,
% and D/F0 kept constant, respectively

Mr=2300:50:2800;

o)

% Loading the saved values of the cost (F0) for all the candidate
controlled

% variables with implementation error in Mr.
load FOoMr.mat

load FOMr F.mat

load FOMr L.mat

load FOMr D.mat

load FOMr LD.mat

load FOMr LF.mat

load FOMr LV.mat

load FOMr xD.mat

load FOMr FFO.mat

load FOMr DFO.mat

[

% Calculating the loss for each candidate controlled variable

LossF Mr = [(FOMr F-FOoMr) ./abs (FOoMr)]*100;
LossL Mr = [(FOMr L-FOoMr) ./abs (FOoMr)]*100;
LossD Mr = [(FOMr D-FOoMr) ./abs (FOoMr)]*100;
LossLD Mr = [(FOMr LD-FOoMr) ./abs (FOoMr)]*100;
LossLF Mr = [(FOMr LF-FQOoMr) ./abs (FOoMr)]*100;
LossLV Mr = [(FOMr LV-FOoMr) ./abs (FOoMr)]*100;

LossxD Mr [(FOMr_ xD-FOoMr) ./abs (FOoMr)] *100;

LossFFO Mr

[(FOMr FFO-FQoMr) ./abs (FOoMr)]*100;

LossDF0 _Mr = [(FOMr DFO-FOoMr) ./abs (FOoMr)]*100;

o\°
o\°

113

xD,

F/FO

o)

spline function

% to get smoother graphs.
figure (7)

XxX=Mr;

yy=spline (Mr, LossF Mr, xx) ;

plot (xx,yy, 'b', 'Linewidth',2.5)

x1im ([2400 32007)

ylim ([0 0.1])

set (gca, 'XTick',2400:200:3200) ;

set (gca, 'YTick',0:0.02:0.1);

xlabel ('Implementation error - M r

[kmol]', "FontSize',12, 'FontWeight', '"bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 2','FontSize',12, 'FontWeight', 'bold")
hold on

yy=spline (Mr, LossL Mr, Xx) ;
plot (xx,yy, 'r', 'Linewidth',2.5)

yy=spline (Mr, LossD Mr, Xx) ;
plot (xx,yy, 'g', 'Linewidth',2.5)

yy=spline (Mr,LossLV_Mr, xx) ;
plot (xx,yy, 'c', 'Linewidth',2.5)

yy=spline (Mr,LossFFO0_ Mr, xx) ;
plot (xx,yy,':"', 'Linewidth',2.5)

yy=spline (Mr, LossDF0_ Mr, xx) ;
plot (xx,yy, '--', 'LinewWidth',2.5)

yy=spline (Mr, LossxD Mr, xx) ;
plot(xx,vyy, 'k', 'LineWidth',2.5)

yy=spline (Mr,LossLD Mr, xx) ;
plot(xx,vyy,'y"', 'LineWidth',2.5)

yy=spline (Mr, LossLF Mr, xx);
plot(xx,yy, 'm', 'LineWidth',2.5)

legend('F','L','D','L/V','F/FO','D/FO','x D','L/D','L/F")

hold off

o\°

%

oe

Loss for implementation error in xB with ¥, L, D, L/D, L/F, L/V, xD,
% and D/FO0 kept constant, respectively

xB=0.009:0.00015:0.0105;

% Loading the saved values of the cost (F0) for all the candidate
controlled

% variables with implementation error in xB.
load FOoxB.mat

load FOxB F.mat

load FOxB L.mat

load FOxB D.mat

114

% Plotting loss due to implementation error (back-off) in Mr, using the

F/FO

load FOxB LD.mat
load FOxB LF.mat
load FOxB LV.mat
load FOxB xD.mat
load FOxB FFO.mat
load FOxB DFO.mat

[

% Calculating the loss for each candidate controlled variable

LossF xB = [(FOxB _F-FOoxB) ./abs (FOoxB)]*100;
LossL xB = [(FOxB L-FOoxB) ./ (FOoxB)]*100;
LossD xB = [(FOxB D-FOoxB) ./ (FOoxB)]*100;
LossLD xB = [(FOxB LD-FOoxB) ./ (FOoxB)]*100;
LossLF xB = [(FOxB LF-FOoxB) ./ (FOoxB)]*100;
LossLV_xB = [(FOxB LV-FOoxB) ./ (FOoxB)]*100;

LossxD xB [(FOxB_xD-F0OoxB) ./ (FOoxB)]*100;

LossFFO_xB

[(FOxB_FFO-FOoxB) ./ (FOoxB)]1*100;

LossDFO_xB = [(FOxB DF0-FOoxB) ./ (FOoxB)]*100;

oe
oe

% Plotting loss due to implementation error (back-off) in xB, using the
spline function

% to get smoother graphs.
figure (8)

XX=xXB;

yy=spline (xB, LossF xB, xx) ;
plot(xx,vyy, 'b"', '"LineWidth',2.5)

x1im([0.009 0.012])

ylim ([0 0.17])

set (gca, 'XTick',0.009:0.001:0.012);

set(gca, 'YTick',0:0.02:0.1);

xlabel ('Implementation error - x B [-]','FontSize',12, 'FontWeight', 'bold"')
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Case 2','FontSize',12, 'FontWeight', 'bold")
hold on

yy=spline (xB, LossL xB, xx) ;
plot(xx,yy,'r', 'LineWidth',2.5)

yy=spline (xB, LossD xB, xx) ;
plot (xx,vyy,'g', 'LineWidth',2.5)

yy=spline (xB, LossLV_xB, xx) ;
plot (xx,yy,'c', 'LineWidth',2.5)

yy=spline (xB, LossFF0_ xB, xx) ;
plot (xx,yy,':", 'LineWidth',2.5)

yy=spline (xB, LossDF0_ xB, xx) ;
plot (xx,yy,'--",'LineWidth',2.5)

115

yy=spline (xB, LossxD_ xB, xx) ;
plot (xx,yy, 'k', 'Linewidth',2.5)

yy=spline (xB,LossLD_ xB, xx) ;
plot (xx,yy, 'y', 'Linewidth',2.5)

yy=spline (xB, LossLF xB, xx);
plot (xx,yy, 'm', 'Linewidth',2.5)

legend('¥','L','n','n/v','¢¥/¥0', 'D/F0', 'x D', 'L/D', 'L/F")

hold off

116

Script for calculating the cost with the null space and exact local method,
testScript NP_EL.m:

% Script for optimization of reactor, separator and recycle process.
The numerical description of the process is taken from Larsson et al
2003)

—~ o°

clc
clear all
global p;

o

Column parameters

p.gF =1; % Ligquid fraction in column feed [-]

p.NT = 22; % Number of stages in distillation column [-]

p.NF = 13; % Feed stage in distillation column [-]

p.alpha = 2; % Relative volatility between component A and B [-]

