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Summary 

Based on economic plantwide control procedure, all possible modes of optimal operation 

for the three-product divided wall column has been presented.  

 The optimal operation of one of these modes with fixed energy and 

unconstrained product purities has been studied. The objective cost function was to 

minimize the sum of impurities in all three product streams. None of the product purity 

compositions was active and there were three unconstrained degrees of freedom. These 

unconstrained degrees of freedom were used for self-optimizing control. 

Since the objective cost function was to minimize the sum of impurities therefore 

instead of compositions temperatures on all stages were assumed to be better choice as 

candidate controlled variables.  

Selection of controlled variables is very important task in the system with self-

optimizing control configuration for optimal operation. In this study, pseudo-steady-state 

loss evaluations method based on linearized model was used to prescreen the candidate 

controlled variables. The branch and bound method was used to get best sets of 

measurement combinations based on the largest value of minimum singular value. Also, 

bi-directional branch and bound method using average loss criterion was used to get best 

sets of measurement combinations. Further to evaluate these measurement combinations, 

exact local method (minimum loss method) was used. The exact local method was used 

to calculate the measurement combination matrices H and based on these values average 

and worst-case loss in each case was calculated. The calculation of average loss based on 

the exact local method gave best sets of controlled variables. The average loss was also 

calculated using exact local method for all combination of measurement with and without 

measurement noise. The loss with all combinations of measurement was less than that for 

three combinations of measurement. 

 The loss evaluation for all the combination matrices H was done with larger 

disturbances on the non-linear model of the column at steady-state. The three 
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combinations of measurement approved the results obtained from steady-state loss 

analysis whereas all combinations of measurement gave unacceptable loss. 

Finally for one of these best sets the control configuration was also proposed. The 

control configuration seemed working pretty well for self-optimizing control giving 

acceptable loss after disturbances. 
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CHAPTER 1 

 

Introduction 

 

1.1 Motivation and Literature Review 

Distillation is a technic of separating liquid mixtures based on difference in relative 

volatilities of different components in the mixture. It is one of the most preferred methods 

of separation in the process industry like petroleum and gas refineries, chemical and 

petrochemical units. Distillation alone accounts for the major portion of energy 

consumptions in chemical industries. Meeting the growing energy demand and reducing  

green-house gas emissions to meet the environmental compliances seek more efficient 

design and operation of the distillation columns. However, the design improvement to 

bring down the capital cost should not be overlooked as it can also contribute to 

significant amount of cost reduction. Therefore, dividing wall columns have gained 

increasing applications due to their lower energy consumption and investment costs. A 

dividing wall column (DWC) has a vertical partition that divides the column shell into a 

pre-fractionator and side draw section. The ternary product dividing wall column is 

typically called Petlyuk column and the four product dividing wall column is called 

Kaibel column. 

 The capital saving in dividing wall column is because of reduced numbers of 

equipment (one column shell, one reboiler and one condenser) and piping. In addition the 

reduced equipment and piping also cause significant space saving. Despite the fact that 

the three product Petlyuk column or dividing wall column can give around 20-30% 

capitals as well as energy saving (Triantafyllou and Smith 1992, Amminudin, et al. 2001) 

over conventional distillation column, the commercial application is very limited. The 

reason for limited use on industrial level is the difficulty in both the operation and control 

of the divided wall column. The divided wall columns have more steady state degrees of 

freedom than the conventional column and therefore more difficult to both design and 
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control. The difficulty in control is also increased because of the increased interactions 

between the increased numbers of control loops compared to conventional distillation 

column. Like conventional distillation column, divided wall (Petlyuk) column model is 

also highly non-linear in nature. 

The concept of dividing wall column was introduced by (Wright 1949) as a 

design alternative to conventional distillation for separating ternary feed. The idea was to 

use a physical wall separating the feed from side draw section in a single column shell. 

This could significantly reduce both the capital cost and energy consumption (Wolff and 

Skogestad 1995).  Later, the concept of dividing wall column was first introduced in 1965 

(Petlyuk, Platonoy and Slavinskii 1965). Unlike Wright, they did not use a wall; instead 

they used two-column implementation to prevent remixing effects at the feed location. 

The reduction in remixing effect caused less thermodynamics loss.  

Further other investigators ( (Wolff and Skogestad 1995); (Mutalib, et al. March 

1998); (Niggemann and Hiller 2010); have conducted rigorous experimental and 

simulation studies to conduct dynamic studies related to startup as well as normal 

operation of such systems.  Halvorsen and Skogestad introduced the idea of the      

diagram for analyzing the energy consumption for separation the feed components in 

distillation column (Halvorsen and Skogestad 2003). It is a graphical tool (    diagrams) 

which can be can be used to check the minimum energy requirement for sharp and non–

sharp separations in both the conventional and thermally coupled columns.      

diagrams can be created for any mixture assuming a column with a large number of 

theoretical stages and it is based upon the Underwood equations.  

The modes of operation based on operational objective and constraints have been 

studied by several investigators (Halvorsen and Skogestad 1999, Starndberg June 2011, 

Ghadrdan, Halvorsen and Skogestad 2011). Strandberg (Starndberg June 2011) 

considered four different cases of optimal operation of the Kaibel column with feed rate 

as a degree of freedom. Ghadrdan et al. (Ghadrdan, Halvorsen and Skogestad 2011) 

extended the investigation of two cases, namely minimizing energy usage for fixed 

product specifications (Mode-IABC) and maximizing product purities for fixed boilup 

(Mode-II0). Dwivedi et al. (Dwivedi, Halvorsen and Skogestad 2012) mainly focused on 

the control structure selection for fixed product specifications with minimum energy 
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usage (Mode-IABC). Halvorsen and Skogestad (Halvorsen and Skogestad 1999) studied 

steady-state optimal operation for minimum energy usage (Mode-IABC) and concluded 

that energy saving is difficult without a good control strategy. They also discussed 

candidate feedback variable for self-optimizing control scheme for minimizing the energy 

usage. 

 Further, Khanam et al. (Khanam, Shamsuzzoha and Skogestad 2013) have 

studied the optimal operation of divided wall (Petlyuk) column for fixed energy and non-

optimal vapor split ratio   (Mode-II0). The objective cost function in their study was to 

minimize the sum of impurities and their results showed that for fixed energy and non-

optimal     the optimal operation would tend to direct product impurities to the side 

stream with both fixed and variable     

 

1.1 Scope of Thesis Work 

In this work, the study on the three-product divided wall column has further been 

extended to the control structure design of the column. The main work is focused on 

selecting the primary controlled variables by implementing self-optimizing control on the 

column. The selection of appropriate controlled variables is very important task in self-

optimizing control. Also, the selected controlled variables    can be individual 

measurement or the linear combination of measurement  , i.e.     .    is kept at 

constant set-point by using feedback control which would cause loss due to disturbances 

and also loss due to implementation error.  

  The pseudo/steady state loss evaluation using different methods as cited in 

recent literature by Yelchuru and Skogestad (Yelchuru and Skogestad 2012), (Yelchuru 

2012) and in other previous work { (Halvorsen, Skogestad and Morud, et al. 2003), 

(Alstad , Skogestad and Hori 2009), (Alstad 2005) and (Cao and Kariwala 2008)} can be 

tested to evaluate loss caused by self-optimizing control. Mainly, the loss can be 

evaluated using different measurement combinations   based on the average loss 

criterion and exact local method. However, the selection of variables can also be 

validated by using non-linear model for large disturbances.  



Chapter 1                                                                                                           Introduction                                 

4 

 

In addition, plantwide control procedure can be applied to evaluate different modes of 

operations based on active constraints. 

 

1.2 Thesis Overview 

 CHAPTER 2 : The fundamentals of distillation used in this study have been 

presented and also various arrangement of three-product separation (with 

schematic diagrams) has been illustrated. 

  CHAPTER 3 : The theory of Skogestad’s plantwide control procedure used in 

this study has been presented. Also the theory of self-optimizing control, selection 

of controlled variables for unconstrained degrees of freedom and methods to 

evaluate loss at pseudo/steady-state has been described. The method of tuning the 

controller for dynamic simulation has also been briefly discussed. Further, the 

sequential tuning method for tuning multivariable system has been briefly written 

down. 

 CHAPTER 4 : In this chapter, the process has been described and plant process 

data for case study has been given. This chapter also explains how the plantwide 

control procedure for control structure design and self-optimizing control has 

been implemented on the three-product divided wall column. 

 CHAPTER 5 : In this chapter the simulation procedure to retrieve results 

obtained in this work has been given. 

 CHAPTER 6 : This chapter comprises of the results and discussion from this 

work.  

 CHAPTER 7 : This chapter concludes the work with suggestions on possible 

further work. 
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CHAPTER 2 

 

Distillation Fundamentals 
 

In this chapter, the distillation theory used in this study has been briefly discussed and 

also various column sequences to achieve the three-product separation or certain 

separation have been illustrated. 

2.1 Distillation  

Distillation is the process of separating liquid mixtures into various components based on 

the difference in their boiling point. Separation becomes easier with increase in relative 

volatilities between the components. However for the given components, separation can 

still be increased by increasing the number of stages in the column or by increasing the 

energy (reflux) relative to the feed flow rate (S. Skogestad 1997)  .  

 

2.1.1 Relative Volatility 

The thermodynamic definition for relative volatility in a single stage is the ratio of pure 

component vapor pressure and the ratio of the activity coefficient in the liquid phase as 

given by Eq.(2.1)  (Robbins 2011). 

 
   

    

    
 (

 
 

 
 

)  (
  

  

) (2.1) 

 
where: 

   relative volatility 

  = activity coefficient in the liquid phase 

   pure component vapor pressure 

   mole fraction in liquid phase 

   mole fraction in vapor phase 
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1 & 2 are subscripts for component1 and component 2 respectively 

 

2.1.2 Separation Factor 

The separation factor    in a distillation column is the ratio of light key to heavy key 

component in the distillate divided by the ratio of light key to heavy key components in 

the bottoms as given by Eq. (2.2): 

 

 
  (

  

  

)
 

 (
  

  

)
 

 
(2.2) 

 

Where,   is the mole fraction of light component   and heavy component   respectively 

in the top T and bottom B of the column (S. Skogestad 1997) and (Robbins 2011). 

 

2.1.3 Assumptions 

The model for this study is based on the following assumptions: 

 The feed is an ideal mixture  

 Equilibrium on all stages 

 Constant relative volatility  

 Negligible vapor holdups 

 One feed and three products 

 Constant internal molar flows 

 Total condenser 

 

 

2.1.3.1 Constant Relative Volatilities 

The relative volatility between components i and j is given by Eq. (2.3) 

(Halvorsen 2001): 
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(
 

 
  

⁄ )

(
 

 
  

⁄ )

  
  

  
  

(2.3) 

 

The   values for components i and j are equilibrium constants which depend on both 

pressure and temperature. The temperature in the column varies from top to bottom, 

highest in the bottom and lowest in the top. For feed which is an ideal mixture containing 

three components i, j, and k, the following assumption can be made for the calculation of 

relative volatilities (In this work A (lightest), B (medium) and C (heaviest) (Halvorsen 

2001):  

 The relative volatility between any two components is the geometric average of the 

relative volatility at the highest temperature and lowest temperature at both ends of 

the column. 

 The relative volatilities of three components i, j and k are calculated with respect to 

the heaviest component (least volatile). 

 

2.1.3.2 Equilibrium on Stages 

Equilibrium on all stages means the vapor composition   and the liquid composition 

  are considered to be in equilibrium on all theoretical stages. 

In a two phase (liquid and vapor) system with n components the mole fraction x 

in liquid phase and the mole fraction y in vapor phase: 

∑      

 

   

       ∑    

 

   

 

The VLE (vapor liquid equilibrium) relationship in terms of relative volatility (using the 

heaviest component as the reference point), liquid mole fraction and vapor mole fraction 

is given by Eq. (2.4): 

    
    

∑      
 

(2.4) 
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Considering a two component system with x as the light component, the above equation 

can be rewritten as Eq. (2.5) 

 
  

  

        
 (2.5) 

 
2.1.3.3 Constant Molar Flows:  

Constant molar flow means that both liquid flow rate and vapor flow rate on each stage of 

the column are same except at the stage where feed is added or the product is withdrawn. 

The liquid and vapor flow rate on consecutive stages are given by Eq. (2.6) below: 

 

                             (2.6) 

 
The above assumptions are valid for the separation of only similar components because 

in that case heats of vaporization are similar and no energy balance is required (Alstad 

2005) . 

2.1.3.4 Estimation of Temperature from Composition and Boiling points 

The temperature on each tray is approximated by the linear weightage of the boiling 

temperatures of three components with their mole fraction: 

 

    ∑    

 

 

 (2.7) 

 
 

2.1.3.5 Linearized Liquid Flow Dynamics 

The liquid flow dynamics are modeled as given below, Eq. (2.8) 

           
       

  
 (           )  

(2.8) 

 

   and      are holdup on stage   and nominal holdup on stage   respectively, (S. 

Skogestad 1997) 
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2.2 The column in Sequence 

Many complex column arrangements can be used in order to achieve a separation of 

multicomponent mixture. It mainly depends on a whole host of variables including the 

pressure and temperature under which the separation takes place. Once all considerations 

have been taken into account, certain trade-offs need to be made in order to achieve an 

optimum design. The most important factors that affect the design of the separation 

process are operability, controllability and flexibility. Some of the different column 

sequences to achieve a certain separation are described below: 

For separating a three or more component feed using conventional distillation column, 

the two most commonly used arrangements are the direct and the indirect sequence. 

 

2.2.1 Direct Sequence 

The sequence represented in Figure 2-1  is used when the feed has a high concentration 

of the lightest components or when the separation of the middle  

A

BC

VB

Feed

ABC

L
B

C

VB

L

A/BC B/C

 

Figure 2-1: Direct column sequence for the separation of three products 
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distillate and the heavy product is slightly more difficult than that of the light and middle 

distillate. The light component is taken off as a distillate and the rest of the product is sent 

to a second column to undertake the subsequent separation. The columns are separated by 

a single liquid stream so they may be operated at different pressures in order to perform 

the optimum separation. 

 

2.2.2 Indirect Column Sequence 

Indirect arrangement as shown in Figure 2-2 is most often used when the feed has a high 

concentration of the heavy product or when the separation of the light from the middle 

distillate is relatively more cumbersome. The heavy product is first separated out then the 

distillate is fed to a second column for further separation. For the vapor from a partial 

condenser the pressure in the second column needs to be lower than that of the first 

column for natural flow of the vapor, else a compressor would be needed between  

Feed

ABC

AB

C

VB

L
A

B

VB

L

AB/C A/B

 

Figure 2-2: Indirect column sequence for the separation of three products 
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the columns. If a total condenser were used then the pressures in each column can be 

treated and optimized independently. The total number of columns required for a 

separation of a mixture using direct or indirect sequence is N-1, where N is number of 

components in the feed mixture. 

 

Distributed Column Sequence : This is capital intensive arrangement and requires three 

distillation columns for the separation. It is considered most often when the required 

light, heavy and middle products are all close boiling materials and the separation can be 

done at low temperatures using lower quality utilities. This arrangement would also be 

considered when there is a high concentration of middle distillates in the feed. This 

configuration separates out the entire light component in the tops of the first column and 

the entire heavy product in the bottoms with the middle distillates being split between 

both these streams. The two subsequent columns separate light from middle and middle 

from heavy products. 

 

Side Rectifier: A rectifier is thermally linked to the main column. This coupled column 

uses one reboiler to generate the vapor for both the columns but two condensers for liquid 

rectification. The entire system has to operate at the same pressure, but the pressure in the 

main column is slightly higher than that in the rectifier to accommodate for the natural 

flow of vapor. A system similar to the Side Rectifier would be the Side Stripper. The 

difference being that in this arrangement there are two reboilers and only one condenser. 

In this case the stripping section operates at a slightly higher pressure for natural vapor 

flow to occur. 

 

Pre-fractionator: This configuration splits the feed into two feeds for the second column 

that has a side-draw as well. There are some similarities between this arrangement and 

the distributed sequence. This configuration can be thought of a coupling of the 

distributed arrangement and the removal of a condenser and a reboiler. This strategy is 

preferred when there is a large amount of middle distillate in the feed or if the splits 

between all fractions in the feed are difficult. Both columns may operate at different 
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pressures in order to take advantage of utilities available at different temperatures for the 

Pre-fractionator and main column sections. 

 

 

2.2.3 Thermodynamic Implementation of Three-Product Petlyuk Column 

The Petlyuk configuration represents an arrangement that can separate three or more 

components using a single reboiler and a single condenser. This configuration has even 

more thermal coupling than the pre-fractionator which increases efficiency; this also 

means that there are greater internal flows with no hold-ups due to not having an 

intermediate reboiler or condenser in the Petlyuk column. The exchange of vapor and 

liquid between the columns poses strict pressure and operability constraint Figure 2-3,  

Feed

ABC

Rv = V1/VB

V1

DL

S S

D

L1
RL = L1/L

R R

VB VB

Feed

ABC

C1

C21

C22

C11

C12

C21

C22

C23

C24

Liquid split

Vapor split

D1

B1

L

(a) (b)

 

 

Figure 2-3: (a) Thermodynamically equivalent implementations of three-product 

DWC (b) DWC implementation 
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represents the thermodynamically equivalent implementation of three products divided 

wall column configuration. It is the most compact distillation column for the separation 

of these products that allows for both considerable energy and capital saving. There is a 

partition between the feed and side-draw sections of the column, which provides greater 

capacity and increased separation efficiency yet still a normal side-draw column. This 

column is thermodynamically identical to the Petlyuk column provided that there is 

negligible heat transfer across the dividing wall section of the column. 
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CHAPTER 3 

 

Optimal Selection of Controlled Variables 

 

Plantwide control deals with the most basic questions about the decision making related 

to optimal operation and control –“which variables should be controlled, which variables 

should be measured, which inputs should be manipulated and which link should be made 

between them” (Foss 1973).This Chapter briefly describes the plantwide control 

procedure (Larsson and Skogestad 2000), (S. Skogestad 2000), (S. Skogestad 2004), 

(Halvorsen, Skogestad and Morud, et al. 2003). Most importantly, the theory related to 

the selection of controlled variables which is the essence of this work has been discussed. 

To validate the selection of candidate controlled variable the method to evaluate loss 

using self-optimizing control scheme has been explained (Yelchuru and Skogestad 2012) 

(Alstad and Skogestad 2007), (Alstad , Skogestad and Hori 2009) and (Halvorsen, 

Skogestad and Morud, et al. 2003).  

 

3.1 Plantwide Control Procedure 

There are various literatures on the plantwide control procedure. Skogestad’s economic 

plantwide control structure design procedure has been applied in this study and is 

discussed here, (S. Skogestad 2013). A typical control system hierarchy divided into 

several layers based on the time scale is given in Figure 3-1. Each layer has its own goal 

and typically each lower layer maintains the setpoints decided by the layer above. The 

procedure typically does not guide for control loop behavior and tuning rather it 

emphasizes on the important structural decisions as given below: 

 Selection of controlled variables  (“outputs”)  
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 Selection of manipulated variables (“inputs”)  

 Selection of (extra)  measurements 

 Selection of control configuration (structure of overall controller that 

interconnects the controlled, manipulated and measured variables) 

 Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.).  

The above structural decisions useful in designing the control structure are also cited in 

various studies (Foss 1973), (Morari 1982), (S. Skogestad 2000), (S. Skogestad 2004) 

and (Skogestad, and Postlethwaite 1996).  

