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Abstract

The purpose of this study is to maximize the potential which lies in domestic hot
water heaters. Today the temperature function in the hot water tank is constant
throughout the day and the hot water demand is met by an electrical heater.
Implementing a temperature which has the freedom to change in the tank, the
energy demand can be met by both the energy stored in the hot water and the
electrical heater. This means that if the electricity is expensive and the load on
the mains are high, the hot water heater can shift load the electrical consumption
from this time period to another by benefiting from the energy storage. This
should result in a cost reduction since the consumption of electricity is moved
to a time period with cheaper electricity. In addition, the consumption from the
consumers can be altered if the electrical storage is properly used.

The main challenges with hot water tanks are the unpredictability of future
demands and time varying electricity prices. The consumer is free to benefit
from desired amounts of hot water at any time of day. In addition, the future
electricity prices are unknown. Despite these uncertainties the hot water tank
should always be able to deliver sufficient and hot enough water.

To optimize the hot water heater in a proposed optimal strategy was implemented
for minimizing the electrical cost of heating water. The optimal operation was
compared to other simple policies to see if they were better, worse or equally
good strategies. From the result in the report the proposed strategy reduced the
cost compared to all suggested policies. The highest savings were compared to
having a constant temperature in the hot water tank. The electrical consumption
was also proven to change if the policies were provided with the opportunity of
benefiting from the energy stored in the water compared to only having electri-
cal heating. This implies that one solution to shave the peak demands in the
electricity is by utilising the energy stored in the hot water.
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Sammendrag

Ideen bak denne studien har vært å maksimere potensialtet i varmtvannstanker.
I dag kontrolleres temperaturen i varmtvannstanker av en konstant temperatur
gjennom hele dagen. Dette tvinger energibehovet til å bli møtt av elektrisitet
gjennom hele døgnet. Ved å implementere en temperaturstyring med friheten til
å forandre seg som en funksjon av tid kan energibehovet bli møtt av to strategier.
Den ene vil være den lagrede energien som finnes i det varme vannet, mens den
andre vil være elektrisitet. Varmtvannsberederen kan da velge å bruke energi-
lageret i det varme vannet når strømprisene er dyre og forbruket høyt, for siden
å gjennopprette lageret når det er færre som bruker strømnettet og prisene er
lavere. Hvis strømprisene også reflekterer strømforbruket vil topplasten i nettet
kunne bli redusert gjennom å flytte strømforbuket til andre tider hvor nettet er
mindre belastet.

De største utfordringene med en varmtvannsbereder er uforsigbarheten ved for-
bruket, siden forbrukeren står fritt til å benytte seg av varmtvann til alle døgnets
tider og hvilken mengde de ønsker. I tillegg er fremtidens elektrisitetsprisene
uvisse.

For å optimalisere varmtvannstanken i dette studiet er det blitt foreslått en opi-
mal strategi for hvordan temperaturen i varmvannstanken skal styres. Denne er
sammenlignet med andre enkle strategier for å kvantifisere hvorvidt de er like bra,
bedre eller dårligere en den foreslåtte optimale strategien. Fra resultatene vises
det at den foreslåtte optimale styringsstrategien reduserer kostnaden sammen-
linget med alle de foreslåtte strategiene. Den største besparelsen, sammenliget
med å ha konstant temperatur i varmtvannstanken igjennom hele døgnet, ble
funnet. Strømlasten på nettet viste seg også å variere hvis varmtvannberederen
kunne benytte seg av lagret energi fra varmtvannet.
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1 | Introduction

Energy is one of the most essential needs in modern daily life. In order to be able
to provide future generations with the same energy sources as today a sustainable
energy consumption is important. To be able to conduct such a consumption,
energy sources should be fully utilized and unnecessary losses eliminated. Possi-
bilities for new energy sources should also be investigated as the need for power
is increasing [10]. The previous measures all involve the production of power
whereas the consumption is the throughput manipulator for the power genera-
tion. If the consumption increases the production has to increase if it is fully
utilized. Therefore investigation how to create measures for trying to decrease
the growth of consumption are of interest.

In 1991 the Norwegian electricity sector was deregulated and liberalized. Norway
was integrated with the Swedish, Finnish and Danish markets to become the first
common, inter-country electric market in the world, the Nordic electricity market
[10]. After the merge the electricity prices decreased as a result of competition,
overcapacity and wet years [1]. This lead to limited investments in power gen-
eration, resulting in available capacity being more or less the same for 20 years
[10]. However, the consumption has not been constant over the last 20 years.
Consumption of electricity at peak hours in Norway has been increasing and is
expected to continue to increase in the coming years [2]. In Figure 1.1 the annu-
ally peak loads compared to the available capacity from 1981 to 2005 is depicted.
The peaks differ significantly from year to year due to climatic variation, in par-
ticular the variation of outside temperature as electricity is primarily used for
space heating in Norwegian households [11]. Despite these fluctuations, Figure
1.1 shows how the peak loads has a trend of growing, and forecasts expects it to
continue increasing further [1].

As the peak load approaches the total capacity of the system the probability for
a capacity deficit occurring increases. Either the demand needs to be reduced
or the hydro power distribution expanded, otherwise the situation might become
critical in a very dry year [1]. To solve this problem peak shifting strategies can
be applied for levelling the peak loads.

In many European Countries consumers benefit form tariffs based on TOU (time
of use) and DR (demand reduction) if the electricity is used during off-peak hours
[3]. This can reduce the load and benefit the utilities by avoiding the costs of
installing new power units. In addition in some industrial countries direct control

1



CHAPTER 1. INTRODUCTION

of electrical appliances is common practice to decrease the peak load [12, 13].

Figure 1.1: Available capacity and annual peak load in Norway [1].

One example is in Australia where 355,000 hot water heaters are involved in a
direct load control program. The control strategy reduces the peak electricity
consumption by 389 MW. The incentive for the consumer to participate in the
program is a lower rate for hot water heating [12].

In Norway load management is being introduces through advanced measuring
and controlling system units, AMS (avansert måle- og styringssystem). These
will be implemented in households within the end of 2018 [14]. They will provide
the consumers with more accurate information and awareness on their energy
consumption [14]. The consumer will be able to see the consumption continu-
ously during the day in addition to the current electricity price. With expansion
packages, which can be bought, the consumer holds the possibility of utilise en-
ergy units when the price is low and alter their consumption patterns and save
money. The power companies hope that this incentive will lead consumers to
benefit of the AMS system, resulting in a less fluctuating electricity consump-
tion, resulting in a decrease in the need for new capacity investments due to the
increase in peak-demand.

2



CHAPTER 1. INTRODUCTION 1.1. PREVIOUS WORK

For this system to work the cost savings should be made more available for the
consumer. It is important for the utilities to provide an energy distributions per
unit in a household. Every unit requires a specific amount of electricity to meet
the requirements of the residents. Sintef Energiforskning AS in Trondheim has
distributed a pie chart of the distribution of electricity consumption in Norwegian
households [11]. Approximately 80 % of the total energy consumption in residen-
tial homes is provided by hot water heaters and domestic heating [11]. Of this
percentage the hot water heater constitutes for approximately 15 % [11]. Load
control of hot water heaters may therefore have a large demand response poten-
tial which should be quantified for. If fully utilised, a hot water heater should be
able contribute to a decrease in the peak demands and slow down the need for
new capacity investments. And as an incentive for the consumer a decrease in
demand response should be met by a economical advantage.

1.1 Previous Work

Having introduced the need for utilising electrical units in Norway it should be
mentioned that this is not a new topic. Several studies have been conducted and
books published.

shape after t3, when all heaters affected by the load control have
restored the energy consumed by the hot-water use.

Fig. 1(b) shows households with a low level of hot-water
consumption. Their contribution to load reduction in the
electricity system is small, and the disconnection has no effect
on most of the heaters. For those that are affected, only one heater
is disconnected in a certain time interval whereas five heaters
will start operating simultaneously when reconnected, giving a
payback effect from t1 to t2. The power demand added to the
system load after a disconnection is five times the size of the
reduced power demand during the disconnection. Furthermore,
the size of the payback is the same as from the high hot-water
consumers in Fig. 1(a). The system load curve will, however,
quickly return to normal shape (after t2), when all heaters affected
by the load control have restored the energy consumed by the
hot-water usages.

Parts (a) and (b) of Fig. 2 illustrate the discussion above with
load curves during a day with and without disconnection of water
heaters for the two customer groups.

These simplified examples indicate some effects experienced
when water heaters are used in load control programmes.
Consumption is shifted out of the disconnection period to a

later period. The payback effect will then give rise to extra
consumption in the system load that would not have taken place
otherwise. The figure illustrates that the low hot-water consumers
contribute little to reducing the load during the disconnection,
but still create a high, although brief, peak when reconnected.
This suggests that households with the highest consumption
of hot water may be the target group in a direct load control
programme.

The above discussion illustrates some effects that may occur
due to differing amounts of hot-water consumption among house-
holds in a direct water heater load control programme. Further, the
capacity of the heating elements of the water heaters will influence
the effects. Given two consumer groups of equal size and with
similar amounts of hot-water consumption distributed equally
over time, heaters with a low-rated heating element capacity
will require a longer time to restore energy than those with
high capacity, and the demand during restoration will be smaller.
The group of heaters with a high heating element capacity will
contribute the same demand reduction during the disconnection
as those with the low-element capacity, but will yield a higher
payback demand, although over a shorter period of time, before
water temperature is restored.

ARTICLE IN PRESS

kW kW

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hourtime t0 t1 t2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Load without disconnection
Load with disconnection

Load without disconnection
Load with disconnection

Fig. 2. Load curves with and without disconnection for households with a high level of hot-water consumption (a), and low level of hot-water consumption (b).
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water consumption, 1,y, n (b).
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(a)

shape after t3, when all heaters affected by the load control have
restored the energy consumed by the hot-water use.

Fig. 1(b) shows households with a low level of hot-water
consumption. Their contribution to load reduction in the
electricity system is small, and the disconnection has no effect
on most of the heaters. For those that are affected, only one heater
is disconnected in a certain time interval whereas five heaters
will start operating simultaneously when reconnected, giving a
payback effect from t1 to t2. The power demand added to the
system load after a disconnection is five times the size of the
reduced power demand during the disconnection. Furthermore,
the size of the payback is the same as from the high hot-water
consumers in Fig. 1(a). The system load curve will, however,
quickly return to normal shape (after t2), when all heaters affected
by the load control have restored the energy consumed by the
hot-water usages.

Parts (a) and (b) of Fig. 2 illustrate the discussion above with
load curves during a day with and without disconnection of water
heaters for the two customer groups.

These simplified examples indicate some effects experienced
when water heaters are used in load control programmes.
Consumption is shifted out of the disconnection period to a

later period. The payback effect will then give rise to extra
consumption in the system load that would not have taken place
otherwise. The figure illustrates that the low hot-water consumers
contribute little to reducing the load during the disconnection,
but still create a high, although brief, peak when reconnected.
This suggests that households with the highest consumption
of hot water may be the target group in a direct load control
programme.

The above discussion illustrates some effects that may occur
due to differing amounts of hot-water consumption among house-
holds in a direct water heater load control programme. Further, the
capacity of the heating elements of the water heaters will influence
the effects. Given two consumer groups of equal size and with
similar amounts of hot-water consumption distributed equally
over time, heaters with a low-rated heating element capacity
will require a longer time to restore energy than those with
high capacity, and the demand during restoration will be smaller.
The group of heaters with a high heating element capacity will
contribute the same demand reduction during the disconnection
as those with the low-element capacity, but will yield a higher
payback demand, although over a shorter period of time, before
water temperature is restored.
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Fig. 2. Load curves with and without disconnection for households with a high level of hot-water consumption (a), and low level of hot-water consumption (b).
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(b)

Figure 1.2: Energy recovering of water heaters with and without disconnections for
households with a high level of hot water consumption 1,...,n (a), and low
level of hot water consumption (b) [2].
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CHAPTER 1. INTRODUCTION 1.1. PREVIOUS WORK

An example is a large scale Norwegian project were load control was applied on
domestic hot water heaters [2]. Electrical consumption of 475 households were
investigated over a six month period from November 2003 to May 2004. The
results show significant peak shavings in consumption during disconnection of
hot water heaters. However the results also indicates an increase in consump-
tion when the water heaters were reconnected, shown in Figure 1.2, essentially
meaning that the energy not supplied to the heaters during disconnection will be
required after reconnection.

Another study applied on water heaters performed by U. Atikol explores the pos-
sibility of applying a time controlled DSM (demand side management) program
for reducing the peak demand generated by electrical water heaters, see Figure
1.3 [3]. The result shows that it is possible to operate the water heater once or
twice a day and still meet the daily demand if the DSM is carefully designed for
each household1.

water from the EWHs for taking showers as a great majority of
them use washing machines for washing clothes and dishes. The
washing machines have their own heating arrangements to
prepare hot water. Therefore it is essential to examine at what
times residents in each household are taking showers on typical
days before using the experimental findings described in the
previous sections to propose timer settings for them. The general
behavior of occupants, modeled in Section 2 and presented in
Fig. 1, indicated that the EWHs are turned on mostly in the
evenings and some times in the mornings. Fig. 6 summarizes
some possibilities that can be utilized in a DSM program in order
to achieve peak shifting and also make sure that hot water is
available for taking shower next morning. If the hot water re-
quirements are during or just after the peak hours (17:00e
21:00), it would be necessary to turn on the EWHs before the
peak hours (15:00e17:00) generating a peak shifting to pre-peak
hours. It is evident from Table 2 that, in the worst case, there will
be warm water at temperatures above 40 !C in the top 15% of the
tank available after 12 h standing time even in the case of 3
persons taking showers in succession initially. On the other hand
there is the possibility that some consumers may require to use
the showers after 23:00 or later. In that case it would be more
fitting to turn on the EWHs between 21:00 and 23:00 h, avoiding
the peak time and also securing more hot water for morning
needs.

A straightforward cost estimation of this DSM strategy can be
made by noting that analog and digital timers for water heaters can
be purchased from the market in N. Cyprus at an approximate cost
of $22 USD and the labor cost for installing them can be assumed to
be $20 USD. Previous experience in N. Cyprus reveals that a new
reciprocating engine power generation unit of 17-MW capacity
costs approximately $12,000,000-USD. In order to defer the pur-
chase of such a power plant an equivalent number of water heaters
with 3-kW ratings must be turned off at peak hours. This will be
possible with 5667 properly selected water heaters which are
normally turned on during the peak hours. If a rebate of $200 USD,
which is highly conservative, is given to those households who
participate in this program the total cost of the program for each
household would be $242 USD. For 5667 houses, the program
would cost $1,371,414-USD. The avoided cost of deferring the need
of a new power plant would be estimated to be $10, 628,586-USD.

6. Conclusion

Utilities always prefer to operate their power units at full load in
order to obtain the maximum efficiency from them. However, this
depends very much on the hourly demand profile for each day in a
year. In order to modify the demand curve, DSM strategies can be
applied. One of the most powerful strategies is to control the times
of connections of the water heaters. In non-industrialized countries
this could be a very effective way of shifting the load from peak
hours to off-peak hours. Additionally, by controlling the connection
times of the EWHs instead of the disconnection times, the utilities
will have more control over the hourly load curve. By this way it is
possible to calculate more precisely how many MWs of those
participating in the DSM program are connected at any given time
period.

Although load management of residential water heaters by us-
ing timer switches is not a new idea [9,18], it is the cheapest and
simplest choice, suitable for places where the infrastructure and
technical expertise are not favorable for the more advanced op-
tions. Moreover, the majority of the consumers in such countries
prefer to switch their water heaters on, only for a few hours, just
before they need the hot water. The present study investigates the
practicability of utilizing timers to suit these conditions.

It is found that if the DSM programs are carefully designed for
each household it would be possible to set the timers to operate the
EWHs for once or twice a day to provide enough hot water meeting
the daily demand. If the EWH in a household is turned on between
21:00 and 23:00 h and three persons take showers consecutively,
then they can be assured that next morning there will be enough
hot water for at least one more shower. For other hot water con-
sumption routines the utilities may need to plan different settings
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Figure 1.3: Simplified timer-setting strategies for different times of hot water require-
ments on typical days to be applied in a DSM program [3].

1This study was conducted with the assumption of a infrastructure and technical expertise
which were not favourable for more advanced options.
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CHAPTER 1. INTRODUCTION 1.2. PROJECT SCOPE

1.2 Project Scope

The studies mentioned in Section 1.1 primarily involve focus on levelling the
consumption demand by switching the heater on and off. In the present study the
objective is on the cost of heating water and not on the demand. The strategies
applied are however assumed to have a demand shifting effect.

The idea is to minimize the cost of heating water by utilizing the heat capacity
of water to store energy. To utilize the storage the temperature in the tank is
adjusted as a function of time. The temperature will change during time of usage
providing the unit to benefit from both the stored energy in the water as well as
the electrical heater. Meaning that if the electricity is expensive, the goal is to
shift load the energy consumptions to a time-interval where the price is cheaper.
This should result in a reduction in cost and hopefully in peak demand.

If the result shows that both the cost and demand have positive outcome, the
proposed optimal operational strategy will give an incentive for the consumer to
benefit from such a system, which would make it easier for the distributor to
implement it.

The structure of the report is presented as following. First the reader is pro-
vided with an explanation of the operational system followed by the assumption,
equations and constraints, Chapter 2.2. Followed by the consumption profile for
residential homes and electricity price profiles. Having introduced the essentials
of the system the procedure of optimization is described followed by the control
structure, Chapter 5 and 6 respectively. Finally the proposed optimal operation
applied on the hot water heater is introduced in details in Chapter 7. In the same
chapter there are also several case studies presented which proposes other simple
policies for controlling a hot water heater. The optimal operation is compared to
these cases and the results are presented in the same chapter. The discussion and
conclusion are found in the end of the report, in Chapter 8 and 9, respectively.
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2 | Operational System

The operational system of the present hot water heater consists of an electrical
hot water heater used for domestic usage. A schematic process flow sheet of the
hot water heater is presented in Figure 2.1 where all the important notations are
present.

ever, analytical results can be derived for a few simpli-
fied cases, e.g. assuming perfect e�ciency for charging
and discharging the battery.

Henze et al. [9] consider the optimization of the cool-
ing system in commercial buildings. The authors pro-
pose shifting the thermal load by precooling the build-
ings structure at night, in addition to using active storage
means such as ice thermal storage. The ultimate goal is
to take advantage of ambient conditions and of real-time
pricing to maximize the energy cost savings. The simu-
lations show that the cost savings and on-peak demand
reductions can be substantial (up to 57% and 50%, re-
spectively) if a good model and accurate weather pre-
dictions are used.