Vmaxs=(1500/60) ;

o

The optimal value of vapour boilup in case II

[kmol/h]

p.Vmax = Vmaxs; % Making the wvapour boilup a global parameter
[kmol/h]

p.xB=0.0105; % Bottom composition (original value) [mol A/mol]
p.F=958; % Column feed (original value) [kmol/h]
p.L=778; % Reflux (original value) [kmol/h]

p.D=498; % Recycle (original value) [kmol/h]

p.-LD=1.6; % Ratio L/D (original value) [-]

p.LF=0.8; % Ratio L/F (original value) [-]

p.Lv=0.61; % Ratio L/V (original value) [-]

p.xD=0.82; % Distillate composition (original value) [mol
A/mol]

p.FF0=2; % Ratio F/F0 (original value) [-]

p.DF0=2; % Ratio D/F0 (original value) [-]

% CSTR parameters
FOs = (460/60);

oe

The optimal value of reactor feed (case I)

[kmol/h]

zF0O = 0.9; % The optimal value of reactor feed composition
[mol A/mol]

p.FO = FOs; % Making the reactor feed a global parameter
[kmol/h]

p.zF0 = zFO; % Making the reactor feed a global parameter [-]
p.k1 = 0.341/60; % Reaction rate constant [min”®-1]

p.-Mr=2800; % Liquid holdup in reactor [kmol/h]

% Flags

p.0OPTI=0;

p.case I=0; % Switching between case I and case II

oe

if p.case I== Case I
% Constraints
lb=zeros (p.NT+8,1); % Lower bounds for the 30 variables

ub=[ones (p.NT,1); ones(8,1)*Inf]; % Upper bounds for the 30 variables

oe

Active constraints for case I
% xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

% FO = fixed;

117

1b(p.NT+8)=p.FO0;
ub (p.NT+8)=p.FO0;

else % Case II
% Constraints
lb=zeros (p.NT+8,1);

ub=[ones (p.NT,1); ones(8,1)*Inf];

o

Active constraints for case II
xB <= 0.0105

ub(1)=0.0105;

$ Mr <= 2800;

ub (p.NT+7)=2800;

% V <= Vmax;

ub (p.NT+2)=p.Vmax;
end

o\°

% Initial values of the 30 variables

o
°

o
°

Lower bounds for the 30 variables
Upper bounds for the 30 variables

x0= [ones(l,p.NT)*0.5 10 15 5 5 1.1 0.5 1000 400/60]"';

[

% fmincon options

options = optimset ('TolFun',10e-6, 'TolCon',10e-6, 'MaxFunEvals',le4, ...
'Display', 'none', 'Algorithm', 'sqgp', 'Diagnostics', 'off'...

)7

% fmincon

x,fval,exitflag]=fmincon (@fun,x0, [1,[1,[]1,[]1,1b,ub,@nlcon,options);

x0=x;

% Results
if p.case I==

casename='case I: min operation cost (energy)\n';

= %$1$0.4d\n", ...
= %250.4d\n"', ...
= %$35$0.4d\n"', ...
= %$450.4d\n', ...
= %5$0.4d\n"', ...
= %6$0.4d\n", ...
= %$7$0.4d\n", ...
= %$850.4d\n', ...

else
casename='case II1: max production rate\n';

end

results fmincon=sprintf (strcat(...
casename, ...
'feed rate, FO[kmol/h]
'reactor effluent, F[kmol/h]
'vapor boilup, V[kmol/h]
'reflux, L[kmol/h]
'recycle (distilate), D[kmol/h]
'recycle composition, xD[molA/mol]
'bottom composition, xB[molA/mol]
'reactor composition, zF [molA/mol]
'reactor holdup, Mr [kmol/h]

= %950.4d\n"...

), X (p.NT+8) *60, x (p.NT+5) *60, x (p.NT+2) *60, x (p.NT+1) *60, x(p.NT+3)*60, ...

X (p.NT), x(1), x(p.NT+6),x(p.NT+7))
% Nominal results
Vnom=x (p.NT+2) *60
FOn=-x(p.NT+8) *60

o)

% break

oe

oe

%% Null space method
if p.case I==
%% Case I

% Running the optimization
[

Nominal vapour boilup
Nominal negative feed

x,fval,exitflag]=fmincon (@fun,x0, [],[]1,[]1,[],1b,ub,@nlcon,options);

118

% Measurements for the nominal case I, the measurements are xB,
% x6, XlO, x14, x18, xDb, L, V, D, B, F, FO, in that order.
y0=[x(1)

X(6);

x(10);

x(14);

x(18);

x(22);

x (23) *60;

X (24) *60;

x (25) *60;

x(26)*60;

x(27)*60;

x(30) *607] ;
% ddl
pert=0.01; % Magnitude of disturbance, 10%
ddl=p.FO0*pert; % Disturbance in FO
p.FO = FOs+ddl; % New value of FO with
disturbance
1b(p.NT+8)=p.FO0; % Keeping FO at given value
ub (p.NT+8)=p.F0; % Keeping FO at given value

Running the optimization

[x,fval,exitflag]l=fmincon (@fun, x0

LI 0T 0 Ty

1b,ub, @nlcon,options);

Calculating new values of the measurements.

yddl=[x (1) ;
x(6);
x(10) ;
x(14);
x(18);
x(22);
x(23) *60;
X (24) *60;
X (25) *60;
X (26) *60;
x(27) *60;
x(30)*60];
%% dd2
p.FO = FOs;
value
1b(p.NT+8)=p.F0;
ub (p.NT+8)=p.FO0;

dd2=zF0*pert;
p.zF0 = zF0 +dd2;
disturbance

Running the optimization

[x,fval,exitflag]=fmincon (@fun, x0,

Setting FO back to optimal

oe

o\°

Keeping FO at given value
Keeping FO at given value

oe

o\°

Disturbance in zFO
New value of zFO0 with

oe

(1,01,01,[1,1b,ub,@nlcon,options);

Calculating new values of the measurements.

ydd2=[x (1) ;

119

else

oo
°

Case 11

Running the optimization
x,fval,exitflag]=
Measurements for the nominal
X XlO x14, x18, xD, L, V,

XXX X X X X X X X X X

pert=0.01;
dd3=p.Vmax*pert;

P.

Vmax = Vmaxs+dd3;

disturbance

ub (p.NT+2)

%
o
°

ydd3=[x (1

o\°

p.

=p.Vmax;

Running the optimization

x,fval,exitflag]=fmincon (@fun, x0,

=fmincon (@fun,x0, [],

case 11,

D, B, F, FO,

o° oP

o

o

Calculating new values of the measurements.

);

XWX X X X X X X XX
WNNDNNNDNDRE R RE O
O o0 WN D O~

Q.
Q.
S

Vmax=Vmaxs;

value
dd4=zFO0*pert;
p.zF0 = zF0 +dd4;
disturbance

ub (p.NT+2)

o
°
o
°

yddd=[x

=p.Vmax;

Running the optimization

x,fval,exitflag]=fmincon (@fun, x0,

oe

o

o\°

o

Calculating new values of the measurements.

(1)

120

(1,011,101,
the measurements are xB,
in that order.