Figure 3-1: Typical control hierarchy in a chemical plant (Larsson and Skogestad) 
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Skogestad proposed two approaches for economic plantwide procedure for control 

structure design analysis (S. Skogestad 2013). Only those steps have been elaborated here 

that have been used in this work:    

 

3.1.1 Top- Down Analysis (Economics) 

The top-down analysis suggests step by step approach for plantwide control structure 

design. There are four steps and are briefly explained below: 

 

Step 1: Define Optimal Operation 

The first step of Skogestad top-down analysis is to define the operational objective 

subjected to operational constraints (S. Skogestad 2000) . The typical operational 

objective is the plant’s economics subjected to minimizing the cost or maximizing the 

profit at steady-state. The typical cost function in chemical plants is given below: 

                                         (3.1) 

 
The mathematical representation of the steady-state optimal operation subjected to 

constraints is given below by Eq. (3.2) 

                 
    (3.2) 

 
The constraints are given by Eq. (3.3) and Eq. (3.4).  

              (3.3) 

 
Where Eq. (3.3)  denote the model equations,  

              (3.4) 

 
Eq. (3.4) denotes operational constraints. In the above equations,        are state 

variables,          denote the steady-state degrees of freedom.       are 

disturbances that are inevitable and cannot be manipulated or controlled. The available 

degrees of freedom      comprises of both steady-state degrees of freedom and degrees of 
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freedom which do not have any effect on steady-state operation. For example in a 

distillation column the degrees of freedom which are used to control the levels in 

condenser and reboiler tank do not have any effect on steady-state operation.  

 

Step 2: Optimization (offline-calculations) 

The second step of top-down analysis is the optimization using offline calculations. The 

task in this step is subdivided into two steps: 

 

Step 2a: Degrees of Freedom Analysis:  

Since the plant economics is evaluated based on steady-state conditions therefore the 

identification of degrees of freedom is done at steady-state.  The steady-state degrees of 

freedom are important in analyzing the number of primary controlled variables (define 

primary CVS, for economics).  There are three methods which are commonly used to 

obtain steady-state degrees of freedom (    : 

1. Equation-counting: In this method    is the difference of number of variables and 

number of equations or specifications. 

2. Valves-counting:  

                             

where         is the dynamic degrees of freedom,      is the number of variables 

with no steady-state effect and        is the number of equality specifications. 

3. Potential numbers for some units like heat exchangers, condensers, columns, 

vessels etc. 

Amongst above three methods, valves-counting and potential number for some units are 

simpler and easier to use. 

 

 Step 2b: Optimize for Expected Disturbances 

In this step, the operation is optimized with respects to degrees of freedom  , for 

expected disturbances   and the region of active constraints are found. The main idea 

behind this is to prepare in advance how one should deal with expected disturbances 

including the change in prices of products, energy and feed. 
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Step 3: Implementation of Optimal Operation 

In this step, the task is to select primary controlled variables (CV1s) in order to 

implement the optimal operation. The numbers of primary CVs is same as the available 

steady-state degrees of freedom. It is found that at the optimum some of the constraints 

are active and therefore they should be controlled first. The reason behind it is that 

controlling active constraints in first place cause linear loss. The constraints which are not 

active should be scrutinized as they give quadratic loss (Halvorsen, Skogestad and 

Morud, et al. 2003).  

In this step after controlling the active constraints, the remaining unconstrained degrees 

of freedom are used for self-optimizing control. By implementing self-optimizing control, 

real time optimization is not needed to calculate new setpoints    in case of new 

disturbances. Instead, self-optimizing control emphasizes on the selection of CV1 to be 

kept constant by manipulating   in a feedback fashion,   as shown in Figure 3-2. In 

 

 

 

 

Figure 3-2: Feedback implementation of optimal operation with separate layers for 

optimization and control, (Kassidas, Patry and Marlin 2000) and (Engell 2007) 
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case of any disturbance (d), the controller K tries to maintain the controlled variables   at 

their setpoint    .  

 

Step 4: Where to Set the Production Rate (TPM)  

This is the last step of Skogestad (S. Skogestad 2013)  top-down analysis of the plant 

wide control structure design procedure. This is the link between top-down analysis (for 

economics) and the bottom-up analysis (for stabilization). The “TPM” term means 

throughput manipulator and is generally meant to be the “gas pedal”   of the process. 

TPM is generally some flow rate however it is not necessary always like in a reactor case 

TPM might be some temperature. Generally there is one TPM in a plant but there can be 

more than one in case of multiple feed and parallel units. 

 

3.1.2 Bottom-Up  Analysis (Stabilization) 

Step 5: Regulatory Control Layer 

The regulatory control layer is needed for stabilization of the plant against future 

disturbances. In this layer paring is made between the secondary controlled variables 

(CV2) and manipulated variables for the stable operation of the plant. 

   

Step 6: Supervisory Control Layer 

The secondary controlled variables (CV2) of the regulatory control layer act as inputs to 

the supervisory control layer. The main purpose of this layer is to maintain the primary 

controlled variables   at their setpoint    subjected to optimal operation. 

 

Step 7: Real Time Optimization 

The real time optimization is used (time scale is hour) to re-optimize operation and find 

new optimal points caused by change in disturbances from the optimum. 

3.2 Self-optimizing Control  

“Self-optimizing control is when we achieve acceptable loss (in comparison with truly 

optimal operation) with constant setpoint values for the controlled variables (without the 

need to re-optimize when disturbances occur” (S. Skogestad). 
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In the above definition of self-optimizing control, the acceptable operation means the loss 

by keeping the constant setpoints policy as given by Eq. (3.5): 

                         
       (3.5) 

 
 

        is the cost when the controlled variables are kept at constant setpoints and 

           
       is the optimal cost. Figure 3-3 illustrates the cost function   as a 

function of input   (unconstrained degrees of freedom) and disturbance            and 

      
   are the optimal inputs for disturbance   and   . The figure also shows the loss 

by keeping input   constant at          
   in case of disturbance d.  In self-optimizing 

control, the input   is updated to keep the measurement or combination of measurements 

    at setpoint    by a feedback diagram as shown in Figure 3-4. 

 

 

 

 

Figure 3-3: Cost function as a function of disturbance d & d* and inputs u, (Yelchuru 

2012) 
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In self-optimizing control a good candidate controlled variables   should have following 

properties, (S. Skogestad) : 

 The optimal value of   should be insensitive to disturbances 

   should be easy to measure and control (i.e. its implementation error should be 

small) 

 The value of   should be sensitive to changes in the degree of freedom (i.e. 

steady-state gain from   to   should be large). 

 

 

3.2.1 Methods for Loss Evaluation  

In this study local methods have been used for identifying the promising primary 

controlled variables and further they have been also tested on the non-linear model. Local 

methods are based on the local analysis of loss and linearized steady-state model around 

optimal operating points. These methods are based on the assumptions that the plant’s 

economics are governed by the pseudo/steady-state behavior, (Yelchuru 2012).   

As explained above the self-optimizing control proposes the concept of minimizing the 

loss by keeping certain setpoints constant. The simplified loss expression can be written 

as              . Here, the idea is to minimize the loss caused by self-optimizing 

Figure 3-4: The feed-back control diagram for self-optimizing control, (Yelchuru 2012)  
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control unlike minimizing cost  . The loss minimization using local methods are termed 

as minimum loss method by Skogestad and Yelchuru, (Yelchuru and Skogestad 2012).  

 

3.2.1.1 Variable and Notations 

         : unconstrained steady-state degrees of freedom also called 

inputs 

         : disturbances 

         :  all available measurements, including inputs and measured 

disturbances 

    : measurement errors (noise),        . 

         :         selected controlled variables ,      

3.2.1.2 Cost Function 

The unconstrained cost function is written below (Yelchuru and Skogestad 2012): 

                   
   

  [
  
  

]  
 

 
[
  
  

]
 

[
   
    

 

   
    

 ] [
  
  

] +  (3.6) 

 
         and         are expressions for deviation from nominal 

optimal point         

   
  and    

  are first derivative of cost with respect to u and d respectively.  

    
      

  and     
  are second derivative of cost with respect to     and   and 

  respectively at          . 

Since, the nominal point is assumed to be giving the minimum optimal cost therefore, 

  
   . Further, to simplify the problem, it is also assumed that the nominal inputs and 

disturbances               and hence       . By applying these assumptions to the 

cost function as given by Eq. (3.6), it is found that the values of      
 and       

 are not 

required for finding the optimal measurement combination matrix    
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3.2.1.3 Assumptions 

The finding of optimal   and loss evaluation is based on the following assumptions: 

   spans the unconstrained subspace and does not consists of the constrained 

degrees of freedom  used to control active constraints . 

  The required number of controlled variables is same as the number of 

unconstrained degrees of freedom (     ).This ensures that      is a square 

matrix (     ). 

 In order to get off-set free control of all primary controlled variables, the number 

of independent measurements should be greater than the number of unconstrained 

degrees of freedom i.e. (        ). 

         , where     the diagonal matrix is such that the diagonal elements are 

the expected magnitude of each disturbances and the magnitude of    is one. 

           , where     is the diagonal matrix such that the diagonal elements 

are the magnitude of the measurement noise and the magnitude of vector     is 

one. 

 

3.2.2 Re-defining the Minimum Loss method 

The optimal matrix   is obtained by keeping measured controlled variables   at constant 

setpoint    by adjusting   using feedback control as shown in Figure 3-4. 

                 (3.7) 

 
 

  matrix is calculated such that it minimizes the loss as given below by Eq. (3.8): 

                   (3.8) 

 
The loss is minimized for the expected disturbance   and the measurement noise   .The 

unit magnitude of disturbance and the measurement noise is defined below for two 

different cases of loss: 



Chapter 3                                                          Optimal Selection of Controlled Variables                                  

25 

 

1. Worst -case loss,     : In this case the combined normalization vectors for 

disturbances and measurement noise have 2-norm less than 1, Eq. (3.9): 

 ‖[   
   ]‖

 
   (3.9) 

 
2. Average loss,          : In this case,  normal distributed set is given below: 

 [   
   ]         (3.10) 

 
 

     is expectation operator. 

 

 

3.2.2.1 Solution to Minimum Loss Problem (Exact Local Method) 

The solution to minimum loss problem comprises of expression for optimal input,      , 

expression for loss   in terms of         and optimal sensitivities 

                    , (Halvorsen, Skogestad and Morud, et al. 2003). 

 

Optimal input (     : The expansion of gradient    around optimal point,         

       gives the optimal input as a function of disturbance    Eq. (3.11) : 

           
      

   (3.11) 

 
 

The expression for loss is given by the following equation, Eq. (3.12): 

                       
 

 
    

 

 
‖ ‖ 

  (3.12) 

 
 

where,  

      
   

            (3.13) 
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Optimal sensitivity,    : The expression for optimal sensitivity of the outputs 

(measurements) with respect to disturbances is given by   bbelow: 

          
        

 
  (3.14) 

 
Also,   can be directly calculated from its definition, Eq.(3.15) :  

   
     

  
 (3.15) 

 
The expression of loss as a function of disturbance and noise is given by the following 

equations: 

   
 

 
    (3.16) 

 
where , 

      
            ⏟          

    

[   
   ] (3.17) 

 
And the expression   in the above equation is the optimal variation in the candidate 

controlled variables or measurements due to disturbances and measurement noise: 

              (3.18) 

 
   and     are the diagonal matrices representing the magnitude of disturbances and 

measurement noise.  

 

Worst-case and average loss for a given H:  

The worst-case loss (Halvorsen, Skogestad and Morud, et al. 2003) is given by the 

following equation: 

     
 

 
      (3.19) 

 
and the average loss is given by, (Kariwala, Cao and Janardhanan 2008): 
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‖ ‖ 

 
 (3.20) 

 
where  

         
   

          (3.21) 

 
 

     denotes the maximum singular value (induced 2-norm) of the matrix      and 

‖ ‖  √∑     
 

    is the frobenius norm of the matrix M. The use of norm to analyze 

loss is known as “The exact local method” ( (Halvorsen, Skogestad and Morud, et al. 

2003). These loss expressions are for given . 

(Kariwala, Cao and Janardhanan 2008) have proved that the   that minimizes average 

loss as given in Eq.(3.20) is super optimal because the same   also minimizes the worst 

case loss in Eq. (3.30). Hence, in this work only the minimization of frobeneus norm is 

considered, (Yelchuru 2012). 

 

There are several different methods to evaluate loss at steady-state however in this study 

three different methods have been used to evaluate loss at the steady-state. Of all these 

three methods the exact local method has been explained above and the remaining two 

methods are explained below: 

 

3.2.2.2 The Maximum Minimum Singular Rule 

In this work, the maximum minimum singular value rule of Halvorsen et al. (Halvorsen, 

Skogestad and Morud, et al. 2003) and (Skogestad, and Postlethwaite 1996) has been 

used to select the best set of measurements (stage temperatures) giving the minimum  

loss. The selection is based on scaled steady-state gain from inputs to the candidate 

controlled variables. The steps to calculate scaled gain matrix are as follows: 

 The model is linearized around optimal point in order to get measurement 

dependent on   and   and is given by the following equation, Eq. (3.22) :  
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   ̃ [

 
 
] (3.22) 

 

    and   
  

are the transfer functions but for calculating   only the steady-state gains 

have been used, (Yelchuru 2012). 

 Using the linear model the input    is scaled i.e.         
√       

⁄   

 The optimal variation (         due to disturbances is calculated for each 

candidate controlled variable i.e.  

         [     
        

 
]
 
  

 The expected measurement noise    is obtained for each candidate controlled 

variables 

 The scaled candidate controlled variable is the sum of the magnitudes of optimal 

variation and measurement noise, i.e.        |       |  |  |. 

 The scaling matrix is then computed,        {     } and        {      } and 

finally the scaled gain is obtained i.e.      
       

 

The value of scaled gain is then used to find the set of temperatures with maximum 

minimum singular value by using bi-directional branch and bound method by Cao and 

Kariwala, (Cao and Kariwala 2008). The worst case loss using this method is given by 

the following expression: 

     
 

 

 

        
 (3.23) 

 
Here constant          is independent of the choice of controlled variable and       

is the minimum singular value of    and the maximum singular value    is induced 2-

norm of a matrix. Thus, to minimize the worst case loss, those controlled variables should 

be selected which would have maximum minimum singular value. The loss calculated by 

Eq. (3.23) is less accurate than the loss calculated by using Eq. (3.19)  and Eq. (3.20) 

therefore it is recommended to use the later equations for more accurate values of loss. 

 



Chapter 3                                                          Optimal Selection of Controlled Variables                                  

29 

 

3.2.2.3 Null Space Method 

The null space method as proposed by Alstad and Skogestad (Alstad and Skogestad 

2007) gives measurement matrix   such that     . This method is valid provided 

numbers of available measurements are more than the sum of unconstrained degrees of 

freedom and the disturbances (         . In such case it is always possible to find a 

non-trivial H in the left null-space of F resulting in zero loss. In addition it also neglects 

the effect of measurement noise i.e.          . The null space method gives 

combination of measurement and perfect disturbance rejection. 

 

3.2.3 Loss Evaluation form Dynamic Simulations (Validation) 

The loss caused by keeping individual measurement or combinations of measurements as 

obtained from steady-state self-optimizing control can be validated by dynamic 

simulation using feedback control. The loss occurring due to disturbances can be the 

basis for the overall performance of the selected controlled variables.  

 

3.2.3.1 Controller Tuning 

For tuning of controllers SIMC tuning rules were used in this work (S. Skogestad 2013).  

An approximate first order model time-delay model is given below: 

    
 

     
      

  

  
 
  

      (3.24) 

 
Where 

    
 

  
 (3.25) 

 
   is the plant gain 

    is the dominant lag time constant 

   is the time delay 



Chapter 3                                                          Optimal Selection of Controlled Variables                                  

30 

 

   is the Laplace parameter. 

There are three methods to obtain the above parameters for controller tuning: 

1. Open -loop step response 

2. Closed -loop set-point response with P-controller 

3. Approximation of effective delay using half rule from detailed model 

 

3.2.3.2 First Order Process 

The step response for the first order process model is shown in the Figure 3-5.The 

steady-state gain can be calculated as follows: 

   
     

  
  (3.26) 

 
By giving a step change in the manipulated variable or input, all the tuning parameters 

can be easily obtained. In the given Figure 3-5,   is the time duration on x-axis for which 

output does not change after step change in input. The time constant     is the time taken 

corresponding to 63% of the output value   on y-axis. 

The SIMC tuning rule for first order process model is given below in Eq. (3.27) and Eq. 

(3.28)  

    
 

 

  

    
 

 

  
 

 

    
 (3.27) 

 
 

                     (3.28) 

 
 

In the above equations    is the controller gain,   is the integral time and    is closed 

loop time constant which is used as tuning parameter for tight controller tuning or de-

tuning.        is a good choice as an initial guess. 
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3.2.3.3 The Integrating Process 

In case, the lag time more than eight times greater than    the first order response is then 

approximated as an integrating process and the tuning parameters are given below: 

    
 

  
 

 

    
 (3.29) 

 
 

 

 

where   

    
 

  
 

 

    
 (3.30) 

 

 

    

  
  ⁄

  
 

(3.31) 

 
and  

Figure 3-5: Open loop step -response for first order process model (S. Skogestad 2013) 
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            (3.32) 

 
3.2.3.4 The sequential Design of Decentralized Control 

For the design of a single-input-single-output controller for each loop in a multivariable 

system, Hovd and Skogestad, (Hovd and Skogestad 1994) have suggested closing and 

tuning one loop at a time both for online tuning as well as using the process model.  
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CHAPTER 4 

 

Control Strategies for Divided Wall Column 

 

This chapter describes the system under study and also illustrates the implementation of 

economic plantwide control procedure and self-optimizng control on the system. The 

system here refers to the three-product divided wall column    . 

4.1 Process Description and Model  

The schematic diagram of divided wall column is given in Figure 4-1. It can be seen in 

the figure that the column has a single shell with a physical wall (movable or fixed and 

welded) partitioning it into the prefractionator and the main column. The column has six 

sections- C11, C12 in the prefractionator and   C21, C22, C23, C24 in the main column. The 

reason for having six sections is that any configuration having less than six sections 

cannot produce reversible splits (Petlyuk, Platonoy and Slavinskii 1965). Also in each 

section, the components with highest and lowest boiling points should be separated in 

order to prevent mixing entropy (or to cause reversible splits) (Kaibel 1987).  Each 

section in the column has twelve numbers of stages. The numbering of the stages used 

while stage by stage modeling of the column is shown in Figure 4-1.  The equimolar feed 

consisting of three components (A, B and C) enters into the column at first stage of C12. 

The basic column model is based on the same model as studied by Dwivedi et al. 

(Dwivedi, Halvorsen and Skogestad 2012). However the basic model’s equations, input 

and output parameters were customized as per the requirement of this study.  
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Figure 4-1: The schematic diagram of the three-product divided wall column 



 Chapter 4                                                      Control Strategies for Divided Wall Column      

35 

 

The stage by stage modeling of the column is based on following simplified assumptions: 

 Constant relative volatility 

 Constant Pressure 

 Equilibrium on all stages 

 Negligible vapor holdup 

  Linearized Flow Dynamics 

 Constant internal molar flows  

 total condenser 

The above assumptions are already explained in (CHAPTER 2).  The column data with 

feed conditions and other process parameters are given in Table 4-1. 