Many recent contributions used model predictive
control (MPC) solutions for this problem. In [10] a
MPC controller is used to minimize a multi-objective
function which trades o↵ energy cost and comfort level
in a dynamic real-time pricing scenario. They show that
there is a good potential for savings compared to tradi-
tional control strategies. Not surprisingly, it is shown
that the energy cost increases as the comfort level in-
creases.

In this paper, we focus on the optimization of an elec-
tric water heating system which provides hot water for
domestic usage. The optimization objective is to min-
imize the energy costs while obeying some operating
constraints. The main idea is to use the heat capacity
of the water tank to store energy in times when electric
power is cheap and use it to match the demand when
energy is expensive.

The paper is organized as follows: Section 2 presents
the process modelling; Section 3 formulates the opti-
mal control problem; In Section 4, we present a feasi-
bility analysis of the problem; Section 5 discusses the
constant price scenario whereas Section 6 discusses the
time varying price case. In Section 7, a case study is
presented and discussed. Section 8 concludes the paper.

2. Process modelling

The process we are dealing with consists of a heater
which provides hot water for domestic usage. A simpli-
fied process flow scheme is shown in Figure 1 where the
important notation is presented. The system includes a
cold water source, a thermally insulated tank, a heating
coil with adjustable power and control valves that regu-
late the cold water inflow qin and the hot water outflow
qout. A somewhat unusual feature of this system is that
the hot water that leaves the tank (qout) is mixed with
a cold water stream (qcw) from the same water source.
This extra mixer is to allow that the hot water to the

Q [W]

qin [m3/s]

qout [m3/s]

qhw [m3/s]

qcw [m3/s]

Tcw [K]

Tcw [K]

T [K]

Tout = T

Thw [K]

Heater

Cold water

Cold water

hw

Figure 1: Simplified process flow scheme

consumer (Thw), can be colder than the hot water in the
storage tank (Tout = T ).

A dynamic model can easily be derived from mass
and energy balances. The mass balance for the tank be-
comes

d(⇢V)
dt

= ⇢inqin � ⇢outqout [kg/s] (1)

where we will assume constant fluid density (⇢ = ⇢in =

⇢out).Assuming constant pressure and no mechanical
work, the energy balance becomes (e.g, [11])

dH
dt
= Hin � Hout + Q � Qloss [J/s] (2)

where Qloss is the heat loss to the surroundings, H is the
enthalpy of the system, Hin and Hout is the enthalpy of
the streams, Q is the added heat. Kinetic and potential
energy changes are also neglected. The heat loss is

Qloss = UA(T � Tsurr) (3)

where UA [W/K] is the heat transfer constant and Tsurr

is the temperature of the surroundings.
Assuming constant heat capacity cp, no phase change

and perfect mixing (Tout = T ), the enthalpies are given

2

Figure 2.1: Operating system.

The system contains a cold water source, a thermally isolated tank, an electri-
cal coil with adjustable power and control valves on the streams entering and
leaving the tank. After leaving the tank the outlet stream is mixed with a cold
water stream before reaching the consumer. The idea behind the mixing is that
the storage tank can contain water with a higher temperature than the desired
temperature of the consumer. That is

Tout > Thw (2.1)

7



CHAPTER 2. OPERATIONAL SYSTEM

where Tout is the tank temperature and Thw is the temperature of the water
reaching the consumer. The cold water stream, qcw, is controlled by a valve and
drawn from a cold water reservoir. The system also holds other specifications
which differ from a standard hot water heater, presented in Table 2.1.

Table 2.1: System Specifications

Parameter Standard [15, 2] Project

qin Bottom Top
qout Top Bottom
V 200 l 200 l

Qmax 2,0 kW 5,5 kW
Qloss 0,1 kW/h 0 kW/h

From Table 2.1 the system contains a hot water tank which is provided with
cold water from the top of the tank while hot water exit from the bottom. This
is contrary to what is normal in standard hot water heaters, where cold water
enters at the bottom of the tank and hot waters is withdrawn from the top [2].
However this change in design will not effect the thermodynamics of the system
due to perfect mixing. It is assumed that when entering the tank the cold water
is perfectly mixed with the hot water resulting in a negative temperature change
if,

Tcw ≤ T (2.2)

where Tcw is the temperature of the cold water and T the water temperature in
the tank. From Table 2.1 other parameters also deviate from standard values.
The maximum heat input, Qmax is more than two times higher than the standard
value. This value is increased to boost the response on the temperature as the
heat input is turned on. The heat loss is also neglected. The tank containing
water is thermally isolated and is assumed to have no heat loss. In reality the
heat loss from a tank is approximately 0.1 kWh/h from Table 2.1, which implies
that it will take approximately 2.3 hours for a full tank to drop 1 °C in stand-by
mode (i.e. when no water is consumed from the tank).
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CHAPTER 2. OPERATIONAL SYSTEM 2.1. ASSUMPTIONS

2.1 Assumptions

The water heater process has initially four DOF (degrees of freedom), Q, qcw, qhw
and qin. Two of the DOF are removed to satisfy the demand requirements for
the assumption that the hot water flow rate qhw and the hot water temperature
set-point Thw,s are directly controlled by the consumer. This implies that they
can not be controlled by the system. From a control point of view these inputs
are defined as disturbances. In addition the temperature into the tank, Tin, and
the price, p, are also classified as disturbances.

Defining qhw and Thw,s as disturbances, there remains only two DOF left for
optimization. The model equation can now be compactly written as Equation
(2.3) with the state, input and disturbance vectors defined in Equations (2.4).

dx

dt
= f(x, u, d) (2.3)

x =
[
V
T

]
, u =

[
Q
qin

]
, d =


qhw
Thw,s
Tin
p

 (2.4)

Having assuming that Thw,s and qhw are controlled by the consumer, these vari-
ables are the measurement of success, implying that the system assumes perfect
control whenever feasible to satisfy the requirements of the consumer. Perfect
control is defined in Equation (2.5),

Thw = Thw,s and qhw = qhw,s (2.5)

where Thw is the temperature while Thw,s is the set-point for the temperature
of the hot water. The hot water flow rate qhw should also be at the consumers
desired flow rate, qhw,s, when perfect control is reached. In cases where perfect
control is not feasible, the aim will be to deliver desired flow rate but with a lower
temperature, shown in Equation (2.6).

T < Thw,s and qhw = qhw,s (2.6)
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CHAPTER 2. OPERATIONAL SYSTEM 2.1. ASSUMPTIONS

2.1.1 Constraints

Operating the system entails keeping within the limits of the systems constraints.
A system can have different limitations, for example regarding safety or physical
properties.

The inputs of this system, Q and qin have the following limitations, presented in
Equations (2.7)-(2.8).

0 ≤ Q ≤ Qmax (2.7)

0 ≤ q ≤ qmax (2.8)

The constraints for the outputs are defined in Equations (2.9)-(2.10). The tem-
perature should be constrained on an upper bound for safety regulations. If the
temperature exceeds 100 °C the water will start boiling and water vapour will
accumulate in the tank in addition to other hazards. The lower bound of the
temperature is to avoid temperatures freezing. The constrains for the volume are
naturally controlled by the size of the tank.

Tmin ≤ T ≤ Tmax (2.9)

Vmin ≤ V ≤ Vmax (2.10)

The values of the constraints on the inputs and outputs in Equations 2.7-2.10 are
shown in Table 2.2.

Table 2.2: System Constraints

Parameter Description Value Unit

Qmin Minimum power 0 kW
Qmax Maximum power 5.5 kW
qmin Minimum inlet flow 0 l/s
qmax Maximum inlet flow 10 l/s
Tmin Temperature lower bound 0 ℃
Tmax Temperature upper bound 90 ℃
Vmin Volume lower bound 50 l
Vmax Volume upper bound 200 l

10



CHAPTER 2. OPERATIONAL SYSTEM 2.2. MASS- AND ENERGY BALANCES

2.2 Mass- and Energy balances

The dynamic model for the system can be derived from mass and energy balances.
The notations in the equations are the same as in Figure 2.1. New notations will
be explained. Starting with the tank, the mass balance is presented in Equation
(2.11),

d(ρV )
dt

= ρinqin − ρoutqout (2.11)

where the fluid density, ρ is assumed constant. The energy equation for the tank
is simplified by neglecting the kinetic and potential energies, Equation (2.12),

dH

dt
= Hin −Hout +Q−Qloss (2.12)

where Qloss is the heat loss to the surroundings, H is the enthalpy of the system,
whereas Hin and Hout are the enthalpies of the streams and Q is added heat.
The heat loss is further defined in Equation (2.13),

Qloss = UA(T − Tsurr) (2.13)

where U is the overall heat transfer constant, A is the heat exchange area and
Tsurr are the temperature of the surroundings. Assuming good isolation of the
tankQloss is neglected (Qloss = 0). The enthalpies for the system and the streams
are shown in Equation (2.14), where the heat capacity cp is assumed constant in
addition to no phase change.

H = ρV cp(T − Tref )
H = ρqincp(Tin − Tref )
H = ρqoutcp(T − Tref )

(2.14)

Here Tref is a fixed reference temperature while q is the flow rate. Further the
tank is assumed to be perfectly mixed, implying that Tout = T .

Combining the mass and energy balances for the volume and temperature the
resulting state equations for the system becomes
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dV

dt
= qin − qout (2.15)

dT

dt
= 1
V

(qin(Tin − T ) + Q

ρcp
) (2.16)

where V denotes the volume of the tank and T the temperature.

The system also holds a mixer which combines the hot and cold streams before
reaching the consumer. This unit is assumed to be a static process with constant
heat capacity and no pressure drop. Equations (2.17 )-(2.18) shows the equation
for the mix unit.

qhw = qout + qcw (2.17)

Thw = qoutT + qcwTin
qhw

(2.18)

Energy Storage and Demand

In the introduction the objective function in this study was said to be minimized
by utilizing energy storage to meet the consumers demand in addition to the
electrical heater. In this subsection the energy storage is introduced and an
alternative energy balance is provided for the whole system. The storage, Es is
assumed to be relative to the current cold water supply temperature (Tin), as
shown in Equation 2.19.

Es = ρcpV (T − Tin) (2.19)

From Equation (2.19) the upper and lower bounds for stored energy can be found
as shown in Equations (2.20) and (2.21).

Emax = ρcpVmax(Tmax − Tcw) (2.20)

Emin = ρcpVmin(Thw,s − Tcw) (2.21)

12
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From evaluating these boundaries the maximum available energy storage which
can be used as buffer in the hot water tank is presented in Equation (2.22).

∆E = Emax − Emin (2.22)

From the previous equations the energy demand at any given time can be derived,
Equation (2.23). This is the energy that needs to be provided if there were no
energy stored, i.e. T = Thw,s.

Qdemand = ρcpqhw(Thw − Tcw) (2.23)

From the following definition the overall energy balance for the tank and mixer
system are presented in Equations (2.24)-(2.26).

dH

dt
= Hin −Hcw −Hhw +Q (2.24)

Here Hcw and Hhw are the enthalpies of the cold and hot streams respectively.
By implementing Es and Qdemand the energy balance can be written as shown
in Equation (2.25).

dE

dt
= Q−Qdemand − ρV cp

dTcw
dt

(2.25)

This is the final alternative equation for the whole system (tank and mixer).
Notice that if the cold water is assumed to have a constant temperature the
energy equation will be simplified to

dE

dt
= Q−Qdemand (2.26)
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3 | Consumption Profile

The main aspects of demand shifting strategies are to reduce the demand peaks.
The peaks are caused by many people benefiting from electricity at the same
times. The consumptions coincides due to similar behaviour pattern resulting
in a high demand on certain times of day. However, close up the demand is
somewhat random if the time scale is small enough. This means that the accident
related to hot water usage does not happen on the same time and in the same
amount every day. This results in a pattern that is difficult to estimate. In the
following section the uncertainty of hot water demand is discussed.

In reality future hot water consumption profiles are truly unknown and can not
be exactly predicted. However, recovery of data from past consumption can be
used to generate a probability profile for the future demand. To do this there are
several methods to chose among.

Figure 3.1: Heat demand prediction for a household on 22 November 2007 [4].

One example providing prediction models is neural networks techniques [4]. These
models are based on biological neurons and are able to learn, to generalize or to
cluster and organise data [16]. The networks need to be configured (trained) such
that the application of the network combined with a set of given inputs generates
the desired outputs. In the case presented in Chapter 2.2, the output of the
prediction model can be either the flow or the heat demand which both provides
the consumption demand directly or indirectly, respectively.
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To be able to implement and use such a system a close study of a resident needs
to be done. The behaviour of the residents, historical heat demand and weather
forecasts are only a few input data that need to be collected [16]. An example of
a generated consumption profile from [4] is presented in Figure 3.1.

Another way of predicting consumption profiles is by generating random profiles
based on hot water consumption events [5]. e.g. calculating the amount of water
used for a hand wash and counting occurring accidents per day and time of day.
Collecting this data and combining it gives a good starting point for a probability
function of hot water activities occurring.

The latter approach for finding a hot water demand profile is chosen as predictor
in this study due to availability and time limitations. A predictor base on neural
network is thought to be too time consuming and the data available is limited.

The load profiles from the predictor are based on a mean flow rate, Equation 3.1
[5],

prob(V̇ ) = 1√
2πα

exp−(V̇ − ˙Vmean)2

2α2 (3.1)

where V̇ is the mean flow rate and α is the duration of a load. The mean flow is
combined with a probability function, Equation 3.2 [5].

prob = prob(accident) (3.2)

To visualize the profiles a 72 hour sequence of a generated profile from [5] with a
mean load volume of 200 litres per day are shown in Figure 3.2. For comparison
two generated consumption profiles from this report are shown in Figure 3.3 (a)
and (b). The profiles were created using MATLAB scripts produced by Vinicius
De Oliveira ,and are to be found in Appendix D.1.
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1. DHW Load-Profiles in a One-Minute Time Scale
 
 
 For the IEA-Task 26 simulation studies, a mean load volume of 200 litres per day was chosen
for a single family house. A short sequence of the profile is shown in figure 1.1.
 

Figure 1.1: Load profile of 72 hours, Jan. 1st – 3rd  (200 l/day).

 Basic Assumptions

 Four categories of loads are defined. Every category-profile is generated separately and
superponed afterwards.
 For every category a mean flow rate is defined. The actual values of the flow rates are spread
around the mean value with Gauss-Distribution (figure 1.2):
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 The values chosen for σ ,  for the duration of every load, and for the medium number of
incidences during the day are shown in table 1.

Flow rates in steps of 0.2 l/min =  12 l/h are taken.

 A probability function, describing variations of the load profile during the year (also taking
into account the (European) daylight saving time), the weekday, and the day  is defined for
every category.
 The Accumulated Frequency Method is used to distribute the incidences described by the
probability function among the year.
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Figure 3.2: Hot water load profile generated for 72 hours [5].
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Figure 3.3: Two generated hot water load profiles generated from this report (a) and
(b).
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CHAPTER 3. CONSUMPTION PROFILE 3.1. POWER PROFILE

3.1 Power Consumption Profile

So far the hot water consumption has been revolving around the amount of
water without evaluating the the heat input. Consumption of hot water leads to
a decrease in volume, forcing cold water to enter to keep the volume at desired
set-point. To make up for lost heat from the mixing of hot and cold water the
heater is turned on. When the temperature reaches the set-point the heater
is turned off. For a single household Q is consonantly turned on or off by the
controller and the profile should look similar to the demand profiles in Figure 3.3.
However, both the heater profile and demand profile are more continuous when
investigating on a larger scale. Figure 3.4 shows the average daily profile for a
domestic hot water heater from a study performed on hundreds of consumers in
the province of Québec. This profile reflects the peak demands of electricity more
clearly and reveals why DSM (demand side management) strategies need to be
quantified.
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Figure 3.4: Average daily profile of the power consumption by electric hot water
heaters in Canada[6].
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4 | Price Profile

The objective of the study is the cost, which is directly effected by the electricity
price provided. To be able to minimize the cost a closer look on the electricity
prices is required.

The strategy behind the study is to shift load the energy consumptions to a
time-interval where the prices are cheaper. This would result in a lower cost of
heating. If the prices also reflects the consumption pattern of the society the
peak demand should be shifted. To be able to benefit from such a strategy, the
prices need to deviate throughout the day.
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Figure 4.1: Electrical spot prices during week 32 (August 5. to 11.) in 2013.

If the electricity prices are constant all day, this strategy would not provide a lower
cost. Thus, it would still be able to provide a change in electrical consumption
and load shift demand.

Looking at the electricity prices from Figure 4.1 the prices change during the day.
Many electrical companies have rate schedules of electricity prices that change
with season of the year and time of the day. This causes a fluctuation in the

19



CHAPTER 4. PRICE PROFILE

cost of energy and lead to the inequality such that a kW 6= a kW [17]. Further
explanation of this statement is that the energy units are the same, but the time-
of-use will change the value of the energy. Generally low prices of electricity
occur during the night time when few people are awake and the consumption of
electricity is low (see Figure 3.4), these time periods are refereed to as off-peak.
In the day time the energy consumption is higher and the generating capacity
and distribution of energy might be limited and can lead to higher prices. This
time interval is referred to as on-peak. These notations will be used throughout
the report.

To make the simulations throughout the report as realistic as possible the energy
prices are actual prices collected from Nordpoolspot [18]. The month of August
in 2013 was selected for Trondheim city, and a small presentation of some of the
days in this month are depicted in Figure 4.1. The rest of the electricity prices
used in the simulations are to be found in Appendix A.
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5 | Optimization

In the optimization the focus is on the economical aspect of the process. From
Skogestad [19] the goal of an optimization problem is to minimize an objective
function J to its given constraints g and h, Equations (5.1) - (5.3). When eval-
uating the subject to optimization the equality and inequality constraints need
to be satisfied in order for the optimization to be valid within the limits of the
system. The constraints for this system are given in Chapter 2.2.

minimum J(x, ut, d) (5.1)

with subject to

equality constraints: g(x, ut, d) = 0 (5.2)
inequality constraints: h(x, ut, d) ≥ 0 (5.3)

Here x are the state variables, ut the manipulated variables, d the disturbances
and J the cost. From a control perspective the optimization is to decide what to
control with the available degrees of freedom.

The equality constraints g include the model equations, presented in Section 2.2,
whereas the inequality constraints, presented in Section 2.1.1, mark the bound-
aries of the system.

5.1 Objective Function

The objective function of the system is the cost function in Equation (5.4).

J =
∞∫
t0

p(t)Qdt+
∞∫
t0

P (T )Qdemand dt (5.4)

Here J is the cost, t0 and ∞ are the time intervals, p(t) is the electricity price,
Q the heat input, P (T ) the penalty and Qdemand the energy demand. The
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CHAPTER 5. OPTIMIZATION 5.2. PROBLEM FORMULATION

time limit in the objective function is from time t0 to infinity, i.e. the unknown
future. The penalty function, P (T ), for delivering lower temperature than the
specification temperature set by the consumer consists of a linear and a quadratic
term. The linear term is to prevent the system from having the optimal case
where V ≤ Vmax to keep T = Thw slightly below Thw,s in order to save energy
since Qdemand = ρcpqhw(Thw−Tcw) drops linearly in T when Thw = T is reduced
[20].