(1,01, 01,101,

1b,ub, @nlcon,options) ;

Magnitude of disturbance, 10%

Disturbance in Vmax
New value of Vmax with

Keeping Vmax at given value

1b,ub, @nlcon,options) ;

Setting Vmax back to optimal

Disturbance in zFO
New value of zFO0 with

Keeping Vmax at given value

(1,01,01,11,1b,ub,@nlcon,options);

XWX X X X X X X XX
WNNNNNNE R PO
O oy Ul WN B O~
— — - = — = — — — — ~

* ~

oy

o

~

end

if p.case I==

% Case I

Fl=[(yddl-y0)/ddl (ydd2-y0)/dd2]; % Optimal sensitivity matrix
case I

Hl=null(F1'); % Finding the H matrix

H1=H1"'; % Finding the H matrix
H11=H1(5,:); % Selecting on of the rows
cs1l1=H11*yO0; % Setpoint for the measurement
combination

% csl11=0.0272; % Calculated set-point of csll
else

% Case II

F2=[(ydd3-y0) /dd3 (ydd4-y0)/dd4] % Optimal sensitivity matrix
case IT

H2=null(F2'); % Finding the H matrix
H2b=H2"'; % Finding the H matrix

H2=H2b (4, :) ; % Selecting on of the rows
cs2=H2*y0; % Setpoint for the measurement
combination

% cs2=0.8315 % Calculated set-point of cs2
end

% break

[SI)
0

-

o\°

pP.
1

f

Exact local method
p.case I==

Casel

FO = FOs;

b(p.NT+8)=p.FO0;

ub (p.NT+8)=p.FO0;

.

%

o\°

%

zFO0 = zFO;

Running the optimization

x,fval,exitflag]=fmincon (@fun,x0,[]1,[]1,[],[],1b,ub,@nlcon,options);

Measurements for the nominal case I, the measurements are xB,
x6, x10, x14, x18, xDb, L, Vv, D, B, F, FO, in that order.
y0=[x(1);

x(6);

x(10);

x(14);

x(18);

x(22);

x(23) *60;

x(24)*60;

x(25) *60;

x(26) *60;

x(27) *60;

x(30)*60];

121

F0=460/60;
% dd=[0.01*0.9*ones (6,1); 0.01*FO*ones(6,1)]
dd=0.01*FO*ones (12,1) ;

Optimal value of FO

o

o0 e

Magnitude of disturbance in

FO

Wd=diag(dd) ; % Diagonal scaling matrix for
disturbances

pert=0.02; % Magnitude of measurement
error, 2%

Wn=diag ([0.01; 0.01; 0.01; 0.01; 0.01; 0.01; pert*y0(7:12)1); % Diagonal

scaling matrix for measurement noise

[

% Finding Gy, the steady-state gain matrix
du=y0*0.01;

o°

Input change, 1%

$Finding dy/dL

1b (p.NT+1)=(y0(7)+du(7))/60;
optimal value

ub (p.NT+1)=(y0 (7)+du(7))/60;
optimal value

o°

Increasing L with 1% from the

o

Increasing L with 1% from the

% Running the optimization
[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[1,[],1lb,ub,@nlcon,options);
% Calculating the new measurements with step in L

yL=[x (1) ;
x(6);
x(10) ;
x(14);
x(18);
x(22);
x(23) *60;
x(24)*60;
x(25) *60;
X (26) *60;
x(27) *60;
x(30)*60];

o\°

dydL= (yL-y0) /du(7) ; Calculating dy/dL
$Finding dy/dv

1b(p.NT+1)=0;

value

ub (p.NT+1)=Inf;

value
1b(p.NT+2)=(y0(8)+du(8))/60;
optimal value

ub (p.NT+2)=(y0 (8)+du(8))/60;
optimal value

o\°

Setting L back to its optimal

oe

Setting L back to its optimal

o\°

Increasing V with 1% from the

o\°

Increasing V with 1% from the

% Running the optimization

[x,fval,exitflag]=fmincon (@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
% Calculating the new measurements with step in V

yV=1[x(1);

122

dydv=(yV-y0) /du(8) ;

$Finding dy/dF

1b(p.NT+2)=0;

value

ub (p.NT+2)=Inf;

value
1b(p.NT+5)=(y0(11)+du(ll))/60;
optimal value

ub (p.NT+5)=(y0 (11)+du(ll))/60;
optimal value

% Running the optimization
[

o

Calculating dy/dv

oo

Setting V back to its optimal
% Setting V back to its optimal

% Increasing F with 1% from the

oo

Increasing F with 1% from the

x,fval,exitflag]=fmincon (@fun,x0,[]1,[]1,[],[],1b,ub,@nlcon,options);
% Calculating the new measurements with step in F.

yE=[x(1);
x(6);
x(10) ;
x(14);
x(18);
x(22);
x(23) *60;
x(24) *60;
x(25) *60;
X (26)*60;
x(27) *60;
x(30) *60];

dydF=(yF-y0) /du(11) ;

1b(p.NT+5)=0;
value

ub (p.NT+5)=Inf;
value

Gy=[dydL dydv dydF];
dy/du

Y=(F1(:,1)) "'"*Wd*Wn;
H4=(inv (Y*Y"') *Gy) ';
Hel=H4 (1, :);
cs4=Hel*y0;
combination
%$csd4=-0.0011;

else

%% Case?2

p.zF0 = zFO;
p.Vmax = Vmaxs;

% Running optimization
[

oe

Calculating dy/dv

o\°

Setting F back to its optimal

oe

Setting F back to its optimal

oe

Steady-state gain matrix

oe

Finding the matrix Y=F'*Wd*Wn
Finding the matrix H
Selecting one of the rows
Set-point of the measurement

o oP

o\°

oe

The calculated set-point

x,fval,exitflag]=fmincon (@fun,x0, [1,[]1,[]1,[],1lb,ub,@nlcon,options);

123

o\

Measurements for the nominal case II,

e
6 xlO x14, x18, xDb, L, VvV, D, B, F,
[

o\
|| b

XXX X X X X X X X X X

vm=1500/60;
dd=0.01*Vm*ones (12, 1) ;
Vmax

Wd=diag (dd) ;
disturbances

pert=0.02;
Wn=diag ([0.01; 0.01; 0.01; 0.01;
scaling matrix for measurement noise

$Finding Gy,
% du=u0*0.01;
du=y0*0.01;

$Finding dy/dL

1b (p.NT+1)=(y0 (7)+du (7)) /60;
optimal value
ub (p.NT+1)=(y0 (7)+du(7))/60;

optimal value

% Running the optimization
[x,fval,exitflag]=fmincon (@fun, x0,

[

% Calculating the new measurements with

yL=[x(1);
x(6);
x(10);
x(14);
x(18);
x(22);
X (23) *60;
x(24) *60;
X (25) *60;
X (26) *60;
x(27) *60;
x(30)*607;

dydL= (yL-y0) /du (7)
$Finding dy/dF
1b(p.NT+1)=0;
value

ub (p.NT+1)
value

=Inf;

124

0.01; O.

the measurements are xB,

the steady-state gain matrix

FO, in that order.
% Optimal value of Vmax
% Magnitude of disturbance in
% Diagonal scaling matrix for
01; pert*y0(7:12)1); % Diagonal
% Input change, 1%
% Increasing L with 1% from the

o©

Increasing L with 1% from the

[(1,01,01,[]1,1b,ub,@nlcon,options);

step in L.