 

Physical data   

Component     and   Ethanol, Propanol and n-Butanol 

Boiling points of     and                         
Relative volatilities [  (lightest),      

(heaviest)]               

Number of stages  12 in each section 

Nominal feed flow rate,    1 [kmol/min] 

Nominal feed composition,    
    

    
                  [0.333  0.333  0.333] 

Nominal liquid feed,   
  1 

  Disturbances (Deviations) 

 Feed,          

                
          

       

         
      

     
      

  Implementation errors 

 Control error (integral action) 0.0000 

Measurement error (temperatures)         

 

 

 

Table 4-1: Process data for the three-product divided wall column 
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4.2 Plantwide Control Procedure for the Column 

The step by step plantwide control procedure as discussed in section (3.1) of 

(CHAPTER 3) was applied to the control structure design of the three product divided 

wall column. The economic plantwide control procedure is for the implementation of 

optimal operation of the entire plant with many units and subunits. Here, the procedure is 

applied on the divided wall column while assuming it as a single unit of the plant. The 

procedure is discussed in the following subsections: 

 

4.2.1 Define the Objective Function and the Constraints (DWC) 

Based on the given model (stage-by-stage) assumptions for the three-product divided 

wall column, a typical scalar cost function subjected to various constraints is given 

below: 

    
     

                                       (4.1) 

 
        and   are flow rates (kmol/min) of feed, boilup, distillate, side stream and 

bottom product (residue) respectively.             and    are respective prices ($/kmol) 

of flows. Usually, the modes of operation are defined based on the given feed condition 

(Mode-I, where energy usage is minimized or impurities in the products are minimized or 

a trade-off is established between two to maximize the profit). Mode-II is when feed is 

not given (in this case production is maximized, (S. Skogestad 2013)) 

 In this study, Mode-I and Mode-II are based on the fact that whether the energy 

is expensive or cheap: 

Mode-I:   In this mode, energy is expensive therefore the optimal operation is subjected to 

minimizing the energy. 

Mode-II: In this mode, energy is cheap therefore maximum energy can be used to 

maximize the profit from product recovery. 
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The objective function for this study has been deduced from Eq. (4.1) on the basis of 

following assumptions: 

1. The given price of energy is cheap and therefore is fixed and is  an active 

constraint (Mode-II) 

2. Also the prices of each of the three products distillate (D), side stream (S) and 

bottom product R (R used as residue instead of B to avoid confusion with the 

component B) is dependent on the key component present in it.  

     
              

              
      

Further, it is assumed that the unit price of each key component is same as given below: 

  
    

    
    

Based on the assumptions (1 and 2) above, the cost function given by Eq. (4.1) can be re-

written as given below by Eq. (4.2) 

    
     

        (         )                         (4.2) 

 
The process constraints are: 

Flow constraints:                        

                                                          

Column capacity (flooding):              1.7319 

Pressure:  P, given    

Feed:        F, given (d)    

F is 1 Km/min 

The constraints are also the non-negativity of states (compositions): 

               

where,        and    are input, compositions, holdups and disturbance vectors. The 

mode of operation is same as Mode-II0 in Table 4-2. 
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4.2.2 Optimization (Offline-Analysis, DWC) 

In this step the degrees of freedom and expected disturbances at steady-state were 

identified and the optimization was done for disturbances. Also all possible modes of 

operations were identified based on the active constraints on the product purity 

specifications                     and energy   . These 4 constraints form 2^4 (16) 

different combination of active constraints. As earlier discussed in subsection 4.2.1, 

based on the energy economics, there are two modes of operation Mode-I and Mode-II. 

The possible modes of operation are given in Table 4-2. 

Mode-IIABC is not possible because all four constraints are active and thus 

controlled variables are more than the available degrees of freedom. Mode-IABC is same 

as minimizing energy for fixed product specifications. In this work Mode-II0, which is 

same as minimizing the sum of impurities has been studied, Eq. (4.2).  

 

 

     

Mode 

No. of active composition constraints,       in distillate  ,       in side 

stream   and      in bottom product   

 
      0 1  2  3  

E
n

er
g

y
 C

o
n

st
ra

in
ts

  

      

Mode-I   

Expensive 

Energy 

Mode-I0 

(1 case) 

Mode-IA/Mode-IB/ 

Mode-IC, (3 cases) 

Mode-IAB/Mode-

IBC /Mode-ICA,  

          (3 cases) 

Mode-IABC 

(1 case) 

 

      

Mode-II 

Cheap 

Energy 

Mode-II0 

(1 case) 

 

Mode-IIA/Mode-

IIB/ Mode-IIC, 

      (3 cases) 

Mode-IIAB/Mode-

IIBC/ Mode-IICA 

           (3 cases) 

(Infeasible) 

 

 

Table 4-2: Possible modes of operation for the three product divided wall column based 

on the active constraints 
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The distillate flow rate   and bottom product flow rate   were used to control levels in 

the condenser and reboiler tank and also they do not have any effect on steady-state 

operation. The boilup         and vapor split ratio    were assumed to be fixed and thus 

were not considered degrees of freedom rather they were assumed to be disturbances. The 

remaining degrees of freedom for optimization at steady-state are given below: 

                                     (4.3) 

 
It was assumed that   was always a liquid feed i.e.      and so was excluded from 

disturbance vector   . The boilup and vapor split ratios are included in     

                                          (4.4) 

 
 

Degrees of freedom Mode-II0: In this mode there were no constraints on product purity 

specifications and only the constraint on the energy and vapor split ratio was active. The 

constraint on energy was active because it was assumed that energy was cheap and 

therefore it was set to be used at the maximum (    ). The vapor split ratio was assumed 

to be constant because currently it is not common in practice to adjust it online however 

in few literatures it has been shown to be used as a manipulated variable. 

 

4.2.3 Implementation of the Optimal Operation (DWC) 

After identifying disturbances and input variables, the next step was to implement the 

optimal operation.  For the implementation of optimal operation the active constraints are 

controlled first followed by unconstrained degrees of freedom. The constraints in this 

case study is active only on inputs boilup,   (    ) and the vapor split ratio    as 

mentioned above. The candidate primary controlled variables for self-optimizing control 

were assumed to be the temperatures of stages in the column:  

                                                        (4.5) 
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With six section and twelve stages in each of them, there were total seventy two 

candidate controlled variables available for self-optimizing control as given by Eq.(4.5). 

Since, the objective function was to minimize the sum of impurities therefore the choice 

of compositions as the candidate controlled variables was ruled out. It is not advisable to 

select controlled variables which reach maximum or minimum at the optimum, (S. 

Skogestad 2000). 

 The methods for evaluating economic loss by using self-optimizing control in 

this study are given in (CHAPTER 3).  

 

4.2.4 Where to Set the Production Rate (DWC) 

In this study, the boilup (    ) was assumed to be the throughput manipulator because 

the feed was given and the only factor determining the production rate (product recovery 

here) was the boilup. 

 

4.2.5 Regulatory Control Layer (DWC) 

Regulatory control is usually meant for smooth and stabilized plant operation. In this 

study, the levels in the condenser (    and the reboiler (    were controlled by the 

distillate,   and bottom product flow rate,   respectively. The economic analysis for self-

optimizing control was done on stabilized LV-model of the column. 

 

4.2.6 Selection of Controlled Variables and  Loss –evaluation (DWC) 

The measurements or combinations of measurement chosen from the set of candidate 

controlled variables (temperatures on stages) were tested by evaluating loss for different 

value of measurement combination matrix   and      as given by Eq.(3.21). In this 

work, the main emphasis is on calculating average loss as given by Eq. (3.20), (Kariwala, 

Cao and Janardhanan 2008), where use of norm   to analyze the loss is known as “Exact 

local method”. However, (Kariwala, Cao and Janardhanan 2008) have used uniform 

distribution for    and    , which results in an average loss of 
 

        
‖ ‖ 

  , in this 
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work only,  
 

 
‖ ‖ 

   has been used to calculate average loss. The steps involved in 

evaluating candidate controlled variables are briefly summarized below: 

 Based on the optimal sensitivity and scaled gain matrix, the twenty best sets of 

temperatures were obtained using branch and bound algorithm, (Cao and 

Kariwala 2008). 

 The worst case loss was calculated by using the formula given in Eq. (3.23) and 

also the loss was calculated for each set of temperatures using the respective 

values of their   minimum singular value.   

 Loss evaluation based on H matrix 

(a) The average loss and worst case loss for above set of measurements as 

obtained from branch and bound method were also calculated using Eq. (3.20)  

and Eq. (3.21) by using the corresponding norm in   .  

(b) The average loss for H matrix obtained from null space method (without 

measurement noise) 

(c) The average loss for H matrix using exact local method (with measurement 

noise 

 

 The loss caused by keeping first eight best sets of measurements (as obtained 

from branch and bound algorithm) constant as were also tested by simulating for 

change in disturbances using  the non-linear model 

 The loss caused by keeping the combinations of measurements as obtained from 

null space method were also tested by simulating for change in disturbances using 

the non-linear model  

 The loss caused by keeping combinations of measurements as obtained by exact 

local methods was also tested by simulating for change in disturbances using the 

non-linear model. 

 Finally the loss was evaluated for one case using the dynamic model 
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CHAPTER 5 

 

Simulation Procedure 
 

In the previous chapter the process and model of the system used in this work have been 

illustrated. Further, this chapter provides the information on retrieving the results 

obtained in this work. Major portion of this work like numerical computation, 

programming, modeling, simulations, optimization and control were done in MATLAB
®
 

R2101a.  

5.1 Initialize the Steady-State Simulation  

As earlier mentioned the work in this study was mainly focused on the control aspect of 

the three-product divided wall column therefore the stage by stage modeling of the 

column and assumptions for design conditions were generic and simple. Nevertheless the 

initial requirement emerged to be fixing the column design. The feed was considered to 

be an ideal liquid mixture consisting of three components A, B and C present in 

equimolar amount in it. The relative volatilities of the three given components happened 

to be same as those of Ethanol, Propanol and n-Butanol. Based on the feed conditions, 

     diagram was used to calculate the minimum energy required for operating the 

column and also the initial input variables to simulate the non-linear model (Halvorsen 

2001) and (Halvorsen and Skogestad 1999) 

 

5.1.1 Defining the Design Conditions 

Minimum energy: For a given feed with three components A, B and C with constant 

relative volatilities, the minimum energy was found using Halvorsen’s codes on     . 

The command to get the       plot is given in the beginning of the matlab code section. 

However one should download all codes (Halvorsen’s code for     ) in the same folder 

for using it. The minimum boilup value (         kmol/min) obtained from this 
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diagram is always for infinite number of stages and the peaks are for sharp product splits 

(i.e. zero impurity) and the most difficult split. The infinite number of stages means that 

the number of stages in section of the column is sufficient for sharp split between two 

components (heaviest and lightest). In this study it has been assumed that energy is cheap 

and the boilup is fixed at the maximum capacity of the column (    ). The maximum 

value of boilup is limited by the flooding situation in column. The value of maximum 

boilup was assumed to be 30% higher than that of minimum boilup, (             . 

 

Number of stages: The number of stages in each section of the column was assumed to 

be twelve. Based on previous studies by Dwivedi et al. (Dwivedi, Halvorsen and 

Skogestad 2012), simulation for the optimal operation (minimizing the sum of impurities) 

was initially done on the column with twenty numbers of stages in each section. Later on 

the numbers of stages in each section was brought down to twelve because with twenty 

numbers of stages in each section, the cost function was insensitive to change in inputs 

and disturbances. 

 

Initial holdups: For this simple model, on each stage the normalized holdup of M=1 was 

assumed. However the holdups in condenser and reboiler tanks were assumed to be 

twenty times that of each stage. 

 

Time: The time unit was not real and was assumed to be normalized time.  The 

eigenvalues of the system, and the typical time constant directly depends on the holdup. 

 

The non-linear model of the three-product divided wall column was created in Matlab. 

The models were based on the model studied by Dwivedi et al. (Dwivedi, Halvorsen and 

Skogestad 2012). The assumptions for the model have been already given in the previous 

chapter. The file to initialize the steady state simulation using ode solver is init_runner.m. 

It calls the non-linear model of the Petlyuk column Petlyuk_NLmodel.m. The script file 

indmat_Yes_S1.m has indices of all the states and hold ups. The divided wall column has 

six sections, first two sections in the prefractionator and remaining four sections in the 

main column. The prefractionator and the main column are in the same shell but 
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physically divided by a wall. The counting of stage starts from the top of the first section 

(C11) of the prefractionator and ends at the last section (C24) of the main column. Each 

stage has three states, two states for compositions and one state for hold up. The number 

of stages, relative volatilities, initial holdups and boiling point of three components are 

global values saved in the structures coldata and dyndata.  

5.2 Optimization  

The script file for running optimization is Optimizer_Petlyuk.m and the other related files 

are specs.m (linear equality and inequality constraints), Petlyuk_nonlcon.m. (nonlinear 

equality and inequality constraints) and objective.m (objective function). Optimization 

was done for minimizing the sum of impurities in the product streams and the solver used 

was fmincon.  Fmincon solver is used to find the constrained minimum of function of 

several variables (Mathworks 2013). The optimal solutions obtained by running the 

optimization are saved in Nominal_final.mat. It has the nominal values of all states and 

holdups (x_nom) as well as inputs (u_nom). These values are made global by using 

global structure dyndata (dyndata.x_nom, dyndata.u_nom and dyndata.temp_nom). 

5.3 Evaluation of Loss from Steady-state Linearized Model 

The temperatures were chosen as candidate controlled variables because the objective 

function is to minimize the sum of impurities. According to Skogestad’s palntwide 

control procedure (S. Skogestad 2000) one should never select the controlled variable 

which reaches maximum or minimum at the optimum. There were total seventy two 

temperatures which were assumed to be candidate controlled variables for implementing 

self-optimizing control structure. There were three degrees of freedom which could be 

manipulated to keep three controlled variables at constant setpoints. The measurements 

had to be chosen such that they would give acceptable loss when disturbances or 

implementation errors would shift the process away from optimum. The candidate 

controlled variables for self-optimizing control: 

 Stage-temperatures in the prefractionator (                 

 Stage-temperatures in the main-column (                 
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The output temperatures at the end of simulation or optimization can be obtained by 

calling the non-linear model function [sys Temp] = Petlyuk_NLmodel (t,x,U). This 

function returns the derivatives and temperatures as output. The name of the function file 

is Petlyuk_NLmodel.m. 

The initial nominal output temperatures have been saved as Y0.mat. Around this nominal 

point the model was linearized to obtain the optimal sensitivity matrix (F1), the input 

gain matrix (GY), the disturbance gain matrix (GYd), the second derivative of cost J 

(Juu) with respect to input and the second derivative of cost with respect to disturbances 

(Jud).  

Optimal sensitivity from perturbation in disturbances: The script file to calculate 

optimal sensitivity is Script_Fmatrix.m. Also, the optimal sensitivity matrix is saved as 

F1.mat.  

 

Gain Matrix from perturbation in inputs: The script file to calculate gain due to 

perturbation in inputs is GYscript.m. It is also saved as GY.mat.  

 

Gain Matrix from perturbation in disturbances: The script file to calculate gain due to 

perturbation in disturbances is GYdscript.m. It is also saved as GYd.mat.  

 

Juu and Jud matrix: Both the second derivatives of cost with respect to input and with 

respect to disturbances were calculated using central-finite-difference method and were 

also validated by forward and backward finite difference methods. The values are saved 

as Juu.mat and Jud.mat. Juu is a positive definite matrix. 

 

Maximum minimum singular value: The script file to obtain sets of temperatures and 

respective maximum minimum singular values based on scaled gain G’ is 

min_singular.m. It uses the function file b3msv.m which is based on the algorithm 

developed by (Cao and Kariwala 2008). 

 

Bi-directional branch and bound for average loss criterion: The scripts file to 

calculate average loss for measurement subsets based on average loss criterion is 
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av_lossBB.m. It should be noted that it calculates the same loss as calculated by Eq. 

(3.20) and does not include  
 

        
 term. The function file b3av.m has been corrected to 

give same value as Eq. (3.20).  

 

Loss from null space method: The script file to get H matrix using null space method is 

Nullspace_Petlyuk.m.  

Loss from exact local method: The exact local method gives good result only for very 

small value of disturbances and implementation errors. The script file used to calculate 

average loss and worst-case loss using exact local method for all combinations of 

measurements is El_Petlyuk.m. and for three measurements is El_3Temp.m. 

 

5.4 Evaluation of Loss from Non-linear Model 

The branch and bound method (Cao and Kariwala 2008) and bi-directional branch and 

bound method based on largest values of minimum singular values and the average loss 

criterion, (Kariwala, Cao and Janardhanan 2008) respectively gave best sets of three 

measurements. The five best sets of measurements (from maximum minimum singular 

value) giving minimum average loss were tested on the non-linear model. The loss was 

evaluated by keeping each set of measurements constant and changing each disturbance 

at one time. The changes were done in Petlyuk_nonlcon.m by adding these temperatures 

in non-linear equality constraints. Plot_loss_MSV.m is the script file for plotting loss.  

Similarly the loss was plotted for both null space method and exact local method 

for change in feed. The script file is plot_loss_nullspace.m. 

 

5.5 Evaluation of Loss from Dynamic Model 

For the validation of steady-state simulation the set of controlled variables to be kept 

constant were also tested by dynamic simulation. 

 Three individual measurement (T10,T38,T60) obtained from maximum minimum 

singular value rule. 
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Step by step procedure for dynamic simulations:  

The simulation files 

1. The dynamic model was created with three inputs and three output loops 

controlled by proportional integrated controller (PI-controller). The name of the 

function file for non-linear dynamic model is dynamic_Petlyuk.m. It uses two 

function files Petlyuk_NLmodel.m (the steady-state non-linear model) and 

Controller_PI.m (function for PI controller action) 

2. Controller_PI.m is a function file which has equations based on the proportional 

integrated control. The file has eight input variables and those are the output 

temperature (T), the setpoint temperature (Ts), the nominal input corresponding 

to the  setpoint temperature (u0), the integrated error (y), the controller gain (Kc), 

the integral time (taui) and the valve opening limits (min,max).  

3. init_runner.m  is the script file to run the dynamic simulation. It has all the 

global parameters, the ode15s solver which takes initial states as inputs and 

returns the output states at the end of the simulation by solving the non-linear 

equations as given in the dynamic model. 

 

The simulation procedure for self-optimizing control 

1. Run the script file init_runner.m  for intial simulation with no controller action by 

keeping all the loops open except two level loops closed as they are used in plant 

stabilization (regulatory control). And hence they are excluded from the self-

optimizing control. The simulation would give the following results: 

 composition profiles in the prefractionator and the main column, 

  The mole fractions of components A, B and C in the product streams of 

the main column (D,S and R) as well as the prefractionator (D,S and R1) 

 The cost which is the total sum of impurities in the products coming out 

from the main column. 

2. The second important step of the procedure was to tune the PI controller. Since, 

there were three input variables (DOF) and three output variables (Temperatures 

on stages) therefore the sequential tuning method (Hovd and Skogestad, 

Sequential Design of Decentralized Controllers 1994) was used. In the sequential 
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tuning method, firstly, the prefractionator was tuned independently and then the 

PI controller loops in the main column were tuned one by one starting from the 

reflux followed by the side-stream.  

3. The step change was given in the nominal input value of liquid split ratio Rl  

(dyndata.u_nom(3) ) and the step response was seen in the output temperature T10 

(temperature corresponding to 10
th

 stage of the column in the prefractionator, 

Temp_current(3)). The response was same as for the integrating process with 

small dead time,  . The tuning parameter    and integral time    were identified 

for the process and the loop was closed to see the response with setpoint change 

and the disturbances.  

4. After tuning the input –output loop Rl and T10 in the prefractionator the next step 

was to tune reflux L (kmol/min) with the output temperature T38.  The step change 

was given in the nominal input value of reflux flow rate L(dyndata.u_nom(2) ) 

and the step response was seen in the output temperature T38 (temperature 

corresponding to 38
th

 stage of the column in the main column, Temp_current(1)). 

The response was same as for the integrating process with small dead time,  . The 

tuning parameter    and integral time    were identified for the process and the 

loop was closed to see the response with setpoint change and the disturbances.  