P (T ) =
{

0 if T ≥ Thw,s
p ∗1 (Thw,s − T )2 + p ∗2 (Thw,s − T ) if T < Thw,s

(5.5)

Here p∗1 and p∗2 are penalty factors which controls the size of the penalty. These
should always be high enough for the objective function to benefit from keeping
the temperature, T , above the desired hot water temperature Thw,s.

5.2 Problem Formulation

The problem of optimization is defined in Figure 5.1. Where Q and qin are the
DOF (degrees of freedom), Tin, Thw,s, p(t) and qhw are disturbances and T and
V are the outputs (and states) together with the objective function J .

Q

qin V

T

J

q
h
w

p
(t)

SYSTEM

T
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T
h
w

,s 

Figure 5.1: Initial optimization problem.

The objective of the problem of optimization is the cost, J , which is a non linear
problem (Section 5.1). The most important parameter for the cost is the electrical
heat input Q, which should have a main policy of being used when the electrical
price, p(t), is cheap. The water refilling, qcw, affects the water temperature, T ,
whereas other effects are limited. From Equation 2.25 this stream does not affect
the energy stored in the tank, E. The optimal solution is the minimal value of J
with respect to the decision variables of the system, Equation (5.6).
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CHAPTER 5. OPTIMIZATION 5.2. PROBLEM FORMULATION

min
Q,qin

J (5.6)

The two DOF in Figure 5.1 make out the MV’s (manipulated variables) available
for controlling the outputs, T and V . To control the outputs two controllers
need to be implemented and set-points for the states defined. First a controller
for the volume is introduced into the system, c1, shown in Figure 5.2. Since
the heat loss, Qloss = 0 is neglected, there is no disadvantage of having a high
tank temperature. According to the equation for the the stored energy in the
tank, Equation 2.25, there are an infinite number of combinations of T and V
that will provide a certain energy storage. If the heat loss were included, which
would be the case in real life, this would imply that it would always be optimal
to keep the temperature in the tank as low as possible to minimize the losses. To
achieve this the tank filling should be maximized resulting in selecting a volume
set-point of Vmax. The set-point for the volume is therefore selected to be Vmax
controlled by the inlet stream qin. This specification results in one DOF left for
optimization. The optimal control problem with the remaining DOF is shown in
Equation (5.7),

min
Q

J (5.7)

leaving Q as decision variable for the optimal control problem. Figure 5.2 depicts
how the optimization problem is now redefined.
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Figure 5.2: Optimization problem with only one DOF.

Next step is to implement a controller for the temperature of the tank, c2. Figure
5.3 shows that the heat input is chosen as CV for the temperature. The provided
temperature set-point for the controller is Tset which indirectly controls the heat
input Q through the error signal from the controller. The heat input can be said
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CHAPTER 5. OPTIMIZATION 5.2. PROBLEM FORMULATION

to be the main throughput manipulator for the cost, J . For the optimization
the heat input is however not chosen as decision variable, the temperature set-
point is, Tset. Since Q is indirectly controlled by Tset the set-point is proposed to
implement a control structure for the heat input so that the hot water demand
can be meet by either the energy storage or the electrical heat. The new decision
variable for the optimization is then changed to Tset, given in Equation (5.8),
and will be the final formulation for the optimal operation.

min
Tset

J (5.8)
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Figure 5.3: Final optimization formulation.
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6 | Feedback Control

From the previous chapter two controllers were implemented into the system to
be able to control the states. Both controllers are feedback controllers which
measures the output and afterwards adjusts the input. In the following section
a more thorough explanation of the controllers are presented.

6.1 Feedback Controller

The two dominating types of feedback control are proportional-intergral-derivative
control (PID) and on-off control [21]. On-off control is controlled by switching the
manipulated variable on or off, while PID controllers are more complex and will
be explained in more detail further down. A schematic presentation of a feedback
controller is found in Figure 6.1, where c is the controller, g is the system and gd
is the disturbance.

Figure 6.1: A schematic feedback controller loop [7].

The objective in feedback control is to reduce the error signal to zero. The error
signal is defined in Equation (6.1)

e(t) = ys(t)− y(t) (6.1)

where e(t) is the error signal between the set-point of the output ys(t) and the
measured output y(t).
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CHAPTER 6. FEEDBACK CONTROL 6.1. CONTROLLER

PID controllers consist of three basic control modes, namely proportional, integral
and derivative. The simplest is the proportional control where the output of the
controller is proportional to the error signal, Equation (6.2) [21]

p(t) = p+Kce(t) (6.2)

where p(t) is the controller output, p the steady-state value and Kc the controller
gain. In proportional control the gain of the controller can be manipulated in
order to make the output of the controller as sensitive as required to alterations
between the set-point and controlled variable (CV). The sign of the gain, Kc, can
also be selected to make the controller output increase (or decrease) as the error
signal increases. A drawback of only using proportional control is that a steady-
state error (off-set) occurs after a set-point change or a permanent disturbance.

In integral control the output depends on the integral of the error signal over
time, Equation (6.3)

p(t) = p+ 1
τI

∫ t

0
e(t) dt (6.3)

where τI is integral time whereas the other parameters are the same as in propor-
tional control. The usage of integral control is frequently used as it can eliminate
the steady-state error. Thus only a small amount of control action takes place
until the error signal is sustained over time. Integral control is therefore often
combined with proportional control which has a immediate corrective action when
an error is encountered for.

In derivative control the function is to anticipate the future behaviour of the error
signal by measuring the rate of change, Equation (6.4)

p(t) = p+ τD
de(t)
dt

(6.4)

where τD is the derivative time while the other parameters are the same as in
proportional and integral control. From Equation (6.4) the derivative controller
output is equal to the output steady-state value, p, as long as the error is con-
stant. Due to this, derivative control is often combined with proportional or
proportional-integral control [21]. By anticipating the future behaviour of the
error signal the derivative control tends to stabilize the system. In addition it
can improve the dynamic response of the controlled variable by shortening the
process settling time, the time it takes to reach steady-state.
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CHAPTER 6. FEEDBACK CONTROL 6.1. CONTROLLER

In most cases where PID-controllers are used the time domain is replaced by the
Laplace transform in order to simplify differential equations to algebraic equations
[21]. This can simplify the mathematical problem as well as the mathematical
manipulations required to find a solution or to perform an analysis.

The controller output in the time domain for a PID-controller is the combination
of Equations (6.2)-(6.4) and is shown in Equation (6.5).

p(t) = p+Kc(e(t) + 1
τI

∫ t

0
e(t∗) dt+ τD

de(t)
dt

) (6.5)

The corresponding PID equation with Laplace transformation is presented in
Equation (6.6).

Gc = Kc(1 + 1
τIs

+ τDs) (6.6)

Selection of Controller

The PID controller consists of three terms which all contribute to optimal control
of an output. It is however not always suitable to implement all terms to achieve
good control. In this study the controllers are chosen to be PI controllers. The
expression for a PI-controller is the same as for a PID-controller except that the
τD is omitted, Equation(6.7) [21]. 1

Gc = Kc(1 + 1
τIs

) (6.7)

6.1.1 Tuning parameters

To be able to control the states with the implemented PI controllers the parame-
ters in Equation (6.7) are derived. These parameters are not easy to find without
systematic approach, thus the SIMC rules, Skogestad’s IMC rules will be applied
to solve the problem. The first step is finding an approximate first (or second)
order time delay model as shown in Equation (6.8) [7].

1Due to the assumption of perfect mixing in the tank an on-off controller could also have
been used as the heater only consists of one element. The heat consumption would then have
a different profile in the results.
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CHAPTER 6. FEEDBACK CONTROL 6.1. CONTROLLER

G(s) = ke−θs

τ1s+ 1 (6.8)

Where k is the plant gain, τ1 is the dominant lag time constant, θ is the effective
time delay of the system and s is the Laplace parameter which has replaced the
time t. To obtain the parameters in Equation (6.7) there are three possibilities,
namely:

• Open-loop step response

• Closed loop set-point response with P-controller

• Approximation of effective delay using half rule

In this study the open-loop step response will be applied for finding tuning pa-
rameters.

First-order process

The open-loop step response experiment for a first-order process is shown in
Figure 6.2.

4 Sigurd Skogestad and Chriss Grimholt

STEP IN INPUT u

RESULTING OUTPUT y

T: Delay - Time where output does not change
W1: Time constant - Additional time to reach 

63% of final change
k = ' y(�)/' u : Steady-state gain

ǻy(�)

ǻu

Fig. 2 Open-loop step response experiment to obtain parameters k,t1 and q in first-order model
(3)

g2(s) =
k

(t1s+1)(t2s+1)
e�qs (4)

Thus, we need to estimate the following model information

• Plant gain, k
• Dominant lag time constant, t1
• (Effective) time delay (dead time), q
• Optional: Second-order lag time constant, t2 (for dominant second-order

process for which t2 > q , approximately)

Such data may be obtained in many ways, three of which are discussed below.

1. From open-loop step response
2. From closed-loop setpoint response with P-controller
3. From detailed model: Approximation of effective delay using the half rule

Figure 6.2: Open-loop step response test for a first-order process model [7].

From the depicted results of the open-step experiment in Figure 6.2, the model
parameters can be obtained. Figure 6.2 gives a good explanation of several of
the tuning parameters. To start with the steady state gain,
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k = ∆y(∞)
∆u (6.9)

is the final value of the change in the output, ∆y(∞) as a fraction of the size of
the step in the input, ∆u. The effective time delay, θ, is the time it takes for the
output to respond to a change in the input. The time constant, τ1 is the time it
takes to reach 63% of the final output value after θ.

Having introduced the approach for finding the tuning parameters, the SIMC
rules for a first-order-pluss-dead-time model are presented in Equations (6.10)-
(6.11). These rules can be applied for a PI controller which is present in the
control structure in this study.

Kc = 1
k′

1
(θ + τc)

, k′ = k

τI
, τ = τI (6.10)

τI = min(τ1, 4(τc + θ)) (6.11)

The response time is τc and must be in the range of −θ < τc < ∞ to get a
positive and non-zero controller gain [7].

Integrating Process

The tuning parameters for a first order process are derived, however, in this
study the first order process is approximated as an integrating process as shown
in Equation (6.12).

G(s) = Ke−θs

τs+ 1 ≈
k′e−θs

s
(6.12)

The parameter for the slope, k′, can then be found as shown in Figure 6.3. The
notations for the input and the output are the same as in first-order model.

In an integrating process the controller gain, Kc, can be calculated the same way
as in an first-order process, Equation (6.10).
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The SIMC method for smooth PID controller tuning 5

2.1 Model from open-loop step response

In practice, the model parameters for a first-order model are commonly obtained
from a step response experiment as shown in Figure 2. From a theoretical point of
view this may not be the most effective method, but it has the advantage of being
very simple to use and interpret.

For plants with a large time constant t1, one has to wait a long time for the
process to settle. Fortunately, it is generally not necessary to run the experiment for
longer than about 10 times the effective delay (q ). At this time, one may simply
stop the experiment and either extend the response “by hand” towards settling, or
approximate it as an integrating process (see Figure 3),

ke�qs

t1s+1
⇡ k0e�qs

s
(5)

where

• Slope, k0 def
= k/t1

is the slope of the integrating response. The reason is that for lag-dominant pro-
cesses, i.e. for t1 > 8q approximately, the individual values of the time constant
t1 and the gain k are not very important for controller design. Rather, their ratio k0

determines the PI-settings, as is clear from the SIMC tuning rules presented below.

ǻy

ǻt

Fig. 3 Open-loop step response experiment to obtain parameters k0 and q in integrating model (5).

2.2 Model from closed-loop setpoint response

In some cases, open-loop responses may be difficult to obtain, and using closed-
loop data may be more effective. The most famous closed-loop experiment is the

Figure 6.3: Open loop step experiment to obtain tuning parameters k′ and θ for an
integrating process [7].

The equation for the time constant, τ1, is different as it will go towards infinity
and will always be larger than 4(τc + θ). The integral time is therefore given by

τ1 = 4(τc) + θ) (6.13)

The calculations and values of the tuning parameters in from Equations (6.10) -
(6.13) are to be found in Table B.2 in Appendix B.2.

30



7 | Case Studies

In the following chapter the proposed control structure for the hot water tank is
optimized and compared to other proposed policies. All the cases are provided
with explanations of control structure, simulation data and results. Complete
results for each case are presented in each section, in addition to selected figures.
In Sections 7.2-7.5 the results are also compared to the optimal strategy to quan-
tify which is most beneficial. All cases were solved using MATLAB_R2012b and
Simulink, and all scripts are to be found in the Appendix D.

7.1 Optimal operation

The optimization objective of the study is to minimize the energy cost of heating
water with the requirement that the uncertain demand should be attended at
any time. The objective function is the cost function presented as in Section 5.1,
Equation (5.4). The decision variable is the set-point of the temperature, Tset,
which indirectly controls the heat input of the tank through the controller. The
system for the optimal operation is presented in Figure 7.1. It is proposed that the
hot water tank is controlled by a time dependent temperature set point, Tset(t).
This implies that the set-point can change with the inputs and disturbances of
the system resulting in different strategies for how to meet the demand. Either
the demand can be meet by the energy storage, Es, or the electrical heater. In
addition, if the electricity prices applied reflect the demand load of the society,
the demand peaks can be shaved, resulting in a reduced peak load demand.

7.1.1 Discretization

First the objective function in is simplified by adjusting the time interval of
the integral. The initial objective function is the future cost of indefinite time.
However, due to the uncertainty of future electricity prices and consumption
demand this is a truly unknown cost. To simplify the objective function the time
interval is changed to one day (24 hours), assuming that the electricity price
is known one day ahead. This simplifies the objective function as presented in
Equation (7.1),
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Q
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c2Tset
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Tbuffer

Figure 7.1: Optimal operation with marked decision variable, Tset, (red), disturbance
vector, qhw and p(t), (blue) and objective function, J , (bold black).

J =
t1∫
t0

p(t)Qdt+
t1∫
t0

P (T )Qdemand dt (7.1)

where the final value of a day is expressed by t1. The system is now more definite,
and the optimal solution can be found for this renewed objective function. Fur-
ther, the optimal operation assumes that the best way of controlling the system
is by discretizing it into time intervals. This implies that the cost function will
now provide the optimal solution for this particular optimization and will not the
global optimal solution as this is in continuous and infinite time. Equation (7.2)
shows the formulation of the final optimal operation,

min
u
J (7.2)

where Tset is the decision variable denoted by u in the equation and J is the
manipulated cost function from Equation (7.1). Due to the discretization the
decision variable is divided into time intervals, Equation (7.3), where each u is
represented with a set of predetermined time intervals.

u =
[
u1 u2 u3 u4 u5 u6 u7 u8

]
(7.3)

The time intervals are chosen based on Norwegian consumption profiles from a
typical Norwegian household, and are found in Equation (7.4). The values are in
hours after midnight, where 0 is midnight.
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Timeint =
[
0 5 9 14 17 20 21 24

]
(7.4)

This time interval was further investigated to see if changing the intervals in
Timeint would have a significant impact on the optimization. The results show
that for the three different time intervals applied, the cost deviated poorly from
the cost found with Timeint in Equation (C.1). This study can be found in the
Appendix C.1 together with a more detailed explanation of the time intervals.

7.1.2 Disturbances

The system of operation is explained in Chapter 2.2, as well as the assumptions
and constraints of the system. From the model equation ( Equation (2.3)) the
system is compactly written with states, inputs and disturbances in addition to
the accociated vectors for the paramters. The disturbance vector is reintroduced
an shown in Equation (7.5).

d =


qhw
Thw,s
Tin
p

 (7.5)

The system contains four disturbances; the consumption, qhw, the hot water
set-point, Thw,s, the inlet temperature, Tin, and the electricity price, p. The
temperature set-point is controlled by the consumer and is therefore considered
a disturbance. In the simulations this parameter is assumed constant, implying
that the consumer has the same predetermined desired hot water temperature
over time. The inlet temperature is also considered to be constant. This last
simplification is due to the time of simulation as Tin is expected to change with
outside temperature. All the simulations are performed within the same month
and the deviation will therefore be small enough to be neglected. Having a con-
stant inlet temperature also implies having a constant cold water temperature as
these are considered to come from the same source. The cold water temperature,
as previously mentioned in Section 2.2, is present in the equation for the energy
storage, and by assuming it is constant the the change in stored energy will be the
difference between the current heating, Q and the current use, Qdemand, Equation
(2.26). Table 7.1 presents the value of the two constant disturbances.
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Table 7.1: System Specifications Optimal Case

Variable Value unit
Tin 5 [°C]
Thw,s 50 [°C]

Having assumed that two of the disturbances are constant, two are still remaining
which are presented in the following sections.

Consumption profile

qhw from the disturbance vector is the hot water demand from the consumer,
and is one of the main challenges of controlling a hot water tank. qhw denotes
the uncertain demand of hot water usage at any time of day. The consumer is
free to benefit from hot water usage at any time of the day and in any size of
load. This makes the consumption unknown and a substantial disturbance. To
be able to optimize such a system a predicted consumption profile is generated
which should reflect the actual consumption profiles found in residential homes.
In Chapter 3 two ways on constructing such a profile is presented and the actual
approach used in this report is explained.

To be able to compare the optimal operation with other policies, the generated
consumption is kept constant in every case of simulation. The profile provided is
depicted in Figure 7.2.
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Figure 7.2: Hot water consumption profile for a domestic household.
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Electricity Prices

The remaining disturbance is the electricity price that is said to be known the
following day. To make the simulation more accurate and compatible to reality
the prices used in simulations are actual electricity prices from Trondheim in
August 2013. All the prices applied in the simulations are shown in Appendix A.
To get a preview of the prices two days are depicted in Figure 7.3.
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Figure 7.3: Electricity prices in Trondheim 2013.