% Calculating dy/dL

[

% Setting L back to its optimal

Q

% Setting L back to its optimal

1b(p.NT+5)=(y0(11)+du(11))/60; % Increasing F with 1% from the
optimal value
ub (p.NT+5)=(y0(11)+du(ll))/60; % Increasing F with 1% from the
optimal value

% Running the optimization
[x,fval,exitflag]l=fmincon (@fun,x0,[],[]1,[]1,[]1,1b,ub,@nlcon,options);

o)

% Calculating the new measurements with step in F

yF=[x(1);
x(6);
x(10);
x(14) ;
x(18);
x(22);
x(23) *60;
x(24)*60;
x (25) *60;
X (26) *60;
x(27) *60;
x (30) *60];

o©

dydF= (yF-y0) /du(11) ; Calculating dy/dF
$Finding dy/dFO0

1b(p.NT+5)=0;

value

ub (p.NT+5)=Inf;

value
1b(p.NT+8)=(y0(12)+du(12))/60;
the optimal value

ub (p.NT+8)=(y0(12)+du(12))/60;
the optimal value

o©

Setting F back to its optimal

o

Setting F back to its optimal

o©

Increasing FO with 1% from

o©

Increasing FO with 1% from

% Running the optimization
[x,fval,exitflag]=fmincon(@fun,x0,[]1,[],[1,[],1lb,ub,@nlcon,options);

o)

% Calculating the new measurements
yFO=[x(1);
x(6);

XXX X X X X X X

dydFO0=(yF0-y0) /du(12) ;

o\°

Calculating dy/dF0

o\°

1b(p.NT+8)=0;
optimal value
ub (p.NT+8)=Inf;
optimal value

Setting FO back to its

o

Setting FO back to its

oe

Gy=[dydL dydF dydFo0];
dy/du

Steady-state gain matrix

125

Y=F2(1:12) *Wd*Wn;
HS5=(inv (Y*Y"') *Gy) ';
Hel2=H5(1, :);
cs5=Hel2*y0

o

Finding the matrix Y=F'*Wd*Wn
Finding the matrix H
Selecting one of the rows
Set-point of the measurement

o oP

oo

combination
%cs5=-0.0030 % The calculated set-point
end

126

Script for plotting the loss with the null space method, LossPlotNP.m:

% Script for optimization of reactor, separator and recycle process.

—~ ope

2003)
clc
clear all
global p;

o

Column parameters

Vmaxs=(1500/60) ;
[kmol/h]

p.qgF = 1; %
p.NT = 22; %
p.NF = 13; %
p.alpha = 2; %

o

The numerical description of the process is taken from Larsson et al

Liquid fraction in column feed [-]

Number of stages in distillation column [-]

Feed stage in distillation column [-]

Relative volatility between component A and B [-]

The optimal value of vapour boilup in case II

p.Vmax = Vmaxs; % Making the wvapour boilup a global parameter
[kmol/h]

p.xB=0.0105; % Bottom composition (original value) [mol A/mol]
p.F=958; % Column feed (original value) [kmol/h]
p.L=778; % Reflux (original value) [kmol/h]

p.D=498; % Recycle (original value) [kmol/h]

p.LD=1.6; % Ratio L/D (original value) [-]

p.LF=0.8; % Ratio L/F (original value) [-]

p.Lv=0.61; % Ratio L/V (original value) [-]

p.xD=0.82; % Distillate composition (original value) [mol
A/mol]

p.FF0=2; % Ratio F/F0 (original value) [-]

p.DF0=2; % Ratio D/F0 (original value) [-]

% CSTR parameters
FOs = (460/60);
[kmol/h]

zFO = 0.9;

[mol A/mol]

.FO = FOs;
kmol/h]

.zF0 = zFO0;

.kl = 0.341/60;
.Mr=2800;

Flags

.OPTI=0;

.case I=0;

g g o — 'O

'O 'O

if p.case I==
% Constraints

o

o\°

o\°

oe

oe

oe

oe

o\°

The optimal value of reactor feed (case 1I)

The optimal value of reactor feed composition

Making the reactor feed a global parameter
Making the reactor feed a global parameter [-]

Reaction rate constant [min”®-1]
Ligquid holdup in reactor [kmol/h]

Switching between case I and case II

Case I

lb=zeros (p.NT+8,1);
ub=[ones (p.NT,1); ones(8,1)*Inf];

oe

Active constraints for case I
% xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

% FO = fixed;

1b(p.NT+8)=p.F0;

ub (p.NT+8)=p.FO0;

% Lower bounds for the 30 variables
% Upper bounds for the 30 variables

127

[

else % Case II
% Constraints
lb=zeros (p.NT+8,1); % Lower bounds for the 30 variables

ub=[ones (p.NT,1); ones(8,1)*Inf]; % Upper bounds for the 30 variables

% Active constraints for case II
xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

% V <= Vmax;

ub (p.NT+2) =p.Vmax;
end

o

% Initial values of the 30 variables
0= [ones(l,p.NT)*0.5 10 15 5 5 1.1 0.5 1000 400/60]1"';

X

% fmincon options

options = optimset ('TolFun',10e-6, 'TolCon',10e-6, 'MaxFunEvals',le4, ...
'Display', 'none', 'Algorithm', 'sgp', 'Diagnostics', 'off'...

)

% fmincon
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
x0=x;

% Results
if p.case I==
casename='case I: min operation cost (energy)\n';

else
casename='case II: max production rate\n';

end

results fmincon=sprintf (strcat(...
casename, ...
'feed rate, FO[kmol/h] = %15$0.4d\n"', ...
'reactor effluent, Fl[kmol/h] = %2350.4d\n", ...
'vapor boilup, V[kmol/h] = %$3$0.4d\n"', ...
'reflux, L[kmol/h] = %4350.4d\n"', ...
'recycle (distilate), D[kmol/h] = %550.4d\n"', ...
'recycle composition, xD[molA/mol] = %650.4d\n"', ...
'bottom composition, xB[molA/mol] = %750.4d\n", ...
'reactor composition, zF [molA/mol] = %8s50.4d\n"', ...
'reactor holdup, Mr [kmol/h] = %950.4d\n"'...

), X (p.NT+8) *60,x (p.NT+5) *60, x (p.NT+2) *60, x (p.NT+1) *60, x(p.NT+3)*60, ...
X (p.NT), x(1), x(p.NT+6),x(p.NT+7))
% Nominal results
Vnom=x (p.NT+2) *60
FOn=-x(p.NT+8) *60

[

% break

o\°

Nominal wvapour boilup
Nominal negative feed

oe

oe

% Plotting loss with the Null Space Method and Exact Local Method

In order for the plots to be made correctly, the equality constraints
with the septoints found above need to be added to nlcon.m for each of
the plots.
if p.case I==

o° oo

o\°

%% Null Space Method, Case I

Vnp=zeros (1,17); % Preallocation of V-values
for i=1:17
p.FO=(F0s*0.8):(11.5/60) : (F0s*1.2); % Vector of FO-values

128

1b(p.NT+8)=p.FO0 (1) ;
ub (p.NT+8)=p.F0 (1) ;