5. After tuning the input –output loop S and T60 in the main column the last step was 

to tune side stream flow rate S (kmol/min) with the output temperature T60.  The 

step change was given in the nominal input value of reflux flow rate S 

(dyndata.u_nom(5) ) and the step response was seen in the output temperature 

T38 (temperature corresponding to 60
th

 stage of the column in the main column, 

Temp_current(2)). The response was same as for the integrating process with 

small dead time,  . The tuning parameter    and integral time    were identified 

for the process and the loop was closed to see the response with setpoint change 

and the disturbances.  

6. After tuning all three loops they were closed in order to validate the results of 

self-optimizing control obtained from the steady-state simulation. For change in 

disturbances from the nominal the costs were obtained from dynamic simulations. 
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The changes in disturbances were done to obtain loss evaluation using self-

optimizing control structure. 

 

Control loop       

Rl -0.33 8 

L -0.15 16 

S 0.27 11.2 

Table 5-1: SIMC tuning parameters used in the self-optimizing control structure 
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CHAPTER 6 

 

Results and Discussion 
 

The method for selection of controlled variables for self-optimizing control has been 

already discussed in Chapter 3. Also, how these methods were implemented on the three-

product divided wall column has been elaborated in (CHAPTER 4). Further, the 

procedure for simulation using these methods to generate results has been discussed in 

(CHAPTER 5). All possible modes of operation are given in Table 4-2. In this chapter, 

the results and discussions for Mode-II0 has been presented.  

6.1 Initial Steady-State Simulation  

6.1.1 Defining the design conditions  

The data for the column design like feed flow rate, feed conditions, number of stages in 

the column are given in Table 4-1.The graphical (    ) diagram was used to find initial 

inputs for the column with a given feed. 

 

Minimum energy (    ) and maximum boilup (     : In this study, the column has been 

assumed to be operating at the fixed maximum boilup. The maximum boilup       was 

assumed to be 30% higher than the minimum boilup     .The minimum energy required 

to operate the column can be found by using graphical     diagram proposed by 

Halvorsen (Halvorsen 2001). The minimum energy required to separate the multi 

component feed is equal to the most difficult binary separation (Halvorsen and Skogestad 

2003). The factors affecting the value of     are feed flow rate, feed composition, feed 

liquid composition and the relative volatilities of feed components.  

For an equimolar feed with given relative volatilities the split was more difficult 

between component B and C. However, with an increase in component A and decrease in  
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component B in the feed the split was more difficult between components A and B, 

Figure 6-1. The minimum energy for this study from graphical      diagram was found  

to be 1.3 (kmol/min). This is because B and C split has the highest peak        The 

value of minimum boilup (1.3 kmol/min) was based on the assumptions that there were  

sufficient numbers of stages in each section of the column for sharp separation between 

the components.  

 

 

The value of maximum boilup (    = 1.7319) to be used for this study was made 30% 

higher than that from the minimum energy. 

 

Number of stages: There were approximately twenty numbers of stages corresponding to 

the minimum energy that would give sharp separation. The cost function was equivalent 

to minimizing the sum of impurities for fixed and maximum boilup. The cost function 

with twenty numbers of stages and given maximum boilup was apparently insensitive to 

changes. Therefore, the number of stages was reduced to twelve in each of six sections of 

the column. 

 

Steady-state simulation: The initial composition     on all stages were assumed to be 

0.333 and simulation was done to obtain new steady-state values. The new steady-state  
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Figure 6-1: Vmin diagrams for two different compositions of feed with relative 
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values are given in Table 6-1   and Table 6-2. The total sum of impurities in products at 

the new steady-state was 0.2077 (kmol/min). The sum of impurities at the stead-state was 

very high. Optimization was done to bring down the sum of impurities and find the 

nominal conditions for the column operation. 

Reflux flow rate,   1.0033 (kmol/min) 

Boilup flow rate,   1.3381 (kmol/min) 

Liquid split ratio,    0.3465 

Vapor split ratio,    0.5982 

Distillate flow rate,   0.3348 (kmol/min) 

Side stream flow rate,   0.3318 (kmol/min) 

Bottom Prodcut,      is used instead of  ) 0.3333 (kmol/min) 

 

    Compositions  

Product Streams          

Distillate,   0.9867 0.0133 0.0000 

Side product,   0.0089 0.9710 0.0201 

Bottom product,   0.0000 0.0201 0.9799 

Prefractionator top product,    0.4148 0.5675 0.0177 

Prefractionator bottom product,    0.0117 0.6037 0.3845 

 

6.2 The Nominal Values from Optimization 

The optimization was done with respect to degrees of freedom and for the cost function 

as given below in Eq. (6.1): 

          (         )        (6.1) 

 
The cost function as given above is the total sum of impurities in product streams coming 

out of the main column. The unconstrained degrees of freedom for self-optimizing 

control are reflux flow rate, side stream flow rate and the liquid split ratio as given below: 

Table 6-1: Input values used for initial steady-state simulation with 12 stages in each 

section 

Table 6-2:  Compositions at steady-state in the main column and the prefractionator of 

the column 
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               (6.2) 

 
There are five disturbances and they are feed flow rate, composition of A and B in the 

feed, the boilup which is fixed and set at the maximum and the vapor split ratio, Eq.(6.3) 

: 

                       (6.3) 

 
Optimization was done with steady-state values as initial values and the results for 

optimization are presented in Table 6-3 and Table 6-4. The optimization was done 

several times to ensure the minimum cost. The nominal value of sum of impurities came 

out to be 0.0037(kmol/min).  The nominal values of fraction of impurities A and C in the 

prefractionator bottom and top were 0.0029 and 0.0015. These values seemed to be 

relatively good for feasible composition profiles in both the prefractionator and the main 

column.  

Reflux flow rate, L          1.3986 (kmol/min) 

Boilup flow rate, V           1.7319 (kmol/min) 

Liquid split ratio, Rl                  0.3834 

Vapor split ratio, Rv                  0.5874 

Distillate flow rate, D          0.3382 (kmol/min) 

Side stream flow rate, S          0.3332 (kmol/min) 

Bottom Prodcut, R (R is used instead of B)          0.3329 (kmol/min) 

 

    Compositions 

Product Streams               

Distillate, D 0.9970 0.0030 0.0000 

Side product, S 0.0033 0.9938 0.0029 

Bottom product, R 0.0000 0.0018 0.9982 

Prefractionator top product, D1 0.4066 0.5905 0.0029 

Prefractionator bottom product, R1 0.0015 0.5749 0.4236 

 

Table 6-3: The input values at the nominal conditions for DWC 

Table 6-4: Product compositions in the main column and the prefractionator of DWC 
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The nominal composition and temperature profiles in the prefractionator and the main 

column are given in Figure 6-2 and Figure 6-3.The temperature profiles in both the 
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Figure 6-2: Optimal composition profiles in the prefractionator and the main column 

respectively of the three-product divided wall column 

Figure 6-3: Optimal temperature profile in the three-product divided wall column  
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prefractionator and the main column are shown in the same figure. Stages (1-24) of the 

prefractionator share the common height with the main column’s stages (13-36). The 

temperature profile in the column shows increase in stages temperature from top towards 

bottom both in the prefractionator and the main column. This is usual because of the 

heating from reboiler in the bottom of the column.  

 

6.3 Re-optimized values with disturbances 

Re-optimization was done for expected disturbances in future and the effect was seen on 

the cost. The deviation in disturbances from nominal is already given in section (4.1.) 

The variation in cost with respected to deviation in disturbances are given in Table 6-5. 

The resulting cost went up with increased value of disturbances (10% higher from the 

nominal) except when boilup flow rate was increased. This is as expected because the 

increase in energy would result into more pure products. The resulting optimal cost due 

to decrease in disturbances (except boilup) was even lower than that from the optimal 

cost.  

The values of re-optimized cost given in Table 6-5 are not very accurate and the 

cost might have gone further down on re-optimizing nevertheless it can be assumed that 

these values are very close to optimal values at the respective values of disturbances. The 

actual re-optimized cost with respect to disturbance might only be 1-5% lower than the 

current values given in Table 6-5. 

  Cost  

Disturbances                              

  0.0037 0.0061 0.0023 

   0.0037 0.0041 0.0035 

   0.0037 0.0043 0.0031 

     0.0037 0.0026 0.0059 

   0.0037 0.0043 0.0036 

 

 

Table 6-5: The re-optimized cost with respect to expected future disturbances 
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6.4 Loss Evaluations using Pseudo/Steady-state Linearized Model 

The candidate controlled variables were temperatures on each stage of the column and 

they are given in (CHAPTER 4) and (CHAPTER 5). The average loss  and worst-case 

loss was evaluated using different measurement combination matrix   obtained from 

maximum minimum singular rule (Cao and Kariwala 2008) , bi-directional branch and 

bound method based on the average loss criterion (Kariwala, Cao and Janardhanan 2008), 

exact local method (minimum loss method) and null space method. The formula for 

average loss evaluation was same as used recent literature by Yelchuru and Skogetsad, 

(Yelchuru and Skogestad 2012) and is given by Eq. (3.20) and Eq. (3.21). 

 

6.5 Results from Maximum Minimum Singular Rule  

In this case study, the total numbers of candidate controlled variables were seventy two 

and for self-optimizing control only three measurements or three sets of combinations of 

measurements were needed because there were only three unconstrained degrees of 

freedom. Using the brute force method to check the candidacy of each of the available 

measurements (72 temperatures) was tedious task. In order to make the task simpler and 

to select the best set of three temperatures the maximum minimum singular value rule 

was applied.  

 

6.5.1 Optimal Sensitivities  

The pseudo/steady-state loss evaluation methods used in this study require the calculation 

of optimal sensitivity of the output (temperatures) with respect to disturbances. The 

optimal sensitivity                      was obtained directly from its definition, 

i.e.   
     

  
   Plots of optimal sensitivity with respect to each disturbances (          

         are shown in  Figure 6-4, Figure 6-5, Figure 6-6, Figure 6-7 & Figure 6-8. 

The requirement of a good self-optimizing controlled variable is that its value should not 

be sensitive to disturbances, (S. Skogestad 2000). 
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Figure 6-4 shows the optimal sensitivity of output temperatures with respect to change in 

boilup both in the prefractionator and the main column. The optimal variation in output 

temperatures in this case is mainly in the bottom of the column. The effect of  

 

 

 

change in disturbance (boilup) is mainly in the vapor split zone in both the main 

column(63
rd

 stage) and the prefractionator (24
th

 stage).  

 Figure 6-5 shows the optimal sensitivity of output temperature of the 

prefractionator and main column due to feed flow rate. The variation in the temperature 

can be seen mainly at the both ends of the prefractionator. In the main column, the 

variation in output temperatures is mainly in the vapor and liquid splitting sections.  

The sharp variation in optimal sensitivity of output temperatures near feed stage 

in the prefractionator is clearly visible in the Figure 6-6. It seems that the effect of the 

disturbance in the composition A in feed has effect in the vapor split zone in the main 

column and that has caused sharp temperature variation near vapor split stage in the main 

column.  
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Figure 6-4: Optimal-sensitivity of output temperatures with respect to the boilup 
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Similarly, Figure 6-7 shows the change in optimal sensitivity of the output temperatures 

(due to composition B in feed) in the prefractionator is large near the feed section. The 

effect in the main column is near the vapor split and liquid split zones. 
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Figure 6-5: Optimal-sensitivity of output temperatures with respect to the feed 

Figure 6-6: Optimal sensitivity of output temperatures with respect to composition of A 

in the feed 
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The optimal sensitivity of output temperatures with respect to change in vapor split ratio 

has been plotted in Figure 6-8. The sharp variation in the temperature change near vapor  
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Figure 6-7: Optimal-sensitivity of output temperatures with respect to composition of B 

in the feed 

Figure 6-8: Optimal-sensitivity of output temperatures with respect to the vapor split 

ratio 
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split is clearly visible in the figure. It seems that the effect of the vapor split in the main 

column has impact on the stage near liquid split zone. It might be due to the variation of 

the vapor and liquid flow rates in the prefractionator and the main column.  

6.5.2 Scaled Gain 

The scaled gain of output temperatures from the individual inputs, the reflux flow rate, 

the side stream flow rate and the liquid split ratio respectively are shown in Figure 6-9.  

The candidate controlled variables showing relatively higher gain are assumed to be  

 

 

 

 

Figure 6-9: Scaled gains in the prefractionator and the main column for unconstrained 

degrees of freedom 
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better controlled variables (S. Skogestad 2000).  In the prefractionator, maximum gain 

can be seen on 10
th

 stage for change in input variable Rl. Similarly, in the main column 

the highest gain is seen on 63
rd

 stage (section-C25) and 38
th

 stage (section-C22). With 

change in input S, the maximum gain is again seen on 63
rd

 stage (section-C25). Thus, 

based on scaled gain,  these stages (T10, T38 and T63) can be considered to be good 

candidate controlled variables for self-optimizing control. 

 

After finding the scaled gain    as prescribed in (CHAPTER 3), the worst-case loss was 

calculated to be: 

           

In order to minimize the worst case loss as found above, those controlled variables were 

selected which would give the maximum minimum singular value for the scaled steady-

state gain   .  

The branch and bound algorithm by Cao and Kariwala (Cao and Kariwala 2008) 

was used to find the ten best sets of measurements. Each set contained three 

measurements (stage temperature here) equivalent to the number of available degrees of 

freedom for self-optimizing control. Table 6-6 shows ten best set of temperatures with 

their ranking in decreasing order. The set with the highest value of minimum singular 

value was assumed to be the best set of measurements to be kept constant for self-

optimizing control at the steady-state. The best set of three temperatures based on the 

highest value of minimum singular value is: 

   
                  (6.4) 

 
The corresponding minimum singular value for the above mentioned best set of 

temperatures came out to be: 

              (6.5) 
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The value of loss as calculated above using Eq. (3.21) is relatively less accurate than the 

loss calculated by Eq.(3.19) and Eq.(3.20). This is because the loss calculation using 

scaled gain requires appropriate scaling of inputs and outputs and selecting an exact 

scaling is difficult because of many possible numbers of combinations of disturbances 

and implementation errors. In the next section, loss evaluation is done using local method 

which use   and      matrices and give more accurate results. 

6.6 Loss Evaluation using H matrix (Local Methods) 

The theory related to local methods is illustrated in (CHAPTER 3), here these methods 

have been used to evaluate and identify the promising CVs for self-optimizing control.  

The losses were evaluated based on the   matrix for individual measurements and the 

combinations of measurements.  

 

6.6.1 Loss Evaluation with three Measurements  

New ranking of sets obtained from maximum minimum singular value:  The average 

loss and worst case loss was calculated using the   matrix for 10 best sets of 

temperatures as given in Table 6-6. On calculating the average loss it was found that the 

ranking of the best set of measurements as calculated by branch and bound method based 

on maximum minimum singular value in Table 6-6 was changed and Table 6-7 shows 

new ranking based on the values of average loss.  

Table 6-6: Ten best sets of temperature as candidate controlled variables based on 

maximum minimum singular value rule 

Rank CV1 CV2 CV3       Loss       

1 10 38 60 67.155 1.1087 

2 9 38 60 67.152 1.1088 

3 11 38 60 67.152 1.1088 

4 10 38 63 67.143 1.1091 

5 8 38 60 67.135 1.1094 

6 9 38 63 67.128 1.1096 

7 7 38 60 67.035 1.1127 

8 10 38 59 66.970 1.1149 

9 10 38 62 66.945 1.1157 

10 11 38 63 66.945 1.1157 
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Rank CV1 CV2 CV3 

 

 
‖ ‖ 

  

       

 

 
      

       

3 10 38 60 9.63 7.781 

2 9 38 60 9.61 7.780 

5 11 38 60 9.784 7.777 

8 8 38 60 1.001 8.137 

4 10 38 63 9.687 7.776 

7 9 38 63 9.994 8.135 

6 7 38 60 9.866 7.770 

1 10 38 59 9.430 7.604 

10 10 38 62 1.399 8.337 

9 9 38 62 1.019 8.135 

 

The best set of three temperatures based on the minimum value of average loss as 

calculated by using Eq. (3.20) and Eq.(3.21)  is: 

   
                  (6.6) 

 
The best set of stage temperatures obtained from Eq. (6.4) and Eq.(6.6) were almost 

same with respect to their positioning in the column’s section. Also, there was not much 

difference in the positioning of the stage’s temperatures for first three best sets of 

measurement obtained in Table 6-6 and Table 6-7. The best sets of temperatures as 

given by Eq. (6.4) and Eq. (6.6) seem to be good from the regulatory control point of 

view as well. The reasons being it is that they were in three different sections of the 

column and each of these sections was close to one of the available unconstrained 

degrees of freedom. Based on intuition the following pairing can be made between the 

controlled variable and the manipulated variables (here, unconstrained degrees of 

freedom): 

 
              

         

  

(6.7) 

 
                             

 

Table 6-7: Average loss and worst-case loss for 10 best sets of measurements (here, 

        using minimum loss method 
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The above pairing can be made for self-optimizing control to meet the economic 

objective which is minimizing the sum of impurities here. The above pairing can also be 

used for regulatory control in order to stabilize the column dynamically but the steady-

state RGA (relative gain array) analysis should be done to avoid wrong pairing with close 

interactions in decentralized control structure. The regulatory control based on RGA 

analysis has been presented in the later section of this report.  

New ranking of sets obtained from bi-directional branch and bound method based 

on average loss criterion:  The bidirectional branch and bound method for average loss 

criterion gave 10 different sets of temperatures as the best candidate controlled variables 

as given in Table 6-8. The best sets of temperature in this case are also similar to the sets 

of temperatures obtained in Table 6-6 and Table 6-7 except set of temperatures with rank 

4. The positioning of set of temperatures with rank 4 is different from other sets of 

available measurements based on ranking.  

In Table 6-8, two of the columns are presenting the values of average loss corresponding 

to each sets of temperature.      is the average loss calculated by bi-directional branch 

and bound algorithm however  
 

 
‖ ‖ 

   is the average loss calculated 

Rank CV1 CV2 CV3 

     

     

 
 

 
‖ ‖ 

  

     

 

 
      

     

 

 

 

New 

Rank 
1 9 38 59 1.17 9.41 7.60 4 

2 9 38 58 1.17 9.31 7.50 1 

3 9 39 59 1.17 9.43 7.61 5 

4 39 57 63 1.17 1.00 7.64 9 

5 9 39 58 1.17 9.32 7.50 2 

6 8 38 59 1.18 9.49 7.61 7 

7 10 38 59 1.18 9.50 7.61 8 

8 8 38 58 1.18 9.39 7.51 3 

9 8 39 59 1.18 9.39 7.51 3 

10 10 39 59 1.18 9.44 7.61 6 

 

 

Table 6-8: Average loss and worst-case loss for ten best sets of measurements (here, 

        using bidirectional branch and bound method, (Kariwala, Cao and 

Janardhanan 2008) 
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based on the value of   and norm of      from exact local method (minimum loss 

method). It should be noted that      in Table 6-8 was calculated after making correction 

in the term (
 

        
  (matlab codes) and therefore both the values of      and 

 
 

 
‖ ‖ 

   should have been nearly same. 

 

Summary: The average loss was calculated for first 10 best sets of measurements. The 

ranking of these measurements was based on  

 maximum minimum singular value calculated from branch and bound method 

(Cao and Kariwala 2008) 

 bi-directional branch and bound method for average loss criterion, (Kariwala, Cao 

and Janardhanan 2008) 

For the sets of measurements calculated from both methods mentioned above the average 

loss was calculated using   and norm of      matrix as given in recent literature, 

(Yelchuru and Skogestad 2012) and new ranking was made. It was found that the bi-

directional branch and bound method gives different value of average loss and therefore 

should be investigated in further work. The three best sets of temperatures obtained from 

these methods are nearly same in terms of values of average loss as well as the 

positioning in the column’s stage. These sets of temperatures seem good candidate 

controlled variables for self-optimizing however further validation can be done for larger 

disturbances on non-linear model. 