7.1.3 Simulation

For simulation and optimization the built-in function fminsearch in MATLAB
was used in combination with Simulink. To start with the system was designed
in Simulink with the present inputs, disturbances, states and controllers. For
the system (and the optimization) to be valid the constraints were implemented.
The values for the constraints were presented in Chapter 2.1.1 in Table 2.2. A
presentation of the MATLAB scripts and the Simulink model are to be found in
Appendix D.3 and E, respectively. Further, a sfunction was introduced into the
system block in Simulink and the state equations were implemented.

fminsearch

As a solver for the optimization problem the MATLAB function fminsearch was
applied to the system. This solver is a gradient free solver which finds the mini-
mum values of a non linear system without constraints [22]. The function tracks
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Figure 7.4: The path of a simplex algorithm with a global minimum at x=(2,1), [8].

the optimal operating conditions by constructing a simplex (a n-dimensional ver-
sion of a triangle) around the initial guess. For each step in the simplex a solution
is calculated. In the reflection point (a specific point reflected from the simplex) a
solution f(r) is calculated. This solution is compared to other solutions obtained
in the simplex, and according to the value of f(r), one of the sides in the simplex
be reduced, expanded or reflected [22]. This process will continue until a stopping
criterion is met [22]. To get a better view of how the algorithm works Figure 7.4
shows the path of a simplex algorithm with a global minimum at point x=(2,1).

The procedure fminsearch uses is the Nelder-Mead method which is a heuristic
search method, meaning experience-based, and is used to speed up the process of
finding a satisfactory solution. The drawback with the method is that it does not
guarantee a global minimum[23]. The final result depends on the initial guess.
Therefore changing the initial guess is a good way of verifying if a global or local
minimum is located [23].

Tset Constraints

The decision variable was decided in Section 5.2. Initially Tset has no constraints,
the constraint lie on the temperature of the tank T . If Tset is left free of con-
straints the response should be faster since ∆T between Tset and T can be higher.
Whereas due to the limitations of heating (Qmax = 5, 5kWh) the heater can not
heat more even if ∆T is increased. In addition having Tset point within the bound-
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Table 7.2: Initial Values

Parameter Initial value Unit

T 90 °C
J 0 NOK
Q 0 kW

aries of liquid water (0-100 °C) makes the decision variable more understandable
for a possible consumer. However, the Tset constraints should not exceed the con-
strains for the water temperature, T , so the upper boundary should be limited
by Tmax. Based on the previous arguments constraints for Tset are introduced
and presented in Equation (7.6).

0 ◦C ≤ Tset ≤ Tmax (7.6)

To solve this in the simulations a price penalty was implemented on Tset if it ex-
ceeds the boundaries in Equation (7.6). An addition benefit of having boundaries
on Tset is the formation of Legionella. If the temperature in the hot water tank
is too low over a long time the possibilities for Legionella pneumophila increases
[24] and can lead to human diseases [25].

Initial Values

To start the simulation initial values needs to be chosen. The initial values for
the states of tank and the cost function are to be found in Table 7.2.

The starting temperature of the water holds 90 °C. This implies that the tank
is fully loaded at the beginning of the simulation. Meaning that the water is
limited by the constraint to have a higher temperature, and the energy storage
in the water is fully utilised. The initial values for the cost and the heat input
are naturally zero.

7.1.4 Results

The simulations were performed on the first 20 days of August and complete
results are presented in Table 7.4. To give a more visualized result, 1. of August
is also presented in Figures 7.5-7.6 . Here the cost, J , the temperature in the
tank, T , the Tset-vector and the demand, Q are depicted.
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First presented is the cost as this is the objective function and our main interest
lies here. The cost is a direct function of the electricity price and the heat input
as long as the temperature in the tank is higher than Thw,s. If the temperature
is lower than Thw,s the penalty is > 0 and the cost increases drastically. To reach
the optimal solution the penalty should therefore be avoided. The cost in Figure
7.5 (a) shows how the penalty is avoided as no drastic costs are present. The
profile of the cost also reveals the strategy of the system. The cost increases in
the morning from approximately 5 am to 11 am, whereas after this the slope
of the cost function evens out and the total cost at the end of the day is 3,64
NOK. From the cost profile it might seam as if the consumption is almost zero in
the afternoon, however the presented consumption profile shows that the highest
consumption is in the evening from approximately 15 pm until 19 pm. This
implies that the system first uses the electrical heater to meet the hot water
demand, whereas in the afternoon the heat is meet by the energy storage. To
verify this statement the temperature in the tank and heat input requires a closer
look.
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(b) Water temperature, T

Figure 7.5: Result from the optimization of the optimal operation on August 1.

From Figure 7.5 (b) the temperature of the water in the tank decreases through-
out the day. At the end of the day (time 24h) the temperature is equal to Thw,s,
meaning that the energy storage is fully utilized at the end of simulation. If
a consumption would occur after this the electrical heater would have to meet
the heating demand. An additional consumption would also lead to a significant
increase in cost since T ≤ Thw,s. The temperature profile also confirms the al-
leged strategy from the cost. The temperature is kept at the initial value in the
morning and in the evening the temperature drops as the heating coils is turned
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on and cold water enters to keep V = Vmax.

From the control structure the temperature is controlled by the temperature set-
point as shown in Figure 7.1. Tset is the decision variable for the optimization
thus the strategy is determined and controlled from this parameter. To validate
this statement, the temperature set-point is presented Figure 7.6 (a). The profile
follows the same pattern as the the temperature of the hot water in the tank.
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(a) Temperature set-point, Tset

0 5 10 15 20
0

1

2

3

4

5

6

T ime ,[h ]

Q
,[
k
W

h
]

Heat inpu t

 

 

Optimal Solution

(b) Heat input, Q

Figure 7.6: Result from the optimization of the optimal operation on August 1.

As a final validation the heat input is mentioned. The heat input is the main
attribute to the cost in addition to the electricity prices. From Figure 7.6 the
heat input is frequently used in the morning, whereas in the evening, when the
demand increases, the heat input is more or less turned of except for a few
incidents. Having confirmed that the heat profile matches the strategy visualized
in the cost profile the operational strategy is summarized in Table 7.3.

Table 7.3: Operational Strategy of Hot Water Heat demand, Optimal Operation

Morning Evening

J Electrical heat Stored heat

This strategy is to be found in the remaining simulations of the optimal operation.
However, it is not depicted in the report because of the amount of space it would
take up. It can be seen in Table 7.4 where the Tset-vector is shown in addition to
which day the simulation is performed on and the final cost. The Tbuffer vector
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values for most of the simulations have only a small deviation from each other.
This is because of the same consumption profiles and the similarity in electricity
prices during the 20 days of simulation which causes the optimal solutions to be
of the same character.

Table 7.4: Results Optimal Operation

Day Jopt, [NOK] Tset - vector

1 3,64 [81 90 85 64 59 43 47 82]
2 3,62 [87 88 86 63 60 48 43 87]
3 3,52 [41 84 89 69 64 59 25 66]
4 3,32 [69 86 88 65 56 56 38 89]
5 3,62 [87 88 86 63 60 48 43 89]
6 3,65 [87 90 87 64 60 47 45 87]
7 3,67 [87 90 87 64 60 47 45 87]
8 3,71 [87 90 86 64 60 48 45 87]
9 3,75 [87 90 87 64 60 47 45 87]
10 3,56 [86 90 86 62 60 47 45 88]
11 3,43 [87 90 87 64 60 48 46 87]
12 3,61 [87 90 86 64 59 48 45 87]
13 3,47 [87 90 87 64 60 47 45 87]
14 3,45 [87 90 87 64 60 47 45 87]
15 3,54 [87 90 87 64 60 47 45 87]
16 3,55 [87 90 87 64 60 47 45 87]
17 3,35 [87 90 87 64 60 47 45 87]
18 2,85 [87 90 87 64 60 48 45 87]
19 3,63 [87 90 87 64 60 47 45 87]
20 3,55 [83 85 81 64 60 55 47 90]
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7.2 Case I:
Switching Between Two Set-points

In this section a new policy for operation of a hot water heater is introduced.
The idea is to see whether it is a better, equally good or worse alternative than
the proposed optimal strategy.

In this case a switch is implemented into the system. The policies is having a
switch that can change between two set-points for the temperature where one set-
point is the the maximum temperature of the hot water, Tmax while the other
one is a unknown constant temperature, Tbuffer. The system of operation is
presented in Figure 7.7.
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Figure 7.7: Optimization control problem with two set-points, Case I.

The disturbances and the initial values are the same as in the optimal operation
study, whereas the time varying temperature set-point Tset is changed. In this
case the Tset has the ability to continuously changed between to constant set-
points through a switch. The switch is time independent, meaning that the
switch can change between the two set-points at any time of simulation.

Due to these changes the problem of optimization is now redefined compared to
the optimal operation. The objective function is discretized into only one interval
resulting in constant decision variables throughout the day, see Equation (7.7).
The new decision variables are the Tbuffer and Pthreshold from Figure 7.7 and
presented in Equation (7.8).

min
u
J (7.7)
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where

u =
[
Tbuffer
Pthreshold

]
(7.8)

For this strategy to work there has to be introduced a function, a threshold or a
set of rules for the operation of the switch. In the following section the operation
conditions for this unit is explained.

7.2.1 Switch

The switch is assumed to be controlled by the electrical price as shown in Figure
7.7. Looking at the prices from week 34 in August (19th -25th), Figure 4.1, the
prices varies continuously between values of approximately 0.24 kWh to 0.30 kWh
without any clear limit of when the prices are assumed to be high or low. In order
to be able to optimize the system by controlling the set-point of the temperature
with a switch, definitions of boundaries for the price needs to be introduced.
The switch will then be able to select the set-points based on the current elec-
tricity price. Introducing this freedom, electricity is thought to be used at more
beneficial periods and should result in both cost saving and a decrease in peak
consumption compared to having a constant temperature throughout the day.

First the set-points for the temperature are defined based on a price threshold,
Pthreshold, which is the boundary between assumed high and low electricity price,
Equation (7.9) .

Tset =
{
if p < Pthreshold then Tset = Tmax

if p ≥ Pthreshold then Tset = Tbuffer
(7.9)

If the price, p, is lower than Pthreshold the price is cheap and the implemented
switch changes the set-point to Tmax. Contrary, if the price is higher than
Pthreshold the price is expensive and set-point is changed to Tbuffer. The value
of Tmax is 90 °C from Table 2.2, whereas the Tbuffer is left for optimization.

Having introduced the purpose of Pthreshold the value of it stands to be evaluated.
The price threshold has three possibilities. The first is Pthreshold always lower
than the electricity price, selecting Tset = Tbuffer, Equation (7.10). The second
one is having a threshold which is always higher than the current electricity
price, resulting in Tset = Tmax. The last one is in between the maximum and
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minimum of the electricity price, Equation (7.12), introducing a possible switch
of set-points during the time of simulation.

Pthreshold ≤ p(t) (7.10)

Pthreshold ≥ p(t) (7.11)

pmax ≥ Pthreshold ≥ pmin (7.12)

For the two first cases (Equation 7.10 and 7.11) the boundary is easy to find by
investigating past electricity prices 1 and are shown in Table 7.5.

Table 7.5: Values For The Price Threshold, Pthreshold

Pthreshold ≤ p(t) Higher than highest measured
value of electricity price

Pthreshold ≥ p(t) Lower than lowest measured
value of electricity price

For the last case the value for Pthreshold needs to be further investigated in a
greater study in order to find a suitable global value (or function) for all days of
the year. There are many factors to account for in order to be able to keep the
threshold within the boundary of the prices at all times. Some factors change
drastically from day to day, season variations and weather forecasts.

To shown the difficulty of finding a valid threshold an example is presented with a
Pthreshold based on an average electricity price from the previous week as thresh-
old for the days in the next week is shown in Figure 7.8. The electricity spot
prices from Monday to Sunday in week 34 and the average value from week 33
in Trondheim in 2013 are shown.

1Alternatively the implemented switch can be removed and a constant Tset can be intro-
duced.
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Figure 7.8: Electricity prices during week 34 compared to average electricity price of
week 33.

The average value of week 33 is a suitable threshold for five out of seven days in
week 34. However on Friday and Sunday the electricity prices is constantly higher
than Pthreshold resulting in Pthreshold breaking the constraints in Equation (7.12).
This small attempt to create a boundary reveals how sensitive the boundary is
for changes in the electricity price. Small deviations from week to week are big
enough to affect the threshold and break the constraints. This small study also
concludes that the average electricity price from week 33 can not be the boundary
for all days in week 34.

7.2.2 Simulation

To find the optimal solution in Case I the Brute Force method was used. This
method is the most general and exact method for finding the optimal sets of CVs,
it is also the most time consuming [26]. The method finds the optimal value of a
set of Pthreshold and Tbuffer by trying out all combinations and calculating the
cost in every case.

The simulations were performed on the first 20 days of August the same as
in the case the proposed optimal operation. The cost was calculated for 40
different Pthresholds combined with 40 different Tbuffers between the boundaries
of the decision variables shown in Table 7.6 on all days of simulation. The CV
for optimal solution was then found by localizing the minimum of the objective
function by using the built in function min in MATLAB. The MATLAB scripts
for the simulations are presented in Appendix D.4.
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Table 7.6: Brute Force Parameters

Parameter Min. value Max. value
Pthreshold 0.20 0.40
Tbuffer 25 °C 90 °C

7.2.3 Results

The results from the simulations are summarized and compared to the optimal
operation in Table 7.7. In addition in Table 7.9, the corresponding CV, Tbuffer
and Pthreshold, giving this particular minimum are presented. It is also denoted
which of the possibilities in Section 7.2.1 Pthreshold is within, denoted by I, II or
III according to the order of Equations (7.10)-7.12).

Table 7.7: Results Case I

Day J, [NOK] Jopt, [NOK] ∆J [%]

1 4,84 3,64 33,0%
2 4,72 3,62 30,5 %
3 3,64 3,52 3,5 %
4 3,72 3,32 12,2 %
5 4,72 3,62 30,5 %
6 4,84 3,65 32,7 %
7 4,86 3,67 32,3 %
8 4,91 3,71 32,1 %
9 4,91 3,75 31,1 %
10 3,96 3,56 11,1 %
11 4,68 3,43 36,5 %
12 4,73 3,61 31,2 %
13 4,59 3,47 32,3 %
14 4,59 3,45 32,9 %
15 4,70 3,54 32,9 %
16 4,64 3,55 30,8 %
17 4,56 3,35 35,9 %
18 3,26 2,85 14,5%
19 4,83 3,63 32,9 %
20 4,65 3,55 30,9 %
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The result show that the policies applied in Case I are not better nor equally
good compared to the optimal operation. The cost increases in all cases within
a range of 3,5%-36,5% relative to the cost in the optimal case. These results
should be expected as the stored energy from the initial temperature in the tank
can not be fully utilised. Meaning that the available energy storage generated
by the temperature must be of higher character at all time when the Tset is
constant. If the temperature in the tank falls to Thw,s and a hot water incident
occurs the water will immediately be to cold leading causing the penalty, P (T ),
> 0, which increases the cost. Therefore the Tset should be high enough to
manage an unexpected consumption from the consumer. To give the reader a
more presentable view of this argument Figure 7.9 shows the cost and temperature
from Case I compared to the optimal operation.
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Figure 7.9: Comparison of cost and temperature from the optimal operation and Case
I on August 1.

The cost profile is this case increases more continuous compared to the optimal
case. The cost is lower in the morning and the break-even point where the costs
are equal are not until late afternoon. These differences in profiles are caused by
the energy storage strategy. In the present case the energy storage in utilized in
the morning while the demand is meet by the electrical heater in the evening.
This is contrary to the optimal case. Table 7.8 shows the strategy in case I.
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Table 7.8: Operational Strategy of Hot Water Heat Demand, Case I

Morning Evening

J Stored heat Electrical heat

The temperature in the tank shown in Figure 7.9 (b) confirms the strategy. In
both cases the temperature is almost equal to the initial temperature until 5 am as
the consumption until this time is almost zero. After this point the temperature
in Case I drops down to the optimal Tbuffer found in the optimization and the
restoring heat demand is meet by the electrical heater. Whereas in the optimal
case the electrical heater is used until the storage is big enough to meet the final
demand of the day.
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Figure 7.10: Comparison of Q for (a) optimal operation and (b) for Case I on August
1.

It has also been mentioned that the optimal operation hopefully would effect the
time heat input, Q. In this case the heat inputs are different from the optimal
operation as depicted in Figure 7.10. The heat profiles reflects the operational
strategy of the system. Case I has a low electricity consumption in the morning
whereas the optimal strategy has a high consumption in the morning and contrary
in the afternoon.

Looking at the temperature profiles once more. The difference in cost is caused by
the difference in available energy storage. The optimal strategy can utilize more
of the energy stored from the start due to varying Tset. In Case I the temperature
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set-point can only change between two set-points which is the highest possible
temperature and a Tbuffer found in the optimization. This restriction causes
the system to prevent it self from breaking the temperature constraint for the
penalty, so that it avoids a higher cost, by always having an energy buffer if a
consumption should occur.

Table 7.9: Optimization CVs, Case I

Day Tbuffer Pthreshold Possibility
[°C] [NOK/Kwh] (I, II,III)

1 66 0,25 III
2 66 0,25 I
3 55 0,26 III
4 55 0,26 III
5 66 0,25 III
6 66 0,24 III
7 66 0,26 III
8 66 0,20-0,25 I
9 66 0,25 III
10 55 0,27 III
11 66 0,20-0,24 I
12 66 0,24 III
13 66 0,24 III
14 66 0,23 III
15 66 0,2-0,24 I
16 66 0,24 III
17 66 0,23 I
18 52 0,29 II
19 66 0,27 III
20 66 0,26 I
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7.3 Case II:
Tset set to Tmax

Until now the temperature set-point has had the ability to change throughout
the day. In Case II the temperature is controlled by only one Tset, the maximum
allowed temperature in the tank, Tmax. Keeping Tset at a constant maximum
temperature is assumed to be the easiest control structure since it does not imply
optimization. The temperature reaches for the highest possible temperature at
any given time of simulation. The set-point temperature is also identical to
the initial temperature, implying that the results should be valid for every case
where Tset is equal to the initial value throughout the entire simulations. Having
Tset equal to the initial temperature also means that the hot water needs to
be heated with the heater at any time of consumption in order to keep T at
Tset. The control structure used on water heaters in Norway today are based on
Tset = Tinital, causing the heating demand to be meet by the electrical element
[27]. Given the present arguments the cost is predicted to be higher when keeping
the temperature equal to the initial temperature. The system in Case II is shown
in Figure 7.11.
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Figure 7.11: Operational system with Tset = Tmax, Case II.

7.3.1 Simulation

The simulation in this case requires no optimization since the set-points for both
states are prefixed leaving no DOF left for optimization. The simulation was
performed using MATLAB and Simulink and the scripts for the MATLAB files
are to be found in Appendix D.3. The initial conditions and assumptions are the
same as in the optimal case as well as the time of simulation.
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7.3.2 Results

The results from the simulations are presented and compared to the proposed
optimal operation in Table 7.10. The cost reveals that there is a significant
increase in cost compared to the optimal case. The increase is in the range of
65,3-86,8%.