[x,fval,exitflag]=fmincon(@fun,x0,[],[],

Vnp (1) =x (p.NT+2) *60;
method
end
load VoptFO
in FO, saved earlier.
loss_np=((Vnp-VoptF0) ./VoptF0)*100;
F0=368:11.5:552;
% Making the plot of the loss versus FO
figure (1)
xx=F0;
yy=spline (F0,loss np, xx);
plot (xx,vyy, 'b', 'LineWidth',2.5)
x1im([370 55017)
ylim ([0 0.002])
set (gca, 'XTick',400:50:550) ;
set (gca, 'YTick',0:0.0004:0.002) ;

o

Keeping FO at given value
Keeping FO at given value
1,[]1,1b,ub,@nlcon,options);
Cost with the null space

o — o\

% Optimal cost for disturbance

% Calculating the loss
% FO-values for the x-axis

xlabel ('F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', 'bold")
title('Null Space Method - Case 1','FontSize',12, 'FontWeight', 'bold")

else

%% Null Space case II
FOnp=zeros (1,13);

for 1i=1:13
p.Vmax=1200/60:50/60:1800/60;
1b(p.NT+2)=p.Vmax (i) ;
ub (p.NT+2)=p.Vmax (1) ;

[x,fval,exitflag]=fmincon (@fun,x0,[]1,[],

FOnp (1)=-x(p.NT+8) *60;
method
end
load FOoVm
in Vmax, saved earlier.
loss _np=((FOnp-F0oVm) ./abs (FOoVm)) *100;
Vm=1200:50:1800;
% Making the plot of the loss versus Vmax
figure (3)
xx=Vm;
yy=spline (Vm, loss np, xx);
plot(xx,vyy, 'b"', '"LineWidth',2.5)
x1im([1200 18007])
ylim ([0 0.002])
set (gca, 'XTick',1200:200:1800) ;
set(gca, 'YTick',0:0.0004:0.002) ;

% Preallocation of FO-values

o©

Vector of Vmax-values
Keeping Vmax at given value
Keeping Vmax at given value
1,[01,1b,ub,@nlcon,options);
Cost with the null space

o

o — oo

% Optimal cost for disturbance

% Calculating the loss
Vmax-values for the x—-axis

oe

xlabel('V m a x [kmol/h]','FontSize', 12, 'FontWeight', 'bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Null Space Method - Case 2','FontSize', 12, 'FontWeight', 'bold")

end

129

Script for plotting the loss with the exact local method, LossPlotEL.m:

% Script for optimization of reactor,
The numerical description of the process is taken from Larsson et al

—~ ope

2003)
clc
clear all
global p;

o

Column parameters

p.gF = 1;
p.NT = 22;
p.NF = 13;
p.alpha = 2;

Vmaxs=(1500/60) ;
[kmol/h]

p.Vmax = Vmaxs;
[kmol/h]
.xB=0.0105;
.F=958;

.L=778;

.D=498;
.LD=1.6;
.LF=0.8;
.Lv=0.61;
.xD=0.82;

s ' 'O 'O 'O 'C T 'O

% CSTR parameters
FOs = (460/60);
[kmol/h]

zFO = 0.9;

[mol A/mol]

.FO = FOs;
kmol/h]

.zF0 = zFO0;

.kl = 0.341/60;
.Mr=2800;

Flags

.OPTI=0;

.case I=0;

g g o — 'O

'O 'O

if p.case I==
% Constraints

lb=zeros (p.NT+8,1);
ub=[ones (p.NT, 1) ;

oe

% xB <= 0.0105
ub (1)=0.0105;
% Mr <= 2800;

ub (p.NT+7)=2800;

$ FO = fixed;

1b(p.NT+8)=p.F0;
ub (p.NT+8)=p.FO0;

o o° oe

oo

o

o

d° 0° 0° o° o° o o

o

o

o

o

o\°

o o oe oo

oe

o\°

ones (8,1)*Inf];

separator and recycle process.

Liquid fraction in column feed [-]

Number of stages in distillation column [-]

Feed stage in distillation column [-]

Relative volatility between component A and B [-]

The optimal value of vapour boilup in case II
Making the wvapour boilup a global parameter

Bottom composition (original value) [mol A/mol]
Column feed (original value) [kmol/h]
Reflux (original value) [kmol/h]
Recycle (original value) [kmol/h]

Ratio L/D (original wvalue) [-]

Ratio L/F (original value) [-]

Ratio L/V (original value) [-]
Distillate composition (original value) [mol
Ratio F/FO
Ratio D/FO

(original value) [-]
(original value) [-]

The optimal value of reactor feed (case 1I)

The optimal value of reactor feed composition

Making the reactor feed a global parameter
Making the reactor feed a global parameter [-]

Reaction rate constant [min”®-1]
Ligquid holdup in reactor [kmol/h]

Switching between case I and case II

Case I

% Lower bounds for the 30 variables
% Upper bounds for the 30 variables

Active constraints for case I

130

[

else % Case II
% Constraints
lb=zeros (p.NT+8,1); % Lower bounds for the 30 variables

ub=[ones (p.NT,1); ones(8,1)*Inf]; % Upper bounds for the 30 variables

% Active constraints for case II
xB <= 0.0105

ub (1)=0.0105;

% Mr <= 2800;

ub (p.NT+7)=2800;

% V <= Vmax;

ub (p.NT+2) =p.Vmax;
end

o

% Initial values of the 30 variables
0= [ones(l,p.NT)*0.5 10 15 5 5 1.1 0.5 1000 400/60]1"';

X

% fmincon options

options = optimset ('TolFun',10e-6, 'TolCon',10e-6, 'MaxFunEvals',le4, ...
'Display', 'none', 'Algorithm', 'sgp', 'Diagnostics', 'off'...

)

% fmincon
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
x0=x;

% Results
if p.case I==
casename='case I: min operation cost (energy)\n';

else
casename='case II: max production rate\n';

end

results fmincon=sprintf (strcat(...
casename, ...
'feed rate, FO[kmol/h] = %15$0.4d\n"', ...
'reactor effluent, Fl[kmol/h] = %2350.4d\n", ...
'vapor boilup, V[kmol/h] = %$3$0.4d\n"', ...
'reflux, L[kmol/h] = %4350.4d\n"', ...
'recycle (distilate), D[kmol/h] = %550.4d\n"', ...
'recycle composition, xD[molA/mol] = %650.4d\n"', ...
'bottom composition, xB[molA/mol] = %750.4d\n"', ...
'reactor composition, zF [molA/mol] = %8s50.4d\n", ...
'reactor holdup, Mr [kmol/h] = %950.4d\n"'...