 

6.6.2 Loss Evaluation (Exact Local Method)  

The   matrix as calculated from exact local method (minimum loss method) gives the 

average loss as given below:  

      
 

 
‖ ‖ 

                (6.8) 

 
 

and the worst case loss using   matrix from exact local method is : 
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                   (6.9) 

 
 

The values of both average loss and worst-case loss in this case are less than those for 

values given in Table 6-7 and Table 6-8. This is as expected because here all 

combinations of measurements were kept at constant setpoints whereas the loss values in 

Table 6-7 and Table 6-8 are obtained by keeping only three temperatures at constant 

sepoints at a time. Increase in numbers of measurements in   matrix averages out the 

measurement noise while calculating loss. 

 

6.6.3 Loss Evaluation  (Null Space Method) 

Since, the number of available measurements (temperatures on all stages    = 72) is 

greater than the sum of the degrees of freedom and disturbances (            , 

therefore neglecting the measurement noise, (i.e.      , gave the measurement 

combination matrix   calculated from exact local method equivalent to that from null 

space method and the loss is given by:  

      
 

 
‖ ‖ 

                ̃   (6.10) 

 
 

and the worst case loss using   matrix from null space  method is also approximately 

zero : 

     
 

 
                    ̃   (6.11) 

 

6.7 Loss Evaluation from Non-linear Model 

Local methods are used to prescreen the most promising CVs based on the values of 

average loss and are based on the pseudo/steady-state linear model. This method takes 

relatively very less CPU time than evaluating loss from other methods based on non-

linear model especially when available measurements are very large in numbers. Also 

these methods give less loss for small change in disturbances. In case of large  
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disturbances the non-linearity in the model might not give good results. Based on the 

values of average loss (      as given in Table 6-7 and Table 6-8, it was found that the 

bi-directional branch and bound method gives lesser values of losses for all sets of 

measurements except one set (new rank 9 in Table 6-8 and new rank 1 in Table 6-7). 

The values of worst-case loss are also comparatively better than that from sets of 

measurements obtained using maximum minimum singular rule. Based on pseudo/steady-

state analysis, it can be concluded that the bidirectional branch and bound method gives 

better sets of measurements for self-optimizing control than the branch and bound 

method using maximum minimum singular values. The first five sets of candidate 

controlled variables based on the bi-directional branch and bound algorithm by 

(Kariwala, Cao and Janardhanan 2008) are : 

   
  

[
 
 
 
 
        

        

        

        

        ]
 
 
 
 

 
(6.12) 

 

 

The sets of measurements given by Eq. (6.12) should have been tested on non-linear 

model by keeping each temperature in each set constant by varying one disturbance at a 

time. The evaluation of loss by this method is called brute force method.  

The loss evaluation using brute force method could not be tested for the 

measurements given in Eq. (6.12) because of lack of time. However the loss evaluation 

using brute force method was already done for the first five best sets of values obtained in 

Table 6-7 and is also presented here. The candidate controlled variables which were 

evaluated by brute force method on non-linear model for larger disturbances are: 

  

   
  

[
 
 
 
 
         

        

         

         

         ]
 
 
 
 

 
(6.13) 

 

 

The loss is plotted for only change in feed flow rate. 
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The candidate controlled variables in Eq.(6.13) were found to be first five best sets of 

temperatures based on the average loss calculation using local minimum loss method as 

given by Eq. (3.20) and Eq. (3.21). Those sets of measurement were also tested on the 

non-linear model of the column for larger disturbance in feed (-10% -+10%) Figure 6-10 

shows the plot of loss by keeping three measurements constant and varying the feed flow 

rate. It is clear from the figure that the sets with rank1, rank2, rank3 and rank5 show 

nearly same loss (%) with varying feed. However, the set which was ranked 4
th

 using 

local method gives worst loss. Also the temperature set which was ranked 1
st
 gives 

minimum loss with respect to other measurement sets only for increase in feed flow rate. 

However with decreasing feed flow rate, the set of measurements (rank2) gives the 

minimum loss with respect to other sets of measurements. 
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Figure 6-10: The loss obtained from the non-linear model due to disturbance in feed flow 

rate for self-optimizing control by keeping three temperatures constant 
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The figure below shows the loss plot with varying feed for null space method. The null 

space method gave zero loss (both average and worst-case loss) using exact local method 

whereas on the non-linear model the loss is very high. It can be seen in the figure that the 

loss is approximately zero for very small decrease in feed flow rate however with 

increasing disturbance, the loss increases very sharply. The reason for poor performance 

in case of higher variation in feed flow rate is the non-linearity in the model. The 

measurement combinations from null space method is recommended to be used for very 

small disturbance in feed flow rate. 
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Figure 6-11 : The loss obtained from the non-linear model due to disturbance in feed for 

self-optimizing control by null space method 
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The loss by keeping the measurement combinations obtained from exact local method 

also shows very poor performance for larger variation in feed. The exact local method is 

found to work well only in case of very small loss. The non-linearity in the model poorly 

affects the performance of self-optimizing control by keeping the measurement 

combinations obtained using exact local method. 
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Figure 6-12 : The loss obtained from the non-linear model due to disturbance in feed for 

self-optimizing control by exact local method for all combination of measurements 
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6.8 Results from dynamic simulation 

The physical locations of all set of temperatures given by Eq. (6.12) and Eq.(6.13) were 

nearly same and also the temperatures in each set are located in the same sections of the 

column. T8, T9, T10 and T11 are located in the first section of the column (the part of the 

prefractionator above feed stage) and is also close to liquid split ratio   . Similarly, T38 

and T39 are located in the fourth section of the column (in the main column) and is also 

close to reflux,    Likewise, T58, T59, T60 and T63 are located at the end of fifth section of  

 

the column and is close to side stream,    While T38 is the most preferred measurement 

and is present in almost all best sets of temperature. The minimum singular value method 

and the bi-directional branch and bound method by no means can make the selections 

based on the structural/section constraint. Neither do they give the measurements based 

on the controllability or stability analysis. However, in this case study it was found that 

all best sets of candidate controlled variables calculated by both methods gave the 

temperatures in each section and also close to remaining unconstrained degrees of 

freedom. This implies that these temperatures could be used to pair with unconstrained 

degrees of freedom both for self-optimizing control and stabilizing control. Since, there 

was not much variations in the values of loss by keeping these sets of measurement 

constant (except rank4 set containing T10, T38 and T63), all other sets of measurements 

could be used for economic self-optimizing control and stabilizing control. But for 

stabilizing control the RGA analysis was done at steady-state and the results of loss by 

the control configuration using one of these sets has been presented below  

 

Pairing of controlled variables and unconstrained degrees of freedom: The result 

from steady-state analysis of the relative gain array for the control configuration using 

T10, T38, T60 as controlled variables and liquid split ratio    , reflux   and side stream   

is given in Table 6-9. The RGA element should be preferably close to unity and also the 

pairing should be avoided for negative RGA element. Based on these criteria for pairing 

based on RGA, it is very that    should be paired with T10, L should be paired with T38 
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and S should be paired with T60. The other sets of temperatures can also be evaluated 

using steady-state RGA analysis for stabilizing control. 

         

    -0.00026 1.05E-05 1.000252 

    0.989655 0.010629 -0.00028 

    0.010608 0.98936 3.17E-05 

 

 

The loss evaluation using dynamic model: The control configuration for the pairing as 

obtained from steady-state RGA analysis was implemented on the three-product divided 

wall column. The control configuration is shown in Figure 6-13. The evaluation of loss 

was done by keeping the three temperatures constant by using decentralized feedback 

control and giving 10% change in each disturbance at a time. The effects on cost have 

been calculated for both increase in disturbances and decrease in disturbances by 10%. 

Table 6-10 and Table 6-11 show the mole fractions of key components in all three 

products and loss associated with various disturbances in the column.  

 

Table 6-9: The steady-state RGA for the selected controlled variables 
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TC

TC

TC

Stage 10

Stage 38

Stage 60

 

 

                 
 
      

      

      

Loss 

(%) 

Nominal             

        0.996 0.9898 0.9972 6.3 6.100 3.278 

          0.9962 0.9924 0.9981 4.418 4.300 2.730 

       0.9977 0.9954 0.9988 2.723 2.600 4.718 

  
      0.9956 0.9928 0.9987 4.402  4.087  7.710 

  
      0.9967 0.9921 0.9986 4.442 4.350   2.104 

Figure 6-13: Self-optimizing control configuration ( keeping three temperatures at their 

nominal setpoints using unconstrained degrees of freedom) 

Table 6-10: The product purity compositions and percentage loss for +10% change in 

disturbances from nominal  
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Loss 

(%) 

Nominal             

       0.997 0.9955 0.9988 2.386 2.300 3.742 

           0.9975 0.9934 0.9983 3.617 3.605  0.466  

       0.9958 0.9890 0.9970 6.051 5.900 2.564 

  
      0.9979 0.9938 0.9975 3.632 3.493  3.779  

  
      

 
0.9972 0.9950 0.9979 3.194 3.15 1.406 

 

 

 

 

 

 

 

 

Table 6-11:  The product purity compositions and percentage loss for -10% change in 

disturbances from nominal 
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CHAPTER 7               

 

Conclusion and Further Work 

7.1 Conclusion 

The economic plantwide control procedure was applied to the three-product divided wall 

column. With four possible active constraints on the compositions of three key 

components in product streams and energy, the column can be optimally operated in 15 

possible modes. 

The maximum minimum singular value rule, minimum loss method (Halvorsen, 

Skogestad and Morud, et al. 2003) and null space method (Alstad and Skogestad 2007) 

were used to find the controlled variables that would minimize the loss caused due to 

deviation from optimal operation in self-optimizing control. Branch and bound method 

(Cao and Kariwala 2008) and bi-directional branch and bound methods (Kariwala, Cao 

and Janardhanan 2008) were also used to obtain best sets of candidate controlled 

variables using the above methods. It was found that, bi-directional branch and bound 

method using average loss criterion gave better sets of candidate controlled variables with 

less loss than that obtained from branch and bound method using maximum minimum 

singular rule. It was also found that the average loss calculated by using bi-directional 

branch and bound algorithm was slightly higher than the average loss calculated by using 

minimum loss method.  

The steady-state loss by keeping all combinations of measurements (all 72 

temperatures) at constant setpoints was less than that for three measurements 

(temperatures). 

The results from non-linear steady-state model and dynamic model approved the 

selection of controlled variables done by steady-state exact local method for three 

measurements. However the results for all combinations of measurements were 

extremely poor for larger value of disturbances. Furthermore, the proposed control 

structure for one case seems to be good for self-optimizing control. 
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7.2 Further Work 

In this work, selection of controlled variables was based on using maximum minimum 

singular value rule, minimum loss method (Halvorsen, Skogestad and Morud, et al. 2003) 

and null space method (Alstad and Skogestad 2007).These methods do not handle 

structural constraints therefore a mixed integer quadratic programming (MIQP) 

(Yelchuru 2012) method can be used to select optimal measurement subsets from each 

section. The model can be improved by working on its non-linearity as the loss 

evaluations from non-linear model for all combinations of measurements seemed not so 

good. For given sets of three measurements the loss evaluations using non-linear model 

should be done for the variation in remaining four disturbances (Vmax, Rl,    and   ) as 

this would give more informations which can be used in the better selection of controlled 

variables for self-optimizing control. 

Also, the reported work can be implemented on the divided wall column in the 

experimental/industrial scale to check the validity of proposed work.  

The present reported work was only for decentralized control structures. A 

comparison with multivariable controller could give very interesting result and insight in 

the proposed study.  

In the proposed work mainly the steady state simulation was done to obtain the 

optimal controlled variable in self-optimizing control. It could be very interesting to 

extend the present work that result in economic optimal controlled variable based on 

rigorous dynamics simulations. 
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APPENDIX A  
 

Matlab Codes  
 

Matlab Codes (Steady-state Simulation) 

 

% Ambari Khanam 

% contact at ambari.shams@hotmail.com 
 

 

 

% Vmin digram (to create Vmin diagram Halvorsen’s (Halvorsen 2001)  codes were 

used) 

 

 

function [Vs,Ds,Rs,Keys,theta,VM,h]=UWmulti(theta,alfa,zf,qf,F,inkey,plotflag) 

alfa = [4  2   1]; 

Zf = [0.333 0.333 0.333]; 

qF=1; 

F=1; 

function [Vs,Ds,Rs,Keys,theta,VM,h]=UWmulti([],alfa,zf,qf,F,[],1) 

 

hold on  

 

alfa = [4  2   1]; 

Zf = [0.53 0.13 0.333]; 

qF=1; 

F=1; 

function [Vs,Ds,Rs,Keys,theta,VM,h]=UWmulti([],alfa,zf,qf,F,[],1) 

 
 

 

 

%initial steady state simulation (script name init_runner.m) 
   

%initial steady state simulation 

%%Three Product Petlyuk Column 

%Constant Relative Voltality 

% Initializes the model and runs 
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% The otputs are compositions (A, B and C) of  (D, S, R, D1 and B1) 

% Plot profiles give the composition profiles at steady-state 

% Plot temperature profile gives temperature profile at steady-state. 

% Petlyuk_NLmodel.m , compute_liquid.m, holdup_change.m, reboiler.m, gensec.m, 

tank.m, and accum.m , indmat_Yes_S1 files should be in the same folder 

%% 

clear all; close all; clc; 

global coldata dyndata hydraulic termodata UU alfa tend NI i 

%% COLUMN DATA %% 

  

% Number of stages in 6 sections of Petlyuk  

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup stages 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 

termodata.P = 1.0; 

hydraulic.k1 = 1/0.063; 

%% THERMODYNAMIC DATA %%  (Realtive volatilities alfa) 

alfa=[4.215374389   2.102194688 1] %ethanol propanol butanol 

  

%% load nominal x u 

load Nominal_final.mat        % The nominal value obtained from optimization for ... 

%minimizing the sum of impurities in the product streams (D, S and R) 

UU=[];                        % 

i=0;%to initiate Petlyuk_openloop make change in CS by i+1 

indmat_Yes_S1 

% Make the nominal values of x, u and Temp global 

dyndata.x_nom = x_nom;  

dyndata.u_nom=u_nom;           

dyndata.temp_nom=temp_nom; 

%% Run this file to get initial values with LV Configuartion, uncomment 

% line number  

NI=5; % Number of integerators 

options = odeset('MaxStep',10); 

%tend=20000; 

% at steady state reduce the end time to 5000 

tend = 5000; 

[t,x]=ode15s(@Simulation_Petlyuk,[0 tend],[dyndata.x_nom;zeros(NI,1)],options); 

%% xf states to plot profiles. 

xf=x(end,1:225)'; 

u_nom=UU(end,2:12)'; 

Plot_Profiles 

dxdt = norm(Petlyuk_NLmodel(0, xf, u_nom)); 

% Print the values of compositions in D (distillate), S (side stream), R (residue)... 

%and D1 and R1, (top and bottom product from the prefractionator both  end) 
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dis_composition                      % saved as init_compSS.mat 

%Temperature as measurement Y 

[sys Temp]= Petlyuk_NLmodel(t,xf,u_nom); 

Yss = Temp;                          % Steady-state Temperature, saved as Yss.mat  

%plot_temp_profile                   % Temperature Profile  in the column, 

%use command window to make temp profile 

 

%%% The script file for indexing  

 

% 

% Index matrices 

%There are six sections in the DWC; The order of stage numbering section 

%wise is started from C11,C12 (Prefrac), C21,C22,C23,C24 (Main column), 

%Refer to figure in the Master thesis by Ambari Khanam (2013) 

%No. of stages in each section=12 (coldata.Nt=[12 12 12 12 12 12]) 

%No. of states in ecah section is 2*coldata.Nt(section), each section 

%contains 24 states (12 for comp A and 12 for comp B) and then comes the 

%next section.  

global coldata 

%states numbering in the prefractionator 

im_x1 = 1:2 * coldata.Nt(1);                   % 24 (12 for A and 12 for B)  states in C11 

(prefractionator) 

im_x2 = im_x1(end) + [1:2 * coldata.Nt(2)];    %25-48 states in C12 (Prefrac) 

% States numbering in the main column 

im_x21 = im_x2(end) + [1:2 * coldata.Nt(3)];   %49-24*3=72 states in C21 (Main 

column) 

im_x22 = im_x21(end) + [1:2 * coldata.Nt(4)];  %73-24*4=96 states in C22 

im_x23 = im_x22(end) + [1:2 * coldata.Nt(5)];  %97-24*5=120 states in C23 

im_x24 = im_x23(end) + [1:2 * coldata.Nt(6)];  %111-24*6=144 states in C24 

% States, Reboiler, condenser and side stream  

im_xr = im_x24(end) + [1:2];                   %145 146, comp A and B of reboiler stage 

im_xt = im_xr(end) + [1:2];                    %147, 148, of condenser 

im_xS1 = im_xt(end) + [1:2];                   %149,150, of side stream  

  

%Holdups in the prefractionator 

im_m1 = im_xS1(end) + [1:coldata.Nt(1)];       %150-162, trays holdups C11 

im_m2 = im_m1(end) + [1:coldata.Nt(2)];        %163-174, trays holdups C12 

  

%Holdups in the main column 

im_m21 =  im_m2(end) + [1:coldata.Nt(3)];      %175-186, trays holdups C21 

im_m22 = im_m21(end) + [1:coldata.Nt(4)];      %187-198, trays holdups C22 

im_m23 = im_m22(end) + [1:coldata.Nt(5)];      %199-210, trays holdups C23 

im_m24 = im_m23(end) + [1:coldata.Nt(6)];      %211-222, trays holdups C24 

%Reboiler, tank and side stream holdups 

im_mr = im_m24(end) + 1;                       %223,     Reboiler 

im_mt = im_mr(end) + 1;                        %224,     Condenser tank 
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im_mS1 = im_mt(end) + 1;                       %225,     Side stream collector 

%Reshape the matrix to get comp A and B on the same stage, further to use 

%for temperature calculation 

II1=reshape(im_x1,coldata.Nt(1),2); 

II2=reshape(im_x2,coldata.Nt(2),2); 

II3=reshape(im_x21,coldata.Nt(3),2); 

II4=reshape(im_x22,coldata.Nt(4),2); 

II5=reshape(im_x23,coldata.Nt(5),2); 

II6=reshape(im_x24,coldata.Nt(6),2); 

 
 

 

 

%%% The function file for the Petlyuk non-linear model is Petlyuk_NLmodel.m 

 

 

%% main function 

function [sys Temp] = Petlyuk_NLmodel(t,x,U) 

  

global dyndata coldata 

 

L = U(1); VB =  U(2); 

Rl=U(3);Rv=U(4); 

S1=U(5); 

F=U(6); 

zF = U(7:8); qF = U(9); 

D = U(10); B = U(11); 

  

%x=(x(12:end)); 

Rv2=1; %No vapor side draw 

  

% Index matrices 

indmat_Yes_S1; 

      

      

% Nominal Input Parameters 

%L=dyndata.u_nom(1);             % Reflux rate  

%VB=dyndata.u_nom(2);        % Boilup rate  

%Rl=dyndata.u_nom(3);        % Liquid split fraction to feed tray side  

%Rv=dyndata.u_nom(4);        % Vapour split fraction to feed tray side  

%S=dyndata.u_nom(5);         % Sideproduct removal rate  

%F=dyndata.u_nom(6);         % Feed flow rate 

%zF=dyndata.u_nom(7:8);      % Feed composition for components 1:2 

%qF=dyndata.u_nom(9);        % Feed liquid fraction 

  

Tboil=coldata.Tboil; 



Chapter 9                                                                                                               Appendix                                                                                       

87 

 