Table 7.10: Results Case II

Day J, [NOK] Jopt, [NOK] ∆J [%]

1 6,42 3,64 76,4%
2 6,29 3,62 74,1%
3 5,81 3,52 65,3%
4 5,98 3,32 80,2%
5 6,29 3,62 74,1%
6 6,43 3,65 76,2%
7 6,46 3,67 75,8%
8 6,49 3,71 74,8%
9 6,53 3,75 74,3%
10 6,30 3,56 76,6%
11 6,07 3,43 77,2%
12 6,31 3,61 75,0%
13 6,10 3,47 75,8%
14 6,09 3,45 76,3%
15 6,20 3,54 75,2%
16 6,19 3,55 74,5%
17 5,96 3,35 77,6%
18 5,31 2,85 86,6%
19 6,40 3,63 76,3%
20 6,22 3,55 75,3%

The results from 1. of August are also depicted in Figures 7.12-7.13 to give a more
explanatory result. To start with, the cost and temperature profiles are to be
found in Figure 7.12 (a) and (b), respectively. The profiles reveals the strategies
applied in both cases and are almost identical at the beginning of simulation.
However, at approximately 2 pm the cost keeps on increasing in Case II whereas
for the optimal case the slope of the cost evens out. This difference is caused by
the change in strategy. Case II keeps on meting the demand with the electrical
heater, while the optimal case uses the stored energy. This is also confirmed when
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looking at the profiles for the electrical heater, Q, in Figure 7.13 (b).

The heater is turned on in the morning when the consumption exceeds zero and
is frequently used throughout the day as it can not benefit from the stored energy
in the water at any time since Tset = Tinitial.
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Figure 7.12: Comparison of cost and temperature from the optimal operation and
Case I on August 1.

This electrical heat profile is valid for all similar cases, meaning that if the stored
energy in the hot water can not be utilized Q will have this particular profile if
the consumption is identical to the one applied in this study. Q will also have
a similar profile if the consumption pattern is similar to this one, however, no
identical. This would cause all electrical heaters to benefit from electrical power
at approximately the same time of the day, and result in demand peaks on the
power grids.

Table 7.11: Operational Strategy of Hot Water Heat Demand, Case II

Morning Evening

J Electrical heat Electrical heat

For comparison, the profile for the electrical heater from the optimal case is
presented in Figure 7.13. This profile resembles the profile from Case II in the
morning hours, thus in the evening the energy demand is meet by the stored
energy for the optimal case. This differences in profiles reveals the possibility
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that lies in hot water heaters. The consumption patter for the electricity can be
manipulated if the stored energy in the water is made available and shift load
the energy consumption resulting in shaving the peak demands. The strategy for
this simulation is presented in Table 7.11.
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Figure 7.13: Comparison of Q for (a) optimal operation and (b) for Case I on August
1.
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7.4 Case III:
Decision Variables, Pthreshold and Tbuffer

In this section the decision variable for the optimization of the system is changed
to Pthreshold and Tbuffer to quantify whether these variables provide an equally
good solution compared to the optimal. The system is identical to Case I with
the implemented switch and the two set-points Tmax and Tbuffer. Otherwise the
operational conditions are the same as in the optimal case with the same initial
values and disturbances. Figure 7.14 gives a presentation of the system.
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Figure 7.14: Optimization control problem with Pthreshold and Tbuffer as decision
variables, Case III.

The switch is operated the same way as in Case I, Section 7.2.1, with one small
change. The value of Pthreshold is not the same throughout the simulation, it
is discretized into time intervals similar to Tset in the optimal case, shown in
Equation (7.15). Tbuffer is also denoted as a decision variable for the optimiza-
tion, it thought to have a constant value throughout the simulation contrary to
the optimal operation, were the value is time dependent. The equation for the
optimization is presented in Equation (7.13).

min
u
J (7.13)

where

u =
[
Tbuffer
Pvector

]
(7.14)
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Pvector =
[
P1 P2 P3 P4 P5 P6 P7 P8

]
(7.15)

The policy of changing Pthreshold implies moving the boundary between assumed
cheap and expensive electricity price as a function of time. This will change
the definition of the price from cheap to expensive throughout the optimization,
meaning that one price might be thought to be expensive in the morning whereas
in the afternoon this same price is assumed cheap by the threshold. Pthreshold also
provides the control structure for the switch as describes in Case I. If the boundary
defines the current electricity price as cheap the set-point for the temperature will
be Tbuffer, otherwise the set-point will be Tmax, shown in Figure 7.14

7.4.1 Simulation

The simulation in this case was performed with the same initial conditions as the
the proposed optimal operation. The decision variables were changed to Pthreshold
and Tbuffer and implemented into the Simulink structure. The MATLAB scripts
for the simulations are to be found in Appendix D.5.

7.4.2 Results

The results from the simulations are compared to the results from the optimal
case and are presented in Table 7.12. The results show that the cost increased
in the range of 0,2-33,1% in all cases except two, where the cost was identical or
decreased with 0,5%.

Additional Figures from the optimization for the 1. of August are presented in
Figures 7.15-7.17 and compared to the optimal operation.

First the decision variables, Pthreshold and Tbuffer, are shown in Figure 7.15
(a) and (b), respectively. The price threshold, Pthreshold, has a more or less
equal value throughout the simulation. It has a constantly lower value then the
electricity price except for a small time interval in the morning. This results in
a change in Tset in the early morning, whereas after this small time interval the
set-point is Tbuffer for the rest of the simulation, shown in Figure 7.15 (b).

From Table 7.12 the cost increased in almost all days of simulation. For the 1.
of August the cost increased with 32,4% compared to the optimal case, this is
shown in Figure 7.16 (a). The cost for Case III is lower in the beginning of the
simulation until the break-even point at approximately 5 pm, and after this point
the optimal case has a lower total cost. This is caused by the applied strategies
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from the optimization. The system in Case III benefits the stored energy in the
morning until the temperature drops to Tbuffer. From this point the heating
demand is meat by the electrical heater. The strategy for the optimal case is
presented in Table 7.3.

Table 7.12: Results Case III

Day J , [NOK] Jopt, [NOK] ∆J [%]

1 4,82 3,64 32,4 %
2 4,69 3,62 29,8 %
3 3,52 3,52 0,2 %
4 3,62 3,32 9,1 %
5 4,69 3,62 29,8 %
6 4,81 3,65 31,9 %
7 4,84 3,67 31,6 %
8 4,84 3,71 30,3 %
9 4,89 3,75 30,5 %
10 4,74 3,56 33,1 %
11 3,43 3,43 0,0 %
12 4,71 3,61 30,6 %
13 4,56 3,47 31,5 %
14 4,56 3,45 32,1 %
15 4,64 3,54 30,9 %
16 4,61 3,55 30,0 %
17 3,60 3,35 7,2 %
18 2,83 2,85 -0,5 %
19 4,81 3,63 32,4 %
20 4,63 3,55 30,4 %

Case III was conducted to see whether this optimization with these decision vari-
ables would provide an equally good solution as the proposed optimal operation.
However, the system in Case III is not able to benefit from all the stored energy
in the tank at the start of the simulation which was the main idea. This is due
to the fact that Pthreshold can only change at the end of each time interval in the
discretization. If Tbuffer were 50 °C, which is Thw,s the hot water heater would
be able to utilise the entire energy storage. However, the temperature would
immediately need to switch to Tmax when a consumption would occur, other-
wise the penalty would make the cost increase drastically. In this case however
the switch between the set-points can only occur at the end of the present time
interval which causes the need for a hot water storage big enough to meet the
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unexpected demand at any time. The optimization has found that for this case
the storage is big enough if the Tbuffer i 66 °C.
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Figure 7.15: Presentation of electricity price and Pthreshold-vector in (a) and Tset

profile in (b) on August 1, Case III.
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Figure 7.16: Comparison of J and T between the optimal operation and Case III on
August 1.

The strategy of the system in Case III is the same as in Case I, Table 7.8. This
would imply that if the Tbuffer values are the same the final cost would be equal.
To validate this statement the cost and temperature profiles form Case I are
depicted together with the proposed optimal case and Case III in Figure 7.17.
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Both the cost and the temperature profiles are almost identical for Cases I and
III. This is probably caused by the size and amount of time intervals which
the problem of optimization is discretized into. If the the amount of intervals
increased the strategy would be able to have a higher utilization of the energy
storage and Tbuffer would be able have a lower value. This might result in a
lower cost and should be further investigated.
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Figure 7.17: Comparison of J and T between the optimal operation, Case I and Case
III on August 1.
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7.5 Case IV:
Implementing Final Constraint, ∆Es

In all cases except Case II, the final value of the temperature is lower than the
initial. The available stored energy form the start is distributed throughout the
day to meet the hot water demand and is not restored at the end of the day.
Meaning that there is no final constraint on the temperature in the simulations,
causing a lower temperature at the end compared to the start. This is shown in
Figures 7.5 and 7.9 in Section 7.1 and 7.2, respectively. This deficiency causes
the hot water tank to start at a lower initial temperature the next day if the
simulations were performed in sequence 2. As a consequence of this the cost will
be higher the following day and result in a lower savings or even no saving at
all. To make up for this deficiency and quantify the actual cost, a penalty is
implemented. The penalty is added to the final cost in Section 7.1 and is shown
in Equation (7.16).

∆Ep = cpρV∆Tp(t) (7.16)

Here cp is the specific heat capacity of water, ρ the density of water, V the volume
of the tank, p(t) the electricity price and ∆T is the temperature difference shown
in Equation (7.17).

∆T = Tinital − Tend (7.17)

The penalty calculates the additional cost for heating the water from the final til
the initial temperature and will increases the costs found in the optimal operation.

Time of restoring

One aspect of reheating the water is that it is time consuming. For the water to
reach Tinital (90 °C) it will take approximately 2 hours if the final temperature
at the end of the day is 50 °C and the consumption is zero. If the consumption
exceeds zero the time of reheating will be prolonged exponentially with the in-
crease of consumption. The restoring of energy should therefore take place in the
night time when few hot water incident occur. In this study the consumption
profile presented in Section 7.1.2 has almost no consumption from the start of
simulation to 5 am, which gives time to heat the the hot water and restore the

2which they are in real life
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energy storage. It is therefore suggested that the reheating should occur in this
time interval if it was implemented into the model, however, the penalty is in
this case only added to the final value instead of reconstructing the problem of
optimization.

For the consumer to benefit from the proposed optimal operation with additional
penalty there should be an incentive for the consumer. It is suggested that the
incentive is reheating the water at night at a low price. The price is chosen to
be the lowest price from the month of August in Trondheim 2013, which is 0.127
NOK/kWh. This will benefit the consumer since the actual electricity price at
heating is higher than this value.

7.5.1 Simulation

The simulation was performed with the exact same conditions as the optimal.
The penalty was added as a final value to the result and does not affect the
electrical heater nor the temperature in the simulations. This choice was based
on the objective function, J , as this is the main subject of the study. However, to
get a more correct outcome regarding the temperature and heat demand, the final
constraints should be implemented to give the actual profiles. The optimization
was performed with the same solver as in the optimal operation , fminsearch,
and MATLAB scripts can be found in Appendix D.3.

The simulations were performed on the first 20 days in Trondheimin August
2013 and January 2011. The prices from January are significantly higher than
the prices from August 2013, causing the incentive for the consumer to be of more
significant value. These prices are also collected from Nordpoolspot [18], and the
highest and lowest prices of each day can be found Table A.4 in the Appendix A.

7.5.2 Results

The purpose was to add the additional cost of heating the water to the initial cost
found in Section 7.1. The results are presented in Tables 7.13-7.14 for August and
January, respectively. For comparison the results found in the optimal case are
also presented in these tables. In the case of January, an additional simulation
was made to be able to compare these results to the optimal case. The simulation
is presented in Appendix D.3. To provide the reader with a more visual result
the costs for the 1. of August and January are depicted in Figures 7.18 (a) and
(b), respectively. The prices starts at ∆J to shown the cost required at night
time provided by electrical heating.
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Figure 7.18: Comparison of J at optimal operation with and without ∆E for August
2013 and January 2011 presented by (a) and (b) respectively.

From Figure 7.18 the additional costs for August and January increase the same
amount. This is because the additional heat applied is distributed with the same
cost. However, the electrical price in January 2011 is almost twice as expensive
as in August 2013, causing ∆E to be a smaller fraction of the total cost. The
incentive for the consumer will therefore have a more significant affect. This is
more accurately presented in Tables 7.13-7.14 where the increase ∆J is calculated
in percentage for August and January.

Having corrected for the deficiency of not having a final constraint on the tem-
perature, the question rises whether the proposed optimal operation is actually
better compared to the previously cases. In cases I and III new simulations needs
to be run and ∆Ep added as the final temperatures are not the same as the initial
one. Whereas in Case II Tend = Tinitial and the result can be directly compared
to the results found in this case. The results in cases I and III are however not
without value. Having a quick look at the results the costs are almost the same
compared to Case IV , implying that the proposed solutions are equally good to
the optimal one. However, due to the fact that they also benefit from the storage
without recovering it, ∆Ep, will cause the costs to increase. Thus, ∆Ep would
have a lower value compared to Case IV since the constant temperatures found
for Tbuffer are higher than the final temperature found in the simulations for
the optimal case. Adding this additional cost will increase the cost and imply
that the proposed optimal strategy is still be a better operational strategy when
evaluating the cost.
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Figure 7.19: Comparison of cost between Case IV and II.

In Case II the final and initial values of the temperatures were equal, and can be
compared directly to Case IV. The results for the 1. of August are depicted in
Figure 7.19.

Comparing the costs show that the proposed operation is still beneficial even with
the final constraint. The break-even point for the costs are somewhat moved to
the right compared to the initial result with out the constraint, but the saving
is still significant. This simulation was not only performed on one day. To get
a valid conclusion the rest of the days of August were simulated and the are
presented in Table 7.15.

61



C
H

A
P

T
E

R
7.

C
A

SE
ST

U
D

IE
S

7.5.
C

A
SE

IV
:

IM
P

LE
M

E
N

T
IN

G
FIN

A
L

C
O

N
ST

R
A

IN
T

,∆
E

S

Table 7.13: Results Case IV, August 2013

Day Jopt, [NOK] J∆E ,[NOK] ∆J [%]

1 3,64 4,83 32,7%
2 3,62 4,79 32,5%
3 3,52 4,43 26,0%
4 3,32 4,50 35,6%
5 3,62 4,79 32,5%
6 3,65 4,84 32,6%
7 3,67 4,86 32,3%
8 3,71 4,90 31,9%
9 3,75 4,94 31,8%
10 3,56 4,76 33,5%
11 3,43 4,62 34,8%
12 3,61 4,80 33,1%
13 3,47 4,66 34,3%
14 3,45 4,64 34,4%
15 3,54 4,73 33,6%
16 3,55 4,73 33,4%
17 3,35 4,55 35,6%
18 2,85 4,04 41,9%
19 3,63 4,82 32,8%
20 3,55 4,74 33,6%

Table 7.14: Results Case IV January 2011

Day Jopt, [NOK] J∆E ,[NOK] ∆J [%]

1 6,59 7,79 18,2%
2 8,35 9,54 14,3%
3 8,80 9,99 13,6%
4 8,65 9,85 13,8%
5 8,23 9,43 14,6%
6 7,72 8,92 15,6%
7 7,88 9,07 15,1%
8 7,63 8,83 15,7%
9 6,91 8,1 17,3%
10 7,18 8,38 16,8%
11 6,97 8,16 17,1%
12 6,90 8,09 17,3%
13 6,93 8,12 17,2%
14 6,87 8,06 17,3%
15 6,58 7,76 18,0%
16 6,18 7,38 19,4%
17 6,37 7,56 18,7%
18 6,39 7,58 18,7%
19 6,35 7,54 18,7%
20 6,31 7,51 19,0%
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Table 7.15: Result Case IV (August 2013) compared to Case II.

Day J∆E ,[NOK] J , [NOK] ∆J [NOK]

1 4,73 6,42 35,8 %
2 4,68 6,29 34,4 %
3 4,33 5,81 34,2 %
4 4,40 5,98 35,8 %
5 4,68 6,29 34,4 %
6 4,74 6,43 35,6 %
7 4,76 6,46 35,6 %
8 4,80 6,49 35,1 %
9 4,84 6,53 35,0 %
10 4,66 6,30 35,2 %
11 4,52 6,07 34,4%
12 4,70 6,31 34,4 %
13 4,56 6,10 33,7 %
14 4,54 6,09 34,0%
15 4,63 6,20 33,9 %
16 4,63 6,19 33,6 %
17 4,45 5,96 34,1 %
18 3,94 5,31 34,9 %
19 4,72 6,40 35,6 %
20 4,64 6,22 33,9 %
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The objective in the study has been to minimize the cost of heating water for a
hot water tank in a typical domestic household. The proposed optimal operation
resulted in significant savings compared to other proposed policies in this study.
The result with an additional penalty for not restoring the initial temperature at
the end of simulation also indicated in this result.

The biggest saving was found comparing Jopt to having Tset set to Tmax. The
tank in this case had the same temperature set-point as the initial temperature
and can not benefit from the stored energy in the water, which causes the heat
demand to be met by the electrical heater at any time of consumption. With this
policy, which is applied in hot water heaters in Norway [27], the total cost can not
be manipulated. The electrical coil can not be turned on when prices are cheap
and turned off when prices are expensive due to the fixed temperature set-point.
This control structure causes the energy storage to be unavailable and will result
in similar consumption patterns between consumers presented by demand peaks.

The proposed optimal operation tries to avoid this by implementing a time de-
pendent temperature set-point. This introduces the possibility to meet the hot
water demand by both the electrical supply and stored energy by manipulating
the set-point. The results showed that by implementing this control structure
the heating demand was divided by the electrical heater in the morning and
the energy storage in the evening. However, the same peak demand problem
should occur if all consumer would apply the proposed optimal operation since
the strategies would be the same for every household. The morning peak would
still be present and afternoon peak would only re-occur in the night when the ini-
tial temperature is restored. To avoid this the optimal strategy should be divided
into several different time intervals which might differentiate the consumption in
a wider time scale, resulting in a flatter demand. In addition the strategy can
be changed, similar costs should be found by utilizing the storage in the morning
and benefiting the electrical coil in the evening, as long as the entire storage is
utilized. Some consumers can then benefit of the storage in the morning whereas
some in the evening resulting in shaving the peak demand. The restoring of the
initial temperature can also be distributed between households throughout the
night. It was estimated that it would take 2 hours to restore the water to Tinitial
which is enough time to restore at several times in the night without overlap.