), X (p.NT+8) *60,x (p.NT+5) *60, x (p.NT+2) *60, x (p.NT+1) *60, x(p.NT+3)*60, ...
X (p.NT), x(1), x(p.NT+6),x(p.NT+7))
% Nominal results
Vnom=x (p.NT+2) *60
FOn=-x(p.NT+8) *60

[

% break

o\°

Nominal wvapour boilup
Nominal negative feed

oe

oe

% Plotting loss with the Null Space Method and Exact Local Method

In order for the plots to be made correctly, the equality constraints
with the septoints found above need to be added to nlcon.m for each of
the plots.
if p.case I==
%% Exact Local Method, Case I

o° oo

o\°

Vel=zeros(1l,17); % Preallocation of V-values
for i=1:17

p.FO=(F0s*0.8) :(11.5/60) : (F0s*1.2); % Vector of FO-values

1b(p.NT+8)=p.F0 (i) ; % Keeping FO at given wvalue

131

ub (p.NT+8)=p.F0 (1) ; % Keeping FO at given value
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
Vel (1)=x(p.NT+2) *60; % Cost with the exact local

method

end

load VoptFO0 % Optimal cost for disturbance
in FO, saved earlier.

loss_el=((Vel-VoptF0) ./VoptF0)*100; % Calculating the loss
F0=368:11.5:552; % FO values for the x-axis

% Making the plot of the loss versus FO

figure (2)

xx=F0;

yy=spline (F0, loss el, xx);

plot (xx,yy, 'b', 'LineWidth',2.5)

x1im ([370 550])

ylim ([0 17)

set (gca, 'XTick',400:50:550) ;

set(gca, 'YTick',0:0.2:1);

xlabel ('F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', 'bold")

title('Exact Local Method - Case 1','FontSize',12, 'FontWeight', 'bold")

else
%% Exact Local Case II
FOel=zeros(1,13);

for 1i=1:13
p.Vmax=1200/60:50/60:1800/60;
1b(p.NT+2)=p.Vmax (i) ;

Preallocation of FO-values

o

o©

Vector of Vmax-values
Keeping Vmax at given value

o©

ub (p.NT+2)=p.Vmax (1) ; % Keeping Vmax at given value
[x,fval,exitflag]=fmincon(@fun,x0,[],[],[]1,[],1lb,ub,@nlcon,options);
FOel (1)=-x(p.NT+8) *60; $ Cost with the exact local
method
end
load FOoVm % Optimal cost for disturbance
in Vmax, saved earlier.
loss _el=((FO0el-F0oVm) ./abs (FO0oVm))*100; % Calculating the loss

Vm=1200:50:1800;

% Making the plot of the loss versus Vmax
figure (4)

xx=Vm;

yy=spline (Vm, loss el, xx);
plot(xx,vyy, 'b"', '"LineWidth',2.5)

x1im ([1200 18007)

ylim ([0 0.2])

set (gca, 'XTick',1200:200:1800) ;

set(gca, 'YTick',0:0.05:0.2);
xlabel ('V. m a x [kmol/h]','FontSize',12,'FontWeight', 'bold")

ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold"')

title('Exact Local Method - Case 2','FontSize',12, 'FontWeight', 'bold")
end

oe

Vmax-values for the x—-axis

132

Script for finding the measurement combination matrices in the null space and exact
local method from the Simulink model, script np_el_T.m:

% Script for finding the measurement combination matrices (H) for the
and exact local methods with the dynamic process model.
The setpoints of c=Hy are also calcualted

o

o

close all
clc
warning off

o
o

open ('CSTRandColumnAConnected') % Open the Simulink model
sim('CSTRandColumnAConnected"') % Run the Simulink model

% Storing the optimal values of the measurements
y0=[T.signals.values (end, 1l);T.signals.values(end, 6);T.signals.values (end, 10
)

T.signals.values (end,14);T.signals.values(end, 18);T.signals.values (end,22);

ws.signals.values (end,10) ;ws.signals.values (end, 1ll);ws.signals.values (end, 2
)

ws.signals.values(end, 3) ;ws.signals.values (end,5) ;ws.signals.values (end, 12)

17

%% Null space method in Simulink

% Disturbing the process by a 1% change in FO

set param('CSTRandColumnAConnected/F0_step', 'before’','0', 'after', '460/60%0.
01")

dF0=460/60*0.01; % Magnitude of input change
sim('CSTRandColumnAConnected") % Run the Simulink model

% Storing the new values of the measurements
y _stepFO=y n.signals.values(end,:)"';

% Removing the disturbance in FO
set param('CSTRandColumnAConnected/F0 step', 'before','0','after', '460/60%0.
01*0")

% Calculating the optimal sensitivity matrix
F=(y_stepF0-y0)./dFO0;

Hnsb=null (F");

Hnsb=Hnsb';

matrix

Hns=Hnsb (3, :);

cs _ns=Hns*y0;

% csns=335.8686

cs=H*vy0

o\°

Optimal sensitivity matrix

Measurement combination

oe

o\°

Choosing one of the rows
Set-point of c=H*y
Calculated value of setpoint

o\°

oe

%% Exact local method in Simulink

% Disturbing the process by a 1% change in L
set_param('CSTRandColumnAConnected/LT -
step', 'before','0', 'after','778/60*0.01")
sim('CSTRandColumnAConnected")

o\

Run the Simulink model

o\

steplL=778/60*0.01; Magnitude of input change

133

y_stepl=y n.signals.values(end, :)"'; % New measurement values

GyL=(y stepL-y0)/stepL; % Finding dy/dL
% Removing the change in L
set param('CSTRandColumnAConnected/LT - step', 'before','0','after','0")

[

% Disturbing the process by a 1% change in F
set param('CSTRandColumnAConnected/Fs step', 'before','0', 'after', '958/60%0.
01")

sim('CSTRandColumnAConnected')

o

Run the Simulink model

stepF=958/60*0.01;
y_stepF=y n.signals.values(end, :)';
GyF=(y stepF-y0)/stepF;

o

Magnitude of input change
New measurement values
Finding dy/dF

o

oo

o)

% Removing the change in F
set param('CSTRandColumnAConnected/Fs step', 'before','0','after','0")

% Disturbing the process by a 1% change in V
set param('CSTRandColumnAConnected/VB step', 'before','0', 'after','1276.1/60
*0.01")

o©

sim('CSTRandColumnAConnected") Run the Simulink model

o

stepV=1276.1/60*%0.01;
y_stepV=y n.signals.values(end, :)';
GyV=(y_stepV-y0)/stepV;

Magnitude of input change
New measurement values
Finding dy/dF

o©

o©

% Removing the change in V
set param('CSTRandColumnAConnected/VB_step', 'before','0','after','0")

% Computing the steady-state gain matrix Gy
Gy=[GyL GyF GyV];

% 2% measurement noise in flows

p=0.02;

% Magnitude of noise in temperatures was chosen as 0.01

% Cimputing the scaling matrixes for noise and disturbance (Wn and Wd)
Wn=diag([0.01; 0.01; 0.01; 0.01; 0.01; 0.01; p*y0(7:12)1); %
F0=460/60;

% Magnitude of disturbance in FO was chosen as 1%
dd=0.01*FO*ones (12,1) ;

Wd=diag (dd) ;

oe

Y=F"'*Wd*Wn;

Helb=(inv (Y*Y"') *Gy) ';

% Helb=((Y.\(Y"'))*Gy)';
HelS=Helb (1, :);
cs_el=HelS*yO0;
scs_el=-1.0e4;

cs=H*y0

Y matrix
Measurement combination matrix

oe

o\°

Choosing one of the rows
Set-point of c=H*y
Calculated value of setpoint

o\°

oe

134

Script for doing a step test in L and calculating the cost resulting from the null space
method in the Simulink model, StepTest NS.m:

clc
clear all
warning off

%% Null space method
open ('CSTRandColumnAConnected"')

load Hns
H=Hns'; % Sending Hns to Simulink
csns=335.8686; % Sending csns (setpoint of c¢) to Simulink

%% Step test in L for finding the tuning parameters for the L controller

[

% % Making a step in L

% set_param('CSTRandColumnAConnected/LT -

step', '"time', '500', 'before','0"', 'after','778/60*0.1")