      

     xp1 =  x(II1); 

     xp2 =  x(II2); 

     xp3 =  x(II3); 

     xp4 =  x(II4); 

     xp5 =  x(II5); 

     xp6 =  x(II6); 

     xp1=[xp1 1-sum(xp1,2)];  

     xp2=[xp2 1-sum(xp2,2)]; 

     xp3=[xp3 1-sum(xp3,2)]; 

     xp4=[xp4 1-sum(xp4,2)]; 

     xp5=[xp5 1-sum(xp5,2)]; 

     xp6=[xp6 1-sum(xp6,2)]; 

     xp=[xp1;xp2;xp3;xp4;xp5;xp6]; 

     Temp=xp*Tboil'; 

      

   

% Compute liquid flows for each section downwards 

  

L21 = compute_liquid(3,L,x(im_m21),dyndata.u_nom(1),dyndata.x_nom(im_m21)); 

L1 = 

compute_liquid(1,L21(end)*(Rl),x(im_m1),dyndata.u_nom(1)*(dyndata.u_nom(3)),dynd

ata.x_nom(im_m1)); 

L22 = compute_liquid(4,L21(end)*(1-Rl),x(im_m22),dyndata.u_nom(1)*(1-

dyndata.u_nom(3)),dyndata.x_nom(im_m22)); 

L2 = 

compute_liquid(2,L1(end)+F*qF,x(im_m2),dyndata.u_nom(1)*(dyndata.u_nom(3))+F*q

F,dyndata.x_nom(im_m2)); 

L23 = compute_liquid(5,L22(end)-S1,x(im_m23),dyndata.u_nom(1)*(1-

dyndata.u_nom(3))-(dyndata.u_nom(5)),dyndata.x_nom(im_m23)); 

L24 = compute_liquid(6,L23(end)+L2(end),x(im_m24),... 

    dyndata.u_nom(1)*(1-dyndata.u_nom(3))-

(dyndata.u_nom(5))+dyndata.u_nom(1)*(dyndata.u_nom(3))+F*qF,dyndata.x_nom(im_

m24)); 

  

% Compute vapour flows for each section 

V24 = VB*ones(coldata.Nt(6),1); 

V2 = V24(1)*(Rv)*ones(coldata.Nt(2),1); 

V23 = V24(1)*(1-Rv)*ones(coldata.Nt(5),1); 

V1 = (V2(1)+F*(1-qF))*ones(coldata.Nt(1),1); 

V22 = V23(1)*Rv2*ones(coldata.Nt(4),1); 

V21 = (V22(1)+V1(1))*ones(coldata.Nt(3),1); 

  

% Change in holdup 

dm21 = holdup_change(L21,V21,L,V22(1)+V1(1)); 

dm1 = holdup_change(L1,V1,L21(end)*(Rl),V2(1)+F*(1-qF)); 
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dm22 = holdup_change(L22,V22,L21(end)*(1-Rl),V23(1)*Rv2); 

dm2 = holdup_change(L2,V2,L1(end)+F*qF,V24(1)*(Rv)); 

dm23 = holdup_change(L23,V23,L22(end)-S1,V24(1)*(1-Rv)); 

dm24 = holdup_change(L24,V24,L23(end)+L2(end),VB); 

  

% Change in compositions and temperatures 

% Find vapour compositions for first two stages in the section and liquid 

% composition of last stage 

yr = reboiler(t,[x(im_xr); x(im_mr)],[[]; VB],3); 

y1 = gensec(t,[x(im_x1); x(im_m1)],[],3,L1,V1,coldata.Nt(1)); 

y2 = gensec(t,[x(im_x2); x(im_m2)],[],3,L2,V2,coldata.Nt(2)); 

  

y21 = gensec(t,[x(im_x21); x(im_m21)],[],3,L21,V21,coldata.Nt(3)); 

y22 = gensec(t,[x(im_x22); x(im_m22)],[],3,L22,V22,coldata.Nt(4)); 

y23 = gensec(t,[x(im_x23); x(im_m23)],[],3,L23,V23,coldata.Nt(5)); 

y24 = gensec(t,[x(im_x24); x(im_m24)],[],3,L24,V24,coldata.Nt(6)); 

  

%find the derivatives 

[dxr,dmr] = reboiler(t,[x(im_xr);x(im_mr)],[L24(end); y24(5:6); VB; B],1); 

[dxt,dmt] = tank(t,[x(im_xt); x(im_mt)],[L; D; V21(1); y21(1:2)],1); 

  

[dx1] = gensec(t,[x(im_x1); x(im_m1)],[L21(end)*(Rl); y21(5:6); V2(1) + (1 - qF) * F; 

(F*(1-qF)*zF+V2(1)*y2(1:2))/V1(end)],1,L1,V1,coldata.Nt(1)); 

[dx2] = gensec(t,[x(im_x2); x(im_m2)],[L1(end) + qF * F; (L1(end) * y1(5:6) + zF * 

F*qF)/L2(1);(Rv) * V24(1); y24(1:2)],1,L2,V2,coldata.Nt(2)); 

  

[dx21] = gensec(t,[x(im_x21); x(im_m21)],[L; y21(1:2); V22(1)+V1(1); 

(V1(1)*y1(1:2)+V22(1)*y22(1:2))/V21(end)],1,L21,V21,coldata.Nt(3)); 

[dx22] = gensec(t,[x(im_x22); x(im_m22)],[L21(end)*(1-Rl); y21(5:6);Rv2 * V23(1); 

y23(1:2)],1,L22,V22,coldata.Nt(4)); 

[dx23] = gensec(t,[x(im_x23); x(im_m23)],[L22(end)-S1; x(im_xS1);(1-Rv) * V24(1); 

y24(1:2)],1,L23,V23,coldata.Nt(5)); 

[dx24] = gensec(t,[x(im_x24); x(im_m24)],[L2(end)+L23(end); (L2(end) * y2(5:6) + 

L23(end) * y23(5:6))/L24(1);VB; yr'],1,L24,V24,coldata.Nt(6)); 

  

[dxS1,dmS1] = accum(t,[x(im_xS1); x(im_mS1)],[L22(end); y22(5:6); L23(1) + S1],1); 

  

  

dm=  [dm1;dm2;dm21;dm22;dm23;dm24]; 

dx = [dx1; dx2;dx21;dx22;dx23;dx24]; 

%sys is a column matrix with all the derivatives of compositions and 

%holdups 

  

sys = [dx; dxr; dxt;dxS1;dm; dmr; dmt;dmS1]; 
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return; 

  

 

% Compute liquid flows for a section 

  

function L = compute_liquid(secnr,L_in,x,LO,xO) 

global coldata hydraulic 

i=1:coldata.Nt(secnr);L(i)  = LO + (x(i)-xO(i))*hydraulic.k1 ; 

L=L'; 

 

% Compute vapour flows for a section using heat loss and vapour bypassing 

  

function V = compute_vapour(secnr,V_in,x) 

  

global coldata termodata 

  

temp = x; 

  

V_heatloss = termodata.U * pi * coldata.diameter * ... 

    coldata.sech(secnr) * (temp - termodata.T0) ... 

    ./ (coldata.Nt(secnr) * termodata.deltaH); 

  

V = [ 

    zeros(coldata.Nt(secnr),1) 

    V_in 

    ]; 

for k = coldata.Nt(secnr):-1:1 

    V(k,1) = (1 - termodata.alpha) * V(k + 1,1) + ... 

        termodata.alpha * V(k + 2,1) + ... 

        V_heatloss(k,1); 

end 

  

V = V(1:coldata.Nt(secnr)); 

 

 

% Reboiler model 

  

function [sys,dm] = reboiler(t,x,u,flag) 

  

holdup = x(3); 

x = x(1:2); 

  

if (flag == 1) 

    L_in = u(1); 

    x_in = u(2:3); 
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    V_out = u(4); 

    B = u(5); 

     

    % Derivatives 

    dm = L_in - V_out - B; 

    y = termo(x',3); 

    dx = (L_in * (x_in - x) - V_out * (y' - x)) / holdup; 

    sys = dx; 

elseif (flag == 3) 

    % Measurements 

    [y] = termo(x',3); 

    sys = y; 

end 

 

% Tank model 

  

function [sys,dm] = tank(t,x,u,flag) 

  

holdup = x(3); 

  

L = u(1); 

D = u(2); 

V_in = u(3); 

x_in = u(4:5); 

  

if (flag == 1) 

    % Derivatives 

     

    dm = V_in - L - D; 

    dx = (V_in * (x_in - x(1:2)))/holdup; 

    sys = dx; 

elseif (flag == 3) 

    % Measurements 

     

    sys = x; 

end 

 

 

%This model is for Steady-state Simulations 

 

function xprime=Simulation_Petlyuk(t,X)  

%This model is for simulations 

%This is a dynamic model with PI controllers, It returns derivative   

% using the basic non-linear model Petlyuk_dxdt and it can be used for both 

%steady-state simulation as well as dynamic simulations 
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%At steady state au=0 (except for condensers and reboiler holdups as they 

%don't have steady-state effect) 

%using this model simulations have been done to obtain steady state-gain 

%for input and disturbances (Gy, Gyd) 

%using this model simulations have been done to obtain Juu 

%using this model dynamic simulations have been done for sequential 

%controller tuning one by one by keeping au=0 or 1 

%How? Just call the above function with different script files  

%1. for initial steady state simulation with LV configuartion the  

% script file is            : init_sim_Petlyuk.m 

%2. to calculate Gy and Gyd : script gains_Petlyuk.m 

%3. to calculate Juu        : script Juu_Petlyuk.m 

%4. for dynamic simulation  : script file dynamic_Petlyuk.m 

global UU dyndata tend NI i coldata 

indmat_Yes_S1 

Tboil=coldata.Tboil; 

%better approximation for step size with some algorithm write in further 

%work or discussion 

%Delta1 = 1e-6;           %uncomment and use this perturbation in L and S1 to obtain Juu, 

% 

%Delta2= 1e-5;            %uncomment and use this perturbation in Rl to obtain Juu 

      

     Xp1 =  X(II1); 

     Xp2 =  X(II2); 

     Xp3 =  X(II3); 

     Xp4 =  X(II4); 

     Xp5 =  X(II5); 

     Xp6 =  X(II6); 

     Xp1=[Xp1 1-sum(Xp1,2)];    % compositions A, B and C in section 1 

     Xp2=[Xp2 1-sum(Xp2,2)];    % compositions A, B and C in section 2 

     Xp3=[Xp3 1-sum(Xp3,2)];    % compositions A, B and C in section 3 

     Xp4=[Xp4 1-sum(Xp4,2)];    % compositions A, B and C in section 4 

     Xp5=[Xp5 1-sum(Xp5,2)];    % compositions A, B and C in section 5 

     Xp6=[Xp6 1-sum(Xp6,2)];    % compositions A, B and C in section 6 

     Xp=[Xp1;Xp2;Xp3;Xp4;Xp5;Xp6];% Compositions A, B and C in the column 

starting 

                                  % from section 1  and ending at section6  

     Temp=Xp*Tboil';              % Temperatures on all stages sections (1,2,3,4,5,6) 

      

  

% D and B used to control hold ups in the condenser (X(im_mt)) and reboiler 

%  (X(im_mr))respectively 

  

[D,e1] = Controller_PI(X(im_mt),dyndata.x_nom(im_mt),dyndata.u_nom(end-

1),X(im_mS1+1),-1,1001,0,2); 

[B,e2] = 
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Controller_PI(X(im_mr),dyndata.x_nom(im_mr),dyndata.u_nom(end),X(im_mS1+2),-

1,1001,0,2); 

  

au=0; %(au=0 means controller is open and no control) 

%Gy can be calculated here by giving step change in inputs (L, S and Rl) here. 

[L,e3] = Controller_PI(Temp(38),(dyndata.temp_nom(38)),... 

            dyndata.u_nom(1),X(im_mS1+3),0.48*au/2,40*2,0,4); 

  

% step change in L by adding 1e-6 

%[L,e3] = Controller_PI(log(X(im_xt(2))),log(dyndata.x_nom(im_xt(2))),... 

           %dyndata.u_nom(1)-Delta1,X(im_mS1+3),0.48*au/2,40*2,0,4); 

       

[S1,e4] = Controller_PI(Temp(42),dyndata.temp_nom(42),... 

            dyndata.u_nom(5),X(im_mS1+4),88*au/8,40*8,0,4); 

% step change in S1, i.e.dyndata.u_nom(5)+1e-6 

%[S1,e4] = Controller_PI(log((X(im_xS1(2)))),log((dyndata.x_nom(im_xS1(2)))),... 

            %dyndata.u_nom(5)-Delta1,X(im_mS1+4),88*au/8,40*8,0,4); 

         

[Rl,e5] = Controller_PI(log(1-sum(X(im_x1([1 1+coldata.Nt(1)])))),... 

            log(1-sum(dyndata.x_nom(im_x1([1 1+coldata.Nt(1)])))),... 

            dyndata.u_nom(3),X(im_mS1+5),-0.333*au,40,0,1); 

% step change in Rl, i.e.dyndata.u_nom(3)+1e-3 

%[Rl,e5] = Controller_PI(Temp(6),... 

            %dyndata.temp_nom(6),... 

            %dyndata.u_nom(3)+Delta2,X(im_mS1+5),-0.333*au,40,0,1); 

  

VBB = dyndata.u_nom(2);              %Boilups if fixed 

RV = dyndata.u_nom(4);               % RV is fixed 

  

% loop to obtain the values of i/p and disturbances throughout simulation 

% time 

if(t>0.01 || rem(i,10)==0) || t==tend 

%     t 

UU=[UU; t [L;VBB;Rl;RV;S1;dyndata.u_nom(6:9); D; B]']; 

end 

i=i+1; 

%     t 

xprime=Petlyuk_NLmodel(t,X(1:end),[L;VBB;Rl;RV;S1;dyndata.u_nom(6:9); D; B ]); 

xprime=[xprime;e1;e2;e3;e4;e5]; 

 

 

%PI controller with saturation 

 

function [u,e] = Controller_PI(T,Ts,u0,y,Kc,taui,min,max) 

%PI controller with saturation 
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e=-T+Ts; eint=y; 

u = u0 + Kc*e + (Kc/taui)*eint; 

  

if u<min 

    u=min; 

elseif u>max 

    u=max; 

end 

 

 

 

Matlab Codes for Self-optimizing Control 

 

% Main Optimization file  (script file Optimizer_Petlyuk.m) 

 

% Main Optimization file 

clear all; close all; clc; 

% This is a script file for optimization 

% The related script files with this file are Objective.m, Petlyuk_nonlcon 

% (inequality constraints),Petlyuk_NLmodel(non-linear model) 

% Other script files, .................are based on this main optimization 

% file 

% Global datas used are stages in the column, initial holdups in reboiler 

% and condensers, boiling points of comp A, B and C, relative volatilities, 

% thermal data and they are stored in structures coldata, dyndata, and 

% hydraulic and termodata 

%Nominal_final.mat has nominal values of composition, inputs and 

%temperature 

% Also the nominal states and input values (Nominal_final.mat) are made global 

% by using dyndata as they are used as reference point for steady state 

% simulation and also as setpoints for dynamic simulations 

  

global coldata dyndata hydraulic alfa 

  

% COLUMN DATA %% 

% Number of stages in each section (C11,C12,C21,C22,C23,C24) 

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup in reboiler and condenser 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 
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%Hydraulics 

hydraulic.k1 = 1/0.063; 

  

%Relative volatilit of Ethanol, Propanol and n-Butanol with respect to the 

%heaviest n-Butanol 

alfa=[4.215374389 2.102194688 1]; 

  

% Initial values for optimization made global 

%load opt_init.mat   

load Nominal_final 

  

dyndata.x_nom = x_nom; 

dyndata.u_nom = u_nom; 

%dyndata.temp_nom = temp_nom; 

options = optimset('fmincon'); 

options = optimset(options,'TolFun',1e-10,'TolCon',1e-

13,'MaxFunEvals',50000,'Display','none',... 

'Algorithm','active-set');%,'Diagnostic','off');%, 'GradObj','on','Hessian','on');%,... 

  

% All the equality and inequality linear constraints are given in the file 

% specs 

Specs 

  

  

  

% Optimization command  

[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[x_nom;u_nom],Ain,bin,Aeq,beq,[],[],@(x) Petlyuk_nonlcon(x),options); 

  

x_nom=x_opt(1:225);u_nom=x_opt(226:end); 

  

dxdt = norm(Petlyuk_NLmodel(0,x_nom, u_nom)); 

  

  

xf=x_nom; 

% script file for plotting composition profiles at the end of each 

% optimization 

Plot_Profiles 

% script file for plotting temperature at the end of each optimization 

%plot_temp_profile  

% print selected variables or outputs, temperature or composition 

%fval 

% get temperatures 

%[sys  Temp]=Petlyuk_NLmodel([],xf,u_nom); 

%Temp = sys(end-71:end); 

%Y0= Temp; 



Chapter 9                                                                                                               Appendix                                                                                       

95 

 

% print the composition at the end of each optimization 

[x_nom(im_xt(1)),x_nom(im_xt(2)),1-x_nom(im_xt(1))-x_nom(im_xt(2));... 

    x_nom(im_xS1(1)),x_nom(im_xS1(2)),1-x_nom(im_xS1(1))-x_nom(im_xS1(2));... 

    x_nom(im_xr(1)),x_nom(im_xr(2)),1-x_nom(im_xr(1))-x_nom(im_xr(2));... 

        x_nom(im_x1(1)),x_nom(im_x1(coldata.Nt(1)+1)),1-x_nom(im_x1(1))-

x_nom(im_x1(1+coldata.Nt(2)));... 

  x_nom(im_x2(coldata.Nt(2))),x_nom(im_x2(2*coldata.Nt(2))),1-x_nom(im_x2... 

   (coldata.Nt(2)))-x_nom(im_x2(2*coldata.Nt(2)))] 

  

% The results from optimization are saved in Nominal_final.mat 

  

petlyuk_cost 
 

 

 

 

%%% Non-linear equality and inequality constraints 
 

function [c ceq]=Petlyuk_nonlcon(x)  

global dyndata coldata 

load Nominal_final1.mat 

dyndata.temp_nom = temp_nom; 

%Non linear equality and inequality constraints for optimization 

%indmat_Yes_S1 

%load Hel_halfdegree 

%load csel_halfdegree 

  %load Hel3 

%  load csel3 

   %load H1ns 

  %load Csns 

 % load Hel 

 % load csel 

U=zeros(11,1); 

U(1:11)=x(226:236);                     %inputs  

s=x(1:225);                                   %states 

  

[xprime Temp] = (Petlyuk_NLmodel([],s,U)); 

ceq=xprime;                    % when no SOC 

  

% ceq for 1st best temperature set using maximum minimum singular value 

%ceq=[ xprime;Temp(10)-dyndata.temp_nom(10);Temp(38)-

dyndata.temp_nom(38);Temp(60)-dyndata.temp_nom(60)];  

% ceq for 2nd best temperature set using maximum minimum singular value 

%ceq=[ xprime;Temp(9)-dyndata.temp_nom(9);Temp(38)-

dyndata.temp_nom(38);Temp(60)-dyndata.temp_nom(60)];   

% ceq for 3rd best temperature set using maximum minimum singular value 

%ceq=[ xprime;Temp(11)-dyndata.temp_nom(11);Temp(38)-
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dyndata.temp_nom(38);Temp(60)-dyndata.temp_nom(60)];   

%ceq for 4th best temperature set using maximum  minimum singular value 

%ceq=[ xprime;Temp(10)-dyndata.temp_nom(10);Temp(38)-

dyndata.temp_nom(38);Temp(63)-dyndata.temp_nom(63)];   

%ceq for 5th best temperature set using maximum  minimum singular value 

%ceq=[ xprime;Temp(8)-dyndata.temp_nom(8);Temp(38)-

dyndata.temp_nom(38);Temp(60)-dyndata.temp_nom(60)];   

%ceq for 6th best temperature set using maximum  minimum singular value 

%ceq=[ xprime;Temp(9)-dyndata.temp_nom(9);Temp(38)-

dyndata.temp_nom(38);Temp(63)-dyndata.temp_nom(63)];   

%ceq for 7th best temperature set using maximum  minimum singular value 

%ceq=[ xprime;Temp(7)-dyndata.temp_nom(7);Temp(38)-

dyndata.temp_nom(38);Temp(60)-dyndata.temp_nom(60)];   

%ceq for 8th best temperature set using maximum  minimum singular value 

%ceq=[ xprime;Temp(10)-dyndata.temp_nom(10);Temp(38)-

dyndata.temp_nom(38);Temp(59)-dyndata.temp_nom(59)];   

% ceq for 20th best temperature set using maximum MSV 

%ceq=[ xprime;Temp(11)-dyndata.temp_nom(11);Temp(38)-

dyndata.temp_nom(38);Temp(64)-dyndata.temp_nom(64)];   

% based on branch and bound method by Cao, the 1st set of three best 

% temperatures based on bidirectional algorithm. 