The time intervals which the objective function was discretized into consisted
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of seven intervals. This limitation was caused by simulation problems. When
the number of intervals exceeded seven the optimization broke the constraints
and the minimum cost was not found. Using an other function to solve the
optimization might solve these problems and increase the amount of intervals,
one solver is e.g. GlobalSearch. This function was not used in this report due
to limitations of software. Increasing the intervals would give the discretized
optimization problem a more continuous profile and the temperature set-point
will be able to change more rapidly throughout the day. This result might lead
to an additional decrease in cost, but the policies might be more complex due to
the increase in time intervals. The size of the savings might not be of significant
order in comparison of increasing the complexity. Discretizing the problem into
less intervals was not desired as this would be more limiting in the optimization.

One of the policies investigated was changing the decision variable to Pthreshold
and Tbuffer in the optimization. This policy was thought to be an equally good
solution to the optimal operation. However, the result showed that the cost
was higher compared to the optimal case as the energy storage could not be
fully utilized. The problem seem to be the discretization which kept the system
from benefiting the entire energy storage. The switching between set-points were
controlled not only by the price threshold but also by the time intervals set by
the discretization which controlled the value of Pthreshold. This policies might
provide a better or equally good result as the proposed optimal if the objective
function was discretized into more intervals or even in continuous time. However,
the applied policies were supposed to be simpler than the optimal operation which
may not be the case if the amount of time intervals are increased.

As a final simulation the decrease in temperature from the start to the end in the
simulation was accounted for. The optimal operation had a major deficiency when
allowing the system to benefit from the initial energy storage without having to
restore it at the end of simulation. This caused the results to look better than
they actually were. To solve this a penalty was implemented which calculated the
addition cost required for heating up the water from the final temperature to the
initial temperature. Giving the next day the same initial conditions and result.
As an incentive for the consumer the price for restoring the storage was set to
be the lowest price found in the month of August 2013 for Trondheim. Even
with this addition penalty for lacing final constraints the results showed that the
assumed optimal operation still provided the best result when focusing on the
objective function. However, the size of the penalty is directly controlled by the
electricity of restoring the initial temperature. If this price was not as beneficial
as it is in this study, the cost would be higher and this strategy might not prove
to be the best alternative any more. The question is then what is a suitable
price for this extra penalty? The price should be low enough for the consumer
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to make a significant savings, whereas the profit for the distributor should be
high enough for it to be valuable. To show the value of the electricity price
applied, additional simulation were performed on January 2011. The electricity
prices in this month were significantly higher compared to August 2013 and the
incentive would therefore higher. The additional penalty decreased in percentage
from 32,7% to 18,2% which is a decrease of almost 50 %. The incentive for the
consumer is therefore of higher value when the electricity prices are high if the
price is equal throughout the year, which might not be favourable.

As a final aspect is was mentioned in the introduction that the proposed optimal
strategy of how to control a hot water heater might also alter the consumption
pattern, resulting in decreasing in the peak demand. From the results in all
cases the consumption demand can be manipulated if the stored energy is made
available. The critical part is managing the controlled structures correct to avoid
all households from benefiting the same strategies at the same time of day.

8.1 Further work

There are many interesting aspects of hot water heaters and much more to in-
vestigate. From this report the calculations in all cases including the optimal
one should be conducted with a final constraint in order to really determined the
profiles for the energy demand. The case with Pthreshold and Tbuffer as decision
variables for the optimization should also be redefined to get a more continuous
profile for Pthreshold. These results should then give a valid answer whether this
solution can be equally good to the proposed optimal one.

The price for restoring the heat to the initial value should be investigate. What is
a suitable value for this price to make the incentive high enough for the consumer
to be willing to participate and the distributor to profit.

Also, the cost for heating the hot water tank was optimized by manipulating the
temperature set-point, not the heat input, Q, which might be the more natural
way of doing it. It should therefore be investigated to see if this optimization
is equally good, worse of better compared to optimizing the cost by with Q as
decision variable.
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9 | Conclusion

The objective of the optimization was to minimize the energy cost of heating
water. The proposed optimal operation of a hot water heater was proven suc-
cessful. The decision variable for the optimization, the temperature set-point,
was discretized into time intervals resulting in utilising the stored energy in the
hot water tank. The initial results were extremely good and the biggest saving
was found when comparing the optimal strategy with having a constant temper-
ature set-point in the hot water tank equal to the initial value. The cost savings
were in the range of 39,5 - 46.4 % in compared to the optimal case. However the
final temperature had no constraint leading to a very low temperature at the end
of the day. This would affect the next day if the simulations were performed in a
sequence. To solve this a penalty was implemented, where consumer could restore
their hot water storage by heating the hot water at night to a very beneficial price.
After implementing this penalty the result still showed that the proposed opera-
tion was beneficial, the savings would be in the range of 33,6-35,8% compared to
the worst case.

The applied optimal control structure also altered the consumption pattern for
the electrical heater which can result in demand shaving if used correctly.
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A | Electricity Prices

The simulations performed in the report are based on real electricity prices col-
lected from Nordpoolspot [18]. The prices for all the days of simulation in August
are presented in Tables A.2-A.3. As a more quick overview the minimum and
maximum values per day for August and January are summarized in Tables A.1
and A.4, respectively.

Table A.1: Minimum and Maximum Electricity Prices August 2013

Day MinPrice Maxprice Diff. Price Diff. Price
[NOK,kWh] [NOK,kWh] [NOK,kWh] [%]

1 0,248 0,300 0,052 21,0 %
2 0,252 0,295 0,043 17,1 %
3 0,224 0,292 0,068 30,4 %
4 0,237 0,297 0,060 25,3 %
5 0,252 0,295 0,043 17,1 %
6 0,237 0,302 0,065 27,4 %
7 0,246 0,301 0,055 22,4 %
8 0,268 0,305 0,037 13,8 %
9 0,246 0,311 0,065 26,4 %
10 0,250 0,296 0,046 18,4 %
11 0,243 0,296 0,053 21,8 %
12 0,240 0,294 0,054 22,5 %
13 0,242 0,285 0,043 17,8 %
14 0,225 0,286 0,061 27,1 %
15 0,247 0,289 0,042 17,0 %
16 0,235 0,290 0,055 23,4 %
17 0,231 0,287 0,056 24,2 %
18 0,127 0,288 0,161 126,8 %
19 0,239 0,304 0,065 27,2 %
20 0,263 0,293 0,030 11,4 %
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Table A.2: Electricity Prices for Trondheim 2013, 1.-10. of August

Hour Thu. 1. Fri. 2. Sat. 3. Sun. 4. Mon. 5. Tue. 6. Wed. 7. Thu. 8. Fri. 9. Sat. 10.

0 0,27 0,27 0,26 0,27 0,27 0,26 0,26 0,29 0,26 0,26
1 0,25 0,26 0,25 0,25 0,26 0,25 0,25 0,27 0,25 0,25
2 0,25 0,25 0,24 0,25 0,25 0,24 0,25 0,27 0,25 0,25
3 0,25 0,25 0,23 0,24 0,25 0,24 0,25 0,27 0,25 0,25
4 0,26 0,25 0,22 0,24 0,25 0,24 0,25 0,27 0,25 0,25
5 0,26 0,26 0,22 0,24 0,26 0,25 0,27 0,29 0,26 0,26
6 0,28 0,29 0,23 0,24 0,29 0,28 0,29 0,30 0,29 0,27
7 0,30 0,29 0,24 0,25 0,29 0,30 0,30 0,30 0,30 0,27
8 0,30 0,29 0,26 0,26 0,29 0,30 0,30 0,30 0,31 0,30
9 0,30 0,29 0,27 0,28 0,29 0,30 0,30 0,30 0,31 0,29
10 0,30 0,30 0,28 0,28 0,30 0,30 0,30 0,30 0,31 0,30
11 0,30 0,30 0,28 0,29 0,30 0,30 0,30 0,30 0,31 0,30
12 0,30 0,29 0,27 0,29 0,29 0,30 0,30 0,30 0,31 0,30
13 0,30 0,29 0,27 0,28 0,29 0,30 0,30 0,30 0,30 0,29
14 0,30 0,29 0,27 0,28 0,29 0,30 0,30 0,30 0,31 0,29
15 0,30 0,29 0,27 0,28 0,29 0,30 0,30 0,30 0,30 0,29
16 0,30 0,28 0,27 0,28 0,28 0,30 0,30 0,30 0,30 0,29
17 0,30 0,29 0,27 0,28 0,29 0,30 0,30 0,30 0,30 0,29
18 0,30 0,29 0,29 0,28 0,29 0,30 0,30 0,30 0,30 0,29
19 0,30 0,29 0,29 0,30 0,29 0,30 0,30 0,30 0,30 0,30
20 0,30 0,29 0,29 0,30 0,29 0,30 0,30 0,30 0,30 0,30
21 0,30 0,29 0,29 0,30 0,29 0,30 0,29 0,30 0,30 0,30
22 0,30 0,29 0,29 0,30 0,29 0,30 0,29 0,30 0,29 0,29
23 0,28 0,27 0,28 0,30 0,27 0,27 0,28 0,28 0,27 0,28
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Table A.3: Electricity Prices for Trondheim 2013, 11.-20. of August

Hour Sun. 11. Mon. 12. Tue. 13. Wed. 14. Thu. 15. Fri. 16. Sat. 17. Sun.18. Mon. 19. Tue. 20.

0 0,27 0,26 0,25 0,25 0,26 0,25 0,27 0,25 0,26 0,28
1 0,26 0,25 0,25 0,24 0,25 0,24 0,26 0,23 0,24 0,27
2 0,26 0,24 0,24 0,23 0,25 0,24 0,24 0,21 0,24 0,26
3 0,25 0,24 0,24 0,22 0,25 0,24 0,23 0,18 0,24 0,26
4 0,24 0,24 0,24 0,23 0,25 0,23 0,23 0,16 0,24 0,27
5 0,25 0,27 0,25 0,25 0,27 0,24 0,23 0,13 0,26 0,29
6 0,26 0,29 0,27 0,27 0,28 0,28 0,24 0,14 0,29 0,29
7 0,26 0,29 0,28 0,28 0,28 0,29 0,25 0,20 0,29 0,29
8 0,27 0,29 0,28 0,28 0,29 0,29 0,27 0,23 0,29 0,29
9 0,29 0,29 0,28 0,28 0,29 0,29 0,28 0,25 0,30 0,29
10 0,29 0,29 0,28 0,28 0,29 0,29 0,29 0,26 0,30 0,29
11 0,29 0,29 0,28 0,28 0,29 0,29 0,29 0,26 0,30 0,29
12 0,29 0,29 0,28 0,28 0,29 0,29 0,29 0,26 0,30 0,29
13 0,29 0,29 0,28 0,28 0,29 0,29 0,29 0,25 0,30 0,29
14 0,28 0,29 0,28 0,28 0,29 0,28 0,28 0,25 0,30 0,29
15 0,28 0,29 0,28 0,28 0,29 0,28 0,28 0,25 0,30 0,29
16 0,28 0,29 0,28 0,28 0,29 0,28 0,28 0,25 0,30 0,28
17 0,28 0,29 0,28 0,29 0,29 0,29 0,28 0,26 0,30 0,28
18 0,29 0,29 0,28 0,29 0,29 0,29 0,29 0,27 0,29 0,28
19 0,29 0,29 0,28 0,29 0,28 0,29 0,29 0,28 0,29 0,28
20 0,29 0,29 0,28 0,29 0,28 0,29 0,29 0,28 0,29 0,28
21 0,30 0,29 0,28 0,29 0,28 0,28 0,29 0,29 0,29 0,28
22 0,29 0,29 0,28 0,28 0,28 0,28 0,28 0,29 0,30 0,28
23 0,27 0,27 0,26 0,27 0,27 0,27 0,26 0,27 0,29 0,28
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APPENDIX A. ELECTRICITY PRICES

Table A.4: Minimum and Maximum Electricity Prices January 2011

Day MinPrice Maxprice Diff. Price Diff. Price
[NOK,kWh] [NOK,kWh] [NOK,kWh] [%]

1 0,52 0,66 0,14 26,9%
2 0,64 0,71 0,07 10,9%
3 0,66 0,73 0,07 10,6%
4 0,67 0,71 0,04 6,0%
5 0,62 0,68 0,06 9,7%
6 0,59 0,64 0,05 8,5%
7 0,60 0,65 0,05 8,3%
8 0,60 0,63 0,03 5,0%
9 0,51 0,60 0,09 17,6%
10 0,50 0,59 0,09 18,0%
11 0,51 0,58 0,07 13,7%
12 0,53 0,57 0,04 7,5%
13 0,53 0,59 0,06 11,3%
14 0,53 0,56 0,03 5,7%
15 0,52 0,56 0,04 7,7%
16 0,50 0,53 0,03 6,0%
17 0,49 0,53 0,04 8,2%
18 0,48 0,54 0,06 12,5%
19 0,48 0,54 0,06 12,5%
20 0,48 0,53 0,05 10,4%
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B | Tuning

In the report the approach for finding tuning parameters for a first order process
and an integrating process were presented. In the following sections the transfer
functions for the states are derived followed by the equations for the controllers.

B.1 Derivation of transfer functions

The transfer function of a system is the ratio between the state of the system
and the input of the system, Equation (B.1) [28].

G(s) = X(s)
U(s) (B.1)

where G(s) is the transfer function, X(s) is the state and U(s) is the input.

The transfer functions for the two states in the hot water system are derived in
the following section. The two states V and T are controlled by the two inputs qin
and Q respectively. The state equation for the volume is presented in Equation
(B.2) and is divided by 60 to make the time unit correct. From this equation the
transfer equation is derived, Equation (B.3).

dV

dt
= (qin − qout)

1
60 (B.2)

dV

dt
= qin

60 (B.3)

Equation (B.3) is Laplace transformed and the resulting transfer equation for the
volume is shown in Equation (B.4).

G(s) = V (s)
qin(s) = 1

60s (B.4)
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APPENDIX B. TUNING B.2. CALCULATION OF TUNING PARAMETERS

The transfer function for the temperature is derived from the state equation in
(B.5), and is more complex as it is a function of the inlet flow, qin.

dT

dt
= 1
V

(qin(Tin − T ) + Q

ρcp
) (B.5)

The qin parameter is time dependent and does not have a set-point as it interacts
with the disturbance qhw. To simplify the transfer function the qin is assumed to
have a set-point of zero as it is zero when the demand is zero (which it is much of
the time). Equation (B.5) is then simplified to Equation (B.6) and the resulting
transfer function for the temperature is to be found in Equation (B.7).

dT

dt
= 1
V

(−qinT60 + Q

ρcp
) (B.6)

G(s) = T (s)
Q(s) = 1

cpρV s
(B.7)

B.2 Tuning Parameters

To calculate the tuning parameters for the PI controllers the SIMC rules are
applied. First, to ensure the value of the calculated transfer functions for the
temperature are correct, due to the assumption of qin = 0, a step response
experiment was performed. In practise the tuning parameters for a first-order
model are often obtained by this method [7]. Figure B.2 shows an open-loop
experiment for an integrating process with a step in the input u. Skogestad
states that for an integrating process to be able to obtain the tuning parameters
the experiment does not need to run for longer than 10 times the effective delay
[7]. The first order plus dead time model can then be approximated into an
integrating model Equation (B.8), also shown in Figure B.1.

G(s) = Ke−θs

τs+ 1 ≈
k′e−θs

s
(B.8)

From Equation (B.8) k′ = k
τI

is the slope and can be calculate from the experi-
ment by Equation (B.9), [7].
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APPENDIX B. TUNING B.2. CALCULATION OF TUNING PARAMETERS

The SIMC method for smooth PID controller tuning 5

2.1 Model from open-loop step response

In practice, the model parameters for a first-order model are commonly obtained
from a step response experiment as shown in Figure 2. From a theoretical point of
view this may not be the most effective method, but it has the advantage of being
very simple to use and interpret.

For plants with a large time constant t1, one has to wait a long time for the
process to settle. Fortunately, it is generally not necessary to run the experiment for
longer than about 10 times the effective delay (q ). At this time, one may simply
stop the experiment and either extend the response “by hand” towards settling, or
approximate it as an integrating process (see Figure 3),

ke�qs

t1s+1
⇡ k0e�qs

s
(5)

where

• Slope, k0 def
= k/t1

is the slope of the integrating response. The reason is that for lag-dominant pro-
cesses, i.e. for t1 > 8q approximately, the individual values of the time constant
t1 and the gain k are not very important for controller design. Rather, their ratio k0

determines the PI-settings, as is clear from the SIMC tuning rules presented below.

ǻy

ǻt

Fig. 3 Open-loop step response experiment to obtain parameters k0 and q in integrating model (5).

2.2 Model from closed-loop setpoint response

In some cases, open-loop responses may be difficult to obtain, and using closed-
loop data may be more effective. The most famous closed-loop experiment is the

Figure B.1: Open loop step experiment to obtain tuning parameters k′ and θ for an
integrating process

k′ = ∆y
∆t∆u (B.9)

To be able to calculate the tuning parameters from the given equation an open
loop experiment was performed on the system. A closed loop with a PI-controller
was implemented on the volume with qin as MV, whereas the temperature oper-
ates in an open loop. A step was implemented in the MV for the temperature
(Q). The results are presented in Figure B.2.
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Figure B.2: Open step experiment with without disturbances

79



APPENDIX B. TUNING B.2. CALCULATION OF TUNING PARAMETERS

Table B.1: Open Loop Experiment Parameters

Parameter Value

∆y (130-90) °C
∆u (2-0 k)W
∆t 3600s · 5
θ 0 s

The values found form the experiment are presented in Table B.1.

From Table B.1 the value of k′ can be calculated for an integrating process,
Equation (B.11).

k′ = ∆y
∆t∆u = 130− 90

5 · 3600 · 2 = 0.001 (B.10)

To compare the experimental value of k′ with the calculated value from the
derived transfer function, k′ is calculated from Equation (B.7). The values for
cp, ρ and V is to be found in Table C.1 and the result is

k′ = 1
V ρcp

= 1
200 · 4.19 · 1 = 0.001 (B.11)

The values for the slope, k′, are the same in both the experimental and calculated
case. This implies that the assumption made are reasonable.

Having checked that the value of the slope is equal the equations for the tuning
parameters for the controllers can be derived from the Equations (B.12)-(B.13).
The value of the response time, τc, is decided to be 20 for the volume and 175
for the temperature, whereas the integral time,τI , is ∞.

G(s) = Kc(1 + 1
τIs

) (B.12)

Kc = 1
k′

1
(τc + θ

)

τI = min{τ1, 4(τc + θ)}
(B.13)

The tuning parameters for the controller of the temperature is first derived,
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Kc = 1
k′

1
(τc + θ

) = 1
1

cpρV

1
(175 + 0) = 0, 21

τI = min{τ1, 4(τc + θ)} = 4(20 + 0) = 80
(B.14)

The resulting equation for the PI-controller for the temperature in the tank is to
be found in Equation (B.15). The values for cp and ρ can be found in Table C.1.

c(s)T = Kc(1 + 1
τIs

) = 0.21(1 + 1
80s ) (B.15)

The same procedure is conducted on the tuning parameters for the volume and
the final equation for the PI-controller is shown in Equation (B.17). The slope
for the volume is k′ = 1

60 and is found in Equation (B.4).