% % Running the simulation

% sim('CSTRandColumnAConnected"')

% % Removing the step in L

% set_param('CSTRandColumnAConnected/LT -

step', 'time', '500"', 'before','0"', 'after','0")

% % Plotting the step response in ¢ versus time

% figure (1)

% plot(c.time,c.signals.values, 'b', 'LineWidth',2.5)

% % The step was made at time=500 min, and the time interval 500-510 min
% % was considered and assumed as an integating process.
% x1im ([500 5107)

% set(gca, 'XTick',500:2:510);

% xlabel ('Time [min]','FontSize',12, 'FontWeight', 'bold")
% ylabel('c [-]','FontSize',12, 'FontWeight', 'bold")

% title('Step Test in L - Null Space

Method', 'FontSize',12, 'FontWeight', 'bold")

% % Calculating the SIMC tuning parameters for an integrating process
% dy=c.signals.values (723)-c.signals.values (526);

% dt=c.time (723)-c.time (526);

% du=778/60*0.1;

% kprime=dy/ (dt*du)

% theta L=0

% tauc L=5

% taul L=4*(tauc_ L+theta L)
% Kc L=(1l/kprime) * (1/ (tauc_L+theta L))
% P L=Kc L

controlling L

% I L=Kc L/taul L
controlling L

% P=-10.8519;

% I=-0.542¢6;

oe

kprime

time delay in L

time constant for L
integral time
Controller gain for L
Tuning parameter P for

o P o° o°

oe

o

Tuning parameter I for

oe
oe

Calculated value of P
Calculated value of I

o° oo
oe

o\°

break

o)

% Controlling L and finding V for different disturbances in FO

o\

o

FO is set to different values in the range FOopt +- 20% and the simulaton
is runned, followed by storing the value of V when using the L controller
to keep (csns-c) constant.

o\°

o\°

135

set_param('CSTRandColumnAConnected/LT -

step', 'time', '500"', 'before','0"', 'after','0")

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.2")

sim('CSTRandColumnAConnected')

Vl=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.175")

sim('CSTRandColumnAConnected"')

V2=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0_step', 'time', '200', 'before','0', 'afte
r','-460/60*%0.15")

sim('CSTRandColumnAConnected")

V3=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.125")

sim('CSTRandColumnAConnected")

Vid=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','-460/60*0.10")

sim('CSTRandColumnAConnected")

Vb=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.075")

sim('CSTRandColumnAConnected")

Vé=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','-460/60*0.05")

sim('CSTRandColumnAConnected")

V7=ws.signals.values(end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.025")

sim('CSTRandColumnAConnected")

V8=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','460/60*0.0")

sim('CSTRandColumnAConnected")

V9=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','460/60*%0.025")

sim('CSTRandColumnAConnected")

V10=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time','200', 'before','0"', 'afte
r','460/60*0.05")

sim('CSTRandColumnAConnected')

Vll=ws.signals.values(end, 11) *60;

136

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.075")
sim('CSTRandColumnAConnected")
V12=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.10")
sim('CSTRandColumnAConnected"')
V13=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.125")
sim('CSTRandColumnAConnected")
V14=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.15")
sim('CSTRandColumnAConnected"')
V15=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.175")
sim('CSTRandColumnAConnected")
V1l6=ws.signals.values (end, 11l) *60;

set_param('CSTRandColumnAConnected/FO_step',

r','460/60*0.20")
sim('CSTRandColumnAConnected")
V17=ws.signals.values (end,11l) *60;

'time',

'time',

'time',

'time',

'time',

'time',

'200', 'before','0', "afte

'200', '"before','0', "afte

'200"', 'before','0', "afte

'200', '"before','0', "afte

'200', 'before','0', "afte

'200"', '"before','0', "afte

vnsSim=[V1;V2;V3;V4;V5;V6;V7;V8;V9;V10;V11,;V12;V13;V14;V15;V16;V17];

break

o)

% Calculating optimal values of V for differnt FO values in Simulink

% FO is set to different values in the range FOopt +- 20% and the simulaton
% 1s runned, followed by storing the value of V.

set param('CSTRandColumnAConnected/LT -
step', 'time', '500"', 'before','0', 'after','0")

set param('CSTRandColumnAConnected/F0 step', 'time',

r','-460/60*0.2")
sim('CSTRandColumnAConnected")
Vl=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time',

r','-460/60*0.175")
sim('CSTRandColumnAConnected")
V2=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time',

r','-460/60*0.15")
sim('CSTRandColumnAConnected"')
V3=ws.signals.values(end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time',

r','-460/60*0.125")
sim('CSTRandColumnAConnected')
Vid=ws.signals.values (end, 11) *60;

137

'200', '"before','0', "afte

'200"', 'before','0', "afte

'200', 'before', '0"', 'afte

'200', 'before','0', 'afte

set param('CSTRandColumnAConnected/F0 step', 'time','200', 'before','0"', 'afte
r','-460/60*0.10")

sim('CSTRandColumnAConnected')

Vb=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.075")

sim('CSTRandColumnAConnected")

Vé6=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','-460/60*0.05")

sim('CSTRandColumnAConnected"')

V7=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0_step', 'time', '200', 'before','0', 'afte
r','-460/60*0.025")

sim('CSTRandColumnAConnected')

V8=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','460/60*0.0")

sim('CSTRandColumnAConnected")

V9=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','460/60*%0.025")

sim('CSTRandColumnAConnected')

V10=ws.signals.values(end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0"', 'afte
r','460/60*0.05")

sim('CSTRandColumnAConnected")

Vll=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','460/60*0.075")

sim('CSTRandColumnAConnected")

V12=ws.signals.values(end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time','200', 'before','0"', 'afte
r','460/60*0.10")

sim('CSTRandColumnAConnected")

V13=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time', '200', 'before','0', 'afte
r','460/60*0.125")

sim('CSTRandColumnAConnected")

V1l4=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step', 'time','200', 'before','0"', 'afte
r','460/60*%0.15")

sim('CSTRandColumnAConnected")

V15=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step', 'time','200', 'before','0"', 'afte

r','460/60*0.175")
sim('CSTRandColumnAConnected")

138

Vlé=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0_step', 'time', '200', 'before','0', 'afte
r','460/60*%0.20")

sim('CSTRandColumnAConnected")

V17=ws.signals.values (end, 11l) *60;

VnsSimOpt=[V1;V2;V3;V4;V5;V6;V7;V8;V9;V10;V11;V12;V13;V14;V15;V16;V17];

139

Script for doing a step test in L. and calculating the cost resulting from the exact local
method in the Simulink model, StepTest EL.m:

clc
clear all
warning off

oo

%% Null space method
open ('CSTRandColumnAConnected"')

load HelS
H=HelS'; % Sending Hns to Simulink
csns=-1.0e4; % Sending csns (setpoint of c¢) to Simulink

o\°

% Step test in L for finding the tuning parameters for the L controller
% Making a step in L
set param('CSTRandColumnAConnected/LT
tep', 'time', '500", 'before','0"', 'after','778/60*0.1")
% % Running the simulation
% sim('CSTRandColumnAConnected"')
% % Removing the step in L
% set param('CSTRandColumnAConnected/LT -
step', 'time', '500"', 'before','0"', 'after','0")

o\°

o

0
()]

[

% % Plotting the step response in c versus time

% figure (1)

% plot(c.time,c.signals.values, 'b', 'LineWidth',2.5)

% % The step was made at time=500 min, and the time interval 500-510 min
% % was considered and assumed as an integating process.