%ceq=[ xprime;Temp(43)-dyndata.temp_nom(43);Temp(60)-

dyndata.temp_nom(60);Temp(64)-dyndata.temp_nom(64)];   

%ceq=[xprime;(Hel3*[Temp(10,1);Temp(38,1);Temp(60,1)])-csel3]; 

% Null space method 

%ceq=[xprime;(H1ns*Temp-Csns)]; 

%Exact local method 

%ceq=[xprime;(Hel*Temp-csel)]; 

c = [];                                       %non linear inequality constraints 

 
 

 

 

 

 

%%% Linear equality and inequality constraints (Petlyuk_nonlcon.m) 

Specs, linear equality and inequality constraints 

global dyndata 

  

indmat_Yes_S1 

  

  

Nz = size([dyndata.u_nom;dyndata.x_nom]);% all decision variables including inputs U 

and compositions and holdup on stages 

  

%Feed rate, composition & quality 
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Nv=6; 

Aeq=zeros(Nv,Nz);beq=zeros(Nv,1); %linearity constraints where Ns are product/feed 

specifications 

  

% These are the values of only As which contributes in specifications and 

% thus=1 and not 0.  

  

Aeq(1,im_mS1+6)=1;               %feed flow rate, F (im_mS1+6), 231 

Aeq(2,im_mS1+7)=1;               %composition of A in the feed, zF, (im_mS1+7),232 

Aeq(3,im_mS1+8)=1;               %composition of B in the feed, zF, im_mS1+8),233 

Aeq(4,im_mS1+9)=1;               %feed liquid fraction qf, (im_mS1+9),234 

Aeq(5,im_mS1+2)=1;               %Boilup, Vmax, (im_mS1+4), 227 

  

%beq(1:4)=dyndata.u_nom([6:9]); 

beq(1)= dyndata.u_nom(6);       %Feed flow rate value (dd1) 

beq(2)=dyndata.u_nom(7);       %Feed composition zA  

beq(3)=dyndata.u_nom(8);       %Feed composition zB 

beq(4)=dyndata.u_nom(9);       % liquid feed 

beq(5)=dyndata.u_nom(2);       %The value of boilup Vmax (fixed)(dd3) 

Aeq(6,im_mS1+4)=1;                % RV            

beq(6)=0.95*dyndata.u_nom(4);          % The value of vapor split ratio which is fixed 

(dd5) 

  

%Aeq (7,im_x1(1))=1;              % A in D1 (Prefrac top)                         

%Aeq(7,im_x1(coldata.Nt(1)+1))=1; % B in D1 (Prefrac top)                                    

%11+im_x1(coldata.Nt(1)+1))=1; 

%beq(7)=1-0.003;                  % C in D1 is (1-sum(A,B)) (This means active constraint) 

%Aeq(7,47)=1;                                        

%beq(7)=0.0015;%  

  

%%%%%%%%%% 

Ain=-eye(Nz,Nz);bin=zeros(Nz,1);%Non-negativity of state, helps optimizer 

  

  

 
 

 

% Objective Function (@objective(x) 

 

indmat_Yes_S1 

% the disturbances are dT= [F zF Vmax RV ] 

%The inputs are uT= [Rl L s] 

 

 J=x(235)*x(148)+x(230)*(1-x(150))+x(236)*x(146);  % minimize the sum of impurities  

  
 

% Note: The value after optimization is saved as Nominal_final.mat and is 
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used as optimal values for all evaluations 

 
 

%% Calculate F matrix (script name “script_Fmatrix) 

 

 

% COLUMN DATA %% 

%Pass the options for optimization 

% Number of stages in each section (C11,C12,C21,C22,C23,C24) 

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup in reboiler and condenser 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 

%Hydraulics 

hydraulic.k1 = 1/0.063; 

% Relative volatility of Ethanol, Propanol and n-Butanol with respect to the 

%heaviest component n-Butanol 

alfa=[4.215374389 2.102194688 1]; 

  

% Optimization  

% Re-optimize for disturbances (F, zA, zB, V, and RV) 

% Load output temperature at the nominal values Y0 

load Y0 

% All linear equality and inequality constraints given in specs, the 

% Disturbances can be directly set in specs file 

%Specs 

% Initial values for optimization made global 

load Nominal_final.mat   

dyndata.x_nom = x_nom; 

dyndata.u_nom = u_nom; 

dyndata.temp_nom = temp_nom; 

options = optimset('fmincon'); 
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options = optimset(options,'TolFun',1e-8,'TolCon',1e-

8,'MaxFunEvals',500000,'Display','iter',... 

'Algorithm','active-set'); 

  

% 

Specs 

%disturbance in feed flow rate dd1 

dd1=1e-5 ;                        % perturbation in feed flow rate 

beq(1)=dyndata.u_nom(6)+dd1; 

  

%Run the optimization with disturbance in feed flow rate dd1 while 

%keeping other values same, run the loop to plot profile for disturbance in 

%feed 

[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[dyndata.x_nom;dyndata.u_nom],Ain,bin,Aeq,beq,[],[],@(x) 

Petlyuk_nonlcon(x),options); 

%x_nom=x_opt(1:im_mS1);u_nom=x_opt(im_mS1+1:end); 

x_nom=x_opt(1:225);u_nom=x_opt(226:end);     %It is same as above 

  

dxdt = norm(Petlyuk_NLmodel(0,x_nom, u_nom)); 

[~, Temp]=Petlyuk_NLmodel(0,x_nom,u_nom); 

ydd1= [Temp]; 

  

%disturbance in compositions zF1 

  

beq(1)=dyndata.u_nom(6);     %Nominal feed same as before F0=1 

dd2 = 1e-5; 

%dd2=dyndata.u_nom(7)*0.2; 

beq(2)=dyndata.u_nom(7)+dd2;  

  

%Run the optimization with the disturbance in feed compositions 
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[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[dyndata.x_nom;dyndata.u_nom],Ain,bin,Aeq,beq,[],[],@(x) 

Petlyuk_nonlcon(x),options); 

  

x_nom=x_opt(1:225);u_nom=x_opt(226:end); 

  

dxdt = norm(Petlyuk_Nlmodel(0,x_nom, u_nom)); 

[~, Temp]=Petlyuk_NLmodel(0,x_nom,u_nom); 

ydd2= [Temp]; 

  

%disturbance in compositions zF2, B in feed 

dd3= 1e-5; 

beq(2)=dyndata.u_nom(7);     %Nominal composition A  

%dd3=dyndata.u_nom(8)*0.2; 

beq(3)=dyndata.u_nom(8)+dd3;   

  

%Run the optimization with the disturbance in feed compositions 

[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[dyndata.x_nom;dyndata.u_nom],Ain,bin,Aeq,beq,[],[],@(x) 

Petlyuk_nonlcon(x),options); 

  

x_nom=x_opt(1:225);u_nom=x_opt(226:end); 

  

dxdt = norm(Petlyuk_NLmodel(0,x_nom, u_nom)); 

[~, Temp]=Petlyuk_NLmodel(0,x_nom,u_nom); 

ydd3= [Temp]; 

%Give disturbance in the Vmax (boilup) and make the last disturbance 

%to the nominal 

dd4=1e-5; 

beq(3)=dyndata.u_nom(8); 

%dd4=dyndata.u_nom(2)*0.1; 

beq(5)= dyndata.u_nom(2)+dd4; 
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%Run the optimization with disturbance in the boilup but keeping other 

%disturbances to the nominal 

[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[dyndata.x_nom;dyndata.u_nom],Ain,bin,Aeq,beq,[],[],@(x) 

Petlyuk_nonlcon(x),options); 

  

x_nom=x_opt(1:225);u_nom=x_opt(226:end); 

  

dxdt = norm(Petlyuk_NLmodel(0,x_nom, u_nom)); 

[~, Temp]=Petlyuk_NLmodel(0,x_nom,u_nom); 

ydd4= [Temp]; 

  

% Change in RV 

dd5 = 1e-5; 

beq(5)=dyndata.u_nom(2); 

%dd5=dyndata.u_nom(4)*0.1;    %magnitude of perturbation in Rv 10 times 

beq(6)=dyndata.u_nom(4)+dd5; 

  

%Run the optimization 

[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[dyndata.x_nom;dyndata.u_nom],Ain,bin,Aeq,beq,[],[],@(x) 

Petlyuk_nonlcon(x),options); 

  

x_nom=x_opt(1:225);u_nom=x_opt(226:end); 

  

dxdt = norm(Petlyuk_NLmodel(0,x_nom, u_nom)); 

[sys Temp]=Petlyuk_NLmodel(0,x_nom,u_nom); 

ydd5= [Temp]; 

  

  

% Calculate the sensitivity matrix F and store the value,  

F1=[(ydd1-Y0)/dd1 (ydd2-Y0)/dd2 (ydd3-Y0)/dd3 (ydd4-Y0)/dd4 (ydd5-Y0)/dd5]; 



Chapter 9                                                                                                               Appendix                                                                                       

102 

 

 

 

 

% Script for calculating gain matrix GY (w.r.t. input)  

Script name GYscript.m 

 

 

clear all; close all; clc; 

global coldata dyndata hydraulic termodata UU alfa tend NI i 

%% COLUMN DATA %% 

  

% Number of stages in 6 sections of Petlyuk  

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup stages 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 

termodata.P = 1.0; 

hydraulic.k1 = 1/0.063; 

%% THERMODYNAMIC DATA %% 

alfa=[4.215374389   2.102194688 1] %ethanol propanol butanol 

  

%% load nominal x u 

load Nominal_final.mat  % The nominal value obtained from optimization for ... 

                        %minimizing the sum of impurities in the product streams (D, S and R) 

UU=[];                        

i=0;                    %to initiate Petlyuk_openloop make change in CS by i+1 

indmat_Yes_S1 

% Initial values made global 

dyndata.x_nom = x_nom;  

dyndata.u_nom=u_nom;%            

dyndata.temp_nom=temp_nom; 

%% Run this file to get initial values with LV Configuartion, uncomment 

% line number  
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NI=5; % Number of integerators 

options = odeset('MaxStep',10); 

tend=20000; 

[t,x]=ode15s(@Simulation_Petlyuk,[0 tend],[dyndata.x_nom;zeros(NI,1)],options); 

%% xf states to plot profiles. 

xf=x(end,1:225)'; 

u_nom=UU(end,2:12)'; 

dxdt = norm(Petlyuk_NLmodel(0, xf, u_nom)); 

% Print the values of compositions in D (distillate), S (side stream), R (residue)... 

%and D1 and R1, (top and bottom product from the prefractionator both  end) 

dis_composition 

[sys Temp] = Petlyuk_NLmodel(tend, xf,u_nom); 

  

% Optimal temperatures (measurement)also saved as temp_nom in 

% Nominal_final.mat 

load Y0.mat 

  

%% Calculate steady state gain matrix for three remaining D.O.F. (L,S,Rl) GY  

%load Y0.mat 

% Go to Petlyuk_openloop and give the step change in input L,uncomment line 

% 53, 54 

%  and comment line 57, 58 dyndata.u_nom(1)+1e-5 

%Run the simulation  and  store the value of Temp as YL   

%YL= Temp; 

%delL= 1e-5; 

%dYdL = (YL-Y0)/delL; 

load YL.mat 

load dYdL.mat 

  

%Give step change in S1, dyndata.u_nom(5)+1e-5 

%Run the simulation and store the value of Temp as YS 
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%YS=Temp; 

%delS= 1e-5; 

%dYdS = (YS-Y0)/delS; 

load YS.mat 

load dYdS.mat 

%Go to file Petlyuk_openloop and comment line number and uncomment line  

%Give step change in Rl, dyndata.u_nom(3)+1e-5 

%Run the simulation and store the value of Temp as YRl 

%YRl=Temp; 

%delRl=1e-5; 

%dYdRl = (YRl-Y0)/delRl; 

load YRl.mat 

load dYdRl.mat 

  

%Steady state gain matrix GY (with respect to input) 

GY = [dYdL dYdS dYdRl];           

 

 

 

 

% Script for calculating gain matrix Gyd (w.r.t. disturbances) 

Script file GYdscript.m  

 

clear all; close all; clc; 

global coldata dyndata hydraulic termodata UU alfa tend NI i 

%% COLUMN DATA %% 

  

% Number of stages in 6 sections of Petlyuk  

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup stages 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 
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termodata.P = 1.0; 

hydraulic.k1 = 1/0.063; 

%% THERMODYNAMIC DATA %% 

alfa = [4.215374389 2.102194688 1]; %ethanol propanol butanol 

  

%% load nominal x u 

load Nominal_final.mat      % The nominal value obtained from optimization for ... 

%minimizing the sum of impurities in the product streams (D, S and R) 

UU=[];                        

i=0;                       %to initiate Petlyuk_openloop make change in CS by i+1 

indmat_Yes_S1 

%Change in disturbances can be mase here to obtain Gyd 

dyndata.x_nom = x_nom;        %initial composition and holdup states 

% disturbance in feed F, h=1e-5 

h = 1e-5; 

%dd1= h; 

%u_nom(6)= u_nom(6)+dd1; 

%disturbance in composition A in feed 

%dd2=h; 

%u_nom(7)=u_nom(7)+dd2; 

%disturbance in composition B in feed 

%dd3=h; 

%u_nom(8)=u_nom(8)+dd3; 

  

%disturbance in boilup 

%dd4=h; 

%u_nom(2)=u_nom(2)+dd4; 

  

%disturbance in vapor split RV 

%dd5=h; 

%u_nom(4)=u_nom(4)+dd5; 
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dyndata.u_nom=u_nom;                  %we have made initial input global 

dyndata.temp_nom=temp_nom; 

%% Run this file to get initial values with LV Configuartion, uncomment 

% line number  

NI=5; % Number of integerators 

options = odeset('MaxStep',10); 

tend=20000; 

[t,x]=ode15s(@Simulation_Petlyuk,[0 tend],[dyndata.x_nom;zeros(NI,1)],options); 

%% xf states to plot profiles. 

xf=x(end,1:225)'; 

u_nom=UU(end,2:12)'; 

Plot_Profiles 

dxdt = norm(Petlyuk_NLmodel(0, xf, u_nom)); 

% Print the values of compositions in D (distillate), S (side stream), R (residue)... 

%and D1 and R1, (top and bottom product from the prefractionator both  end) 

%dis_composition 

%Temperature as measurement Y 

[sys Temp]= Petlyuk_Nlmodel(t,xf,u_nom); 

%Yss = Temp;                          % Measurements, Temperatures on all 

%stages at steady state 

%plot_temp_profile                   % Temperature Profile in the column 

  

%% Calculate steady state gain matrix for three remaining D.O.F. (L,S,Rl) GY  

load Y0.mat              % same as nominal temperature 

% For the disturbance in feed flow rate F 

%Run the simulation and  store the value of Temp as YF  

%YF= Temp; 

%dYdF = (YF-Y0)/dd1; 

load YF.mat 
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load dYdF.mat 

  

%For disturbance in composition of A in feed, zA 

%Run the simulation and store the value of Temp as YzA 

%YzA = Temp; 

%dYdzA = (YzA-Y0)/dd2; 

load YzA.mat 

load dYdzA.mat 

  

%For disturbance in composition of B in feed, zB 

%Run the simulation and store the value of Temp as YzB 

%YzB = Temp; 

%dYdzB = (YzB-Y0)/dd3; 

load YzB.mat 

load dYdzB.mat 

  

%For disturbance in the boilup V 

%Run the simulation and store the value of Temp as YV 

%YV = Temp; 

%dYdV = (YV-Y0)/dd4; 

load YV.mat 

load dYdV.mat 

  

%For disturbance in the vapor split ratio RV 

%Run the simulation and store the value of Temp as YV 

%YRV = Temp; 

%dYdRV = (YRV-Y0)/dd5; 

load YRV.mat 

load dYdRV.mat 

  

% Calculate the steady state gain model for diturbances 
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GYd = [dYdF dYdzA dYdzB dYdV dYdRV]; 

  

% Load steady-state disturbance gain 

%load GYd 

 

 

%Script for calculating cost after simulation  

Petlyuk_cost.m 

% It has been used to calculate Juu and Jud 

  

indmat_Yes_S1 

% J is the objective function "sum of impurities in products" 

J = u_nom(10)* xf(im_xt(2))+ u_nom(5)*(1-xf(im_xS1(2)))+u_nom(11)*xf(im_xr(2)) 

 

%Script for calculating Jud  

Jud_Petlyuk.m 

 

% Script for calculating Jud 

clear all; close all; clc; 

global coldata dyndata hydraulic termodata UU alfa tend NI i 

%% COLUMN DATA %% 

  

% Number of stages in 6 sections of Petlyuk  

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup stages 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 

termodata.P = 1.0; 

hydraulic.k1 = 1/0.063; 

%% THERMODYNAMIC DATA %% 

alfa = [4.215374389 2.102194688 1]; %ethanol propanol butanol 

  



Chapter 9                                                                                                               Appendix                                                                                       

109 

 

%% load nominal x u 

load Nominal_final.mat      % The nominal value obtained from optimization for ... 

%minimizing the sum of impurities in the product streams (D, S and R) 

UU=[];                        

i=0;                       %to initiate Petlyuk_openloop make change in CS by i+1 

indmat_Yes_S1 

%Change in disturbances can be mase here to obtain Jud and also the input 

%change has to be done in Simulation_Petlyuk.m 

dyndata.x_nom = x_nom;        %initial composition and holdup states 

% disturbance in feed F, h=1e-5 

h = 1e-5; 

%dd1= h; 

%u_nom(6)= u_nom(6)+dd1; 

%disturbance in composition A in feed 

%dd2=h; 

%u_nom(7)=u_nom(7)+dd2; 

%disturbance in composition B in feed 

%dd3=h; 

%u_nom(8)=u_nom(8)+dd3; 

  

%disturbance in boilup 

%dd4=h; 

%u_nom(2)=u_nom(2)+dd4; 

  

%disturbance in vapor split RV 

%dd5=h; 

%u_nom(4)=u_nom(4)+dd5; 

  

  

dyndata.u_nom=u_nom;                  %we have made initial input global 

dyndata.temp_nom=temp_nom; 
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%% Run this file to get initial values with LV Configuartion, uncomment 

% line number  

NI=5; % Number of integerators 

options = odeset('MaxStep',10); 

tend=20000; 

[t,x]=ode15s(@Simulation_Petlyuk,[0 tend],[dyndata.x_nom;zeros(NI,1)],options); 

%% xf states to plot profiles. 

xf=x(end,1:225)'; 

u_nom=UU(end,2:12)'; 

  

%Script file to calculate cost after simulation 

petlyuk_cost 

 

 

%The matrix Jud is also saved in the matlab SS code 

%load Jud            

 

 

 

 

% Check Juu is positive definite or not 

The script file is Juu_positivedefinite.m 

 

Juu = [1709 -993.3114 -17.96;-993.3 114  1012.6  12.583;... 