Kc = 1
k′

1
(τc + θ

) = 1
1
60

1
(20 + 0) = 3

τI = min{τ1, 4(τc + θ)} = 4(20 + 0) = 80
(B.16)

g(s)V = 3(1 + 1
80s ) (B.17)

As a final overview of the calculated tuning parameters all the values are sum-
marized in Table B.2.

Table B.2: Tuning Parameters

Parameter Description Value
V Volume
θ Time delay 0
τc Response time 20
Kc Controller gain 3
τI Integral time 80
T Temperature
θ Time delay 0
τc Respons time (selected) 20
Kc Controller gain 0.21
τI Integral time 80
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C | Case Studies

In Chapter 2.2 the mathematical equations for the system are derived. The
parameters presented in these equations are shown in Table C.1. Other values
for the remaining parameters applied are presented in the main report.

Table C.1: System Parameters

Parameter Description Value Unit

cp Heat capacity water [4,19 kJ/kg,K]
ρ Density water 1 [kg]/l
V Tank volume 200 [l]

C.1 Time Intervals

To be able to decide at what time Tbuffer should change the general consumption
of a Norwegian household is investigated. Figure C.1 depicts a typical weekday
(green) and a typical weekend (reed) in Norwegian households. Both the weekday
and the weekend has a high demand in the morning and in the evening. In the
week day mornings the peak comes earlier due to early working hours. In the
evening the peak is similar for both cases. Deciding on the time intervals for
Tbuffer these peaks are considered. The resulting time intervals is to be found in
Equation (C.1).

Timeint =
[
0 5 9 14 17 20 21 24

]
(C.1)

Changing time intervals

The optimal solution is constructed with time intervals based on consumption
patterns in Norway, previous section. These intervals are not optimized and
might have a significant impact on the cost if they were changed. In order to
investigate this uncertainty the assume optimal operation is run with different
Timeint in order to see the impact on the cost.
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APPENDIX C. CASE STUDIES C.1. TIME INTERVALS

47

Økonomiske analyser 6/2008 Hvordan varierer timeforbruket av strøm i ulike sektorer?

Variasjon i strømforbruket over døgnet
For å få et bedre bilde av forskjellene i forbruksmøn-
steret mellom uke og helg, viser vi i figur 2 forskjellen i 
gjennomsnittlig timeforbruk over døgnet for hushold-
ningskundene. Husholdningene har to forbrukstopper 
og bruker mest strøm om morgenen og kvelden. Hus-
holdningene står senere opp i helgene, og reduksjonen i 
forbruket midt på dagen er lavere i helgene sammenlig-
net med en gjennomsnittlig ukedag.

Figur 3 viser gjennomsnittlig timeforbruk over døgnet 
for hele året i henholdsvis ukedager og helgedager for 
næringskundene. 

Vi ser av venstre side i figur 3 at i sekundærnæringene 
starter arbeidsdagen omtrent samtidig som tertiærnæ-
ringene, og har en forbrukstopp i time 9. Forbruket i se-
kundærnæringene er størst og varierer mest målt i kWh 
per time. Også i denne figuren ser vi at primærnærin-
gene har klart avvikende forbruksmønster fra de andre 

Figur 1. Gjennomsnittlig døgnforbruk og døgntemperatur over året for husholdnings- og næringskunder. 2006. kWh/time, °C
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Figur 2. Gjennomsnittlig timeforbruk over døgnet i ukedager og 
helger. kWh/time
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Figur 3. Gjennomsnittlig timeforbruk over døgnet i ukedager og i helgene for kunder i primær-, sekundær- og tertiærnæringene. 
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Figure C.1: General consumption profile for a typical Norwegian household [9]

The operational conditions are the same as in optimal operation.

The intervals are presented in Equations (C.2)-(C.5) where Timeint is the time
interval applied in the main report. The change in cost compared to assumed
optimal operation for each case are presented in Table C.2.

Timeint =
[
0 5 9 14 17 20 21 24

]
(C.2)

Timeint−1 =
[
0 4 6 8 11 16 20 24

]
(C.3)

Timeint−2 =
[
0 2 5 10 14 19 22 24

]
(C.4)

Timeint−3 =
[
0 6 9 12 16 20 23 24

]
(C.5)
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APPENDIX C. CASE STUDIES
C.2. CASE IV:

OPTIMAL SIMULATION JANUARY 2011

Table C.2: ∆J compared to Jopt with different time intervals.

∆J
Day Timeint−1 % Timeint−2 % Timeint−3 %
1 0,32% 0,33 % 0,03 %
2 -0,50% -1,14% -0,01%
3 -7,09% -8,51% -7,51%
4 0,64 % -0,89% -0,04%
5 -0,50% -1,14% -0,01%
6 -0,05% 0,50 % 0,19 %
7 0,49 % 0,16 % 0,09 %
8 -0,07% -0,23% 0,04 %
9 -0,33% -1,16% 0,10 %
10 -0,10% -0,34% 0,02 %
11 0,05 % -0,61% 0,11 %
12 0,19 % -0,04% 0,07 %
13 0,18 % 0,15 % 0,09 %
14 0,16 % 0,39 % 0,20 %
15 0,21 % -0,28% 0,06 %
16 -0,31% -0,65% 0,20 %
17 0,18 % -1,03% 0,11 %
18 0,28 % -0,07% 0,46 %
19 0,54 % -0,18% 0,01 %
20 0,15 % -0,33% -0,12%

∆J = (Jopt − J) · 100
Jopt

(C.6)

C.2 Case IV:
Optimal simulation January 2011

To be able to compare the result in Case IV in the report with the proposed
optimal operation simulations were made with prices from January 2011.

The formulation of the optimization problem, the assumptions and initial values
are the same as in Section 7.1. The only difference is the electricity price which is
here changed to January 2011. The minimum and maximum values are presented
in Table A.4, whereas complete prices on hourly basis can be found in [18].
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Results

The cost found are shown in Table C.3 together with the day the simulation was
performed. Naturally these results are higher due to expensive electricity. The
profiles for consumption and temperature are however similar to the ones found
for August, shown in Figure C.2.
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Figure C.2: Temperature and heat input profiles from the optimal operation in Jan-
uary 2011.
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Table C.3: Results Optimal Operation January 2011

Day Jopt, [NOK]

1 6,59
2 8,35
3 8,80
4 8,65
5 8,23
6 7,72
7 7,88
8 7,63
9 6,91
10 7,18
11 6,97
12 6,90
13 6,93
14 6,87
15 6,58
16 6,18
17 6,37
18 6,39
19 6,35
20 6,31
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D | MATLAB scripts

D.1 Demand Profile

The script form the demand profiles are generated from the following MATLAB
script.

1 %%Water consumption profile
2

3 % Master thesis 2013
4 % Written by Vinicius de Oliveira
5

6 function day=getProfile
7

8 dist=prob_dist_shower;
9 shower_dist = make_prob_table(dist);

10 prob_dist_small_medium
11 small_medium_dist = make_prob_table(dist);
12 prob_dist_bath
13 bath_dist = make_prob_table(dist);
14

15

16 day.time = 0:1/60:24;
17 day.flow = zeros(length(day.time),1);
18

19 % flow types, number of incidents/day
20 % short, 28
21 % medium, 12
22 % bath, .143
23 % shower, 2
24

25

26

27

28 % generate a normal day
29 average_inc_pr_day = 40;
30

31 inc_today = ceil(average_inc_pr_day + 4*rand);
32 inc_dist = [28,12,.143,2];
33 inc_dist = inc_dist./sum(inc_dist);
34 inc_prob = cumsum(inc_dist);
35 inc_dist_today = [0,0,0,0];
36

37 for i = 1:inc_today
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38 index = find(inc_prob > rand,1);
39 inc_dist_today(index) = inc_dist_today(index) + 1;
40 end
41

42 disp(inc_dist_today)
43

44

45 for i = 1:4
46 number_of_inc_today = inc_dist_today(i);
47 switch i
48 case 1
49 mean_flow = 1;
50 std_flow = .05;
51 mean_duration = 1;
52 std_duration = .05;
53 time_dist = small_medium_dist;
54 case 2
55 mean_flow = 6;
56 std_flow = 1;
57 mean_duration = 1;
58 std_duration = .05;
59 time_dist = small_medium_dist;
60 case 3
61 mean_flow = 14;
62 std_flow = 2;
63 mean_duration = 10;
64 std_duration = 2;
65 time_dist = bath_dist;
66 case 4
67 mean_flow = 8;
68 std_flow = 1;
69 mean_duration = 5;
70 std_duration = 2;
71 time_dist = shower_dist;
72 end;
73

74 if number_of_inc_today > 0;
75 for n = 1:number_of_inc_today
76 %hour of the usage
77 time = time_of_usage(time_dist);
78 flow = mean_flow + std_flow*randn; %l/m
79 flow = max(flow,0);
80 duration = mean_duration + ceil(std_duration*randn); %min
81 duration=duration/60;%[now in hours]
82 day.flow(( day.time >= time & day.time <=time+duration))=...

flow;
83 end
84 end
85

86 end
87

88 % stairs(day.time,day.flow)
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89 % axis([0 24 0 10])
90 % xlabel('Time[h]')
91 % ylabel('Flow, qhw [m^3/s]')

1

2 function [duration_vec,flow_vec,timestart_vec]=getProfileDetails
3

4 dist=prob_dist_shower;
5 shower_dist = make_prob_table(dist);
6 prob_dist_small_medium
7 small_medium_dist = make_prob_table(dist);
8 prob_dist_bath
9 bath_dist = make_prob_table(dist);

10

11

12 day.time = 0:1/60:24;
13 day.flow = zeros(length(day.time),1);
14

15 % flow types, number of incidents/day
16 % short, 28
17 % medium, 12
18 % bath, .143
19 % shower, 2
20

21

22

23

24 % generate a normal day
25 average_inc_pr_day = 20;
26

27 inc_today = ceil(average_inc_pr_day + 4*rand);
28 inc_dist = [28,12,.143,2];
29 inc_dist = inc_dist./sum(inc_dist);
30 inc_prob = cumsum(inc_dist);
31 inc_dist_today = [0,0,0,0];
32

33 duration_vec=[];
34 flow_vec=[];
35 timestart_vec=[];
36

37 for i = 1:inc_today
38 index = find(inc_prob > rand,1);
39 inc_dist_today(index) = inc_dist_today(index) + 1;
40 end
41

42 disp(inc_dist_today)
43

44

45 for i = 1:4
46 number_of_inc_today = inc_dist_today(i);
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47 switch i
48 case 1
49 mean_flow = 1;
50 std_flow = .05;
51 mean_duration = 1;
52 std_duration = .05;
53 time_dist = small_medium_dist;
54 case 2
55 mean_flow = 6;
56 std_flow = 1;
57 mean_duration = 1;
58 std_duration = .05;
59 time_dist = small_medium_dist;
60 case 3
61 mean_flow = 14;
62 std_flow = 2;
63 mean_duration = 10;
64 std_duration = 2;
65 time_dist = bath_dist;
66 case 4
67 mean_flow = 8;
68 std_flow = 1;
69 mean_duration = 5;
70 std_duration = 2;
71 time_dist = shower_dist;
72 end;
73

74 if number_of_inc_today > 0;
75 for n = 1:number_of_inc_today
76 %hour of the usage
77 time = time_of_usage(time_dist); %[h]
78 flow = mean_flow + std_flow*randn; %l/m
79 flow = max(flow,0);
80 duration = mean_duration + ceil(std_duration*randn); %min
81 duration=duration/60;%[now in hours]
82 duration_vec=[duration_vec duration*3600]; %[in seconds]
83 flow_vec=[flow_vec flow];
84 timestart_vec=[timestart_vec time*3600 ];
85

86 end
87 end
88

89 end
90 timestart_vec=sort(timestart_vec)
91 % stairs(day.time,day.flow)

1 function dist = make_prob_table(dist)
2

3 %ensuring probabillity sum to one
4 total_prob = trapz(dist.t,dist.p);
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5 dist.p = dist.p/total_prob;
6

7 % interpolates the date one minute scale
8 inter_p.t = 0:1/60:24;
9 inter_p.p = zeros(length(inter_p.t),1);

10 for i = 1:length(inter_p.t)
11 inter_p.p(i) = interp1(dist.t,dist.p,inter_p.t(i));
12 end
13 % calulating the probability minute by minute
14 % descrete probabillity
15 inter_p.P = zeros(length(inter_p.t)−1,1);
16 for i = 1:length(inter_p.t)−1
17 inter_p.P(i) = trapz(inter_p.t(i:i+1),inter_p.p(i:i+1));
18 end
19

20 dist.prob_table.p = cumsum(inter_p.P);
21 dist.prob_table.t = inter_p.t;
22

23 end

1 dist.t = [
2 0
3 7
4 8
5 14
6 17
7 19
8 21
9 23

10 24
11 ];
12

13 dist.p = [
14 0
15 0
16 .01
17 .06
18 .05
19 .22
20 .03
21 .01
22 0
23 ];

1

2 function dist=prob_dist_shower
3 dist.t = [
4 0
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5 5
6 6
7 7
8 8
9 9

10 18
11 19
12 19.5
13 21
14 23
15 24
16 ];
17

18 dist.p = [
19 0
20 0
21 .15
22 .25
23 .15
24 .02
25 .02
26 .05
27 .09
28 .02
29 .02
30 0
31 ];

1 dist.t = [
2 0
3 4.9
4 5
5 23
6 23.1
7 24
8 ];
9

10 dist.p = [
11 .01
12 .01
13 .05
14 .05
15 .01
16 .01
17 ];

1 function time = time_of_usage(dist)
2
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3 time_index = find(dist.prob_table.p > rand, 1);
4 time = dist.prob_table.t(time_index);
5

6 end
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D.2 S-Function

1 function [sys,x0,str,ts] = sfunctionmodel(t,x,u,flag,par)
2

3

4 switch flag,
5

6 %%%%%%%%%%%%%%%%%%
7 % Initialization %
8 %%%%%%%%%%%%%%%%%%
9 case 0,

10 [sys,x0,str,ts]=mdlInitializeSizes;
11

12 %%%%%%%%%%%%%%%
13 % Derivatives %
14 %%%%%%%%%%%%%%%
15 case 1,
16 sys=mdlDerivatives(t,x,u,flag,par);
17

18 %%%%%%%%%%%%%%%%%%%%%
19 % Update &terminate %
20 %%%%%%%%%%%%%%%%%%%%%
21 case {2,4,9}
22 sys=[]; %Unused flags
23

24 %%%%%%%%%%%
25 % Outputs %
26 %%%%%%%%%%%
27 case 3,
28 sys=mdlOutputs(t,x,u,flag,par);
29

30

31 otherwise
32 DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag))...

;
33

34 end
35

36 % end sfunctionmodel
37

38

39 %=====================================================
40 % mdlInitializeSizes
41 % Return the sizes, initial conditions, and sample times for the S...

−function.
42 %=====================================================
43

44 function [sys,x0,str,ts]=mdlInitializeSizes
45
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46

47 sizes = simsizes;
48

49 sizes.NumContStates = 3;
50 sizes.NumDiscStates = 0;
51 sizes.NumOutputs = 3; %Number of outputs
52 sizes.NumInputs = 6; %Number of inputs
53 sizes.DirFeedthrough = 0; %Put to one if input is used as output
54 sizes.NumSampleTimes = 1; %at least one sample time is needed
55

56 sys = simsizes(sizes);
57 x0 = [200 273+90 0];
58 str = []; %str is always an empty matrix
59 ts = [0 0]; %initializes the array of sample times
60

61

62

63 % end mdlInitializeSizes
64

65

66 %=====================================================
67 % mdlDerivatives
68 % Return the derivatives for the continuous states.
69 %=====================================================
70

71 function sys=mdlDerivatives(t,x,u,flag,par)
72

73 %Identify inputs
74 Q = u(1);
75 qin = u(2);
76 qhw = u(3);
77 Thws = u(4);
78 Tin = u(5);
79 p = u(6);
80

81 %Identify states
82 V = x(1);
83 T = x(2);
84 J = x(3);
85

86 %Equations
87

88 Q_demand = par.ro.water*par.cp.water*qhw*(Thws−Tin);
89

90 p1 = 0.005;
91 p2 = 0.05;
92

93 if T >= Thws
94 pp = 0;
95 else
96 pp = p1*(Thws−T)^2 + p2*(Thws−T);
97 end
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98

99

100 %qout = qhw*((Thws−par.Tcw)/(T−par.Tin))
101 qins = qin/60;
102 qhws = qhw/60;
103

104 %Volume
105 dxdt(1) = qins−qhws*((Thws−Tin)/(T−Tin));
106 %Temperature
107 dxdt(2) = 1/V*((qins*(Tin−T))+Q/(par.ro.water*par.cp.water));
108 %Price
109 dxdt(3) = p*Q/3600 + pp*Q_demand/3600; %Divides with 3600 to get ...

in hours
110

111 sys = [dxdt(1) dxdt(2) dxdt(3)];
112

113

114 %=====================================================
115 % mdlOutputs
116 % Return the block outputs.
117 %=====================================================
118 %
119 function sys=mdlOutputs(t,x,u,flag,par)
120

121 %States
122 %V = x(1);
123 %T = x(2);
124 %J = x(3)
125

126 sys = x; %[V; T];
127

128 %end mdlOutputs
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D.3 Optimal operation, Case II and IV

The following MATLAB script are used for the proposed optimal operation, Case
II and IV.

1 %File Tbuffer.m
2 clear all
3 close all
4

5 %Tbuffervector = [90 90]+273; %Tbuffer init., x1 int.
6 %Tbuffervector = [90 65 80]+273; %Tbuffer init., x2 int.
7 %Tbuffervector = [90 90 65 90]+273; %Tbuffer init., x3 int.
8 %Tbuffervector = [90 90 80 65 90] +273; %Tbuffer init., x4 int.
9 %Tbuffervector = [90 90 80 65 90 65]+273; %Tbuffer init., x5 int.

10 %Tbuffervector = [90 90 80 65 90 65 90]+273; %Tbuffer init., x6 ...
int.

11 Tbuffervector = [87 90 87 64 60 47 45 87]+273; %Tbuffer init.,x7 ...
int.

12 %Tbuffervector = [90 90 90 90 80 80 70 90 90 90 90 70 65]+273;%...
Tbuffer init.,x13 int.