% x1im ([500 51017)

% set(gca, 'XTick',500:2:510);

% xlabel ('Time [min]', 'FontSize',12, 'FontWeight', 'bold")

% ylabel('c [-]','FontSize',12, 'FontWeight', 'bold'")

% title('Step Test in L - Exact Local

Method', 'FontSize',12, 'FontWeight', 'bold")

% % Calculating the SIMC tuning parameters for an integrating process
% dy=c.signals.values (697)-c.signals.values (526);

% dt=c.time (697)-c.time (526) ;

% du=778/60*0.1;

% kprime=dy/ (dt*du)

% theta L=0

% tauc L=5

% taul L=4*(tauc L+theta L)
% Kc L=(1l/kprime) * (1/ (tauc_L+theta L))
$ P L=Kc L

controlling L

% I L=Kc L/taul L
controlling L

% % P=0.0336

$ % I=0.0017

o

kprime

time delay in L

time constant for L
integral time
Controller gain for L
Tuning parameter P for

o o° o° o°

o

oe

Tuning parameter I for

oe

Calculated value of P
Calculated value of I

o

o\

% Controlling L and finding V for different disturbances in FO

o\°

FO is set to different values in the range FOopt +- 20% and the simulaton
is runned, followed by storing the value of V when using the L controller
to keep (csns-c) constant.

o\°

o\°

140

set_param('CSTRandColumnAConnected/LT -
step', 'time', '500"', 'before','0', 'after','0")
set param('CSTRandColumnAConnected/F0 step',
r','-460/60*0.2")
sim('CSTRandColumnAConnected"')
Vl=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step',
r','-460/60*0.175")
sim('CSTRandColumnAConnected")
V2=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',
r','-460/60*%0.15")
sim('CSTRandColumnAConnected"')
V3=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',
r','-460/60*0.125")
sim('CSTRandColumnAConnected")
V4=ws.signals.values (end, 11l) *60;

set_param('CSTRandColumnAConnected/FO_step',
r','-460/60*0.10")
sim('CSTRandColumnAConnected")
V5=ws.signals.values (end, 11) *60;

set_param('CSTRandColumnAConnected/FO_Step',
r','-460/60*0.075")
sim('CSTRandColumnAConnected")
V6=ws.signals.values(end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',
r','-460/60%0.05")
sim('CSTRandColumnAConnected")
V7=ws.signals.values(end, 11) *60;

set param('CSTRandColumnAConnected/F0 step',
r','-460/60*0.025")
sim('CSTRandColumnAConnected")
V8=ws.signals.values(end, 11) *60;

set param('CSTRandColumnAConnected/F0 step',
r','460/60*0.0")
sim('CSTRandColumnAConnected")
V9=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step',
r','460/60*%0.025")
sim('CSTRandColumnAConnected")
V10=ws.signals.values (end, 11) *60;

set param('CSTRandColumnAConnected/F0 step',
r','460/60*0.05")
sim('CSTRandColumnAConnected"')
Vll=ws.signals.values(end, 11) *60;

set param('CSTRandColumnAConnected/F0 step',
r','460/60%0.075")

141

'time',

'time',

'time',

'time',

'time',

'time',

'time',

'time',

'time',

'time',

'time',

'time',

'200"', '"before',

'200"', 'before',

'200"', '"before',

'200"', 'before',

'200"', 'before',

'200', 'before',

'200"', 'before',

'200"', 'before',

‘200",

'before’,

'200",

'before',

'200",

'before',

'200', 'before’',

'0', 'afte

'afte

|O|,

|O|’

'afte

'afte

|O|,

|O|’

'afte

'afte

|O|,

|O|’

'afte

|O|’

'afte

'afte

|O|,

|O|’

'afte

VOV,

'afte

'0', 'afte

sim('CSTRandColumnAConnected"')
V12=ws.signals.values(end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.10")
sim('CSTRandColumnAConnected")
V13=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.125")
sim('CSTRandColumnAConnected"')
V14=ws.signals.values (end, 11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.15")
sim('CSTRandColumnAConnected')
V15=ws.signals.values (end, 11) *60;

set_param('CSTRandColumnAConnected/FO_step',

r','460/60*0.175")
sim('CSTRandColumnAConnected")
Vlé=ws.signals.values (end,11l) *60;

set param('CSTRandColumnAConnected/F0 step',

r','460/60*0.20")
sim('CSTRandColumnAConnected")
V17=ws.signals.values (end, 11) *60;

'time',

'time',

'time',

'time',

'time',

'200",

'200",

‘200",

'200",

‘200",

'before','0', 'afte

'before','0', 'afte

'before','0', 'afte

'before','0', 'afte

'before','0', 'afte

VelSim=[V1;V2;V3;V4;V5;V6;V7;V8;V9;V10,;V11;V12;V13;V14;V15;V16;V17];

142

Script for plotting the loss resulting from the null space method applied on the Simulink
model, LossNSsimulink.m:

% Script for plotting the loss with the null space method
% resulting from simulations in Simulink

oo

load VnsSim
values

load VnsSimOpt % Loading the optimal
cost values

loss ns=((VnsSim-VnsSimOpt) ./VnsSimOpt) *100;
loss ns=abs (loss ns);

positive

F0=368:11.5:552;

axis

Loading the cost

oo

Calculating the loss
Making the values

oo

o°

FO-values for the x-

o)

% Making the plot of the loss versus FO

figure (1)

xx=F0;

yy=spline (F0,loss ns,xx);

plot (xx,yy, 'b"', "LineWidth',2.5)

x1im ([400 5501])

ylim ([0 5])

set (gca, '"XTick',400:30:550) ;

set (gca, 'YTick',0:1:5);

xlabel ('F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Null Space Method', 'FontSize',12, 'FontWeight', 'bold")

Script for plotting the loss resulting from the exact local method applied on the Simulink
model, LossELsimulink.m:

% Script for plotting the loss with the exact local method
% resulting from simulations in Simulink

load VelSim

load VnsSimOpt

values

loss_el=((VelSim-VnsSimOpt) ./VnsSimOpt) *100;
F0=368:11.5:552;

o°

Loading the cost wvalues
Loading the optimal cost

oe

o°

Calculating the loss
FO-values for the x-axis

o°

o)

% Making the plot of the loss versus FO

figure (1)

xx=F0;

yy=spline (F0,loss el,xx);
plot(xx,vyy, 'b"', '"LineWidth',2.5)

x1im ([400 550])

ylim ([0 2017)

set (gca, 'XTick',400:30:550) ;

set(gca, 'YTick',0:4:20);

xlabel ('F 0 [kmol/h]','FontSize',12, 'FontWeight', 'bold")
ylabel ('Loss [%]', 'FontSize',12, 'FontWeight', "bold")
title('Exact Local Method', 'FontSize',12, 'FontWeight', 'bold")

143

	Title Page
	masteroppgave.pdf