  -17.96 12.583 1.8781]; 

%Script for checking positive definite of a matrix 

 [m,n]=size(Juu);  

    if m~=n, 

       error('Juu is not Symmetric'); 

    end 

     

    %Test for positive definiteness 

    x=1; %Flag to check for positiveness 

    for i=1:m 

       subJuu=Juu(1:i,1:i); %Extract the upper left kxk submatrix 
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       if(det(subJuu)<=0); %Check wheather the determinent of the kxk    submatrix is +ve 

            x=0; 

            break; 

        end 

    end 

     

% Exact Local Method applied to three-product DWC 

clear all; close all; clc; 

  

global coldata dyndata hydraulic termodata UU alfa 

% COLUMN DATA %% 

  

% The script for calculating F matrix 

%Script_Fmatrix                     

load F1 

  

%Write specs after script_Fmatrix otherwise result might change 

%Specs 

load Nominal_final.mat 

dyndata.u_nom = u_nom; 

  

%Run the optimization 

  

%[x_opt,fval,exitflag,output,lambda,Grad,Hessian] = fmincon(@(x) 

Objective(x),[dyndata.x_nom;dyndata.u_nom],Ain,bin,Aeq,beq,[],[],@(x) 

Petlyuk_nonlcon(x),options); 

  

%x_nom=x_opt(1:225);u_nom=x_opt(226:end); 

  

%dxdt = norm(Petlyuk_NLmodel(0,x_nom, u_nom)); 

%[sys Temp]=Petlyuk_NLmodel(0,x_nom,u_nom); 

%Yo= Temp; 

load Y0                            %Nominal Temperature 

% Scaling of disturbances 

% 10% deviaitions in F, zA, zB, 20% in Vmax and 10% in RV 

dd=[0.01*dyndata.u_nom(6);0.01*dyndata.u_nom(7);0.01*dyndata.u_nom(8);... 

    0.01*dyndata.u_nom(2);0.01*dyndata.u_nom(4)]; 

    %scaled with respect to Vmax 

Wnd= diag(dd); 

%Measurement error 

%del=0.1;                                      %0.5 degree C 

%Wn= 0.5*diag(ones(72,1)); 

Wn= 1*diag(zeros(72,1));                    % without noise 
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%Finding steady state gain matrix for three inputs L, Rl and S 

%Run the file init_runner and obtain the value of GY as per instructions 

load GY 

%Y=[F1*Wnd Wn]; 

Y=[F1*Wnd  Wn];                              %  without noise 

Hel=(inv(Y*Y')*(GY))';    %3X72 

csel=Hel*Y0; 

% or the combination can be made with the selected measurement only 

load Juu.mat; 

%Juu =eye(3); 

load Jud.mat; 

load GYd.mat; 

M = sqrtm(Juu)*inv(Hel*GY)*(Hel*Y) 

% Average loss is calculate dusing frobenius norm 

Lavg = 0.5* norm(M,'fro')^2 

%  0.0548 

% Worst case loss is calculated using induced 2 norm 

Lwc = 0.5* norm(M,2)^2 

% 0. 

  

 %Exact local method for the set of  three temperatures obtained from branch 

%and bound Cao & Kariwala 2008 

% This method has been used here to prescreen the candidate controlled 

% variables 

% Exact Local Method applied to three-product DWC 

  

clear all; close all; clc; 

  

global coldata dyndata hydraulic termodata UU alfa 

% COLUMN DATA %%k 

  

% The script for calculating F matrix 

%Script_Fmatrix                    % This gives an average loss 0.0455 and 

load F1 

%same as F1 

  

load Nominal_final.mat 

dyndata.u_nom = u_nom; 

  

load Y0                            %Nominal Temperature 

% Scaling of disturbances 

% 10% deviaitions in F, zA, zB, 10% in Vmax and 10% in RV 

dd=[0.01*dyndata.u_nom(6);0.01*dyndata.u_nom(7);0.01*dyndata.u_nom(8);... 

    0.01*dyndata.u_nom(2);0.01*dyndata.u_nom(4)]; 

    %scaled with respect to Vmax 

Wnd= diag(dd); 
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%Measurement error                                     

%0.5 degree C 

Wn= 0.5*diag(ones(3,1)); 

%Wn= 1*diag(zeros(3,1));                    % without noise 

  

%sset = [10 38 60];             % 1st rank   

%sset = [9 38 60];             % 2ndt rank 

%sset = [11 38 60];             % 3rd  rank 

%sset = [10 38 63];             % 4th  rank 

%sset = [8 38 60];             % 5th  rank 

%sset = [9 38 63];             % 6th  rank 

%sset = [7 38 60];             % 7th  rank 

%sset = [10 38 59];             % 8th  rank 

%sset = [13 38 62];             % 9th rank 

%sset = [11 38 63];             % 10th rank 

  

% The best ten sets of temperatures as obtained by  average loss 

% calculation by Cao and Kariwala 

%sset = [9 38 59];         %1st best 

%sset = [9 38 58];        %2nd best 

%sset = [9 39 59];        %3rdd best 

%sset =  [39 57 63];        %4th best 

%sset = [9 39 58];        %5th best 

%sset = [8 38 59];        %6th best 

%sset = [8 38 58];        %7th best 

%sset = [8 39 59];        %8th best 

%sset = [10 39 59];        %9th best 

%sset = [10 38 58];        %10th best 

  

  

%Finding steady state gain matrix for three inputs L, Rl and S 

%Run the file init_runner and obtain the value of GY as per instructions 

load GY 

GY3 = GY(sset,:); 

F3 =F1(sset,:); 

Y3=[F3*Wnd  Wn];                              %  without noise 

Hel3=(inv(Y3*Y3')*(GY3))';    %3X72 

%csel3=Hel3*Y0(sset),:); 

% or the combination can be made with the selected measurement only 

  

% Evaluation of loss using exact local method 

load Juu.mat; 

%Juu =eye(3); 

load Jud.mat; 

%load GYd.mat; 
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M3 = sqrtm(Juu)*inv(Hel3*GY3)*(Hel3*Y3) 

  

%M = sqrt([1861 0 0; 0 1160 0;0 0 1.84])*inv(Hel*GY)*Hel*Y 

% Average loss is calculate dusing frobenius norm 

Lavg = 0.5* norm(M3,'fro')^2 

%  0.0548 

% Worst case loss is calculated using induced 2 norm 

Lwc = 0.5* norm(M3,2)^2 
% 0. 
 

%Minimum Singular Value Rule 

 

%Scale the input using linear model such that each input has same effect on 

%the cost J, get UscI.j= 1/(abs(Juu))^1/2, 3x1 matrix 

%Load Juu.mat 

  

clear all; close all; clc; 

  

global coldata dyndata hydraulic termodata UU alfa 

  

% The script for F matrix (optimal sensitivity)is script_Fmatrix 

  

%script_Fmatrix 

  

% instead of writing above script load F1 directly 

load F1.mat 

% The value of Juu as calculated using finite-diffrence approximation 

% method 

                     

load Juu 

u_sc = [1/sqrt(Juu(1,1)); 1/sqrt(Juu(2,2));1/sqrt(Juu(3,3))]; 

  

%optimal variation in candidate controlled variables w.r.t. disturbances 

%load F1 

dd1= 1e-5;dd2=1e-5;dd3=1e-5;dd4=1e-5;dd5=1e-5; 

delYopt = F1*[dd1; dd2; dd3; dd4; dd5]; 

  

  

%for controlled variable which is temperature here , the implementaion 

%error 0.5 degree C added, no control error because of PI controller 

nm = 0.5*ones(72,1); 

CscI = abs(delYopt)+nm; 

  

  

%Scaling matrix for the controlled variables and inputs 

Dc = diag(CscI); 

Du = diag (u_sc); 
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% The scaled model 

load GY 

G = inv(Dc)*GY*Du; 

%load G 

%load Juu 

%Jud=inf; 

%Gd1=inf; 

load Wn  

load Wnd 

  

% The branch and bound algorithm to calculate maximum of the minimum 

% singular values to select the best combination of measurement which are 

% three temperatures here. 

%[B,sset,ops]=b3msv(Q,nc) 

% G is scaled gain matrix (Ivar Halvorsen, Sigurd Skogestad, John Morud and 

% V. Alstad Paper 2003,"optimal selection of controlled variables", INCER 

% MSV saved as MSV and sset saved as sset, total 20 sets of measurements 

[MSV,sset,ops]=b3msv(G,20); 

  

% Calculate the loss using the value of B saved as MSV.mat(minimum singular 

% values)  

  

Loss_MSV = norm(Juu,2)*0.5*1/norm(G,2)^2 

% The end of MSV 

  

% RGA Calculation (pairing of T10, T38, T60 with L, S and RL) 

load GY 

Grga = [GY(10,:);GY(38,:);GY(60,:)]; 

R = inv(Grga') .* Grga ; 

%Relative gain array is save as R, [-0.000336,1.88e-05,1.00031712216556;0.987 

%,0.012,-0.000363;0.01268,0.9872,4.6528e-05;] 

 

 

%Null space method and slection of measurement sequential method 

clear all; close all; clc; 

  

global coldata dyndata hydraulic termodata UU alfa 

% COLUMN DATA %% 

  

% The script for calculating F matrix 

%Script_Fmatrix 

load F1 

%load the nominal temperatures 

load Y0 

%u_sc = [1/sqrt(Juu(1,1)); 1/sqrt(Juu(2,2));1/sqrt(Juu(3,3))]; 
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%GY0 = inv(Wn)*GY*u_sc; 

%load GY0 

% Find the maximum minimum singular value for all element of GY0 

%GYsing = sort(abs(GY0)); 

% The best subset of measurement are ( T35, T34, T33) based on input only 

% i.e. nu =3 

% from best to worst 

% The best subset of measurements are (T35, T34, T33, T36,T37,T10,T9, T38], 

% nu+nd=ny i.e.3+5=8 

  

H1 = null(F1'); 

H1=H1'; 

H1ns= H1(3,:); 

Csns=H1ns*Y0; 

  

 

 

Mtalab Codes for Dynamic Simulations 

%%Three Product Petlyuk Column 

%Constant Relative Voltality 

% Initializes the model and runs 

% The otputs are compositions (A, B and C) of  (D, S, R, D1 and B1) 

%% 

clear all; close all; clc; 

global coldata dyndata hydraulic termodata UU alfa tend NI i stages_Temperature 

stages_Temperature_name Temp_nom 

%% COLUMN DATA %% 

  

% Number of stages in 6 sections of Petlyuk  

coldata.Nt = [12 12 12 12 12 12]; 

% Initial holdup stages 

coldata.M0 = [1 1 1 1 1 1 1 1 1 1 1 1]; 

%Boiling points of ethanol, propanol and n-butanol 

coldata.Tboil = [78.37 97 117.4]; 

termodata.P = 1.0; 

hydraulic.k1 = 1/0.063; 

%% THERMODYNAMIC DATA %%  (Realtive volatilities alfa) 

alfa=[4.215374389   2.102194688 1] %ethanol propanol butanol 

  

%% load nominal x u 

load Nominal_final.mat        % The nominal value obtained from optimization for ... 

  

%minimizing the sum of impurities in the product streams (D, S and R) 

UU=[];                        % 
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i=0;%to initiate Petlyuk_openloop make change in CS by i+1 

indmat_Yes_S1 

% Make the nominal values of x, u and Temp global 

dyndata.x_nom = x_nom;  

%u_nom(6) =0.9*u_nom(6); 

%u_nom(2) = 1.1*u_nom(2); 

dyndata.u_nom=u_nom;           

%dyndata.temp_nom=temp_nom; 

%get stage indices for prefrac and main column 

coldata.stages_pre=[im_x1(1:coldata.Nt(1)) im_x2(1:coldata.Nt(2))]; 

coldata.stages_main=[im_x21(1:coldata.Nt(3)) im_x22(1:coldata.Nt(4)) 

im_x23(1:coldata.Nt(5)) im_x24(1:coldata.Nt(6))]; 

%define position for temperature controller 

stages_Temperature_name={'L','S1','RL'}; 

stages_Temperature=[im_x22(2) im_x23(12) im_x1(10)]; 

%calculate nominal temperature 

Temp_nom=get_Temperature(stages_Temperature,1,dyndata.x_nom); 

%% Run this file to get initial values with LV Configuartion, uncomment 

% line number  

NI=5; % Number of integerators 

options = odeset('MaxStep',10); 

tend=5000; 

[t,x]=ode15s(@Dynamic_Petlyuk,[0 tend],[dyndata.x_nom;zeros(NI,1)],options); 

%% xf states to plot profiles. 

xf=x(end,1:225)'; 

u_nom=UU(end,2:12)'; 

  

% Output at the end of simulation 

Plot_Profiles 

dxdt = norm(Petlyuk_NLmodel(0, xf, u_nom)); 

% Print the values of compositions in D (distillate), S (side stream), R (residue)... 

%and D1 and R1, (top and bottom product from the prefractionator both  end) 

dis_composition                      % saved as init_compSS.mat 

%Temperature as measurement Y 

[sys Temp]= Petlyuk_NLmodel(t,xf,u_nom); 

Yss = Temp;                          % Steady-state Temperature, saved as Yss.mat  

%plot_temp_profile                   % Temperature Profile  in the column, 

%use command window to make temp profile 

%Petlyuk_cost 

  

  

 

function xprime=dynamic_Petlyuk(t,X)  

%This model is for simulations 

%This is a dynamic model with PI controllers, It returns derivative   

% using the basic non-linear model Petlyuk_Nlmodel and it can be used for both 
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%steady-state simulation as well as dynamic simulations 

%At steady state au=0 (except for condensers and reboiler holdups as they 

%don't have steady-state effect) 

%using this model simulations have been done to obtain steady state-gain 

%for input and disturbances (Gy, Gyd) 

%using this model simulations have been done to obtain Juu 

%using this model dynamic simulations have been done for sequential 

%controller tuning one by one by keeping au=0 or 1 

%How? Just call the above function with different script files  

%1. for initial steady state simulation with LV configuartion the  

% script file is            : init_sim_Petlyuk.m 

%2. to calculate Gy and Gyd : script gains_Petlyuk.m 

%3. to calculate Juu        : script Juu_Petlyuk.m 

%4. for dynamic simulation  : script file dynamic_Petlyuk.m 

global UU dyndata tend NI i coldata au stages_Temperature Temp_nom 

indmat_Yes_S1 

  

  

  

% D and B used to control hold ups in the condenser (X(im_mt)) and reboiler 

%  (X(im_mr))respectively 

  

[D,e1] = Controller_PI(X(im_mt),dyndata.x_nom(im_mt),dyndata.u_nom(end-

1),X(226),-1,1001,0,2); 

[B,e2] = Controller_PI(X(im_mr),dyndata.x_nom(im_mr),dyndata.u_nom(end),X(227),-

1,1001,0,2); 

  

  

%get Temperatures for current timestep 

Temp_current=get_Temperature(stages_Temperature,1,X); 

  

%Controller 

au=0; 

  

[L,e3] = Controller_PI(Temp_current(1),Temp_nom(1),... 

            dyndata.u_nom(1),X(228),-0.15*1,16,0,4); 

  

%[L,e3] = Controller_PI(Temp_current(1),Temp_nom(1),... 

            %dyndata.u_nom(1),X(228),-0.15,16,0,4); 

  

[S1,e4] = Controller_PI(Temp_current(2),Temp_nom(2),... 

            dyndata.u_nom(5),X(229),0.27*1,11.2,0,4); 

  

%[S1,e4] = Controller_PI(Temp_current(2),Temp_nom(2),... 

            %dyndata.u_nom(5),X(229),0.27,11.2,0,4); 

[Rl,e5] = Controller_PI(Temp_current(3),Temp_nom(3),... 
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            dyndata.u_nom(3),X(230),-0.33*1,8,0,4);  % tc=1min 

  

            %[Rl,e5] = Controller_PI(Temp_current(3),Temp_nom(3),...         

            %dyndata.u_nom(3),X(230),-0.33*1,8,0,4);  % tc=1min 

VBB = dyndata.u_nom(2);              %Boilups if fixed 

RV = dyndata.u_nom(4);               % RV is fixed 

  

% loop to obtain the values of i/p and disturbances throughout simulation 

% time 

if(t>0.01 || rem(i,10)==0) || t==tend 

%     t 

UU=[UU; t [L;VBB;Rl;RV;S1;dyndata.u_nom(6:9); D; B]']; 

end 

i=i+1; 

%     t 

xprime=Petlyuk_NLmodel(t,X(1:end),[L;VBB;Rl;RV;S1;dyndata.u_nom(6:9); D; B ]); 

xprime=[xprime;e1;e2;e3;e4;e5]; 

 

%%find_max_DeltaT 

%get start and end Temperature for all stages 

%Temp=get_Temperature(coldata.stages_main,[1 size(x,1)],x); 

Temp=get_Temperature(coldata.stages_pre,[1 size(x,1)],x); 

%plot Delta T over stages 

figure 

%plot(stages,Temp(2,:)-Temp(1,:),'d--','MarkerFaceColor','r'); 

plot(Temp(2,:)-Temp(1,:),'d--','MarkerFaceColor','r'); 

xlabel('stage') 

ylabel('\Delta T [K]') 

text(73,-7,'\leftarrow VB','HorizontalAlignment','center') 

% text(5,0.3,'RL \rightarrow','HorizontalAlignment','center') 

 

 
function Temp = get_Temperature(stage,t,states) 
%[Temp] = get_Temperature(stage,t,states) 
%returns the linear approximated Temperature for given 
%Stage and time of the state matrix "states". 
%Temp: Output of Temperature in matrix "time x stage" 
%stage: inputs as index matrix for comp A (e.g. im_x1(2) or im_x1(1:10)) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% !! Does not work for x_t, x_r and x_S1!! 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%states: either "time x states" (like "x") or "states x 1" (like "X") 
%t (time): scalar or ":" for all 
  

%init 

global coldata NI 

Temp=[]; 

section=zeros(1,size(stage,2)); 
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%check if X is row vector, if yes: transform matrix and set time to "1" 

if size(states,2)==1 

    states=states'; 

    t=1; 

end 

  

%get number of section for each stage 

for k=1:size(stage,2), %stage loop   

    for i=1:6,  %section loop 

        if 2*sum(coldata.Nt(1:i))>=stage(k) 

            section(k)=i; 

            break 

        end 

    end 

end 

  

%calculate 

for i=1:size(stage,2),%get single composition vector for stage i "t x [A B C]" 

    composition=[states(t,stage(i)) states(t,stage(i)+coldata.Nt(section(i)))]; 

    composition=[composition 1-sum(composition,2)]; 

    %get single Temperature vector for stage i "t x Temp" 

    Temp_stage = composition*[78.37 97 117.4]'; 

    %add Temp vector for stage i to prevoious stages 

    Temp=[Temp Temp_stage]; 

end 

 

 

% Temperature profile on stages in the prefractionator and the main column 

%stage=1:48; 

%stage1=stage(13:36); 

%Temp_pre=Temp(1:24); 

%plot(stage1,Temp_pre,'b') 

%hold on 

%Temp_main=Temp(25:72); 

%plot(stage,Temp_main,'r') 

  

%Plot Yopt (change in temp profile because of disturbances) 

stage=1:48; 

stage1=stage(13:36);  

delYopt1 = z2(1:24); 

plot(stage1,delYopt1,'b') 

hold on 

delYopt2=z2(25:72); 
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plot(stage,delYopt2,'r') 

  

 

 

 