13

14

15 %% Case optimal
16

17 %Always expensive energy, Switch goes to T_buffer
18 Pricethresholdvector = linspace(0.1,0.1,20);
19 Pthreshold = Pricethresholdvector(1);
20

21 %% Case 2
22

23 % Always cheap energy, Switch goes to Tmax
24 % Pricethresholdvector = linspace(1,1,20);
25 % Pthreshold = Pricethresholdvector(1);
26

27 %% Input data
28

29 prompt = {'Enter start day','Enter days of simulation'};
30 dlg_title = 'Simulation data';
31 num_lines = 1;
32 def = {'1','1'};
33 answere = inputdlg(prompt,dlg_title,num_lines,def);
34

35 [start, days] = answere{:};
36

37 start = str2num(start);
38 days = str2num(days);
39

40 if start > 31
41 display('Start is to high')
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42 return
43 end
44 if start<1
45 display('Start is to low')
46 return
47 end
48 if days>31
49 display('To many days')
50 return
51 end
52 if days<1
53 display('To few days')
54 return
55 end
56

57 %% Energy price
58

59 % Energy price profile, Nordpoolspot
60 % continuously varying energy price
61

62 fid = fopen('nordpoolspotmnd2.csv');
63 temp = textscan(fid,'%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%...

q%q%q%q%q%q%q%q%q%q'); %32 collons, 1 for time, rest for days
64

65 time_excel = str2double(temp{1});
66

67 for i=2:32
68 price(:,i−1)= str2double(temp{i})/1000;
69 end
70

71

72 %% Cost calulation
73 %Jvector=[];
74 opts=optimset('TolFun',1e−2,'TolX',1e−1);
75 options = optimset('Display','iter');
76

77 for k=start:(start+days−1)
78

79 [Tbufferopt,J,EXITFLAG]= fminsearch(@(Tbufferi)...
objective_generall(Tbufferi,Pthreshold,start,days,price,...
time_excel),Tbuffervector,opts)

80

81 end

1 function [ J ] = objective_generall( Tbufferi,Pthreshold,start,...
days,price,time_excel)

2

3 %Finds the objective function
4 %Takes the proposed inital values and runs the simulink model
5 %and returns the cost
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6

7 %Parameters
8 par.cp.water = 4.19; %[kJ/Kg,K] SI Chemical Data
9 par.ro.water = 1; %[g/cm^3] SI Chemical Data

10

11 %Saturation limits
12 Qmin = 0.0; %[kW]
13 Qmax = 5.5; %[kW]
14 qin_min = 0; %[m^3/s]
15 qin_max = 10; %[m^3/s]
16

17 Qlb = Qmin;
18 Qub = Qmax;
19 qinlb = qin_min;
20 qinub = qin_max;
21

22

23 load day.mat %Demand data
24

25 qhw=[];
26 p=[];
27

28 for i = start:(start+days−1);
29

30 tsim = 3600*24;
31

32 %constant demand
33

34 qhw = day.flow;
35 Thws = zeros(size(day.time))'+273+50;
36 Tin = zeros(size(day.time))'+273+5;
37

38

39 % %constant price
40 % day(i) = getProfile;
41 % qhw(:,i) = day(i).flow;
42 % Thws(:,i) = zeros(size(day(i).time))'+273+50;
43 % Tin(:,i) = zeros(size(day(i).time))'+273+5;
44

45

46

47 % varying price
48 % PRICE: converting excel values into the dim of the ...

distrubance matrix
49

50 price_day(:,i) = price(:,i);
51 price_days(:,i) = interp1(time_excel,price_day(:,i),day.time,'...

linear','extrap');
52

53 %constant price
54 %p(:,i) = price_days(:,i)';
55
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56 %constant demand
57 p=[p price_days(:,i)];
58

59 %% Distubance matrix
60 %
61 % %constant price
62 % dsim.time = [day(i).time]'*3600;
63 % dsim.signals.values = [qhw(:,i) Thws(:,i) Tin(:,i) p(:,i)]; ...

% disturbances
64 % dsim.dimentions = [4 1];
65

66

67 %constant demand
68 dsim.time = [day.time]'*3600;
69 dsim.signals.values = [qhw Thws Tin p]; % disturbances
70 dsim.dimentions = [4 1];
71

72 %Tbuffer values
73

74 Tbuffertime = [0 5 9 14 17 20 21 24]'; %Time in h,x7, initial
75

76 %%case with different Time_int
77 %Tbuffertime = [0 4 6 8 11 16 20 24]'; %Time in h,x71
78 %Tbuffertime = [0 2 5 10 14 19 22 24]'; %Time in h, x72
79 %Tbuffertime = [0 6 9 12 16 20 23 24]'; %Time in h, x73
80

81

82

83 Tbuffer_vect = (zeros(size(Tbuffertime))+Tbufferi')';
84 Pthreshold_vect = (zeros(size(Tbuffertime))+Pthreshold')';
85

86

87 Pthreshold.time = [Tbuffertime]*3600;
88 Pthreshold.signals.values = [Pthreshold_vect]';
89 Pthreshold.dimentions = [1 1];
90

91

92 Tbuffer.time = [Tbuffertime]*3600;
93 Tbuffer.signals.values = [Tbuffer_vect]';
94 Tbuffer.dimentions = [1 1];
95

96

97 options = simset('SrcWorkspace','current');
98 sim('simulinkmodel_Tbuffer',[],options)
99 J=simout.signals.values(end,end);

100

101 penalty = 100;
102

103 %Implemented penalty constraint
104

105 numberofint = length(Tbufferi);
106
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107 for m=1:numberofint;
108

109 Jp = max(Tbufferi(m)−90−273,0)*penalty+max(25+273−Tbufferi(m)...
,0)*penalty;

110

111 J = J + Jp;
112

113 end
114

115 T = simout.signals.values(end,2);
116

117 plotres.qhw_case=simout1.signals.values;
118 plotres.JJ = simout.signals.values(:,3);
119 plotres.T=simout.signals.values(:,2);
120 plotres.t = simout.time/3600;
121 plotres.Tset = simout2.signals.values;
122 plotres.p = simout3.signals.values;
123

124 %Case 4
125 %Delta E penalty implemented for lacing final constraint.
126

127 % deltaT = (90+273−T);
128 % deltaE = par.cp.water*par.ro.water*deltaT*200*2.778*10^(−4)...

*0.127;
129 %
130 % J = J + deltaE;
131 %
132 % plotresJan.dEJJ =simout.signals.values(:,3) + deltaE;
133

134 save plotres
135

136 J;
137

138 end
139 end

D.4 Case I

The following MATLAB scripts were used for the simulations in Case I.

1 %File Tbuffer.m
2 % Finding the cost for all Tbuffers and Pthresholds
3 clear all
4 close all
5

6 Tbuffervector = linspace(60,90,20)+273;
7
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8 Pricethresholdvector = linspace(0.24,0.32,20);
9

10

11 %% Input data
12

13 prompt = {'Enter start day','Enter days of simulation'};
14 dlg_title = 'Simulation data';
15 num_lines = 1;
16 def = {'1','1'};
17 answere = inputdlg(prompt,dlg_title,num_lines,def);
18

19 [start, days] = answere{:};
20

21 start = str2num(start);
22 days = str2num(days);
23

24 if start > 31
25 display('Start is to high')
26 return
27 end
28 if start<1
29 display('Start is to low')
30 return
31 end
32 if days>31
33 display('To many days')
34 return
35 end
36 if days<1
37 display('To few days')
38 return
39 end
40

41 %% Energy price
42

43 % Energy price profile, Nordpoolspot
44 % continuously varying energy price
45

46 fid = fopen('nordpoolspotmnd2.csv');
47 temp = textscan(fid,'%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%...

q%q%q%q%q%q%q%q%q%q'); %32 collons, 1 for time, rest for days
48

49 time_excel = str2double(temp{1});
50

51 for i=2:32
52 price(:,i−1)= str2double(temp{i})/1000;
53 end
54

55

56 %% Cost calulation
57 %Jvector=[];
58
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59 for k=start:(start+days−1)
60 for j=1:length(Pricethresholdvector)
61

62 for i=1:length(Tbuffervector)
63

64

65 Pthresholdj = Pricethresholdvector(j)
66 Tbufferi=Tbuffervector(i);
67

68 Jkji=objective_generall(Tbufferi,Pthresholdj,start,days,price,...
time_excel);

69

70 Jmatrix(k,j,i)=Jkji;
71

72 end
73 end
74 end
75

76 %%
77

78 %% Results saved
79 % Change day for every simulation
80

81 result.Tbuffer = Tbuffervector;
82 result.Pthreshold = Pricethresholdvector;
83 result.Jmatrix = Jmatrix(k,:,:);
84

85 %save('res_demand_31.mat','result')
86

87

88 %% Plot surf
89

90 surf(Pricethresholdvector,Tbuffervector−273,squeeze(Jmatrix(1,:,:)...
))

91 title('$Total$ $Cost$ $[NOK]$','interpreter','latex','FontSize'...
,14)

92 xlabel('$Price$ $Threshold$, $[NOK/kWh]$','interpreter','latex','...
FontSize',14)

93 ylabel('$T_{buffer}$, $[{\circ}C]$','interpreter','latex','...
FontSize',14)

94 zlabel('$Total$ $cost$, $[NOK]$','interpreter','latex','FontSize'...
,14)

95 axis tight

1 function [ J ] = objective_generall( Tbufferi,Pthreshold,start,...
days,price,time_excel)

2 %Finds the objective function
3 %Takes in the Tbufferi and Pthresholdj, runs the simulink model ...

and returns the cost
4
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5

6 %Parameters
7 par.cp.water = 4.19; %[kJ/Kg,K] SI Chemical Data
8 par.ro.water = 1; %[g/cm^3] SI Chemical Data
9

10 %Saturation limits
11 Qmin = 0.0; %[kW]
12 Qmax = 5.5; %[kW]
13 qin_min = 0; %[m^3/s]
14 qin_max = 10; %[m^3/s]
15

16 Qlb = Qmin;
17 Qub = Qmax;
18 qinlb = qin_min;
19 qinub = qin_max;
20

21

22

23

24 load day.mat
25

26 qhw=[];
27 p=[];
28

29 for i = start:(start+days−1);
30

31 tsim = 3600*24;
32

33 %constant demand
34

35 qhw = day.flow;
36 Thws = zeros(size(day.time))'+273+50;
37 Tin = zeros(size(day.time))'+273+5;
38

39

40 % %constant price
41 % day(i) = getProfile;
42 % qhw(:,i) = day(i).flow;
43 % Thws(:,i) = zeros(size(day(i).time))'+273+50;
44 % Tin(:,i) = zeros(size(day(i).time))'+273+5;
45

46

47

48 % varying price
49 % PRICE: converting excel values into the dim of the ...

distrubance matrix
50

51 price_day(:,i) = price(:,i);
52 price_days(:,i) = interp1(time_excel,price_day(:,i),day.time,'...

linear','extrap');
53

54 %p(:,i) = price_days(:,i)';
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55 p=[p price_days(:,i)];
56

57 %% Distubance matrix
58 %
59 % % %constant price
60 % dsim.time = [day(i).time]'*3600;
61 % dsim.signals.values = [qhw(:,i) Thws(:,i) Tin(:,i) p(:,i)]; ...

% disturbances
62 % dsim.dimentions = [4 1];
63

64

65 %constant demand
66 dsim.time = [day.time]'*3600;
67 dsim.signals.values = [qhw Thws Tin p]; % disturbances
68 dsim.dimentions = [4 1];
69

70

71 %Tbuffer values
72 %Tbuffertime = linspace(0,23,24)';
73 Tbuffertime = [0 6 8 11 16 23 24]'; %Time in h
74 Tbuffer_vect = (zeros(size(Tbuffertime))+Tbufferi')';
75

76 Tbuffer.time = [Tbuffertime]*3600;
77 Tbuffer.signals.values = [Tbuffer_vect]';
78 Tbuffer.dimentions = [1 1];
79

80

81 options = simset('SrcWorkspace','current');
82 sim('simulinkmodel_Tbuffer_case2',[],options)
83 J=simout(end,end)
84

85

86

87 end
88 end

D.5 Case III

In following MATLAB scripts are used for Case III.

1 %File Tbuffer.m
2 clear all
3 close all
4

5

6 %% Case 5
7
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8 Pthresholdvector = [0 0 0 0 0 0 0 0]+0.25; %Pthreshold init. x7 ...
int.

9 Tbuffervector = [50]+273; %Tbuffer optimal from case 2.
10

11 decisionvector = [Tbuffervector Pthresholdvector];
12

13

14

15 %% Input data
16

17 prompt = {'Enter start day','Enter days of simulation'};
18 dlg_title = 'Simulation data';
19 num_lines = 1;
20 def = {'1','1'};
21 answere = inputdlg(prompt,dlg_title,num_lines,def);
22

23 [start, days] = answere{:};
24

25 start = str2num(start);
26 days = str2num(days);
27

28 if start > 31
29 display('Start is to high')
30 return
31 end
32 if start<1
33 display('Start is to low')
34 return
35 end
36 if days>31
37 display('To many days')
38 return
39 end
40 if days<1
41 display('To few days')
42 return
43 end
44

45 %% Energy price
46

47 % Energy price profile, Nordpoolspot
48 % continuously varying energy price
49

50 fid = fopen('nordpoolspotmnd2.csv');
51 temp = textscan(fid,'%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%q%...

q%q%q%q%q%q%q%q%q%q'); %32 collons, 1 for time, rest for days
52

53 time_excel = str2double(temp{1});
54

55 for i=2:32
56 price(:,i−1)= str2double(temp{i})/1000;
57 end
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58

59

60 %% Cost calulation
61 %Jvector=[];
62 opts=optimset('TolFun',1e−2,'TolX',1e−1);
63 options = optimset('Display','iter');
64

65 for k=start:(start+days−1)
66

67 [Tbufferopt,J,EXITFLAG]= fminsearch(@(Tbufferi)...
objective_generall(Tbufferi,start,days,price,time_excel),...
decisionvector,opts)

68 %[Tbufferopt,J,EXITFLAG]= fmincon(@(Tbufferi)objective_generall...
(Tbufferi,Pthreshold,start,days,price,time_excel),...
Tbuffervector,[],[],[],[],LB,UB,[],options)

69 end
70

71 %%
72

73 % plot(Tbuffervector − 273,J)
74 % %axis([1 24 0.23 0.31])
75 % title('$Total$ $cost$ $vs$ $T_{buffer}$','interpreter','latex','...

FontSize',14)
76 % xlabel('$T_{buffer}$ , $[{\circ}C]$','interpreter','latex','...

FontSize',14)
77 % ylabel('$Total$ $cost$, $[NOK]$','interpreter','latex','FontSize...

',14)

1

2 function [ J ] = objective_generall( decisionvector,start,days,...
price,time_excel)

3

4 %Finds the objective function
5 %Takes in the Tbufferi and Pthreshold, runs the simulink model and...

returns the cost
6

7 Tbuffervector = decisionvector(1);
8 Pthreshold_vector = decisionvector(2:end);
9

10

11 %Parameters
12 par.cp.water = 4.19; %[kJ/Kg,K] SI Chemical Data
13 par.ro.water = 1; %[g/cm^3] SI Chemical Data
14

15 %Saturation limits
16 Qmin = 0.0; %[kW]
17 Qmax = 5.5; %[kW]
18 qin_min = 0; %[m^3/s]
19 qin_max = 10; %[m^3/s]
20
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21 Qlb = Qmin;
22 Qub = Qmax;
23 qinlb = qin_min;
24 qinub = qin_max;
25

26 load day.mat
27

28 qhw=[];
29 p=[];
30

31 for i = start:(start+days−1);
32

33 tsim = 3600*24;
34

35 %constant demand
36

37 qhw = day.flow;
38 Thws = zeros(size(day.time))'+273+50;
39 Tin = zeros(size(day.time))'+273+5;
40

41

42 % %constant price
43 % day(i) = getProfile;
44 % qhw(:,i) = day(i).flow;
45 % Thws(:,i) = zeros(size(day(i).time))'+273+50;
46 % Tin(:,i) = zeros(size(day(i).time))'+273+5;
47

48

49

50 % varying price
51 % PRICE: converting excel values into the dim of the ...

distrubance matrix
52

53 price_day(:,i) = price(:,i);
54 price_days(:,i) = interp1(time_excel,price_day(:,i),day.time,'...

linear','extrap');
55

56 %constant price
57 %p(:,i) = price_days(:,i)';
58

59 %constant demand
60 p=[p price_days(:,i)];
61

62 %% Distubance matrix
63 %
64 % %constant price
65 % dsim.time = [day(i).time]'*3600;
66 % dsim.signals.values = [qhw(:,i) Thws(:,i) Tin(:,i) p(:,i)]; ...

% disturbances
67 % dsim.dimentions = [4 1];
68

69
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70 %constant demand
71 dsim.time = [day.time]'*3600;
72 dsim.signals.values = [qhw Thws Tin p]; % disturbances
73 dsim.dimentions = [4 1];
74

75

76 Tbuffertime = [0 5 9 14 17 20 21 24]'; %Time in h,x7, initial
77 %Tbuffertime = [0 4 6 8 11 16 20 24]'; %Time in h,x71
78 %Tbuffertime = [0 2 5 10 14 19 22 24]'; %Time in h, x72
79 %Tbuffertime = [0 6 9 12 16 20 23 24]'; %Time in h, x73
80

81

82 %case 5
83 Tbuffer_vect = (zeros(size(Tbuffertime))+Tbuffervector')';
84 Pthreshold_vect = (zeros(size(Tbuffertime))+Pthreshold_vector...

')';
85

86

87 Pthreshold.time = [Tbuffertime]*3600;
88 Pthreshold.signals.values = [Pthreshold_vect]';
89 Pthreshold.dimentions = [1 1];
90

91

92 Tbuffer.time = [Tbuffertime]*3600;
93 Tbuffer.signals.values = [Tbuffer_vect]';
94 Tbuffer.dimentions = [1 1];
95

96

97 options = simset('SrcWorkspace','current');
98 sim('simulinkmodel_Tbuffer',[],options)
99 J=simout.signals.values(end,end);

100

101 penalty = 100;
102

103 numberofint = length(Tbuffervector);
104

105 for m=1:numberofint;
106

107 Jp = max(Tbuffervector(m)−90−273,0)*penalty+max(25+273−...
Tbuffervector(m),0)*penalty;

108

109 J = J + Jp;
110

111 end
112

113

114 J;
115

116 plotresPthres.qhw_case=simout1.signals.values;
117 plotresPthres.JJ = simout.signals.values(:,3);
118 plotresPthres.T=simout.signals.values(:,2);
119 plotresPthres.t = simout.time/3600;
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120 plotresPthres.Pthres = simout2.signals.values;
121 plotresPthres.Tset = simout3.signals.values;
122

123 save plotresPthres
124

125 end
126 end
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E | Simulink Model

Figure E.1: Overview of the simulink model which solves the optimization problems.
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